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ABSTRACT

Background: Lung adenocarcinoma (LUAD) is a major cause of cancer mortality.
Considering the critical role of tumor infiltrating lymphocytes in effective
immunotherapy, this study was designed to screen molecular markers related to
tumor infiltrating cells in LUAD, aiming to improve immunotherapy response
during LUAD therapy.

Methods: The ConsensusClusterPlus method was used for clustering immune
molecular subtypes of LUAD. Immune cell infiltration and immunotherapeutic
potential in each subtype was evaluated employing single-sample gene set
enrichment analysis (ssGSEA), Tumor Immune Dysfunction and Exclusion (TIDE),
and Immunophenoscore (IPS). Immune-related co-expression modules were
classified by weighted gene co-expression network analysis (WGCNA) analysis. The
sequencing data of immune-related genes were comprehensively analyzed by
introducing a new computational framework and 10 machine learning algorithms (a
total of 101 combinations) to determine the prognostic genes, which were further
combined to develop an immune prognostic signature (IMMPS) using the stepCox
and Ridge methods. The expression of the signature genes was validated by
quantitative real-time PCR (qRT-PCR).

Results: Samples from The Cancer Genome Atlas dataset (TCGA-LUAD) were
divided into two subtypes (immunosuppressive subgroup C1 and immune-activated
subgroup C2); notably, the C2 subgroup was more likely to benefit from
immunotherapy (p < 0.05). An IMMPS developed based on seven immune
infiltrating cell-related genes (SEMA7A, EFHD2, CHST11, SLC24A4, MAL, JCHAIN,
and SCARFI) could accurately predict the overall survival of LUAD in five LUAD
cohorts, with an average C-index higher than 0.69. LUAD patients with a low
IMMPS value had a higher immune cell infiltration (p < 0.05). In addition, the
IMMPS exhibited better prediction performance in comparison to 154 published
gene signatures, suggesting that the IMMPS was an independent prognostic risk
factor for evaluating the overall survival of LUAD patients. Since BTNL9 was the
most relevant immune checkpoint gene, in vitro experiment showed that the
expression of the seven key genes (SEMA7A, EFHD2, CHST11, SLC24A4, MAL,
JCHAIN, and SCARFI) in LUAD cell lines was consistent with that in normal lung
epithelial cells after inhibiting BTNL9 expression (p < 0.05).
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Conclusions: Our results contributed to a better understanding of immunological
characteristics of LUAD. The IMMPS could serve as a promising tool for improving
the clinical outcome of patients suffering from LUAD.

Subjects Cell Biology, Computational Biology, Cardiology, Immunology, Oncology
Keywords Lung adenocarcinoma, Immunotherapy, Molecular biology, Immunology,
Computational biology and bioinformatics

INTRODUCTION
Lung cancer is one of the most lethal and widely diagnosed cancers in the world (Siegel,
Miller & Jemal, 2019; Ding, Lv ¢» Hua, 2022; Rice et al., 2016). Non-small cell lung cancer
(NSCLC), which accounts for approximately 80% of all the cancer cases in the lung, could
be mainly divided into lung squamous cell carcinoma (LUSC) and lung adenocarcinoma
(LUAD) (Qian et al., 2023; Guo et al., 2021). Noticeably, the two types of NSCLC are
increasingly regarded as separate clinical entities since they share distinctively different
molecular features and prognosis (Tian, 2017). As indicated by previously published
studies, the tumor microenvironment (TME) of LUAD is enriched with different types of
immune cells related to clinical outcomes (Dai et al., 2019; Zheng, Hu ¢ Yao, 2017).
Immunotherapies based on immune checkpoint inhibitors (ICIs) for treating lung cancer
has been proven to be effective (Chae et al., 2018; Zhou & Gao, 2022). Several clinical trials
of neoadjuvant ICI therapy also demonstrated their efficacy in resectable lung cancer
(Gao et al., 20205 Forde et al., 2018). Additionally, a variety of ICIs, including atezolizumab
targeting PD-L1 and navulizumab targeting PD-1 (Malhotra, Jabbour ¢ Aisner, 2017),
have been approved by the Food and Drug Administration (FDA) as second-line therapies
for NSCLC treatment. However, influenced by various biological and molecular
characteristics of different NSCLC subtypes, only around 15% of NSCLC patients can
benefit from taking ICI, whereas many NSCLC patients have poor clinical outcomes
(Schoenfeld ¢ Hellmann, 2020). Currently, we face a lack of accurately prognostic
biomarkers for NSCLC, especially prognostic markers related to immune. Hence, analysis
of the TME in LUAD to improve immunotherapy strategies has great clinical significance.
Immune infiltration in TME has been widely found to be related to cancer prognosis,
including LUAD (Dickerson et al., 2023; Okcu et al., 2023; Tang et al., 2023). For instance,
counts of two lymphocyte populations (CD8/CD45R0O, CD3/CD45R0, and CD3/CD8) in
the tumor core (CT) and invasive margins (IM) can serve as prognostic markers for
colorectal cancer (Pages et al., 2009). An internationally recognized approach for the risk
evaluation of colon cancer is to determine the immune score for patients using the four
density percentiles of CD3" and CD8" T cells in CT and IM (Pagés et al., 2018). These
findings pointed to the potential to facilitate clinical decision-making process based on
cancer immune infiltration (Fridman et al., 2012). Currently, characterization of molecular
analyses have been employed to evaluate immune infiltration in cancer patients, such as
ESTIMATE (Yoshihara et al., 2013), CIBERSORT (Chen et al., 2018), and TIMER analyses
(Li et al., 2020), laying a solid foundation for further study of clinical cancer features and
immune infiltration. TME subtypes have been previously classified (Bagaev et al., 2021) by
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transcriptome analysis, and four unique TME subtypes conserved in 20 different tumors
were discovered. TME subtypes are also connected with patients’ response to
immunotherapy in a range of cancers. Recently, potential immunotherapy benefit for
colon cancer patients in different subtypes has been successfully predicted utilizing
immune-infiltrating cell scores, and accordingly a consensus immune-associated IncRNA
signature for predicting the clinical outcomes of colon cancer was developed (Liu et al,
2022). The above findings supported the efficacy of developing a TME-based molecular
signature to optimize precision therapies for cancer patients.

Tumor heterogeneity with differences ranging from genotype to phenotype between
individual patients is an important feature of cancers. Ideally, biomarkers are expected to
reflect a broad spectrum of gene expressions in tumor tissues, which therefore require a
combination of multiple genes to address the problem of heterogeneity (Koncina et al.,
2020). A variety of prognostic signatures have been developed applying high-throughput
data and bioinformatics algorithms (Zhao et al., 2023; Scortegagna et al., 2023; Pan et al.,
2022). In the last 5 years, more than 154 prognostic gene models have been created and
validated as candidate biomarkers for LUAD. However, limitations such as a lack of
rigorous validation in different cohorts or inappropriate modelling also hinder the
application of these features in clinical setting.

The current work developed a novel computational framework to determine tumor
infiltration in LUAD and to discover immune-correlated genes by conducting
comprehensive analysis based on immune-infiltrating cells in the TME. The potential
importance of these genes as predictive biomarkers for LUAD prognosis and
immunotherapy was also analyzed.

MATERIALS AND METHODS
The acquisition of LUAD patient datasets

The transcriptional profiles of patients with LUAD and their clinical information were
collected from The Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov) and Gene
Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo) under the following
criteria: (1) Complete data on overall survival (OS) and survival status, stage, gender,
age; (2) IlluminaHiSeq platform or Affymetrix HG-U133_Plus 2.0 platform; and

(3) Sample size larger than 200. After filtering, 1,327 LUAD patients from five datasets
were included in this study. Specifically, GSE30219 dataset contained 83 patients
(Rousseaux et al., 2013); GSE31210 dataset contained 226 patients (Okayama et al., 2012);
GSES50081 dataset contained 127 patients from (Der et al., 2014); GSE72094 dataset
contained 398 patients (Schabath et al., 2016); 493 patients were collected from
TCGA-LUAD (https://xenabrowser.net/datapages/?cohort=GDC%20TCGA %20Lung%
20Adenocarcinoma%20(LUAD)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.
edu%3A443). The TCGA-LUAD dataset served as a training dataset for analyzing the
features of immune genes, while the other four datasets were independent test datasets for
validation. Detailed clinical information of the patients from these five groups was shown
in Table 1.
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Gene expression profiling data processing

Background correction, quantile normalization, and log-2 transformation of GEO
microarray datasets were processed in the R package oligo (Carvalho & Irizarry, 2010), and
the Robust Multi-array Average algorithm was used for normalizing all the microarray
datasets. According to the annotation files of the microarrays, the median value of multiple
probes mapping to the same gene was taken, while a probe was deleted when it was
mapped to multiple genes. Subsequently, transcripts per kilobase million (TPM) was
converted from the RNA-seq read count in TCGA-LUAD.

Assessment of immune infiltrating cells

Marker genes for 28 types of highly reliable immune-infiltrating cells were collected from a
previous study (Charoentong et al., 2017). Single-sample gene set enrichment analysis
(ssGSEA) in the R package GSVA (Hdinzelmann, Castelo & Guinney, 2013) was conducted
for calculating the proportion of immune-infiltrating cells in each patient, followed by
verifying the results by ESTIMATE (Yoshihara et al., 2013), CIBERPSORT (Newman et al.,
2015), TIMER (Li et al., 2016), EPIC (https://gfellerlab.shinyapps.io/EPIC_1-1/) (Racle
et al., 2017), and MCP-counter (Becht et al., 2016) algorithms.

Classification of immune-related molecular subtypes

Patients in the TCGA-LUAD cohort were classified applying a clustering method of
unsupervised resampling based on the components of 28 types of immune infiltrating cells.
The R package ConsensusClusterPlus (Wilkerson ¢ Hayes, 2010) was used to calculate
immune infiltrating cell scores for individual samples as a data matrix. Specifically, 80% of
the samples were randomly selected for each iteration, and the distance between samples
was measured by Pearson correlation coefficient. This was process was repeated 1,000
times, where samples were partitioned into up to k (maximum k = 10) clusters using the
partioning around medoids (PAM) algorithm. Subsequently, the optimal number of
clusters was determined according to consensus score matrix, cumulative distribution
function (CDF) curve and proportion of ambiguous clustering (Pageés et al., 2018) score.
The significance of the clustering results was assessed using sigclust (Harrison et al., 2003).

Screening tumor-infiltrating immune-related gene markers

A novel computational framework for a comprehensive analysis of immune-infiltrating
cells in the TME was created to identify immune genes related to tumor infiltration.
Multiple machine learning methods were used to establish an immunity prognostic
signature (IMMPS). The median absolute deviation (MAD) (Okayama et al., 2012) of all
genome-wide protein-coding genes was computed, and potentially deregulated genes were
defined as having a MAD greater than top 50%. Weighted gene co-expression network
analysis (WGCNA) (Langfelder ¢» Horvath, 2008) was constructed and the appropriate
soft threshold P was calculated to satisfy a scale-free network. Additionally, the weighted
adjacency matrix was converted to topological overlap matrix (TOM) and modules were
identified by the dynamic tree cutting method. Next, immune-related modules were
recognized based on the correlation of each module with immune clusters. The
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Table 1 Information on clinicopathologic characteristics of patients in five datasets (GSE30219, GSE31210, GSE50081, GSE72094, and
TCGA-LUAD).

Variable GSE30219, N = 83' GSE31210, N = 226" GSE50081, N = 127" GSE72094, N = 398" TCGA, N = 493'
Age 60 (55, 69) 61 (55, 65) 70 (63, 76) 70 (64, 76) 66 (59, 72)
Gender
Female 18 (22%) 121 (54%) 62 (49%) 222 (56%) 264 (54%)
Male 65 (78%) 105 (46%) 65 (51%) 176 (44%) 229 (46%)
Smoker
Current 0 (NA%) 0 (0%) 36 (31%) 0 (0%) 116 (24%)
Ever 0 (NA%) 111 (49%) 56 (49%) 300 (91%) 294 (61%)
Never 0 (NA%) 115 (51%) 23 (20%) 31 (9.4%) 69 (14%)
Unknown 83 0 12 67 14
T Stage
T1 69 (83%) 0 (NA%) 43 (34%) 0 (NA%) 164 (33%)
T2 12 (14%) 0 (NA%) 82 (65%) 0 (NA%) 265 (54%)
T3 2 (2.4%) 0 (NA%) 2 (1.6%) 0 (NA%) 43 (8.8%)
T4 0 (0%) 0 (NA%) 0 (0%) 0 (NA%) 18 (3.7%)
Unknown 0 226 0 398 3
N Stage
NO 80 (96%) 0 (NA%) 94 (74%) 0 (NA%) 319 (66%)
N1 3 (3.6%) 0 (NA%) 33 (26%) 0 (NA%) 93 (19%)
N2 0 (0%) 0 (NA%) 0 (0%) 0 (NA%) 68 (14%)
N3 0 (0%) 0 (NA%) 0 (0%) 0 (NA%) 2 (0.4%)
Unknown 0 226 0 398 11
M Stage
Mo 83 (100%) 0 (NA%) 127 (100%) 0 (NA%) 327 (93%)
M1 0 (0%) 0 (NA%) 0 (0%) 0 (NA%) 24 (6.8%)
Unknown 0 226 0 398 142
Stage
I 0 (0%) 0 (0%) 0 (0%) 0 (0%) 265 (55%)
I 0 (0%) 0 (0%) 0 (0%) 0 (0%) 116 (24%)
11 0 (0%) 0 (0%) 0 (0%) 0 (0%) 79 (16%)
v 0 (0%) 0 (0%) 0 (0%) 0 (0%) 25 (5.2%)
Stage I 69 (83%) 168 (74%) 92 (72%) 254 (65%) 0 (0%)
Stage II 13 (16%) 58 (26%) 35 (28%) 67 (17%) 0 (0%)
Stage III 1 (1.2%) 0 (0%) 0 (0%) 57 (15%) 0 (0%)
Stage IV 0 (0%) 0 (0%) 0 (0%) 15 (3.8%) 0 (0%)
Unknown 0 0 0 5 8
Status
Alive 40 (48%) 191 (85%) 76 (60%) 285 (72%) 315 (64%)
Dead 43 (52%) 35 (15%) 51 (40%) 113 (28%) 178 (36%)
0S.time 2,070 (855, 3,435) 1,744 (1,246, 2,050) 1,595 (697, 2,097) 824 (540, 1,012) 669 (434, 1,148)
Note:

! Median (IQR) or Frequency (%).
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relationship between the prognosis of LUAD and genes in the immune-related modules
was analyzed by univariate Cox regression analysis to filter significantly prognostically
relevant genes as a hub gene set.

In addition, a total of 101 combinations of 10 machine learning algorithms, including
Least absolute shrinkage and selection operator (LASSO), CoxBoost, Ridge, generalized
boosted regression modeling (GBM), partial least squares regression for Cox (plsRcox),
supervised principal components (SuperPC), elastic network (Enet), stepwise Cox, random
survival forest (RSF), survival support vector machine (survival-SVM) together with
10-fold cross-validation were introduced to select candidate genes with the highest
C-index for IMMPS. The stepCox (both) and Ridge were used to develop the IMMPS
model. Specifically, the former was applied to filter the most valuable TIICGs, while the
later was used to fit the most reliable model. After the Ridge regression, the IMMPS
formula for each variable was as follow:

n
IMMPS = x*a*
k=1
where 1 denoted the number of feature genes, a* denoted the ridge regression coefficient of
the k™ feature gene, and x* denoted the expression level of the k™ feature gene.

Enrichment analysis
Gene oncology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment

analyses of specific gene modules were performed using the R package “clusterProfiler”
(Yu et al., 2012).

Immunotherapy response prediction

GSE126044 (Cho et al., 2020) and GSE135222 (Kim, Choi ¢ Jung, 2020) were two cohorts
containing follow-up information of each NSCLC patient’s response to anti-PD-1/PD-L1
therapy. Subclass mapping was conducted using the SubMap (Hoshida et al., 2007)
algorithm to evaluate the response of immune molecular subtypes to immunotherapy, and
potential treatment benefit was determined by Tumor Immune Dysfunction and Exclusion
(TIDE) algorithm.

Cell culture and transfection
Human normal lung epithelial cells BEAS-2B (BNCC359274) and human LUAD cells
lines PC-9 (BNCC340767) and H1395 (BNCC100270) were purchased from Bena
Biotechnology Co. (Beijing, China). Penicillin/streptomycin and Dulbecco’s modified
Eagle’s medium (A1896701; DMEM, Gibco, Grand Island, NY, USA) with 10% fetal
bovine serum (FBS, Gibco, USA) was used for cell culturing at 37 °C in 5% CO,.
BTNL9 plays a critical role in immune regulation, especially in TME that may affect the
activity of immune infiltrating cells (Zhang et al., 2023). In this study, to investigate the
regulatory effects of BTNL9 on the expression of the seven immune-related genes, human
LUAD cell lines (PC9 and H1395) and normal lung epithelial cells (BEAS-2B) were

Chen and Zhang (2025), Peerd, DOI 10.7717/peerj.19121 6/28


http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126044
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE135222
http://dx.doi.org/10.7717/peerj.19121
https://peerj.com/

Peer/

Table 2 Sequence of primers.

Gene Forward primer sequence (5'-3") Reverse primer sequence (5'-3')
SEMA7A TTCAGCCCGGACGAGAACT GAACCGAGGGATCTTCCCAT
EFHD2 GGATGAGGACTTTGACAGCAAGC TTGACACCCTCACTGGAGACGT
CHST11 CACAAGCCGTAAGCGGAGG CATGGGGTCGCTGTACTTCC
SLC24A4 ATGGCCCCAGTGAATGGGA CCAGCCACATCTTCGCTCAG
MAL ACCGCTGCCCTCTTTTACC GAAGCCGTCTTGCATCGTGAT
JCHAIN TCCTGGCGGTTTTTATTAAGGC AGTAATCCGGGCACACTTACAT
SCARF1 CCGATCAGACCTCAAGGACAG CCCAGGGTAGCTTGTGGGA
BTNL9 GGACCTGTTCAGTCTGGAAAC TCTGGACCACCAACTCTTTCT
GAPDH CTGGGCTACACTGAGCACC AAGTGGTCGTTGAGGGCAATG

transfected with BTNL9-specific siRNA (5'-3" sequence: GCCTCTAACTCCACAACAA
CACT) using Lipofectamine 3000 (Thermo Fisher, Waltham, MA, USA) following the
manufacturer’s protocol. After 48 h, the transfection efficiency was tested by qRT-PCR.

Western blot testing

Cells were lysed using RIPA buffer supplemented with protease inhibitors. Protein samples
were separated on 15% SDS-PAGE gel, subsequently transferred onto PVDF membranes
(Beyotime, Shanghai, China) and blocked. The membranes were incubated overnight at
4 °C with primary antibodies against BTNL9 (1:1,000) and GAPDH (1:1,000), and then
treated with HRP-conjugated secondary antibodies for 1 h at room temperature. Finally,
the protein bands were visualized utilizing the ECL system (Amersham Biosciences, Inc,
Buckinghamshire, UK) and the band intensities were measured using Quantity One
software (BioRad, Hercules, CA, USA).

Quantitative real-time PCR (qRT-PCR)

Total RNA was extracted from BEAS-2B, PC9 and H1395 (Thermo Fisher, Waltham, MA,
USA) using TRIzol reagent. The HiScript II SuperMix (Vazyme, China) was employed for
isolating cDNA from 500 ng of RNA. QRT-PCR was carried out with the use of the SYBR
Green Master Mix in ABI 7500 System (Thermo Fisher Scientific, Waltham, MA, USA).
PCR amplification began with 45 cycles a 94 °C for 10 min, at 94 °C for 10 seconds (s), and
60 °C for 45 s. GAPDH was an internal reference. All the primer sequences were shown
in Table 2.

Statistical analyses

Heatmap was generated using the R package ComplexHeatmap (Gu, Eils ¢ Schlesner,
2016). Wilcox test and Kruskal-Wallis test were employed to analyze two-group
differences and comparisons between multiple groups, respectively. The correlation
between two groups of samples was calculated by Pearson’s correlation test. Prognostic
differences among patients were assessed using Kaplan-Meier. The R package “timeROC”
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was used to plot time-dependent receiver operating characteristic (ROC) curves (Blanche,
Dartigues & Jacqmin-Gadda, 2013). All the statistical analyses were conducted in R 3.6.4
(R Core Team, 2021). GraphPad Prism V.8.0.2 was applied for the statistical analysis on the
experimental data, which were compared using one-way analysis of variance or unpaired
t-test. A p < 0.05 indicated a statistical significance.

RESULTS

Development and validation of immune infiltration molecular subtypes
Charoentong et al. (2017), Bindea et al. (2013) revealed that at least 28 different types of
immune cell types are crucially involved in tumor infiltration. Immune cell infiltration in
the TME of LUAD were analyzed by single-sample gene set enrichment analysis (ssGSEA).
Patients were classified by consensus clustering. CDF curves of the consensus score matrix
(Fig. 1A) and PAC results (Fig. 1B) showed that the optimal number of clusters was when
k = 2 (Fig. 1C). The sigclust analysis detected significant differences (p = 1.141007e-05)
between the two consensus clusters of C1 and C2 in terms of immune infiltration, with C1
showing a notably lower overall infiltration than C2 (Fig. 1D, Fig. S2A). In addition,
ESTIMATE, CIBERPSORT, TIMER, EPIC, and MCP-counter results showed similar
results (Fig. 1E, Figs. S2B-S2F). Hence, C1 and C2 were accordingly defined as an
immunosuppressed and immune-activated subtypes. Survival analyses all demonstrated a
significantly worse prognosis for C1 than C2 (Fig. 1F).

The expression patterns of immune checkpoint genes in immune-
activated subtype and potential benefits from immunotherapy

After literature review, a total of 79 immune checkpoint genes (ICGs) (Table S1) mainly
involved in ligand-receptor interactions were selected. These ICGs affect immune activity
in different ways, including stimulation, inhibition or a combination of both. Analysis of
expression patterns of these genes in the C1 and C2 subtypes demonstrated that almost all
the ICGs, such as PDCD1, CD274 and CTLA4 (Fig. 2B), were upregulated in C2 (Fig. 2A).
TIDE model could evaluate T cell exclusion and dysfunction signatures across 33,000
samples in 188 tumor cohorts stored in public databases, including TCGA (Weinstein

et al., 2013), METABRIC (Curtis et al., 2012), and PRECOG (Gentles et al., 2015). Applying
TIDE model, it was observed that the C1 subtype had significantly higher T cell exclusion
and the C2 subtype had significantly higher T cell dysfunction, and that C2 subtype might
benefit from taking immunotherapy based on combined TIDE scores (Fig. 2C). Recent
studies have confirmed immunophenoscore (IPS) as an accurate predictor of ICI response,
with a higher IPS predicting greater sensitivity to ICI treatment. Here, we found a
significantly higher IPS score of C2 than C1 (Fig. 2D, p = 0.045), which was also validated
by the cytotoxic T lymphocyte score (Fig. 2E). Further, the gene expression patterns of
immune phenotypes of NSCLC patients who received ICIs were compared by SubMap
analysis. Notably, the gene expression profiles of lung cancer patients who responded to
anti-PD-1 immunotherapy were highly similar to those with immune-activated subtypes
in both the training and validation cohorts (Fig. 2F). These results indicated that patients
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Figure 1 Development and validation of immune infiltration consensus clusters. (A) The CDF curves of consensus matrix for each k (indicated
by colors). (B) The proportion of ambiguous clustering score, with a low PAC value indicating a flat middle segment. The optimal k (k = 2) was
determined according to the lowest value of PAC. (C) When k = 2, consensus score matrix for all samples, with a higher consensus score between two
samples indicating a higher chance of the two being grouped into the same cluster in different iterations. Each cell in the figure represents the
consistency score between the two samples. Blue color indicates high consistency (strong similarity); white color indicates low consistency (weak
similarity). (D) The infiltration abundance of 28 immune cell subsets was determined by ssGSEA for two clusters. (E) The stability and robustness of
the ssGSEA results were further confirmed by the algorithms of ESTIMATE, CIBERPSORT, TIMER, MCP-counter, and EPIC. (F) Kaplan-Meier

curves of OS in the Cl1-vs-C2 in TCGA-LUAD (log-rank test: P =0.0079).
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Figure 2 Expression pattern of immune checkpoint genes in immune-activated subtypes and
potential benefits of immunotherapy. (A) Expression pattern of ICG in patients with two immune
subtypes. (B) Expression distribution of classical immune checkpoint genes PDCD1, CD274, and CTLA4
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Figure 2 (continued)
in the two immune subtypes. (C) Distribution of T cell exclusion and dysfunction in the two immune
subtypes analyzed by TIDE. (D) Distribution differences of immune phenotype score in the two immune
subtypes. (E) Distribution differences of the two immune subtypes at the cytotoxic T lymphocyte (CTL)
level. (F) Submap analyses show that patients in the immune activation subtypes are similar to those who
responded to anti- PD-1 treatment. * p < 0.05; **** p < 0.0001.

Full-size K&l DOT: 10.7717/peerj.19121/fig-2

with immune-activated subtypes could benefit from receiving ICI immunotherapy,
especially more from anti-PD-1 therapy.

Identification of immune infiltration-associated gene modules and
prognostic features of the genes

The soft threshold = 8 was selected (Figs. S2A, S2B) to ensure a scale-free nature of the
network. A total of 30 gene modules were detected, as indicated by different colors, and the
heatmap displayed the characteristic gene neighborhood of the modules (Fig. S2C).
Additionally, the modules was weakly correlated with AJCC Stage, Age and Gender
(Fig. 3A). Specifically, darkred, orangered4, and green modules were considered as the
modules most closely correlated with C2 (immune activation) subgroup. Among the three
modules, the correlation coefficient between module membership (MM) and gene
significance (GS) of the darkred, orange4, and green modules reached 0.94, 0.94, and 0.71
(Figs. 3B-3D), respectively, indicating that the identification of these gene modules was
reliable. Further functional enrichment analysis showed that the darkred module was
enriched to pathways of human T—cell leukemia virus 1 infection, PD-L1 expression,
PD-1 checkpoint pathway in cancer, etc. (Fig. 3E). The green module was significantly
enriched to Cytokine-cytokine receptor interaction, B cell receptor signaling pathway, and
other pathways (Fig. 3F). The orangered4 module was significantly enriched to primary
immunodeficiency, MAPK signaling pathway and some other pathways (Fig. 3G). These
pathways all play critical role in immune regulation. Noticeably, biological processes such
as cytokine activity, cytokine receptor activity, cytokine binding, and cytokine receptor
binding were enriched multiple times. Under stringent criteria, genes significantly
associated with LUAD prognosis were identified by performing one-way survival analysis
from at least four cohorts, and finally 26 genes were screened as potential prognostic
markers with significant immune relevance in LUAD (Fig. S2E).

Development of an immune-correlated prognostic signature and
assessment

Using machine learning-based integration analysis, an immune-related gene signature was
developed based on the expression profiles of 26 immune-related genes. In the
TCGA-LUAD dataset, 101 predictive models were developed by the global leave-one-out
cross-validation (LOOCYV) framework and their C-index in all the validation datasets was
calculated. Interestingly, the optimal model was the combination of stepCox and Ridge,
which showed the highest average C-index (0.697) in all the validation datasets (Fig. 4A).
In step cox regression, when the Akaike Information Criterion (Pages et al., 2018) reached
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Figure 3 Identification of immune infiltration-associated gene modules and prognostic features of the genes. (A) Correlation analysis between
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Statistical tests: Pearson’s correlation coefficient, two-sided unpaired t-test. (E-G). Enrichment results of genes in darkred, orangered4 and green
module to KEGG Pathway, biological process (BP), cellular component (CC) and molecular function (MF).
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its minimum value, the optimal combination of seven variable genes were identified.
Therefore, the final model (IMMPS) was built with these seven genes applying regression
analysis with Ridge: IMMPS = 0.093*SEMA7A + 0.145*EFHD2 + 0.108*CHST11 —
0.502*SLC24A4 — 0.089*MAL — 0.074*JCHAIN — 0.128* SCARF]I. Each patient was
assigned with a risk score by the model and weighted for their regression coefficient. Based
on the optimal cut-off value, all the patients were categorized into high- and low- risk
groups (Figs. 4B-4F). It was observed that the OS of high-risk patients was significantly
worse than the low-risk patients in the TCGA-LUAD training dataset and the five
validation datasets (all p < 0.05). ROC analysis showed that the IMMPS reached 1-, 3-, and
5-year area under the curves (AUCs) of 0.69, 0.69, and 0.65 in TCGA-LUAD, respectively.

Chen and Zhang (2025), PeerJ, DOI 10.7717/peerj.19121 [ | 112/28


http://dx.doi.org/10.7717/peerj.19121/fig-3
http://dx.doi.org/10.7717/peerj.19121
https://peerj.com/

Peer

TCGA
IMMPS = High = Low

I b 100
Cohort Cohort

StepCox|[both] + Ridge|0.648 0.615 0.755 0.714 0697 W GSE30219 1.00
StepCox[backward] + Ridge [0.648 0.615 (0755 0.714 0697 | [ GSE31210 2 075
CoxBoost + plsReox | 0.655 0.638 0754 0.713 0,696 =
CoxBoost + StepCox|forward] |0.656 0.638 0.754 0.712 0.695 ]
StepCox(both] + Enet[alpha=0.2] | 0.648 0.614 0756 0.711 0695 £ 050 0.75
StepCox[backward] + Enetlalpha=0.2] | 0.648 0.614 0756 0.711 0695 El n H
StepCox|both] + Enet[alpha=0.1]| 0.648 0.615 0.756 0.711 0695 ﬂdoes ; Mgy TR 3
StepCox[backward] + Enet[alpha=0.1]| 0.648 0.615 0756 0.711 0695 07 3 025 p <0001 £
StepCox[both] + plsReox| 0.648 0.614 0755 0.709 0695 06 [ £ 0.50
StepCox[backward] + plsReox | 0.648 0.614 0.755 0.709 0.695 05 0.00 . Z
CoxBoost + StepCox[both] [0.649 0.620 (0,759 0.696 ooes | Moy T T T " o ;
CoxBoost + StepCox[backward] [0.649 0.620 (0.759 0.696 0695 Time(years) £
Lasso + StepCox[both] |0.649 0.620 0.759 0.696 0.695 ) 025 Type
Lasso + StepCox[backward] |0.649 0.620 0759 0.696 0.695 Number at risk
CoxBoost + Enet[alpha=0.5] [0.655 0.638 0.753 0.712 0,695 € High 246 19 4 2 0 == 1=Years, AUC=0.69,95%CI(0.61-0.77)|
CoxBoost + Lasso [ 0.655 0.637 0.755 0.712 0695 § Imv1247 34 5 1 0 == 3-Years,AUC=0.69,95%CI(0.62-0.75)|
CoxBoost + Enet[alpha=0.9] |0.655 0.637 0.755 0.712 0.695 = 0 H 0 Ts 20 0.00 — 5-Years, AUC=0.65,95%CI(0.57-0.74)|
Enet[alpha=0.6]0.654 0.636 0.753 0.713 0.695 Time(years) .
StepCox{both] + Enet[alpha=0.3]0.648 0.614 0756 0.709 0.695 c 0.00 025 050 075 1.00
StepCox[backward] + Enet[alpha=0.3] [0.648 0.614 (0756 0.709 05695 GSE72094 IMMPS == High = Low False positive fraction
CoxBoost + Enet[alpha=0.1] | 0.655 0.643 0.749 0.708 0604 1.00
CoxBoost + Enetfalpha=0.4] [0.655 0.638 0752 0.713 0694 1.00
CoxBoost + Enet[alpha=03] | 0.654 0.640 0751 0.712 0604
StepCox[both] + Enctlalpha=0.4] | 0.649 0.613 0757 0.708 0.604
StepCox[backward] + Enet[alpha=0.4] | 0.649 0.613 0757 0.708 0694 ]
CoxBoost + Enet[alpha=0.6] | 0.655 0.638 0753 0.712 0604 £ 050 0.75
Enet[alpha=0.7] | 0.654 0.636 0.753 0.711 0604 ] ! &
CoxBoost + Enet[alpha=0.8] [0.655 0.637 0.755 0.711 0.694 £ ! 2
Lasso|0.654 0635 0.754 0.710 0.604 2 025 p=00092 : &
Enet[alpha=0.3]|0.655 0.639 0752 0.710 0.604 ' 2050
Enet[alpha=0.1] [0.655 0.648 0.745 0.703 0694 0.00 | 2
Enetlalpha=0.8]|0.654 0.635 0753 0.711 0.604 - b
CoxBoost + Enetlalpha=0.2] [0.655 0.641 0.751 0.711 0694 0 1 2 3 4 5 6 £
StepCox[both] + Enet[alpha=0.5]|0.649 0.613 0.756 0.708 0694 Time(years) 025
StepCox[backward] + Enetlalpha=0.5]|0.649 0.613 0756 0.708 0694 Number at risk ’
CoxBoost + Enet[alpha=0.7] |0.655 0.637 0.754 0.711 0604 4] .63,95%C1(0.53-0.73)
Enetlalpha=0.9]|0.654 0.635 0753 0.711 0.694 2 H‘gl'1193 o 9 .63,95%CI(0.56-0.7)
S Low{l93 172 131 34 16 4 0
Lasso + CoxBoost|0.655 0.636 0.754 0.713 0604 = 3 T 3 1 % T 3 0.00 — 3-Years AUC=0.61,95%CI(0.52-0.7)
StepCox{both] + Enet[alpha=0.6]0.649 0.612 0756 0.707 0.604 Time(years)
StepCox[backward] + Enet[alpha=0.6] [0.649 0.612 0.756 0.707 0694 0.00 0.25 0.50 0.75 1.00
StepCox[both] + Enet[alpha=0.7] [0.649 0.612 0.756 0.707 0.694 False positive fraction
StepCox[backward] + Enet[alpha=0.7] | 0.649 0.612 0756 0.707 0.604 D GSE31210 IMMPS =~ High =~ Low
Enet[alpha=0.2]|0.655 0.642 0.749 0.706 0694 1.00 b - o 1.00
Enet[alpha=0.4] 0,655 0.638 0753 0.710 0.604
StepCox(both] + Enet[alpha=0.8]0.649 0.612 0756 0.706 0604 2075
StepCox[backward] + Enetlalpha=0.8]|0.649 0.612 0756 0.706 0694 =z
StepCoxboth] + Enet[alpha=0.9]0.649 0.613 0.756 0.706 0.604 | 075
StepCox[backward] + Enet[alpha=0.9]|0.649 0.613 0756 0.706 0604 £ 050 g
StepCox[both] + Lasso|0.649 0.613 0756 0.706 0694 K 3
StepCox[backward] + Lasso | 0.649 0.613 0.756 0.706 0.604 z =
StepCox[both] + CoxBoost | 0.650 0.612 0756 0.705 0694 3 025 p<0.0001 2050
StepCox[backward] + CoxBoost [0.650 0.612 0.756 0.705 0.604 . 2
Enet[alpha=0.5]0.655 0.636 0.752 0.710 0.604 000 g‘
StepCox[both] |0.650 0.613 0756 0.705 0604 5 75 T 75 T &
StepCox[backward] [0.650 0.613 0756 0.705 0694 Time(years) 025 Type
Lasso + StepCoxforward] |0.655 0.636 0.754 0.713 0693 Number at risk Ve AUC-0TA9CI055-09)
CoxBoost|0.655 0.635 0.753 0.710 0693 Fd . 95%CI(0.55-093
Lasso + plsRcox [0.655 0.641 0.749 0.705 0692 = ngl\1113 91 42 10 1 = 2-Years, AUC=0.81,95%CI(0.73-0.9)
2 LowdlI3 105 61 9 0 L a0 _
CoxBoost + Ridge [0.654 0.647 0.744 0.704 0692 = 3 75 T 75 To 0.00 3~Years AUC=0.74,95%CI(0.65-0.84))
Ridge[0.651 0.655 0731 0703 060 7 Timeeas)
StepCox|forward] |0.658 0.633 0.753 0.676 0689 0.00 025 0.50 . 075 1.00
plsReox [0.658 0.633 (0753 0.675 0689 E P False positive fraction
RSF + Ridge|0.649 0.645 0.741 0.666 0687 IMMPS == High = Low
RSF + Enct{alpha=0.4] | 0.652 0.637 0.742 0.666 0686 1.00 1.00
RSF + Enet[alpha=0.6] | 0.652 0.635 0.743 0.666 0686
RSF + Enetlalpha=0.9] | 0.652 0.635 0.742 0.666 05688
RSF + Enet{alpha=0.1]|0.650 0.639 0.742 0.670 0.684 075
RSF + plsReox| 0.645 0.646 0.739 0.666 0.684 0.75
RSF + Enet[alpha=0.7] | 0.651 0.634 0741 0.672 0683 0.50 g
RSF + Lasso| 0.653 0.637 0.737 0.677 0683 ! g
RSF + Enet[alpha=0.5] [0.650 0.635 0.741 0.671 0683 ' &
RSF + Enct[alpha=0.8] | 0.653 0.637 0.737 0.676 0683 025 <0.0001 ! -2 0.50
RSF + StepCox[forward] | 0.651 0.632 0.741 0.670 0683 p =0 H g
RSF + Enet[alpha=0.2]| 0.653 0.640 0735 0.679 0683 000 ! §
RSF + Enetfalpha=0.3] | 0.650 0.639 0736 0.684 0681 - &
RSF + CoxBoost|0.651 0.637 0.737 0.682 068 0 25 5 75 10 025 T
RSF + StepC 067 Time(years) ’ P
pCoxboth] |0.648 0.626 0733 0.662 1 5
RSF + StepCox[backward] [0.648 0626 0733 0.62 os71 Number at risk 1= Years, AUC=0.74,95%CI(0.56-0.92)
‘RSF [B88] 0,549 0.662 0.624 0663 € il 63 35 » N 0 — 2-Years, AUC=0.78,95%CI(0.67-0.89)
CoxBoost + RSF 0,847 0.551 0.666 0.620 0,661 § ij164 56 36 3 1 0.00 — 3~Years,AUC=0.77,95%CI(0.68-0.87)
Lasso + RSF [0:845 0.551 0.660 0623 0659 = ) 25 I 75 0 o5
StepCox[backward] + RSF 08211 0.539 0.670 0.624 0653 Time(years) .0 025 050 075 1.00
StepCox{both] + RSF 0821 0.539 0.669 0.624 0653 False positive fraction
StepCox[both] + GBM|0.695 0529 0715 0.640 0639 F GSE30219
StepCox[backward] + GBM | 0.695 0.529 0715 0.640 0639 1.00{ ¢~ IMMPS =~ High =~ Low 1.00
SuperPC|0.597 0.607 0.672 0.688 0638
CoxBoost+ GBM |0.714 0,516 0.714 0.638 0.3 .
Lasso+GBM [0.714 0515 0.712 0.637 0634 £ 075
CoxBoost + SuperPC| 0.598 0.586 0.656 0.652 0620 E 0.75
RSF + SuperPC|[0.554 0.618 0.673 0.623 o627 050 5
Lasso + SuperPC|0.596 0577 0.652 0.648 0623 = 2
RSF + GBM [0.742 (0485 0.631 0.622 0617 S <
GBM|0.740 0519 0565 0.637 0612 3 025 £ 050
survivalSVM [0.579 0.571 0.638 0.661 0811 g
StepCox[both] + SuperPC|0.586 0549 0.628 0.640 0605 9
StepCox|backward] + SuperPC|0.586 0.549 0.628 0.640 0605 0.00 £
Lasso + survivalSVM | 0.567 0.544 0.610 0.603 0577 0 5 10 15 20 025 Type
StepCox[both] + survivalSVM | 0.559 0,548 0.614 0.595 0574 Time(years) _ 5 »
StepCox[backward] + survivalSVM|0.559 0.548 0.614 0595 0574 Number at risk : ;:fm:jz;gzi:;’g:z;:z; ; )
CoxBoost + survivalSVM | 0.560 0.537 0.608 0.605 0572 4 High{41 18 6 5 N . cars. o n" o )|
RSF + survivalSVM | 0.578 0.538 0.545 0.592 0.568 § ani 2 29 1 H 0 0.00 3 Years AUC=0.84,95%CI(0.74-0.93)
ean Cindex 0 s 1o 15 20 0.00 0.25 0.50 0.75 1.00
Time(years) False positive fraction

Figure 4 Construction and assessment of immune-correlated prognostic characteristics. (A) Heatmap of c-index distribution of 101 prediction
models in five cohorts. (B-F) Kaplan-Meier curves and ROC of patients in low- and high-risk groups after risk assessment of patients using IMMPS
in different cohorts. Full-size K&] DOT: 10.7717/peerj.19121/fig-4
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In GSE72094, the AUC values were consistent at 0.63 for all three time points. For
GSE31210, 1-, 3-, and 5-year AUCs were 0.74, 0.81, and 0.74, respectively, while in
GSES50081, they were 0.74, 0.78, and 0.77, respectively. Finally, the GSE30219 cohort
showed AUC values of 0.88, 0.85, and 0.84 at the corresponding time points. These data
supported a stable and robust performance of IMMPS across different cohorts.
Consistently, multivariate Cox regression analysis revealed that IMMPS was an
independent risk factor for LUAD (p < 0.001, Fig. S3).

Comparison of gene expression-based prognostic features for LUAD
Next-generation sequencing and big data technology has promoted the prediction of genes
by machine learning-based methods (Ahluwalia, Kolhe & Gahlay, 2021). This study
comprehensively compared the performance of published signatures to the IMMPS. A
severe lack of miRNA and IncRNA data in the validation dataset excluded the miRNA and
IncRNA signatures, resulting in the collection of a total of 154 signatures (Table 52). These
signatures were related to different biological processes, such as ferroptosis, WNT,
stemness, autophagy, hypoxia, adipogenesis, glycolysis, epigenetics, immune response,
vitamin D, aging, epithelial-mesenchymal transition, N6-methyladenosine, Toll-like
receptor signaling, and drug sensitivity. The c-index of each signature in all the datasets
were calculated to evaluate their predictive performance (Fig. 5). According to the c-index,
ranking of the signatures in each dataset showed that one signature (0.6%) outperformed
the IMMPS in three datasets. Conversely, 49 signatures (31.8%) exhibited a lower c-index
than the IMMPS in three cohorts (60% of the total cohorts), 47 signatures (30.5%) showed
a lower c-index than the IMMPS in four cohorts (80% of the total cohorts), and 57
signatures (37%) had a lower c-index than the IMMPS across all cohorts (Fig. S4). These
results supported the stability of the IMMPS. We also noted that while most of the models
performed well in their own training set and some specific external datasets, their
performance was notably poor in other datasets. This discrepancy could be attributed to
poor model generalization due to overfitting problem. Next, two machine learning
algorithms were employed to reduce the gene numbers in our signature, which thereby
manifested a stronger generalization ability. In comparison to the model developed by
(Deng et al., 2022), the IMMPS contained only seven genes. Fewer genes with comparable
predictive performance could significantly reduce the cost in clinical testing. These results
confirmed that IMMPS had the advantage of higher stability but lower detection cost in
comparison with previous gene signatures.

The impact of the IMMPS on ICI treatment

Comparison on the differences of the IMMPS in the two subtypes showed a significantly
lower IMMPS in C2 patients than in C1 patients (Fig. 6A, p = 0.00026). The patients were
then classified into two groups of IMMPS-High and IMMPS-Low using the IMMPS. It can
be observed that immune infiltrating cell scores of patients with IMMPS-High were
significantly lower (Fig. 6B). A total of 18 types of immune infiltrating cells (64.3%) were
negatively correlated with the IMMPS. In particular, eosinophils had the strongest
correlation with IMMPS (Fig. 6C), and patients with low IMMPS but more eosinophils
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Figure 6 Impact of IMMPS on ICI treatment. (A) Differences in the distribution of IMMPS in the immunoactivated (C2) and immunosuppressed
(C1) subtypes. (B) Differences in the distribution of 28 immune-infiltrating cells in patients with different IMMPS levels. The colors in the heatmap
indicate the immune-cell infiltration scores after z-score. The right bar graph shows the correlation between IMMPS and the corresponding immune
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Figure 6 (continued)

infiltration scores, with pink indicating positive correlation and green indicating negative correlation. The top bar graph represents the IMMPS
scores of patients in the TCGA-LUAD cohort. (C, D) The correlation plot between IMMPS and eosinophil as well as ImmuneScore, each dot
represents a sample. (E, F) Correlation of IMMPS with the expression of immune checkpoint genes and immune infiltrating cells obtained by
different algorithms, respectively. Each dot indicated the correlation coefficient between immune checkpoint genes. Larger dots indicate higher
correlation coefficients, lines indicate immune checkpoints significantly correlated with IMMPS, thicker lines indicated higher correlation, blue

indicates negative correlation, red indicated positive correlation. Full-size K] DOT: 10.7717/peerj.19121/fig-6
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Figure 7 Based on qRT-PCR and Western blot assays to validate the knockdown efficiency of BTNL9
in LUAD cell lines. (A) Based on qRT-PCR to validate mRNA expression levels after knockdown of
BTNLY in LUAD cell lines. (B, C) Western blotting-based assay to validate the protein expression level
and its quantitative analysis after knockdown of BTNL9 in LUAD cell line. Ctrl refers to the blank control
group; si-NC refers to the control group transfected with non-targeting siRNA; and si-BTNL9 refers to
the experimental group transfected with BTNL9-specific siRNA. *p < 0.05; ***p < 0.001; ****p < 0.0001;
ns, no significant difference. Full-size &) DOT: 10.7717/peerj.19121/fig-7

had a lower risk of Coronavirus disease 2019 (COVID-19) and better clinical outcomes
(Xie et al., 2021). The stability of the results was verified using five other algorithms to
avoid bias from different algorithms. IMMPS-High patients showed remarkably lower
immune infiltrating cell scores (Figs. SSA-S5E), which was verified by correlation analysis
(Fig. 6F). These results validated a negative correlation between immune infiltration and
IMMPS (Fig. 6D), specifically, patients who had low IMMPS and higher immune cell
infiltration could benefit more from taking immunotherapy. Additionally, analysis on the
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Figure 8 PCR validation of the reliability of the IMMPS model. QRT-PCR was used to detect SEMA7A, EFHD2, CHST11, SLC24A4, MAL,
JCHAIN and SCARFI expression in BEAS-2B, PC9, H1395 cell lines after BTNLY silence (n = 3). Gray color serves as a baseline reference for normal
controls to assess gene expression changes in LUAD cells; blue color indicates expression changes in mRNA levels of seven genes after knockdown of

BTNLY. *p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001. The results were presented as mean + SEM.
Full-size K&] DOT: 10.7717/peerj.19121/fig-8

correlation between immune checkpoint genes and the IMMPS (Fig. 6E) revealed that
most of the HLA Class II genes were significantly negatively related to IMMPS.

Experimental verification using cell lines

Considering that BTNL9 was the most relevant immune checkpoint gene, BTNL9
expression was inhibited in BEAS-2B, PC9, and H1395 cell lines and simultaneously the
expression of seven genes in the IMMPS model was measured. First, the knockdown
efficiency of BTNLY in the LUAD cell lines was detected based on qRT-PCR and Western
blot assays. As shown in Fig. 7A, knockdown of BTNL9 significantly downregulated the
mRNA expression level of BTNL9 in human normal lung epithelial cells BEAS-2B and
LUAD cell lines PC9 and H1395. Similarly, BTNL9 protein levels were significantly
lowered in the si-BTNL9 group in comparison to the blank control group (Ctrl) and the
control group transfected with non-targeting siRNA (si-NC) (Figs. 7B,7C). After BTNL9
knockdown, the mRNA expression levels of the seven genes in three cell lines (BEAS-2B,
PC9, and H1395) were detected. The results showed that after knockdown of BTNLY, the
expression of the seven genes in LUAD cell lines (PC9 and H1395) demonstrated
significant differences than before the knockdown. This suggested that BTNL9 may be an
upstream regulator of these genes, and that knockdown of BTNL9 changed the expression
of these seven genes in LUAD cells, indicating that these genes may be involved in the

occurrence and development of LUAD (Fig. 8).
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DISCUSSION

Immunotherapy is a fast developing area of therapeutic molecularly targeted therapies for
the treatment of advanced tumors, but not all patients respond actively to immunotherapy.
Predictive features are urgently needed to be determined in order to accurately identify
patients who can potentially benefit from immunotherapies. The TME is composed of
multiple cell types interacting with each other via growth factors, cytokines, and
chemokines (Duan et al., 2020), providing a basis for evaluating the effectiveness of
immunotherapy (Zemek et al., 2019). Tumors can be classified as either immune-cold or
immune-hot according to the features of the TME. Specifically, immune-cold tumors are
characterized by immunosuppressive TME and insensitivity to immunotherapy, while
immune-hot tumors had a high sensitivity to immunotherapy with active T-cell
infiltration (Gajewski, 2015). Therefore, the use of practical biomarkers to differentiate the
two types of tumors may be able to evaluate the response to immunotherapy.

This study determined immune-hot and immune-cold LUAD tumors using consensus
clustering. Genes related to immune-hot LUAD were filtered by WGCNA, and based on
the expression profiles of these genes, an integrated pipeline was developed to build the
IMMPS. ROC and C-index analyses showed a high accuracy and stability of the IMMPS in
one training cohort and four independent cohorts, along with a high generalization ability.
These findings supported a great potential of IMMPS in clinical applications.

We collected 154 gene signatures published in the last 5 years. Despite the fact that
considerable signatures have been proposed, only a few have been clinically validated or
translated into clinical use (Zeng et al., 2022; Wang et al., 2020). This may be explained by a
poor model generalization due to overfitting problem. Noticeably, the model proposed by
Deng et al. (2022) showed a similar performance to the IMMPS across all the cohorts, but
the applicability of their model was severely limited by a high cost to detect a total of 22
genes in the model. However, the IMMPS developed with fewer featured genes by the
combination of two machine learning algorithms had a better generalization capability.

Over the past few years, checkpoint inhibitor-based immunotherapies have been
substantially advanced for many cancer types, including LUAD (Havel, Chowell ¢» Chan,
2019). Although immune checkpoint genes, such as PD-L1, are available biomarkers in
clinical practice, their expression could not be independently used to indicate ICI response
(Lupo et al., 2018). Our study found that immune-hot tumors had a lower IMMPS.
Moreover, the IMMPS showed a significant negative correlation with a greater number of
immune checkpoint genes, particularly HLA Class II genes. A study reported that HLA
class II-restricted neoantigens could influence patients’ responses to ICB in a way distinct
and complementary to the responses mediated by HLA class I (Shao et al., 2022).
Moreover, an early study also identified HLA class II molecule as a potential marker of
immune checkpoint blockade (ICB) in NSCLC (Mei et al., 2022). These results indicated
that LUAD patients with a low IMMPS could benefit from ICI treatment.

The IMMPS model contained seven genes, which all played an important role in the
development of inflammation or cancer. SEMA7A has been reported to exert an
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anti-inflammatory effect on the human body possibly through converting
pro-inflammatory M1 macrophages into anti-inflammatory M2 macrophages (Korner
et al., 2021). However, in the research related to atherosclerosis, Hong et al. (2020) found
that SEMA7A could promote ontological to mesenchymal transition through TGE-
2/Smad signaling. Therefore, it was speculated that SEMA7A can serve as a target for
vascular growth inhibition in cancer treatment. EFHD2 could promote the tolerance of
NSCLC to cisplatin treatment through NOX4-ROS-ABCCI axis (Fan et al., 2020). Study
showed that CHST1I1 is related to lung cancer (Li et al., 2022), consistently, our gPCR
results also confirmed that this gene was high-expressed in advanced LUAD patients and
may be involved in the metastasis of NSCLC through dysregulation of ceruloplasmin and
intracellular iron balance (Chang et al., 2022). SLC24A4 has been identified as a
methylation driver gene and used to construct a riskscore model for LUAD prognosis
(Ren et al., 2020). MAL, a member of MAL family of integral membrane proteins, has the
potential to be considered as a biomarker for cancer (Labat-de-Hoz et al., 2023). JCHAIN is
one of the marker genes of B cells in LUAD tissue (Zhang et al., 2023). Ma et al. (2021)
found that LUAD patients with a high expression of JCHAIN have a longer survival time.
Consistently, our qPCR results also revealed a low expression of JCHAIN in advanced
LUAD patients. This indicated that JCHAIN may be a prognostic marker for LUAD. A
recent study reported that advanced hepatocellular carcinoma patients with a high level of
SCARF]I have a favorable overall survival (Patten et al., 2020), suggesting an anti-tumor
effect of the gene. Overall, the seven genes discovered by this study had significant
biological significance and could be used as targets for LUAD treatment in the future.
However, some limitations of this research should be equally acknowledged. Firstly, all
the samples analyzed in this study were retrospective, therefore future validation of the
IMMPS using prospective multi-center cohorts is imperative. Secondly, some of the
clinical and molecular features in the public datasets were highly underrepresented,
potentially obscuring the associations between IMMPS and certain variables.

CONCLUSIONS

Applying multiple bioinformatics and machine learning algorithms, the current research
developed a stable and robust gene signature for assessing the potential benefit of

immunotherapy and the prognosis of LUAD patients. The IMMPS model was a promising
tool to optimize clinical decision-making and a monitoring protocol for individual LUAD

patient.

ABBREVIATIONS

BP Biological Process

CC Cellular Component

CDF cumulative distribution function

CIBERSORT Cell-type Identification By Estimating Relative Subsets Of RNA
Transcripts

CT tumor core; E
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