Largest global shark biomass found in the northern Galápagos Islands of Darwin and Wolf

Pelayo Salinas de León, David Acuña-Marrero, Etienne Rastoin, Alan M Friedlander, Enric Sala

Overfishing has dramatically depleted sharks and other large predatory fishes worldwide except for a few remote or well-protected areas. The islands of Darwin and Wolf in the far north of the Galápagos Marine Reserve (GMR) are known for their large shark abundance, making them a global scuba diving and conservation hotspot. Here we report quantitative estimates of fish abundance at Darwin and Wolf using stereo-video surveys, which reveal the largest fish biomass ever reported (16 t ha\(^{-1}\) on average), consisting largely of sharks. Despite this, the abundance of reef fish around the GMR, such as groupers, has been severely reduced because of unsustainable fishing practices. Although Darwin and Wolf are within the GMR, they are not fully protected from fishing. Stronger protection is required to preserve this ecological hotspot of unique global value.

I think the abstract would benefit from a better closure sentence that clearly states the major paper outcomes. Stronger protection will be always required, but the data shows how the fish biomass would be without or with lower fishing? Do you conclusions apply for elsewhere? For example, there is no mention of exposure in the abstract or more details on how the community change between islands even though this is one of the main discussions in the paper. Please consider improving the last sentences of the Abstract as this would make the paper more appealing to the reader.
Largest global shark biomass found in the northern Galápagos Islands of Darwin and Wolf

Salinas-de-León P 1,*, Acuña-Marrero D 1, Rastoin E 1, Friedlander AM 2,3, Sala E 2

1 Department of Marine Sciences, Charles Darwin Research Station, Av Charles Darwin s/n, Puerto Ayora, Santa Cruz Island, Galapagos Islands, Ecuador
2 Pristine Seas, National Geographic Society, Washington, D.C. 20036
3 Fisheries Ecology Research Lab, University of Hawaii. Honolulu, Hawaii 96822

* Author to whom correspondence should be addressed. Email: pelayo.salinas@fcdarwin.org.ec; Tel.: +593997478133

Abstract

Overfishing has dramatically depleted sharks and other large predatory fishes worldwide except for a few remote or well-protected areas. The islands of Darwin and Wolf in the far north of the Galápagos Marine Reserve (GMR) are known for their large shark abundance, making them a global scuba diving and conservation hotspot. Here we report quantitative estimates of fish abundance at Darwin and Wolf using stereo-video surveys, which reveal the largest fish biomass ever reported (16 t ha⁻¹ on average), consisting largely of sharks. Despite this, the abundance of reef fish around the GMR, such as groupers, has been severely reduced because of unsustainable fishing practices. Although Darwin and Wolf are within the GMR, they are not fully protected from fishing. Stronger protection is required to preserve this ecological hotspot of unique global value.
Introduction

Overfishing has reduced biomass of most sharks and other large predatory fishes worldwide by over 90% (Baum et al., 2003; Myers & Worm, 2003; Ward-Paige et al., 2010), and even remote locations have been severely impacted (Sibaja-Cordero, 2008; Dulvy et al., 2008; Graham, Spalding & Sheppard, 2010; White et al., 2015). One in four species of cartilaginous fishes is now threatened with extinction due primarily to overexploitation and habitat loss (Dulvy et al., 2014). The systematic removal of sharks from marine ecosystems has negative effects that propagate throughout the entire food web (Bascompte, Melián & Sala, 2005; Myers et al., 2007; Heithaus, Wirsing & Dill, 2012). Only a few localities worldwide still maintain large abundances of top predatory fishes due to either being remote and unfished, or having recovered after full protection from fishing (Sandin et al., 2008; Aburto-Oropeza et al., 2011; Graham & McClanahan, 2013; Friedlander et al., 2014a).

The Galapagos Islands are known worldwide for its iconic terrestrial fauna and flora, due in large part to a young Charles Darwin who sailed to these islands in 1835 (Darwin, 1839). While Galapagos giant tortoises, Darwin’s finches, and mocking birds have received much of the attention since Darwin’s visit, the underwater Galapagos remains under-studied and largely unknown. The far northern islands of Darwin and Wolf in the 133,000 km² Galapagos Marine Reserve (GMR) represent a unique hotspot for sharks and other pelagic species (Hearn et al., 2010, 2014; Ketchum et al., 2014a; Acuña-Marrero et al., 2014). Most of the studies around this area have focused on the migration of scalloped hammerhead sharks (*Sphyrna lewini*) and other shark species between Darwin and Wolf and other localities in the Eastern Tropical Pacific (Hearn et al., 2010; Bessudo et al., 2011; Ketchum et al., 2014a). An ecological monitoring program has visited the islands over the past 15 with a strong sampling focus to survey reef fishes and invertebrate communities (Edgar et al., 2011). However, no study to date has examined extensively the density, size, and biomass of sharks and other large predatory fishes around Darwin and Wolf. We conducted an expedition to Darwin and Wolf in August 2014 to establish comprehensive abundance estimates for shark and predatory fish assemblages at Darwin and Wolf.

Materials and Methods

This research was approved by the Galapagos National Park Directorate (GNPD) as part of the 2014 annual operational plan of the Charles Darwin Foundation (Research permit PC-40-14).

Site description

Darwin and Wolf are the two northernmost islands in the Galapagos Archipelago, a group of 13 major islands and 100 islets and rocks located 1000 km west of mainland Ecuador, in the ETP (Snell, Stone & Snell, H. L., 1996); (Fig.1). The Galapagos Archipelago lies at the congruence of three major oceanic currents, which provides a highly dynamic and unique oceanographic setting (Palacios, 2004). Darwin and Wolf represent the far northern biogeographic region of the archipelago and are heavily influenced by the warm Panama current that comes from the Northeast, which supports sub-tropical marine communities to these islands (Edgar et al., 2004; Acuña-Marrero & Salinas-De-León, 2013). Darwin and Wolf are small (approximately 1 and 2 km², respectively) and represent the tops of eroded, extinct submerged volcanoes, which rose from the surrounding seafloor > 2000 m below (McBirney & Williams, 1969; Peñaherrera-Palma, Harpp & Banks, 2013). Darwin and Wolf are exposed to a predominant north-western water flow that supports a unique pelagic assemblage on the south-eastern portions of these islands (Hearn et
In contrast to much of the Galapagos, which is dominated by the cold equatorial counter-current, the waters of Darwin and Wolf range from 22.5 to 29°C throughout the year, peaking during February-March (Banks, 2002).

Data collection

Underwater census using Diver Operated Stereo-video

A diver operated stereo-video system (DOV) was used to sample fish assemblages around Darwin and Wolf in August 2014. DOVs use two Canon HFG-25 full high-definition cameras mounted 0.7 m apart on a base bar inwardly converged at seven degrees and are operated by experienced divers using standard open-circuit SCUBA equipment. DOVs can overcome some of the biases associated with Underwater Visual Census (UVC) by eliminating the inter-observer effect and the over/underestimation of sampling area and fish lengths estimations (Harvey & Shortis, 1995, 1998; Shortis et al., 2000; Harvey, Fletcher & Shortis, 2001, 2002; Harvey et al., 2003, 2004; Goetze et al., 2015).

Fishes were surveyed at seven sites around Wolf (n = 4) and Darwin (n = 3) islands (Fig. 1) during August 2014. At each site, divers towed a surface buoy equipped with a GPS (Garmin GPSmap 78) to create a detailed track of the area surveyed, with GPS position and exact time recorded using a watch synchronized with the GPS at the beginning and end of each survey (Schories & Niedzwiedz, 2012). Divers followed the 20 m depth contour for a period of 25-30 min in order to complete a minimum of ten 50 m long and 5 m wide replicate transects at each site. Dive times were based on preliminary surveys that revealed that swimming at a constant speed, a 2-minute DOVS survey covered approximate 50 m. At some sites, strong currents resulted in longer distances covered by the survey team, resulting in a greater area surveyed at some of the study sites. The diver towing the GPS also conducted standard UVCs to record sharks and large pelagics (50x5x5 m) in parallel to the stereo surveys, therefore the 2 minute surveys were also used to synchronize both sampling methodologies (Supplementary Information).

Figure 1. Survey locations around Darwin and Wolf Islands.

It is not clear where these Islands are in relation to the main island, which one is Wolf and which is Darwin. You can conclude that from the description in the methods but it would be better to have it clearly displayed in the figure itself.
Calibration and video analysis

Stereo-video cameras were calibrated prior to field deployments using the program CAL (SeaGIS Pty Ltd, Harvey & Shortis 1998). Following the dives, paired videos were viewed on a large monitor and analysed in the program Event Measure (SeaGIS Pty Ltd). Every fish observed was identified to species and measured to the nearest mm (FL). Lengths were converted to biomass (kg) using published length-weight relationships (Froese & Pauly, 2007). For individual fishes that were not measured (e.g. not present in both camera views), we calculated biomass using an average total length for that species from the site where it occurred. Cryptic reef fishes (<8cm) were excluded from our surveys due to the limited ability of the DOVs to detect these species and their lack of importance to the fisheries and overall biomass (Ackerman & Bellwood, 2000). Fishes were classified into four different trophic categories based on published information: Apex predators, lower-level carnivores, planktivores and herbivores (Friedlander & DeMartini, 2002).

For largely abundant schooling fishes, primarily the abundant planktivorous species locally known as gringo (Paranthias colonus), which form dense schools that are difficult to quantify, we developed a specific methodology in the software Event Measure. For each of the study sites surveyed, we measured to the nearest mm a subsample of 100 individuals across all replicate transects and obtained a specific set of mean individual lengths. Then, transects were divided into blocks of identical length using the GPS tracks and every individual for each 10x5x5 m wide ‘cube’ was counted. The number of cubes varied according to transect lengths. Total biomass for these sites were obtained by multiplying the total numbers of individuals counted in each cube by the mean individual length for each species at that site.

Statistical tests

Patterns of fish biomass between islands and exposures were analyzed using generalized linear mixed models (Zuur, 2009) using the R package glmmADMB (Skaug & Fournier, 2004) in the R statistical program version 3.0.2 (R Development Core Team). Due to the skewed nature of our biomass estimates, data were fit with a gamma error structure with an inverse link function that works well for continuous-positive data and has a flexible structure (Crawley, 2011). Location was used as a random effect in the model. Biomass by trophic group was assessed in a similar manner except data were fitted to negative binomial distributions due to the number of zero in these data. Unplanned post hoc multiple comparisons were tested using a Tukey’s honestly significant difference (HSD) test.

To describe the pattern of variation in fish trophic structure and their relationship to environmental factors we performed direct gradient analysis (redundancy analysis: RDA) using the ordination program CANOCO for Windows version 4.0 (Ter Braak, 1994). Response data were compositional and had a gradient < 3 SD units long, so linear methods were appropriate. The RDA introduces a series of explanatory (environmental) variables and resembles the model of multivariate multiple regression, allowing us to determine what linear combinations of these environmental variables determine the gradients. The environmental data matrix included island (Darwin, Wolf) and exposure (NW, SE). To rank environmental variables in their importance for being associated with the structure of the assemblages, we used a forward selection where the statistical significance of each variable was judged by a Monte-Carlo permutation test (ter Braak & Verdonschot, 1995). Permutations tests were unrestricted with 499 permutations.
Similarity of Percentages (SIMPER) was used to determine the fish species most responsible for the percentage dissimilarities between islands and exposures using Bray-Curtis similarity analysis of hierarchical agglomerative group average clustering (Clarke, 1993).

Differences in fish trophic biomass were tested using permutation-based multivariate analysis of variance (PERMANOVA, (Anderson, Gorley & Clarke, 2008)). Data were 4th-root-transformed. Pair-wise tests were conducted between island x exposure combinations.

Results

Overall fish biomass averaged 15.9 t ha\(^{-1}\) (± 33.0 SD), and was 4.5 times larger at Darwin (28.3 ± 46.3) than at Wolf (6.3 ± 8.9 SD); (Fig. 2; Table 1). In addition to this large difference in biomass between islands (z=2.6, p=0.008), biomass was > 20 times higher at the SE exposures (26.2 ± 40.0 SD) compared to NW exposures (1.3 ± 1.5 SD, z=9.7, p<0.001). However, there was a significant interaction, with NW Darwin (0.5 ± 0.2 SD) differing from all other island x exposure combinations. Total biomass at SE Darwin (40.7 ± 51.3 SD) did not diff from SE Wolf (10.6 ± 10.8 SD), while NW Wolf (1.7 ± 1.6 SD) and SE Wolf were also similar to one another.

![Fish trophic biomass by island and sampling site.](image)

Figure 2. Fish trophic biomass (t ha\(^{-1}\)) by island and sampling site. Error bars are standard error of the mean.

Table 1. Comparisons of fish trophic biomass by island and exposure. Results of generalized linear mixed models fit with a gamma error structure and an inverse link function. Unplanned post hoc multiple comparisons tested using a Tukey’s honestly significant difference (HSD) test. Only significant multiple comparisons are shown.
Hammerhead sharks (*Sphyrna lewini*) dominated the fish assemblage, accounting for 68% of the overall biomass. This was followed by Galapagos sharks, *Carcharhinus galapagensis* (11% of total biomass), gringos *Paranthias colonus* (11%), and bluefin trevally *Caranx melampygus* (4%). Hammerheads were recorded at 71% of the survey sites but were most abundant at the Arch at Darwin, with a mean biomass of 43.0 t ha\(^{-1}\) (± 63.0 SD). Galapagos sharks were most abundant at Shark Point (Wolf) with a mean biomass of 8.4 t ha\(^{-1}\) (± 12.1 SD). Gringos were most abundant at the Arch (Darwin) with a mean biomass of 5.1 t ha\(^{-1}\) (± 4.3 SD).

The average dissimilarity between islands, based on species biomass, was 77% with hammerhead sharks accounting for 36% of the dissimilarity, followed by gringos (23%) and Galapagos sharks (12%); (Table 2). The average dissimilarity between exposures was 91%, with the same species assemblage accounting for this dissimilarity (Table S1).

Table 2. Fish species most responsible for the dissimilarity between Darwin and Wolf islands based on Similarity of Percentages (SIMPER) analysis. Values for islands are biomass (t ha\(^{-1}\)).

<table>
<thead>
<tr>
<th>Species</th>
<th>Darwin</th>
<th>Wolf</th>
<th>Diss. (±SD)</th>
<th>Contrib. %</th>
<th>Cum.%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sphyrna lewini</td>
<td>21.98</td>
<td>2.21</td>
<td>27.19 (0.88)</td>
<td>35.55</td>
<td>35.55</td>
</tr>
<tr>
<td>Paranthias colonus</td>
<td>2.79</td>
<td>0.92</td>
<td>17.83 (0.89)</td>
<td>23.31</td>
<td>58.86</td>
</tr>
<tr>
<td>Carcharhinus galapagensis</td>
<td>1.12</td>
<td>2.37</td>
<td>9.15 (0.59)</td>
<td>11.96</td>
<td>70.82</td>
</tr>
<tr>
<td>Caranx melampygus</td>
<td>1.43</td>
<td>0</td>
<td>4.03 (0.4)</td>
<td>5.27</td>
<td>76.09</td>
</tr>
<tr>
<td>Prionurus latilatus</td>
<td>0.06</td>
<td>0.06</td>
<td>2.11 (0.46)</td>
<td>2.75</td>
<td>78.84</td>
</tr>
<tr>
<td>Taeniura meyeni</td>
<td>0</td>
<td>0.11</td>
<td>2.07 (0.2)</td>
<td>2.71</td>
<td>81.55</td>
</tr>
<tr>
<td>Scarus ghobban</td>
<td>0.02</td>
<td>0.02</td>
<td>1.74 (0.33)</td>
<td>2.28</td>
<td>83.83</td>
</tr>
<tr>
<td>Holacanthus passer</td>
<td>0.05</td>
<td>0.04</td>
<td>1.74 (0.38)</td>
<td>2.27</td>
<td>86.11</td>
</tr>
<tr>
<td>Kyphosus analogus</td>
<td>0</td>
<td>0.11</td>
<td>1.72 (0.17)</td>
<td>2.24</td>
<td>88.35</td>
</tr>
<tr>
<td>Melichthys niger</td>
<td>0.04</td>
<td>0.01</td>
<td>1.05 (0.43)</td>
<td>1.37</td>
<td>89.72</td>
</tr>
<tr>
<td>Caranx sexfasciatus</td>
<td>0.2</td>
<td>0</td>
<td>0.65 (0.24)</td>
<td>0.85</td>
<td>90.57</td>
</tr>
</tbody>
</table>

Apex predators (primarily hammerhead and Galapagos sharks) accounted for 84.9% of the total biomass on transects, followed by planktivores (11.3%), lower level carnivores (2.8%), and herbivores (1.0%); (Fig. 1). Trophic structure, based on biomass, was not significantly different between islands, but differed between exposures, as well as the interaction between islands and exposures, with all island x exposure pairwise comparisons different from one another except for NW Darwin and NW Wolf (Table 3).
Table 3. Differences in fish (trophic biomass) by island and exposure. Results of permutation-based multivariate analysis of variance (PERMANOVA) followed by pair-wise tests are shown. Data were 4th-root-transformed.

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>MS</th>
<th>Pseudo-F</th>
<th>P (perm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Island</td>
<td>1</td>
<td>466.8</td>
<td>1.02</td>
<td>0.354</td>
</tr>
<tr>
<td>Exposure</td>
<td>1</td>
<td>22371.0</td>
<td>48.84</td>
<td>0.001</td>
</tr>
<tr>
<td>Island x Exposure</td>
<td>1</td>
<td>3610.9</td>
<td>7.88</td>
<td>0.001</td>
</tr>
<tr>
<td>Residual</td>
<td>62</td>
<td>458</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pair-wise comparison

<table>
<thead>
<tr>
<th>Pair-wise comparison</th>
<th>t</th>
<th>Perm (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE Darwin – SE Wolf</td>
<td>2.98</td>
<td>0.002</td>
</tr>
<tr>
<td>NW Darwin – NW Wolf</td>
<td>1.01</td>
<td>0.345</td>
</tr>
<tr>
<td>SE Darwin – NW Darwin</td>
<td>8.72</td>
<td>0.001</td>
</tr>
<tr>
<td>SE Wolf – NW Wolf</td>
<td>3.13</td>
<td>0.002</td>
</tr>
</tbody>
</table>

Differences in biomass of apex predators among locations were dramatic, with mean biomass at the SE locations around Darwin (35.9 ± 52.5), nearly 4 times higher than SE Wolf (9.1 ± 10.5).

Biomass of sharks was trivial at NW Wolf (0.05 ± 0.14), with no sharks present at NW Darwin, thus precluding statistical comparisons. Biomass of planktivores was 3.7 times greater at the SE sites (Arch and Old Reef at Darwin; Shark Point and Rockfall at Wolf) compared to the NW sites (North Wall at Darwin; Anchorage and Banana at Wolf) (Table 3a). Similarly, lower-level carnivores were twice more abundant in the SE compared with the NW (Table 3b). In contrast, herbivore biomass was > 6 times larger at the NW locations compared to the SE (Table 3c).

Table 3. Comparisons of fish trophic biomass by island and exposure. Results of generalized linear mixed models fit with negative binomial error structure. Unplanned post hoc multiple comparisons tested using a Tukey’s honestly significant difference (HSD) test. Only significant multiple comparisons are shown. A. Planktivores, B. Herbivores, and C. Lower-level carnivores.

A. Planktivores

<table>
<thead>
<tr>
<th>Island</th>
<th>Estim</th>
<th>Std. Error</th>
<th>z</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposure</td>
<td>3.332</td>
<td>1.177</td>
<td>2.83</td>
<td>0.005</td>
</tr>
<tr>
<td>Island x Exposure</td>
<td>-2.849</td>
<td>1.519</td>
<td>-1.88</td>
<td>0.061</td>
</tr>
<tr>
<td>SE (2.6 ± 2.8) > NW (0.7 ± 1.1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B. Herbivores

<table>
<thead>
<tr>
<th>Island</th>
<th>Estimate</th>
<th>Std. Error</th>
<th>z</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposure</td>
<td>-1.33</td>
<td>0.544</td>
<td>-2.44</td>
<td>0.015</td>
</tr>
<tr>
<td>Island x Exposure</td>
<td>-0.772</td>
<td>0.706</td>
<td>-1.09</td>
<td>0.274</td>
</tr>
<tr>
<td>NW (0.32 ± 0.76) > SE (0.05 ± 0.07)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The SE locations at Darwin (Arch and Old Reef) were distinct in ordination space from the other locations. This distinction was driven largely by apex predators and planktivores (Fig. 3). Banana at Wolf Island was well separated from the other locations. Exposure to the prevailing current explained most of the variation among locations, accounting for > 67% of the total (Table 3).

Table 3. A. Results of redundancy analysis (RDA) on square root transformed fish trophic biomass with environmental variables (e.g., island, wave exposure). B. Conditional effects of Monte-Carlo permutation results on the redundancy analysis (RDA).

<table>
<thead>
<tr>
<th>A. Statistic</th>
<th>Axis 1</th>
<th>Axis 2</th>
<th>Axis 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eigenvalues</td>
<td>0.49</td>
<td>0.01</td>
<td>0.001</td>
</tr>
<tr>
<td>Pseudo-canonical correlation</td>
<td>0.74</td>
<td>0.39</td>
<td>0.35</td>
</tr>
</tbody>
</table>

Figure 3. Biplot of results of redundancy analysis of fish trophic biomass with location and wave exposure. Black circles are locations around Wolf and red circles are locations around Darwin. Crosses are wave exposures. Diamonds are centroids of Darwin and Wolf. Vectors are magnitude and directional effects of each trophic group on orientation of locations in ordination space.

Interesting that exposure determines the trophic structure and biomass patterns presented. There is a large body of literature that could be use to frame and discuss these results, which would make this paper more appealing to a broader readership.
Explained variation (cumulative) & 49.51 & 50.73 & 50.87 \\
Explained fitted variation (cumulative) & 97.14 & 99.54 & 100.00 \\

<table>
<thead>
<tr>
<th>B. Variable</th>
<th>Pseudo-F</th>
<th>p</th>
<th>% explained</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE</td>
<td>32.7</td>
<td>0.002</td>
<td>33.8</td>
</tr>
<tr>
<td>NW</td>
<td>32.7</td>
<td>0.002</td>
<td>33.8</td>
</tr>
<tr>
<td>Rockfall</td>
<td>13.4</td>
<td>0.004</td>
<td>11.6</td>
</tr>
<tr>
<td>Arch</td>
<td>3.8</td>
<td>0.042</td>
<td>3.1</td>
</tr>
</tbody>
</table>

Discussion

The first quantitative fish surveys using the stereo-video approach around Darwin and Wolf islands revealed the largest fish biomass reported to date worldwide (Fig. 4). This extraordinary biomass, which consists mostly of sharks, is considerably larger than the next largest fish biomasses reported at Cocos Island National Park (Friedlander et al., 2012) and the Chagos Marine Reserve (Graham et al., 2013). Our results add to the growing body of literature that demonstrates that nearly pristine areas are dominated by top predatory fishes, mainly sharks (Friedlander & DeMartini, 2002; Sandin et al., 2008; Graham et al., 2013; Friedlander et al., 2013, 2014a). At Darwin and Wolf, top predators account for an astonishing 85% of the fish biomass, a percentage found previously only at the pristine Kingman Reef on the Line Islands (Sandin et al., 2008). Inverted biomass pyramids had been unreported until recent surveys of pristine coral reefs (Sala, 2015), and they can be maintained when the top levels of the food web have a much lower turnover rate (slower growth rate per biomass unit) than their prey (Sandin & Zgliczynski, 2015). In the case of Darwin and Wolf, these high levels of predatory fish biomass are supported not only by the high abundance of lower trophic levels fish on the reefs but also the very productive surrounding pelagic waters.

![Figure 4 Biomass at Darwin and Wolf compared to other remote pristine locations and MPAs around the world. Data from (Sandin et al., 2008; DeMartini et al., 2008; Aburto-Oropeza et al., 2011; Friedlander et al., 2012, 2013, 2014a,b; Graham et al., 2013).](image-url)
Sharks, mainly hammerhead and Galapagos sharks, dominated the fish assemblage, but other predators like the bluefin trevally, black jack (*Caranx lugubris*) and bigeye jack (*C. sexfasciatus*) were also common at several of the sites surveyed (Fig. 5a-c). Our results revealed a marked concentration of sharks and planktivorous fish biomass at the southeast corners of Darwin (Arch and Old Reef sites) and Wolf (Rockfall and Shark Point). The higher abundance at these SE locations may be related to local oceanographic features, dominated by a unidirectional current from the southeast to the northwest that collides with the southeast corner of both islands (Hearn et al. 2010). This may enhance productivity that supports rich benthic and planktivorous fishes, mainly gringos, which may serve as a food source for sharks and other fishes around these islands (Hamner et al., 1988). It is important to consider that these results likely represent maximum annual shark biomass because the surveys were carried out during the cold season, when hammerhead sharks are most abundant (Palacios, 2004; Hearn et al., 2014). Seasonal changes in fish assemblages and biomass are likely since hammerheads are known to migrate from these islands between February and June (Ketchum et al., 2014b). Future studies should focus on seasonal trends and depth gradients (Lindfield, McIlwain & Harvey, 2014) in shark abundance and distribution.

Figure 5 Common encounters around Darwin and Wolf Islands. A large school of hammerhead sharks (*Sphyrna lewini*, B). A group of Galapagos sharks (*Carcharhinus galapagensis*), including a couple of heavily pregnant females, C. A large female whale shark (*Rhincodon typus*) swims among a school of hammerhead sharks. All photos by Pelayo Salinas-de-León.

A total ban on the capture, transport, and trade of sharks within the GMR was established in 2000 (AIM, 2000). However, illegal fishing within GMR boundaries (Jacquet et al., 2008; Carr et al., 2013) and recent efforts by local artisanal fishermen to expand longline fishing, a practice banned since 2005 due to extremely large by-catch [35-36], threaten shark populations. While veteran divers report larger abundance of sharks at Darwin and Wolf over the past 30 years (Peñaherrera-Palma et al., 2015), the absence of long-term quantitative studies to monitor shark and large pelagic fish on a systematic basis and with enough replication does not allow an accurate
assessments of the magnitude of decline of shark populations at Darwin and Wolf. By comparison, the recent analysis of a 21-year monitoring program for sharks and large pelagic fishes at Cocos Island National Park in Costa Rica revealed a sharp decline in 8 of the 12 elasmobranch species monitored, including the endangered hammerhead shark and the giant manta ray (*Manta birostris*) (White et al., 2015).

Despite the large shark biomass at Darwin and Wolf, our surveys also revealed a low overall biomass of predatory reef fishes such as the leatherbass (*Dermatolepis dermatolepis*) and the sailfin grouper (*Mycteroperca olfax*), both endemic to the Eastern Tropical Pacific (ETP) (Grove & Lavenberg, 1997). These species are highly prized by Galapagos artisanal fishermen, but their life histories (e.g., long lives, slow growing) make them extremely vulnerable to overfishing (Aburto-Oropeza & Hull, 2008; Usseglio et al., 2015). Leatherbass biomass reported for Darwin and Wolf (0.008 t ha$^{-1}$ ± 0.05 SD) is 14 times lower than at the unfished Cocos Island (0.1 t ha$^{-1}$) (Friedlander et al., 2012). Artisanal fishermen are known to directly target the only reported spawning aggregation for *M. olfax* in the GMR (Salinas-de-León, Rastoin & Acuña-Marrero, 2015), an unsustainable fishing practice known to deplete reefs fish stocks at an alarming rate (Sala, Ballesteros & Starr, 2001; Sadovy & Domeier, 2005; Erismann et al., 2011; Hamilton et al., 2012). The low biomass estimates for groupers reported here are likely caused by the unregulated artisanal fishery for demersal fishes in the GMR that directly targets over 50 coastal fish species and has been shown to have a negative impact on coastal resources of the GMR (Ruttenberg, 2001; Molina et al., 2004; Burbano et al., 2014; Schiller et al., 2014).

Our results also add to the growing body of literature that supports the use of the stereo video methodology as a complement to traditional visual census, as this technique improves the accuracy and precision of fish length estimates (Harvey, Fletcher & Shortis, 2001, 2002), produces more accurate estimates of area surveyed (Harvey et al., 2004), and eliminates the inter-observer bias associated with species identification (Mallet & Pelletier, 2014). Our study, one of the few to evaluate the use of DOVs with large and highly mobile species such as sharks, confirmed that even experienced divers tend to underestimate the individual length of large fishes (Supplementary material).

Conservation implications

This study adds to the growing body of literature that highlights the ecological uniqueness and the global irreplaceable value of Darwin and Wolf. These islands not only harbour the largest shark biomass reported to date, but also represent a unique tropical bioregion within the GMR (Edgar et al., 2004). In addition, they are home to the last true coral reefs in the GMR (Banks, Vera & Chiriboga, 2009; Glynn et al., 2009). These islands also represent essential stepping stones for endangered and highly migratory species, such as hammerhead sharks (Hearn et al., 2010; Bessudo et al., 2011; Ketchum et al., 2014a). They are key waypoints for a recently documented migration probably related to reproductive purposes for the largest fish species on the planet, the whale shark *Rhincodon typus* (Acuña-Marrero et al., 2014) (Fig. 5d), and are home to the only known reproductive aggregation for the regionally endemic sailfin grouper (Salinas-de-León, Rastoin & Acuña-Marrero, 2015). These islands are visited by deep-water species such as the smalltooth sandtiger shark *Odontaspis ferox* (Acuña-Marrero et al., 2013), and are surrounded by numerous seamounts and active hydrothermal vents that harbour unique biological communities (Salinas-de-León, unpublished data) (Fig. 6).
Recent multi-beam echo sounder surveys around D&W have revealed the presence of a number of seamounts (white triangles) and active hydrothermal vents and black smokers (white stars) that support unique biological communities. Additional inferred seamounts (grey triangles) are likely to be discovered to the West of the Islands. Source: (Dennis et al., 2012), Ocean Exploration Trust NA-064 2015.

The economic benefits of ecotourism from sharks are far greater than shark fishing (Clua et al., 2011; Gallagher & Hammerschlag, 2011; Cisneros-Montemayor et al., 2013). For instance, the net present value of the average hammerhead shark at Cocos Island National Park was estimated at $1.6 million, compared to the ~$200 that a fisherman obtains by selling a dead shark (Friedlander et al., 2012). In Galápagos, the net present value of a shark to the tourism industry is an astonishing $5.4 million (Lynham et al., 2015). The value of a shark to the tourism industry is ~$360,000 per year, compared to $158 obtained from a dead shark (Lynham et al., 2015). That makes sharks alive in Galápagos the most valuable on Earth. Despite their high economic value and iconic importance, only about 50 km² of the waters around Darwin and Wolf (representing an insignificant 0.04% of the total GMR area) are fully protected from fishing.

Given the large-scale migrations reported for several shark species around Wolf and Darwin (Bessudo et al., 2011; Ketchum et al., 2014a), and the night foraging excursions by scalloped hammerhead sharks of up to ~30 km from shore (Ketchum et al., 2014a), present levels of protection are clearly insufficient. Expanding levels of protection around Darwin and Wolf, including the establishment of a large no-take zone that includes some of the numerous seamounts located around these islands (Fig. 6) (similarly to other fully-protected areas in the region such as Isla del Coco in Costa Rica or Malpelo in Colombia) is critical to ensure the recovery and long-term preservation of one of the most extraordinary marine ecosystems on the planet – and an economic engine for Ecuador.
Acknowledgements

We would like to thank the Charles Darwin Foundation and the Galapagos National Park Directorate for their institutional support to this study. We are grateful to all the staff of the Charles Darwin Research Station that made this study possible. Special thanks to Jennifer Suarez and Jose Feijoo for their field assistance. We are also very grateful to the crew of the expedition yacht MV Queen Mabel for their logistical support. This publication is contribution number 2XXX of the Charles Darwin Foundation for the Galapagos Islands. The research was partly funded by the Helmsley Charitable Trusts.

References

Carr LA, Stier AC, Fietz K, Montero I, Gallagher AJ, Bruno JF. 2013. Illegal shark fishing in the

Cisneros-Montemayor AM, Barnes-Mauthe M, Al-Abdulrazzak D, Navarro-Holm E, Sumaila
Oryx 47:381–388.

The economic value of the sicklefin lemon shark in French Polynesia. Marine and

Darwin C. 1839. The Voyage of the Beagle.

DeMartini E, Friedlander A, Sandin S, Sala E. 2008. Differences in fish-assemblage structure
between fished and unfished atolls in the northern Line Islands, central Pacific.

the Galápagos Spreading Center from a synthesis of 25 years of ship-based
multibeam sonar data. In: San Francisco, CA,

Dicken ML, Hosking SG. 2009. Socio-economic aspects of the tiger shark diving industry
within the Aliwal Shoal Marine Protected Area, South Africa. African Journal of

Froese R, Pauly D. 2007. *FishBase (version 02/2012).*

and seasonal connectivity in a marine protected area of the eastern tropical Pacific.

Sandin SA, Smith JE, DeMartini EE, Dinsdale EA, Donner SD, Friedlander AM, Konotchick T, Malay M, Maragos JE, Obura D, Pantos O, Paulay G, Richie M, Rohwer F, Schroeder RE,

Usseglio P, Friedlander AM, DeMartini EE, Schuhbauer A, Schemmel E, Salinas de Léon P.

