The effect of diluted 1% baby shampoo on biofilm reduction in chronic rhinosinusitis with nasal polyposis (#104558)

First submission

Guidance from your Editor

Please submit by 5 Oct 2024 for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Author notes

Have you read the author notes on the guidance page?

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the <u>materials page</u>.

- 3 Figure file(s)
- 4 Table file(s)
- 1 Raw data file(s)
- 1 Other file(s)

Custom checks

Human participant/human tissue checks

- Have you checked the authors <u>ethical approval statement?</u>
- Does the study meet our article requirements?
- Has identifiable info been removed from all files?
- Were the experiments necessary and ethical?

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready <u>submit online</u>.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty is not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

The effect of diluted 1% baby shampoo on biofilm reduction in chronic rhinosinusitis with nasal polyposis

Farah Dayana Zahedi $^{\text{Corresp.}\,1}$, Mun Yee Soo 2 , Muttaqillah Najihan Abdul Samat 3 , Suria Hayati Md Pauzi 4 , Salina Husain 1 , Aneeza Khairiyah Wan Hamizan 1 , Baharudin Abdullah 5 , Balwant Singh Gendeh 6 , Abdul Samat Ismail 7 , Rocky Vester Richmond 7

Corresponding Author: Farah Dayana Zahedi Email address: farahdayana@ukm.edu.my

Background. Biofilm has been identified as the contributing factor for refractory chronic rhinosinusitis with nasal polyposis (CRSwNP). Nasal douching using baby shampoo was thought to be effective in patients with CRSwNP. We aimed to study the in-vitro reduction of biofilm using diluted 1% baby shampoo. Methods. Sixty nasal polyps taken from patients who met the inclusion and exclusion criteria were sent for histopathological examination using haematoxylin and eosin staining. Another portion of the same samples was sent for tissue culture and tissue culture plate assay to identify. aureusandP. aeruginosaand determine their biofilm forming capacity. The efficacy of diluted 1% baby shampoo versus normal saline was tested on the biofilmin vitrowhere the optical density readings were compared preand post-treatment. Results. The prevalence of biofilm in patients with CRSwNP is 21.7%. Thirteen samples were positive for biofilm; P. aeruginosa23% (n=3), S. aureus15% (n=2), no bacterial growth 54% (n=7) and others 8% (n=1). Biofilm formation was significant in bothS. aureusandP. aeruginosa(p<0.001) whilst a significant reduction biofilm was seen in diluted 1% baby shampoo (p:0.043). Conclusion. In conclusion, diluted 1% baby shampoo is an effective treatment in the reduction of biofilm for CRSwNP.

¹ Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia

² Department of Otorhinolaryngology-Head and Neck Surgery, Hospital Tuanku Azizah, Kuala Lumpur, Malaysia

Department of Microbiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia

⁴ Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia

Department of Otorhinolaryngology-Head and Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia

⁶ Department of Otorhinolaryngology-Head and Neck Surgery, Pantai Hospital Kuala Lumpur, Kuala Lumpur, Malaysia

⁷ Department of Paediatrics, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia

1	
2	The Effect of Diluted 1% Baby Shampoo on Biofilm
3	Reduction in Chronic Rhinosinusitis with Nasal Polyposis
4	
5	Farah Dayana Zahedi ¹ , Mun Yee Soo ² , Muttaqillah Najihan Abdul Samat ³ , Suria Hayati Md
6	Pauzi ⁴ , Salina Husain ¹ , Aneeza Khairiyah Wan Hamizan ¹ , Baharudin Abdullah ⁵ Balwant Singh
7	Gendeh ⁶ , Abdul Samat Ismail ⁷ , Rocky Vester Richmond ⁷
8	
9	¹ Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Universiti
10	Kebangsaan Malaysia, Malaysia
11	² Department of Otorhinolaryngology-Head and Neck Surgery, Hospital Tuanku Azizah,
12	Malaysia
13	³ Department of Microbiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Malaysia
14	⁴ Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Malaysia
15	⁵ Department of Otorhinolaryngology-Head and Neck Surgery, School of Medical Sciences,
16	Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia
17	⁶ Department of Otorhinolaryngology-Head and Neck Surgery, Pantai Hospital Kuala Lumpur,
18	Kuala Lumpur, Malaysia
19	⁷ Department of Paediatrics, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala
20	Lumpur, Malaysia
21	
22	Corresponding Author:
23	
24	Farah Dayana Zahedi ¹
25	Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Malaysia
26	Email address: <u>farahdayana@ukm.edu.my</u>
27	
28	Abstract
29	Background. Biofilm has been identified as the contributing factor for refractory chronic
30	rhinosinusitis with nasal polyposis (CRSwNP). Nasal douching using baby shampoo was thought

31	to be effective in patients with CRSwNP. We aimed to study the in-vitro reduction of biofilm	
32	using diluted 1% baby shampoo.	
33	Methods. Sixty nasal polyps taken from patients who met the inclusion and exclusion criteria	
34	were sent for histopathological examination using haematoxylin and eosin staining. Another	
35	portion of the same samples was sent for tissue culture and tissue culture plate assay to identify	
36	S. aureus and P. aeruginosa and determine their biofilm forming capacity. The efficacy of	
37	diluted 1% baby shampoo sus normal saline was tested on the biofilm <i>in vitro</i> where the	
38	optical density readings were compared pre- and post-treatment.	
39	Results. The prevalence of biofilm in patients with CRSwNP is 21.7%. Thirteen samples were	
40	positive for biofilm; P. aeruginosa 23% (n=3), S. aureus 15% (n=2), no bacterial growth 54%	
41	(n=7) and others 8% (n=1). Biofilm formation was significant in both S . $aureus$ and P .	
42	aeruginosa (p <0.001) whilst a significant reduction of biofilm was seen in diluted 1% baby	
43	shampoo (<i>p</i> : 0.043).	
44	Conclusion. In conclusion, diluted 1% baby shampoo is an effective treatment in the reduction	
45	of biofilm for CRSwNP.	
46		
47	Keywords Rhinosinusitis, biofilms, bacteria, nasal polyps, nasal irrigation, surface-active agents,	
48	surfactants	
49		
50	Introduction	
51	Chronic rhinosinusitis (CRS) is characterized by mucosal inflammation of the nose and paranasal	
52	sinuses with sinonasal symptoms which persist for more than 12 weeks (Cain & Lal, 2013). CRS	
53	is a polymicrobial disease with a wide range of pathogens involved. It was difficult to determine	
54	which pathogens are predominant because of various sampling techniques (e.g. swab, biopsy,	
55	irrigation and aspiration), unable to maintain sterility through which the nasoendoscope is passed	
56	and different methods of culture (Meltzer et al., 2004). Pathogens which are commonly found in	
57	patients with CRSwNP are S. aureus, H. influenzae, and P. aeruginosa and fungus (Smith,	
58	Buchinsky & Post, 2011). According to study done by Zahedi et al, commonest pathogens	
59	cultured from swabs taken from middle meatus were Pseudomonas sp., Enterobacter sp. and	
60	followed by Coagulase-negative staphylococcus (CONS).	

61	Biofilm is an organized, heterogeneous bacterial community, embedded in extracellular
62	polymeric substances (EPS) which are predominantly water and rich in polysaccharides, nucleic
63	acid and proteins. It is a complex three-dimensional structure which contains either single
64	species or different species of microbial, organized in patches of separate colonies and each sub-
65	specialized into different function (Costerton et al., 1995). The free-floating planktonic bacteria
66	adhered to a biological surface to form microcolonies which eventually progressed to form a
67	biofilm. Over the years, studies have revealed the possibility of bacterial biofilms formation
68	which was postulated to be the driving cause of the disease being refractory to treatment
69	(Tomooka, Murphy & Davidson, 2000). Biofilms are more commonly found in patients with
70	chronic rhinosinusitis with nasal polyposis. Studies have shown that CRSwNP patients who
71	failure of maximum medical therapy and surgery have a biofilm positive rate of 20-100% (Li et
72	al., 2012).
73	Nasal irrigation is one of a few treatment options used for CRSwNP. Various studies have been
74	carried out to compare different substances used for nasal irrigation such as normal saline,
75	antibiotic, steroid, loop diuret and surfactants. Normal saline nasal irrigation has been
76	popularized over the years and achieve worldwide acceptance as an adjunctive therapy
77	(Macassey & Dawes, 2008). Promising results from a study reported that diluted 1% baby
78	shampoo improved nasal symptoms and scope findings in a group of patients following surgery
79	generated further interest of diluted 1% baby shampoo nasal irrigation as a treatment option
80	(Chiu et al., 2008).
81	Various imaging modalities have been used in different studies to detect the presence of
82	biofilms. Imaging modalities include scanning and transmission electron microscopy, fluorescen-
83	in situ hybridization (FISH) and confocal scanning laser microscopy (CSLM). Detection of
84	biofilms using hematoxylin and eosin (H&E) staining was first reported in 2010 by Hochstim et
85	al. Tóth et al (2011) also reported that gram stain has a strong correlation with H&E staining and
86	is a reliable predictor of the presence or absence of biofilm. There are a few microbiological
87	methods used for biofilm detections in vitro. These include Tissue Culture Plate (TCP), Tube
88	Method (TM) and Congo Red Agar (CRA). Among the three methods, Tissue Culture Plate has
89	been demonstrated as the most sensitive and specific in detecting biofilms (Deka, 2014).
90	Many previous in-vitro studies explored the efficacy of surfactants in inhibiting the biofilm
91	formation, such as using citric acid/zwitterionic surfactant (CAZS), SinuSurf, and baby

92	shampoo. But from all the studies, none was done on nasal polyps' specimens taken from	
93	CRSwNP patients (Desrosiers, Myntti & James, 2007; Chiu et al., 2008; Kofonow & Adappa,	
94	2012). A study done by Chiu et al (2008) reported that Johnson & Johnson baby shampoo of 1%	
95	concentration was effective in inhibiting the formation of biofilm with favourable clinical	
96	improvements as compared to other concentration, thus making it as a determined concentration	
97	for clinical study. Although the study reported the efficacy of the 1% concentration baby	
98	shampoo in inhibiting the biofilm formation in mostly Chronic Rhinosinusitis patients, there is	
99	lack of data exploring this effect specifically on patient with Chronic Rhinosinusitis with Nasal	
100	Polyposis.	
101	Hence, the aims of this study were to determine the prevalence of biofilm, investigate the biofilm	
102	forming capacity of Staphylococcus aureus and Pseudomonas aeruginosa and define the effect	
103	of diluted 1% baby shampoo on biofilm reduction using nasal polyp specimens of patients with	
104	CRSwNP. To the best of our knowledge, this is the first study conducted to compare the effects	
105	of diluted 1% baby shampoo in reducing biofilms in vitro on nasal polyp specimens of patients	
106	who underwent ESS for CRSwNP.	
107		
108	Materials & Methods	
109	Study population	
110	This study received the Research Ethical Committee, Universiti Kebangsaan Malaysia (REC	
111	UKM) approval with the approval number of JEP-2016-510. All patients underwent Endoscopic	
112	Sinus Surgery (ESS) for CRSwNP within the study period of 2 years who fulfilled both the	
113	inclusion and exclusion criteria were recruited into the study. The inclusion criteria were age 18	
114	years old and above who underwent ESS for CRSwNP. Patients who have sinonasal tumour	
115	and/or diagnosed with granulomatous nasal diseases were excluded from the study. Informed	
116	consent was taken from patients who agreed to be involved in this study.	
117		
118	Methodology	
119	Two samples of nasal polyp were obtained from each patient and samples were sent to the	
120	histopathology and microbiology lab as per laboratory protocols on the same day.	
121		
122	H&E and Gram Stain study on Biofilm	

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

One section was stained with H&E using stated protocol. The section was deparaffinized in xylene twice for 5 minutes (2 × 5 minutes) and rehydrated with successive 1-minute washes in 100%, 96%, 80%, and 70% ethanol. Subsequently, the specimen was stained with haematoxylin for two minutes, rinsed with distilled water, rinsed with 0.1% hydrochloric acid in 50% ethanol, rinsed with tap water for 15 minutes, stained with eosin for one minute, and rinsed again with distilled water. The slide was dehydrated with 95% and 100% ethanol successively followed by xylene twice for five minutes (2×5 minutes) and mounted with coverslips. Slides were examined and evaluated by two researchers. Presence of Irregularly shaped groupings of small basophilic bacterial clusters one third of the size of the surrounding epithelial or inflammatory cells, a biofilm seen over the epithelial lining, not in or under the epithelial lining, biofilm seen tightly adherent to the surface epithelium or pulled away slightly; or a dense extracellular polysaccharide substance (EPS) material with embedded basophilic bacteria, occasionally entrapped erythrocytes, leukocytes and partially sheared from epithelial surface substance coating the epithelial surface indicating biofilm-positive (Tóth et al., 2011). Gram staining of the samples following the protocols of Gram stain kit Bio-Optica 04-100802 was employed to complement the HPE findings of biofilm.

139140

141

142

143

144

145

146

147

148

149

150

151

152

153

Tissue Culture Plate Assay

The tissue specimens obtained from the operating theatre were immediately transported to the microbiology lab. The tissue specimens were homogenized. Specimens were inoculated on blood agar, MacConkey agar, mannitol salt agar and cetrimide selective agar and incubated at 37°C for 24 hours. Pure colonies from the isolates above were then inoculated on to nutrient agars until further testing. Yellow colonies grew on mannitol salt agar were subjected to DNase and coagulase test. DNase positive and coagulase positive colonies were considered as *S. aureus*. Green-pigmented colonies which grew on cetrimide agar were subjected to the API 20 NE test to confirm the identification of *P. aeruginosa*. Three to four colonies of bacterial isolates were suspended in Mueller-Hinton broth until the turbidity matches a standard of 0.5 McFarland and were incubated aerobically at 37°C for 24 hours. One mL of the bacterial suspension was diluted 1:100 with fresh Mueller-Hinton broth (106 CFU.mL). One mL of this 1:100 bacterial suspensions was added to 1ml of sterile Mueller-Hinton broth to achieve a final concentration of 5 x 105 CFU/mL. Reference strain of biofilm-forming *S. aureus* ATCC 25923 and *P. aeruginosa*

154	ATCC 27853 obtained from American Tissue Culture Collection (ATCC) were used as a
155	positive control in this study. Control strains were cultured with the same method. Biofilm
156	presence of the tissue specimen was confirmed using H&E and Gram staining. Only tissues with
157	biofilm and culture positive for S. aureus or/and P. aeruginosa were included in the analysis. All
158	organisms were tested for biofilm-forming properties and subsequently, the amount of biofilm
159	left after subjecting to diluted 1% baby shampoo versus normal saline were evaluated. 1%
160	shampoo concentration was determined for this clinical study based on previous literature
161	adapted (Chiu et al., 2008).
162	Three 96-well tissue-culture treated microplates were filled with $200\mu L$ of Mueller-Hinton broth
163	and 10 μL of the final inoculums (5x10 ⁵ CFU/mL) and were incubated it at 37°C for 8 days
164	without agitation for biofilm growth. 50 μL of media were removed from each well and replaced
165	with 50-150 μL of fresh media on alternate days to achieve maximal biofilm growth. After
166	incubation for 8 days, the wells were washed twice with distilled water to remove planktonic
167	forms of bacteria and were left to dry. One of the 96-well tissue-culture treated microplates was
168	filled with 250 μL of methanol and left for 15 minutes for fixation of adherent bacteria.
169	Subsequently methanol was removed, and the microplate was air dried for another 15 minutes.
170	Subsequently 200 μL of 0.1% crystal violet (CV) solution was applied to stain the adherent
171	bacteria for 5 minutes. Then, the CV solution was decanted, and the wells were washed three
172	times with distilled water. The stained wells were filled with 250 μL of 95%ethanol and were
173	incubated for 1 hour on a rocking platform at room temperature to solubilize the adherent
174	material. Quantification of biofilm growth was determined by reading the optical density (OD) of
175	each well at 595nm (OD595nm) using a microplate reader. Reference strains were used as
176	control. Negative control wells were filled with only sterile broth. Test was carried out in a
177	triplicate manner, and the mean OD was recorded. A cut-off optical density (ODc) needs to be
178	established to note the presence or absence of biofilm. The cut-off optical density (ODc) was
179	defined as 3 standard deviations above the mean OD of the negative control (culture medium):
180	ODc=average OD of negative control+(3×SD of negative control). The mean OD of the strains
181	will be compared to the OD of the negative control. Analysis was done as described by
182	Stepanović et al., (2007) whereby strains were classified as follows: $OD \le ODc$ no biofilm
183	producer, ODc< OD \leq 2 \times ODc weak biofilm producer, 2 \times ODc< OD \leq 4 \times ODc moderate
184	biofilm producer and 4 × ODc< OD strong biofilm producer.

185	An amount of 0.1ml of Johnson & Johnson baby shampoo was diluted in 10mls of normal saline
186	to achieve a 1% concentration which was used as nasal irrigation (Joss et al., 2016). This
187	concentration was determined and adapted based on previous literature (Chiu et al., 2008).
188	Solution was prepared 30 minutes prior to test.
189	Once the biofilm had been established and confirmed on the first microplate on day 8, wells on
190	the second and third microplates containing the same inoculums were filled with 100 μL of 1%
191	baby shampoo diluted in normal saline and normal saline separately. The microplates were
192	incubated for another 24hours at 37°C. Positive control wells contained only the inoculums and
193	the media without the test component, and negative control wells contained only test component
194	and media, without the inoculums. The microplates were analysed using a crystal violet assay
195	and optical density and measured with a microplate reader as described earlier. A flow chart of
196	the methodology is shown in Fig. 1. All tests were carried out in a triplicate fashion. The relative
197	inhibition of biofilm was calculated as described by Ha et al., (2008), as follows.
102	

Percentage of biofilm inhibition = $100 - [OD_{595}]$ of treated well/ OD_{595} of untreated well] x 100

200

201

202

203

204

205

206

199

Statistical analysis

CO 1 1 CT 1

Data was entered and analysed using SPSS 25.0. Wilcoxon Signed Rank test was employed to analyse the reduction of biofilm using diluted 1% baby shampoo and normal saline only and to compare biofilm reduction between normal saline and diluted 1% baby shampoo. Fisher Exact test was used to determine the statistical difference in biofilm formation and biofilm forming capacity of S. aureus and P. aeruginosa. p < 0.05 considered as statistically significant.

207

208

209

210

211

212

213

214

215

Results

Demographic Data

A total of 60 samples were collected from 30 patients who underwent endoscopic sinus surgery for chronic rhinosinusitis with nasal polyposis. The age ranged from 26 to 78 years old whereby the mean \pm standard deviation (SD) age 58 \pm 15 years. There were 21 male and 9 female which comprised of 70% and 30% respectively, and 13(43.3%) of them were Malays, 13(43.3%) were Chinese and 4(13.3%) were Indian. All patients were treated with intranasal corticosteroids and normal saline nasal douche. Half of the population underwent repeated ESS.

216		
217	Data on biofilms	
218	Biofilms were detected in 13 out of 60 samples (21.7%) using H&E complimented with Gram	
219	stain method (Figure 2). Out of these 13 samples, 23% (n=3) comprised of P. aeruginosa, 15%	
220	(n=2) for S. aureus, 54% (n=7) had no bacterial growth and 8% (n=1) which was others (Table	
221	1). All samples which grew S. aureus or P. aeruginosa were bio-film-positive. There was no	
222	sample which grew S. aureus and P. aeruginosa simultaneously. There is statistical significance	
223	in biofilm formation of S. aureus or P. aeruginosa with the p-values of 0.0002 (p<0.05) (Table	
224	2).	
225		
226	Biofilm forming capacity	
227	All samples which grew S. aureus or P. aeruginosa with biofilm seen on H&E staining were	
228	subjected for tissue culture plate assay to determine the bacteria biofilm forming capacity. They	
229	were all graded after a cut-off point of optical density of the negative control was determined.	
230	All samples with P. aeruginosa (100%) isolates were strong biofilm forming in capacity whereas	
231	1 sample with S. aureus has strong biofilm forming capacity and 1 weak biofilm forming	
232	capacity (50%). There is no statistical difference in biofilm forming strength between S. aureus	
233	and P. aeruginosa with the p-value of 0.4.	
234		
235	Effects of diluted 1% baby shampoo on biofilm mass	
236	An average of 26.87% reduction of biofilm with normal saline alone and a mean of 57.31%	
237	reduction of biofilm after treated with diluted 1% baby shampoo (Table 3). There is significant	
238	reduction of biofilm with the treatment of diluted 1% baby shampoo with the p-value of 0.043	
239	however there was no significant reduction of biofilm with normal saline with the p-value of	
240	0.080 (Table 4). Overall analysis, diluted 1% baby shampoo is significantly more effective in	
241	biofilm reduction than normal saline with the p-value of 0.043 (p<0.05) (Table 4, Fig. 3).	
242		
243	Discussion	
244	Chronic rhinosinusitis has been reported to affect quality-of-life more than those suffering from	
245	chronic obstructive pulmonary disease, congestive heart failure, ischemic heart disease and back	
246	pain. It remains to be a challenging disease in terms of treatment whereby disease was	

247	inadequately controlled despite a combination of maximal medical therapy and ESS (Hong et al.,	
248	2014). One out of many postulations for the chronicity of the disease is the involvement of	
249	bacterial biofilms which made the planktonic bacteria resistant to the conventional treatment	
250	strategies (Tomooka, Murphy & Davidson, 2000).	
251	The prevalence of biofilm in CRSwNP in our study is 22%, detected using a combination of	
252	H&E and Gram stain method. Morphologic features observed in all biofilms positive specimens	
253	in this study are in consistent with the findings reported by Hong et al. (2014) which are irregular	
254	groupings of small basophilic bacterial clusters, presence of a biofilm over the epithelial lining,	
255	biofilm tightly adherent on the surface epithelium and a dense extracellular polysaccharide	
256	substance with embedded basophilic bacteria. There is no standard methodology in biofilms	
257	detection ranging from light microscopy to crystal violet tissue culture plate assay. Hence the	
258	wide range of accuracy in biofilm-positive re-ports were observed in previous studies of patients	
259	with failure of maximal medical therapy and ESS (Li et al., 2012). Among the commonly used	
260	imaging modalities in biofilm studies are scanning electron microscopy (SEM) and transmission	
261	electron microscopy (TEM). The advantages over H&E method are that these methods able to	
262	showcase the structure, developmental stages and polymicrobial nature of biofilms, but the	
263	disadvantages are the difficult in fixation process and to speciate individual bacterial species.	
264	Currently, confocal laser scanning microscopy (CLSM) is the most used technique in biofilm	
265	studies as it provides a three-dimensional view of biofilm structures and also able to speciate the	
266	bacteria visualized using Bac light technique (Suh, Cohen & Palmer, 2010). However, CSLM is	
267	time consuming, incurs much higher cost and not readily available.	
268	There were 15% of S. aureus biofilm and 23% of P. aeruginosa biofilm detected in this study. It	
269	is also evidenced in this study that S. aureus and P. aeruginosa were significantly associated with	
270	biofilm formation. This is consistent with previous studies which demonstrated S. aureus and P.	
271	aeruginosa were predominantly found in biofilms positive specimens of patients with CRSwNP.	
272	In a study group of 157 patients, S. aureus and P. aeruginosa found in 71% of samples which	
273	showed biofilm growth (Hong et al., 2014). Bendouah et al reported 14 out of 19 (73%) patients	
274	had isolates of S. <i>aureus</i> or P. <i>aeruginosa</i> biofilm. Many at times the individual or mixed species	
275	of bacteria or fungi which formed the bio-films were unable to be isolated or cultured by the	
276	conventional microbiological methods; hence the diagnosis is usually uncertain (Tóth et al	
277	(2011). This is because the bacteria in the biofilms have significant low metabolic rate which	

278	renders the low culturability (Suh, Cohen & Palmer, 2010). Studies have reported there were
279	significant associations of biofilms with nasal polyps. However, there were another group of
280	authors reported no associations of biofilms and nasal polyps [Karosi et al., (2013); Tóth et al.,
281	(2013); Yan et al., (2012); Bezerra et al., (2011); Mladina, & Skitarelić, (2010); Mladina et al.,
282	(2010)]. There were studies which reported the heterogeneity of microbial community at
283	different locations in the nasal cavity which demonstrated approximately 25% of micro-biome
284	variations within-patient in CRS [Joss et al., (2016); Biswas et al., (2015); Yan et al., (2013)].
285	TCP assay with CV was used for in vitro study of biofilms on nasal mucosa specimens from
286	patients with CRSwNP whereby OD of the wells which biofilms were read using TECAN
287	Infinite F50 microplate reader at the wavelength of 590nm. In our study, the cut-off OD for S.
288	aureus and P. aeruginosa was 0.72 and 0.74 respectively. The OD of the reference strain of
289	biofilm-forming S. aureus ATCC 23923 and P. aeruginosa ATCC 27852 which were used as
290	positive controls were 3.97 and 1.69 respectively. Although we observed that all P. aeruginosa
291	biofilm had strong biofilm forming capacity as compared to S. aureus which demonstrated only
292	1 out of 2 has strong biofilm forming capacity, however we were unable to prove the statistical
293	difference in the strength of biofilm forming capacity be-tween these 2 organisms. This is most
294	likely attributed to the low number of sample size which are positive for biofilm forming S.
295	aureus and P. aeruginosa. A study done by Prince et al reported that P. aeruginosa has higher
296	propensity to biofilm formation as compared to the other bacteria found in the study such as, S.
297	aureus, CONS and H. influenza. It is also re-ported that P. aeruginosa is an organism with strong
298	biofilm forming capacity which is consistent with our results (Prince et al., 2008). Conversely,
299	Foreman & Wormald reported that S. aureus has higher propensity for biofilm formation as
300	compared to P. aeruginosa (Foreman, & Wormald, 2010). A study done by Bendouah et al.,
301	(2006) reported that the presence of biofilm forming S. aureus or P. aeruginosa also predicts an
302	unfavorable outcome of ESS.
303	Due to the recalcitrant nature of the discitation, adjunctive therapy with topical application of
304	various substances had been used and studied. Different methods of applications were
305	popularized such as nasal irrigation, douching, spray, and rinsing. In our study, we compared the
306	reduction of biofilm mass in vitro using diluted 1% baby shampoo and normal saline alone on
307	nasal mucosa specimens. We observed that diluted 1% baby shampoo showed significant
808	reduction of biofilm mass of nasal mucosa specimens as compared to normal saline. This

309	corresponds to the study done by Chiu et al., (2008) who saw 46.6% symptomatic improvement	
310	and 63% olfaction improvement of postsurgical patients after using diluted 1% baby shampoo	
311	for 4 weeks together with the reduction of mucous thickness, postnasal drips and improved	
312	endoscopic findings. An in vitro study of S. aureus and P. aeruginosa biofilm done by	
313	Desroisiers et al., (2007) found that surfactant delivered by hydrodynamic force further enhanced	
314	the reduction of biofilm mass.	
315	The implication of our findings towards clinical practice is as follows. Gram stain can be used to	
316	enhance biofilm detection in histopathological examination and Chronic Rhinosinusitis with	
317	Nasal Polyposis patients diagnosed as biofilm-positive can be treated by diluted 1 % baby	
318	shampoo nasal irrigation.	
319	The main limitation of this study was due to the budget limitation. Biofilm detection was done	
320	without CSLM method with BacLight methods or FISH analysis due to high cost and hence	
321	possibly the low number of samples. Only 2 most found organisms in CRSwNP were included in	
322	this study also due to budget limitation in purchasing the ATCC strains. Besides that, it was our	
323	first-time experience of biofilm detection using H&E with Gram stain method and TCP assay in	
324	our center.	
325	We suggest using CSLM method with BacLight methods or FISH analysis with species-specific	
326	oligonucleotides probes in the next study on biofilm, which is currently most widely used for	
327	biofilm detection and to speciate the organisms involved. Sampling methods should be improved	
328	by taking samples from all involved paranasal sinuses in view of the reported heterogenicity of	
329	organism community in the nasal cavity. We recommend a prospective multi center studies in	
30	the future to evaluate the effectiveness of diluted baby shampoo 1% in biofilm reduction	
331	comparing populations of urban and rural areas to achieve improved tailored management in our	
32	local population.	
333		
34	Conclusions	
335	The prevalence of biofilm in patients with CRSwNP in our study is 21.7%. There are significant	
336	effect of biofilm reduction following the use of diluted 1% baby shampoo and significant	
337	association of S. aureus & P. aeruginosa with biofilm formation. Our findings suggest a role of	
38	screening patients with CRSwNP for biofilms in selecting patients that can benefit from 1%	
339	diluted baby shampoo treatment.	

341

342

References

- Bendouah, Z., Barbeau, J., Hamad, W. A., & Desrosiers, M. (2006). Biofilm formation by
- 344 Staphylococcus aureus and Pseudomonas aeruginosa is associated with an unfavorable evolution
- 345 after surgery for chronic sinusitis and nasal polyposis. Otolaryngology—Head and Neck
- 346 Surgery, 134(6), 991-996.
- Bezerra, T. F. P., de Melo Padua, F. G., Gebrim, E. M. M. S., Saldiva, P. H. N., & Voegels, R. L.
- 348 (2011). Biofilms in chronic rhinosinusitis with nasal polyps. *Otolaryngology--Head and Neck*
- 349 Surgery, 144(4), 612-616.
- 350 Biswas, K., Hoggard, M., Jain, R., Taylor, M. W., & Douglas, R. G. (2015). The nasal
- 351 microbiota in health and disease: variation within and between subjects. Frontiers in
- 352 *microbiology*, *6*, 134.
- Cain, R. B., & Lal, D. (2013). Update on the management of chronic rhinosinusitis. *Infection and*
- 354 drug resistance, 1-14.
- 355 Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R., & LAPPINSCOTT, H.
- 356 (1995). Microbial biofilms: Annual Reviews of Microbiology, v. 49.
- 357 Chiu, A. G., Palmer, J. N., Woodworth, B. A., Doghramji, L., Cohen, M. B., Prince, A., &
- 358 Cohen, N. A. (2008). Baby shampoo nasal irrigations for the symptomatic post-functional
- endoscopic sinus surgery patient. American journal of rhinology, 22(1), 34-37.
- 360 Deka, N. (2014). Comparison of tissue culture plate method, tube method and Congo Red Agar
- 361 Method for the detection of biofilm formation by coagulase negative Staphylococcus isolated
- 362 from non-clinical isolates.
- 363 Desrosiers, M., Myntti, M., & James, G. (2007). Methods for removing bacterial biofilms: in
- vitro study using clinical chronic rhinosinusitis specimens. American journal of rhinology, 21(5),
- 365 527-532.
- Foreman, A., & Wormald, P. J. (2010). Different biofilms, different disease? A clinical outcome
- 367 study. *The Laryngoscope*, *120*(8), 1701-1706.
- 368 Ha, K. R., Psaltis, A. J., Butcher, A. R., Wormald, P. J., & Tan, L. W. (2008). In vitro activity of
- 369 mupirocin on clinical isolates of Staphylococcus aureus and its potential implications in chronic
- 370 rhinosinusitis. *The Laryngoscope*, 118(3), 535-540.

- Hochstim, C. J., Choi, J. Y., Lowe, D., Masood, R., & Rice, D. H. (2010). Biofilm detection with
- 372 hematoxylin-eosin staining. Archives of Otolaryngology–Head & Neck Surgery, 136(5), 453-
- 373 456.
- 374 Hong, S. D., Dhong, H. J., Chung, S. K., Kim, H. Y., Park, J., & Ha, S. Y. (2014). Hematoxylin
- and eosin staining for detecting biofilms: practical and cost-effective methods for predicting
- 376 worse outcomes after endoscopic sinus surgery. Clinical and Experimental
- 377 *Otorhinolaryngology*, *7*(3), 193-197.
- 378 Joss, T. V., Burke, C. M., Hudson, B. J., Darling, A. E., Forer, M., Alber, D. G., ... & Stow, N.
- W. (2016). Bacterial communities vary between sinuses in chronic rhinosinusitis
- patients. Frontiers in Microbiology, 6, 1532.
- 381 Karosi, T., Csomor, P., Hegyi, Z., & Sziklai, I. (2013). The presence of CD209 expressing
- dendritic cells correlates with biofilm positivity in chronic rhinosinusitis with nasal
- polyposis. European Archives of Oto-Rhino-Laryngology, 270, 2455-2463.
- Kofonow, J. M., & Adappa, N. D. (2012). In vitro antimicrobial activity of
- 385 SinuSurfTM. *ORL*, 74(4), 179-184.
- Li, H., Wang, D., Sun, X., Hu, L., Yu, H., & Wang, J. (2012). Relationship between bacterial
- 387 biofilm and clinical features of patients with chronic rhinosinusitis. European Archives of Oto-
- 388 *Rhino-Laryngology*, 269, 155-163.
- 389 Macassey, E., & Dawes, P. (2008). Biofilms and their role in otorhinolaryngological disease. The
- 390 *Journal of Laryngology & Otology*, *122*(12), 1273-1278.
- 391 Meltzer, E. O., Hamilos, D. L., Hadley, J. A., Lanza, D. C., Marple, B. F., Nicklas, R. A., ... &
- 392 Zinreich, S. J. (2004). Rhinosinusitis: establishing definitions for clinical research and patient
- 393 care. *Journal of allergy and clinical immunology*, 114(6), 155-212.
- 394 Mladina, R., & Skitarelić, N. (2010). Biofilm–the other name for the regular mucosal
- 395 blanket. *Medical hypotheses*, 75(4), 391-392.
- 396 Mladina, R., Skitarelić, N., Musić, S., & Ristić, M. (2010). A biofilm exists on healthy mucosa
- of the paranasal sinuses: a prospectively performed, blinded, scanning electron microscope
- 398 study. Clinical otolaryngology, 35(2), 104-110.
- 399 Prince, A. A., Steiger, J. D., Khalid, A. N., Dogrhamji, L., Reger, C., Claire, S. E., ... & Cohen,
- 400 N. A. (2008). Prevalence of biofilm-forming bacteria in chronic rhinosinusitis. *American journal*
- 401 of rhinology, 22(3), 239-245.

- Smith, A., Buchinsky, F. J., & Post, J. C. (2011). Eradicating chronic ear, nose, and throat
- 403 infections: a systematically conducted literature review of advances in biofilm
- 404 treatment. Otolaryngology--Head and Neck Surgery, 144(3), 338-347.
- 405 Stepanović, S., Vuković, D., Hola, V., Bonaventura, G. D., Djukić, S., Ćirković, I., & Ruzicka,
- 406 F. (2007). Quantification of biofilm in microtiter plates: overview of testing conditions and
- 407 practical recommendations for assessment of biofilm production by
- 408 staphylococci. *Apmis*, 115(8), 891-899.
- 409 Suh, J. D., Cohen, N. A., & Palmer, J. N. (2010). Biofilms in chronic rhinosinusitis. *Current*
- 410 opinion in otolaryngology & head and neck surgery, 18(1), 27-31.
- 411 Tomooka, L. T., Murphy, C., & Davidson, T. M. (2000). Clinical study and literature review of
- 412 nasal irrigation. *The Laryngoscope*, *110*(7), 1189-1193.
- 413 Tóth, L., Csomor, P., Sziklai, I., & Karosi, T. (2011). Biofilm detection in chronic rhinosinusitis
- by combined application of hematoxylin-eosin and gram staining. European Archives of Oto-
- 415 Rhino-Laryngology, 268, 1455-1462.
- 416 Tóth, L., Vajas, A., Csomor, P., Berta, A., Sziklai, I., & Karosi, T. (2013). Optical coherence
- 417 tomography for biofilm detection in chronic rhinosinusitis with nasal polyposis. European
- 418 Archives of Oto-Rhino-Laryngology, 270, 555-563.
- 419 Yan, S. U. N., Bing, Z. H. O. U., Wang, C. S., Huang, Q., Zhang, Q., Han, Y. H., ... & Ying, L. I.
- 420 (2012). Clinical and histopathologic features of biofilm-associated chronic rhinosinusitis with
- 421 nasal polyps in Chinese patients. *Chinese medical journal*, 125(6), 1104-1109.
- 422 Yan, M., Pamp, S. J., Fukuyama, J., Hwang, P. H., Cho, D. Y., Holmes, S., & Relman, D. A.
- 423 (2013). Nasal microenvironments and interspecific interactions influence nasal microbiota
- 424 complexity and S. aureus carriage. Cell host & microbe, 14(6), 631-640.
- 425 Zahedi, F. D., Asmi, N. H., Husain, S., & Gendeh, B. S. (2019). Identification of nasal irrigation
- bottle contamination in post sinonasal surgery. *Indian Journal of Otolaryngology and Head &*
- 427 Neck Surgery, 71, 1837-1842.

Table 1(on next page)

Bacteria isolates cultured from biofilm-positive samples

PeerJ

1 Table 1.

2 Bacteria isolates cultured from biofilm-positive samples.

Bacteria	Frequency (n)	Percentage (%)
No Growth	7	54
S.aureus	2	15
P.aeruginosa	3	23
Others	1	8

Table 2(on next page)

Distribution of organisms forming biofilm

1 Table 2.

2 Distribution of organisms forming biofilm.

	Biofilm	No Biofilm		
S.aureus/P.aeruginosa	5	0	5	
Others	8	47	55	
		Total	60	
		<i>p</i> -value	0.0002	

Table 3(on next page)

Comparison of biofilm reduction between normal saline and diluted 1% baby shampoo

PeerJ

1 Table 3.

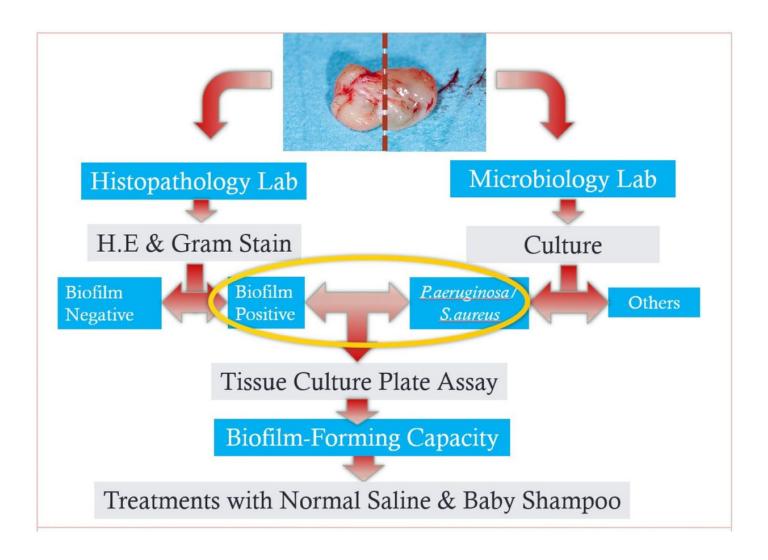
2 Comparison of biofilm reduction between normal saline and diluted 1% baby shampoo.

	Untreated (OD)	Treated with Normal Saline (OD)	Reduction with Normal Saline (OD)	%Reduction with Normal Saline	
N	5	5 5		5	
Mean	3.02	2.15	0.90	26.87	
Median	3.46	2.11	1.37	30.35	
Std. Dev	1.38	1.06	0.72	23.46	
		Treated with	Reduction with		
	Untreated (OD)	Baby Shampoo (OD)	Baby Shampoo (OD)	%Reduction with Baby Shampoo	
N		Baby Shampoo	Baby Shampoo		
N Mean	(OD)	Baby Shampoo (OD)	Baby Shampoo (OD)	Baby Shampoo	
	(OD)	Baby Shampoo (OD) 5	Baby Shampoo (OD) 5	Baby Shampoo 5	

Table 4(on next page)

Effectiveness of biofilm reduction between normal saline and diluted 1% baby shampoo

PeerJ


1 Table 4.

2 Effectiveness of biofilm reduction between normal saline and diluted 1% baby shampoo

		N	Mean Rank	Sum of Ranks	Z	P
Normal Saline	Negative Ranks	4	3.50	14.00	-1.753	0.080
	Positive Ranks	1	1.00	1.00		
	Ties	0				
	Total	5				
Baby shampoo	Negative Ranks	5	3.00	15.00	-2.023	0.043*
	Positive Ranks	0	0.00	0.00		
	Ties	0				

Figure 1

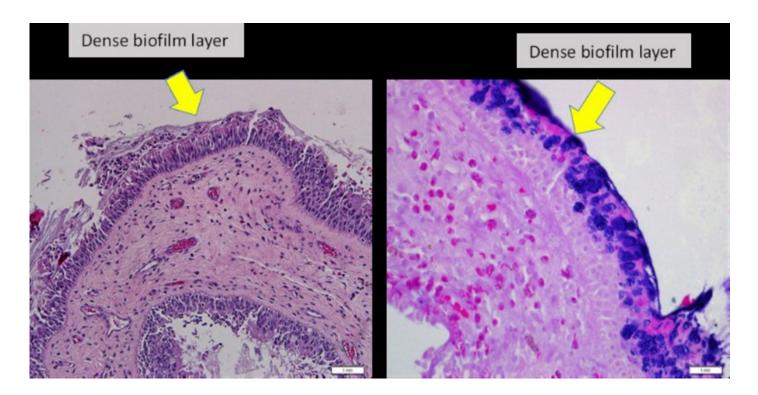

A flowchart of methodology from sampling to in-vitro tests

Figure 2

Nasal polyp histopathology specimen

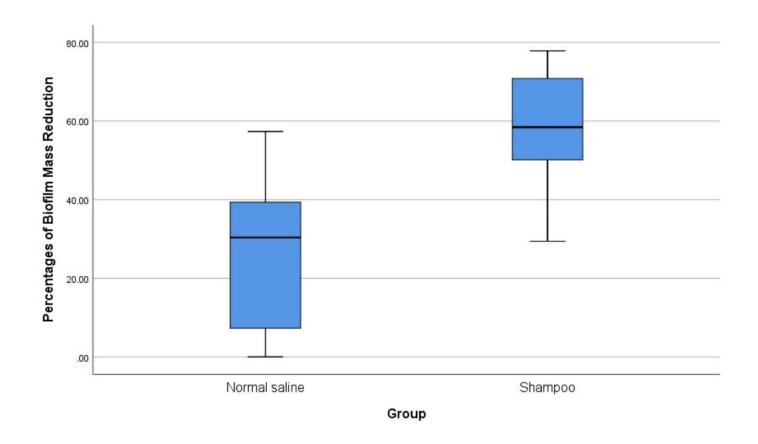

(A) Nasal polyp specimen with H&E staining, under light microscopy 20x magnification. (B) Nasal polyp specimen with Gram staining, under light microscopy 40x magnification

Figure 3

Comparison of the effects of normal saline and diluted 1% baby shampoo treatment in biofilm mass reduction

