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ABSTRACT

Background. Triple-negative breast cancer (TNBC) is an aggressive subtype with a
poor prognosis. Although circular RNAs (circRNAs) have been implicated in cancer
progression, their roles in TNBC remain poorly understood. In this study, we aimed to
develop a prognostic model for TNBC by constructing a competing endogenous RNA
(ceRNA) network. This network integrates circRNAs, long noncoding RNAs (IncR-
NAs), microRNAs (miRNAs), and messenger RNAs (mRNAs) to identify potential
biomarkers and therapeutic targets for improving clinical outcomes.

Methods. Differentially expressed circRNAs, IncRNAs, and mRNAs were identified
from GEO datasets (144 samples: 94 TNBC and 50 normal tissues). A ceRNA network
was constructed, and key genes were validated using The Cancer Genome Atlas (TCGA)
dataset (115 TNBC and 113 para-cancer tissues). Multivariate Cox regression analysis
was performed to develop a prognostic model, and Gene Set Enrichment Analysis
(GSEA) was performed to identify associated pathways.

Results. Nine genes (SH3BGRL2, CA12, LRP8, NAV3, GFRA1, DCDC2, CDC7, ABAT,
NPTX1) were identified as key factors in the prognostic model, which demonstrated an
area under the curve (AUC) of 0.90. Patients classified as high-risk patients exhibited
significantly shorter overall survival (median OS: 8.12 years vs. 9.51 years, P < 0.01).
The mitogen-activated protein kinase (MAPK) signaling pathway was identified
as a key regulatory pathway, with circRNAs (hsa_circ_0005455, hsa_circ_000632,
hsa_circ_0001666, and hsa_circ_0000069) regulating CAI12, GFRAI, and NPTXI
expression.

Conclusion. This study developed a novel prognostic model based on a ceRNA network
analysis, highlighting the critical role of circRNAs and the MAPK signaling pathway in
TNBC progression. These findings offer valuable insights into potential biomarkers
for TNBC prognosis and reveal promising therapeutic targets for improving patient
outcomes.

Subjects Bioinformatics, Oncology, Women’s Health, Medical Genetics

Keywords Triple-Negative Breast cancer, Prognostic index, ceRNA network, Non-coding RNA,
circRNAs, TCGA, GEO, IncRNA, mRNA, miRNA

INTRODUCTION

Breast cancer is the primary cause of cancer-associated death in women worldwide.
According to recent global cancer statistics, breast cancer accounted for 2.3 million

How to cite this article Zhu Y, Wang J, Xu B. 2025. Development of a prognostic model based on the ceRNA network in Triple-Negative
Breast cancer. Peer] 13:e19063 http://doi.org/10.7717/peerj. 19063


https://peerj.com
mailto:binghexu2021@163.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.19063
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://doi.org/10.7717/peerj.19063

Peer

new cases and 685,000 deaths in 2023 (Sedeta, Jobre ¢» Avezbakiyev, 2023). The incidence
among diagnosed young women aged 15 to 39 years has shown a concerning upward trend
(Yuan et al., 2024). Genetic predisposition, particularly mutations in Breast Cancer type

1 susceptibility protein (BRCAI)/Breast Cancer type 2 susceptibility protein (BRCA2),
significantly increases breast cancer risk (Pal, Das ¢» Pandey, 2024). Women with a family
history or hereditary BRCA1/BRCA2 mutations have a notably higher incidence of the
disease (Miller et al., 2020). Breast cancer encompasses distinct molecular subtypes with
unique characteristics and treatment approaches. The current classification recognizes
at least five subtypes: triple-negative breast cancer (TNBC), luminal B(LB), luminal A
(LA), Her-2 enriched, and normal breast-like cancer (Harbeck ¢ Gnant, 2017). TNBC was
characterized by negative expression of estrogen receptor (ER), progesterone receptor (PR),
and human epidermal growth factor receptor 2 (HER2), exhibiting aggressive biological
behavior and poor prognostic (Waks & Winer, 2019). It accounts for approximately 15—
20% of all breast cancers and is more prevalent among younger women, African American
women, and those with BRCAI mutations. Multiple signaling pathways are dysregulated in
TNBC, including PI3K/AKT/mTOR, MAPK/ERK, and JAK/STAT pathways, which drive
tumor proliferation, invasion, and metastasis (Xiong, Wu ¢ Yu, 2024). Current research
focuses on identifying targeted therapies and tailoring treatment based on tumor-specific
biomarkers (Wang et al., 2021; Zhou et al., 2022).

Only about 3% of the genome was involved in protein encoding, while the remaining
97% could be transcribed into various RNA species known as noncoding RNA (ncRNAs)
(Diederichs et al., 2016). The function of ncRNAs was mainly associated with phenotypic
regulation. However, recent studies highlighted their significant role as a biomarker for
cancers (Sur et al., 2020; Tian et al., 2020). TNBC involves complex molecular mechanisms
driven by various RNA molecules that influence its progression. Three key types of RNA play
crucial roles: messenger RNA (mRNA), long noncoding RNA (IncRNA), and circular RNA
(circRNA) (Xia et al., 2021). mRNAs, which carry genetic instructions for protein synthesis,
can promote or suppress tumor development in TNBC. These molecules regulate essential
cellular processes, including growth, programmed cell death, invasion, and spread to other
tissues (Anilkumar et al., 2023). IncRNAs are non-protein-coding RNA molecules that
play critical roles in gene regulation, encompassing chromatin remodeling, transcriptional
regulation, and post-transcriptional control (Qian, Shi ¢» Luo, 2020). In TNBC, IncRNAs
modulate tumorigenesis by regulating genes involved in cell proliferation, apoptosis, as
well as metastasis (Zhang, Guan ¢ Tang, 2021). CircRNAs represent a distinctive class
of noncoding RNAs characterized by covalently closed loops, rendering them resistant
to exonuclease degradation. These molecules can function as molecular sponges for
microRNAs (miRNAs), thereby regulating gene expression by competing for miRNA
binding sites, and can also modulate gene transcription through interactions with RNA-
binding protein (Xu et al., 2024). The dysregulation of circRNAs among TNBC contributes
to cancer progression, metastasis, and chemotherapy resistance (Li et al., 2024). The role
of circRNAs in breast cancer development and progression has emerged as a significant
focus of recent years (Bian, 2019; Li et al., 2020b). Competing endogenous RNA (ceRNA)
represents a complex mechanism of gene regulation in which various RNA molecules
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contend for binding to the same miRNAs. This regulatory network comprises multiple
RNA types, including mRNAs, IncRNAs, and circRNAs, which harbor miRNA Response
Elements (MREs), enabling them to contend for miRNA binding (Qattan et al., 2024).
Accumulating evidence demonstrates that circRNAs function as ceRNA molecules by
acting as miRNA sponges, thereby modulating gene expression through sequestration
of specific miRNAs in TNBC (Jiang ¢» Cheng, 20205 Li et al., 2020a; Qattan, 2024). These
findings have established circRNAs as critical regulatory elements in TNBC pathogenesis
and highlighted their potential as novel therapeutic targets.

This study investigates the prognostic potential of circRNA-mediated ceRNA networks
in TNBC. Through comprehensive bioinformatic analysis, we developed a prognostic
model incorporating nine key genes: SH3BGRL2, CA12, LRP8, NAV3, GFRAI, DCDC2,
CDC7, ABAT, and NPTXI. Our analysis identified four differentially expressed circular
RNAs (hsa_circ_0005455, hsa_circ_000632, hsa_circ_0001666, and hsa_circ_0000069) that
regulate these genes through ceRNA network interactions. Further analysis has suggested
the involvement of the MAPK signaling pathway in this regulatory network. These findings
provide a foundation for understanding circRNA-based prognostic markers and identifying
potential therapeutic targets in TNBC.

METHODS

Collections of data from Gene Expression Omnibus and The Cancer
Genome Atlas

The eligible GEO should conform to the following criteria: (1) studies with TNBC and
normal tissues; (2) the information of platforms and studies were qualified for analysis; (3)
the dataset type was microarray.

We retrieved five associated microarray datasets from the Gene Expression Omnibus
(https:/www.ncbi.nlm.nih.gov/geo/). There were one circRNA expression dataset
(GSE101123), two IncRNA expression datasets (GSE64790 and GSE115275), and two
mRNA expression datasets (GSE38959 and GSE53752). One hundred forty-four samples
were identified, including 94 TNBC and 50 para-cancer tissue samples.

To further analyze the impact of differentially expressed genes (DEGs) on TNBC
patients, RNA sequencing expression data as well as clinical information for mRNA,
miRNA, and IncRNA were downloaded from The Cancer Genome Atlas (TCGA)
database for 115 TNBC cases, 989 non-TNBC cases, and 113 paracancerous tissues
(https:/fwww.cancer.goviccgfresearch/genome-sequencing/tcga).

The selection criteria for clinical information of TNBC patients in the TCGA cohort
included: (1) histologically confirmed TNBC with negative ER, PR, and HER?2 status; (2)
complete clinical follow-up data > 90 days; (3) clinical information such as age, tumor
stage, treatment history, and survival outcomes (overall survival time and status).

Analysis of the differently expressed IncRNA, circ-RNAs, and mRNAs
by microarrays

The differential expression analysis was conducted using multiple microarray datasets from
the GEO database, where circRNA analysis utilized dataset GSE101123 with annotations

Zhu et al. (2025), PeerdJ, DOI 10.7717/peerj.19063 3/25


https://peerj.com
https://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE101123
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE64790
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE115275
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE38959
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53752
https://www.cancer.gov/ccg/research/genome-sequencing/tcga
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE101123
http://dx.doi.org/10.7717/peerj.19063

Peer

from the GPL19978 platform (Agilent-069978 Arraystar Human CircRNA microarray V1).
LncRNA expression was analyzed using two independent datasets: GSE64790 (annotated
using GPL19612; Agilent-062978 Human IncRNA v4 Microarray) and GSE115275
(annotated using GPL21827; Agilent-079487 Human IncRNA v4 Microarray), while
mRNA expression profiling integrated data from GSE38959 and GSE53752, annotated
using GPL4133 (Agilent-014850 Whole Human Genome Microarray 4x44K G4112F)
and GPL7264 (Agilent-012097 Human 1A Microarray G4110B) platforms respectively.
To mitigate batch effects and technical variations arising from different platforms and
experimental time points, we implemented batch correction using the Sva package in R
(version 4.3.0; R Core Team, 2023), where the ComBat function was applied with default
parameters to harmonize the data across different batches while preserving biological
variation. Differential expression analysis was conducted with the limma package in
R-Bioconductor, including log2 transformation of expression values, linear model fitting
using the ImFit function, and empirical Bayes statistics using the eBayes function with
default parameters. The |log FC| > 1 and FDR-P values < 0.05 were considered as the
available threshold for identifying differential expression genes.

Construction of the competing endogenous RNA
(circRNA/miRNA/mRNA/LncRNA)

We systematically predicted RNA interactions to construct a ceRNA network based

on the differential expression results from GEO datasets. The DEmRNA-miRNA
interaction pairs were predicted through the integrated analysis of TargetScan (version
7.2, https:/;www.targetscan.orgivert_80/) and miRDB (version 5.0, https:/mirdb.org)),
with the intersection of both databases’ predictions being used to minimize false
positives. The DEIncRNA-miRNA interactions were identified using miRcode (version
11; http:/www.mircode.org/). For DEcircRNA-miRNA interaction pairs, StarBase (Version
2.0; https:/rnasysu.com/encori/) was employed to identify interaction pairs. The ceRNA
network was visualized using Cytoscape (version 3.6.1) with RNA type-specific color coding
(circRNAs: red circles, miRNAs: light blue diamond, mRNAs: green triangle, IncRNAs:
Blue square).

Gene Ontology and Kyoto Encyclopedia of Genes and Genomes anal-
ysis of differently expressed mRNA in the ceRNA network

We performed a comprehensive functional enrichment analysis of the differentially
expressed mRNAs identified in the ceRNA network using Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) annotations. The analysis was conducted
using the clusterProfiler R package with Bioconductor 3.18. For GO analysis, we utilized
the org.Hs.eg.db annotation package with GO database version, examining all three GO
categories: Biological Process (BP), Molecular Function (MF), and Cellular Component
(CC). We employed the enrichKEGG function with parameters organism = “hsa” and
default parameters for KEGG analysis. The results were visualized using the enrichplot
package. P values < 0.05 were considered the threshold for identifying significant GO and
KEGG.
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Screening the co-DEGs both in ceRNA and TCGA

Initial data preprocessing included filtering to retain genes with mean expression values
> 0.2. The R-Bioconductor limma package was applied to analyze the expression of genes
from TCGA, and the | log FC| > 1 and FDR-P values < 0.05 were considered as the
available threshold for identifying differential expression genes between TNBC/non-TNBC
cancer tissues and para-cancer tissues. Venn intersection analysis determined the co-DEGs
in TCGA and ceRNA.

Development of a prognostic model

Clinical information and expression data for the co-differentially expressed genes were
collected from the TCGA. The clinical data included age, tumor stage, treatment history,
and survival outcomes (overall survival time and status). Data preprocessing involved
removing samples with missing survival information or a follow-up time of less than

90 days. Multivariate and univariate Cox proportional hazards regression analysis was
performed using the R survival and gtsummary package to develop a prognostic index.
Patients were stratified into high-risk as well as low-risk groups using the median risk score
as the cutoff. Survival analysis was conducted using the survival package and survminer.
The survivalROC and PRROC package was employed to examine the predictive accuracy of
the prognostic model. Additionally, we developed three distinct prognostic models: Model
I (9-gene signature): SH3BGRL2, CA12, LRP8, NAV3, GFRAI, DCDC2, CDC7, ABAT,
and NPTX1. Model II (6-gene signature): SH3BGRL2, CA12, NAV3, GFRAI, ABAT, and
NPTX1.Model III (5-gene signature): SH3BGRL2, CA12, NAV3, CDC7, and ABAT.

Gene set enrichment analysis of DEGs associated with a prognostic
model

To investigate the underlying biological mechanisms of the prognostic index, we
performed Gene Set Enrichment Analysis (GSEA) using GSEA software version 4.0.3.
The analysis used the Molecular Signatures Database (MSigDB) version 6.0, specifically
the c2.cp.kegg.v6.0.symbols.gmt dataset, which contains 186 curated KEGG pathway
gene sets. Gene set size filters > 15. Statistical significance was assessed using normalized
enrichment score (NES), nominal P-value < 0.05, and false discovery rate (FDR) < 0.25.
The results were visualized using enrichment plots showing the running enrichment score
and positions of gene set members on the ranked list.

Statistical analysis

Categorical variables were presented as frequencies and percentages (%). The normality
of continuous variables was assessed using the Shapiro—-Wilk test. Normally distributed
continuous variables were expressed as mean =+ standard error (SE), while non-normally
distributed continuous variables were presented as median with interquartile range
(IQR, 25th-75th percentiles). Between-group comparisons for categorical variables were
performed using Pearson’s chi-square test or Fisher’s exact test. An independent samples
t-test was used for continuous variables with normally distributed data, while the Mann—
Whitney U test was applied for data that were not non-normally distributed. All statistical
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tests were two-sided, and P < 0.05 was considered statistically significant. All statistical
analyses and visualizations were conducted using the R (version 4.3.0).

RESULTS

Analysis of differentially expressed mRNA/IncRNA/circRNAs in TNBC
compared to normal breast tissue from the GEO database

After downloading the raw data and platform information from the GEO database,
two different mRNAs/IncRNAs datasets were normalized in batch. Then, they merged
to increase the number of patients and data reliability. Based on the cutoff value with
[log FC| > 1, P values < 0.0. One hundred forty differentially expressed circRNAs, 493
differentially expressed mRNAs, and 2,998 differently expressed LncRNAs were identified,
and the heatmap demonstrated distinct clustering patterns between TNBC and paired non-
tumorous tissues based on the expression profiles of circRNAs, mRNAs, and LncRNAs
(Fig. 1).

Construction of CeRNA (CircRNAs/LncRNAs/miRNAs/mRNAs)
network

To elucidate the complex regulatory interactions among differentially expressed RNAs in
TNBC, we constructed a ceRNA network. The initial prediction analysis using the miRcode
database identified significant interactions between 34 differentially expressed IncRNAs
and 203 miRNAs (Table S1). Further analysis through the integration of TargetScan and
miRDB databases revealed regulatory relationships between differentially expressed 138
mRNAs and 193 miRNAs (Table S2). Using the StarBase database, we further identified
additional interactions involving 20 differentially expressed circRNAs and 167 miRNAs
(Table S3). After integrating these results and filtering for common interactions, we
finalized a ceRNA network comprising 15 circRNAs, 34 IncRNAs, 78 miRNAs, and 107
mRNAs. This interconnected regulatory network was visualized using Cytoscape software
to illustrate the complex RNA-RNA interactions in TNBC, while the connection degree
of each gene was calculated to demonstrate its contribution in the ceRNA network (Fig. 2
and Table S5).

GO and KEGG pathway analysis of DEGs in CeRNA

To investigate the biological functions and signaling pathways associated with the DEGs in
the ceRNA network, we performed Gene GO term and KEGG pathway analyses. GO analysis
revealed significant enrichment in several key biological processes (P < 0.05), including
negative regulation of protein phosphorylation, negative regulation of phosphorylation,
cellular response to alcohol, oxygen level sensing, metal ion response, hypoxia adaptation,
and negative regulation of the MAPK cascade (Fig. 3A). KEGG pathway analysis identified
four significantly enriched pathways (P < 0.05): the MAPK signaling pathway, microRNAs
in cancer, transcriptional misregulation in cancer, and the FOXO signaling pathway
(Fig. 3B). Notably, the MAPK signaling pathway was the most significantly enriched

(P =0.005), suggesting its potential central role in TNBC progression through the ceRNA
network regulation.
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Figure 1 Heatmap and volcano of differentially expressed genes in GEO database. (A) Heatmap of
differentially expressed circRNAs. (B) Heatmap of differentially expressed LncRNAs. (C) Heatmap of
differentially expressed mRNAs.

Full-size Gl DOI: 10.7717/peer;j.19063/fig-1
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Figure 2 Competing endogenous RNA network. Red circle indicates circRNAs; Blue square indicates
IncRNAs; Green triangle indicates mRNAs; Blue diamond indicates miRNAs.
Full-size Gal DOI: 10.7717/peerj.19063/fig-2

Identification of co-expressed DEGs in CeRNA and TCGA

To identify TNBC-specific gene signatures, we conducted differential expression analysis

comparing TNBC samples with non-TNBC breast cancer tissues and normal tissues using
RNA-sequencing data from the TCGA database (Figs. 4A and 4B). Through filtering

criteria (|log FC| > 1, FDR-adjusted P < 0.05), a total of 1,981 DEGs exclusively expressed
in TNBC were identified (Fig. 4C). Subsequently, a Venn diagram analysis was performed

to identify genes in our constructed ceRNA network that were differentially expressed in
TNBC samples. This intersection analysis revealed nine key genes: SH3BGRL2, CA12, LRPS,
NAV3, GFRAI, DCDC2, CDC7, ABAT, and NPTX1I (Fig. 4D), suggesting their potential

role as TNBC-specific molecular markers.

Development of a prognostic model utilizing the nine DEGs

One hundred and four TNBC patients with an overall survival time exceeding 90 days were

included for subsequent analysis. As demonstrated in Table 1, significant differences were
observed in the clinical stage (P = 0.005) and chemotherapy history (P =0.02) exhibited

between the survival and mortality groups. Furthermore, univariate and multivariate
Cox regression analysis suggested that risk score derived from nine DEGs (P = 0.008)
emerged as a statistically significant independent predictive factor (Table 2). The risk score
formula was calculated using the following formula: Risk Score = [—0.79 x SH3BGRL2]
+ [0.40 x CAI2] + [0.16 x LRPS] + [1.98 x NAV3] + [0.37 x GFRAI] + [0.23 x

DCDC2] + [—0.55 x CDC7] 4+ [—1.18 x ABAT] + [—0.90 x NPTXI]. Patients were
stratified into two groups using the median risk score as the threshold value (Fig. 5A).
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Table 1 The basic clinical characteristic of TNBC patients.

Survival Death P value
N =87 N=17
Age 53.0 50.0 0.666
[46.0-61.0] [48.0-60.0]
Stage 0.005
Stage I 18 (20.7%) 1 (5.88%)
Stage IT 54 (62.1%) 7 (41.2%)
Stage 111 13 (14.9%) 6 (35.3%)
Stage IV 0 (0.00%) 2 (11.8%)
Unknown 2 (2.30%) 1(5.88%)
Chemotherapy 0.020
No 13 (14.9%) 7 (41.2%)
Yes 74 (85.1%) 10 (58.8%)
Hormone therapy 0.187
No 84 (96.6%) 15 (88.2%)
Yes 3 (3.45%) 2 (11.8%)
Surgery 0.387
Lumpectomy 28 (32.2%) 4(23.5%)
Modified radical mastectomy 24 (27.6%) 4 (23.5%)
Others 14 (16.1%) 6 (35.3%)
Simple mastectomy 21 (24.1%) 3(17.6%)
Radiation 0.321
No 82 (94.3%) 15 (88.2%)
Yes 5 (5.75%) 2 (11.8%)
Additional radiation 0.069
No 86 (98.9%) 15 (88.2%)
Yes 1(1.15%) 2 (11.8%)
Post chemotherapy 1.000
No 73 (83.9%) 15 (88.2%)
Yes 14 (16.1%) 2 (11.8%)

As shown in Fig. 5B, Kaplan—-Meier survival analysis indicated that the low-risk score
group exhibited significantly improved prognosis (P < 0.01). The area under the curve
(AUQ) of receiver operating characteristic (ROC) was 0.90, indicating that this prognostic
signature demonstrates superior predictive capability for clinical outcomes in TNBC
patients compared to alternative models with AUCs of 0.86 and 0.83 (Fig. 6A). Similarly, in
the precision-recall (PR) Curve analysis, model I achieved an AUC of 0.46, outperforming
Model II and matching the performance of Model III (Fig. S1). Moreover, elevated risk
scores corresponded to increased mortality risk (Fig. 6B).

GSEA of the DEGs based on the prognostic model

To identify the signal pathway associated with the prognostic model, we empolyed the
GSEA method to analyze the expression profile of the nine genes in the model. The results
revealed that the high expression of CA12, GFRAI, and NPTX]I was significant on the
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Table2 Cox regression analysis of the variables.

Variables Univariable Multivariable
HR 95% CI P value HR 95% CI P value
Age 1.00 0.96-1.03 0.8
Stage
Stage ] - - - -
Stage I 1.94 0.23-16.3 0.5 1.79 0.21-15.2 0.6
Stage III 13.7 1.63-116 0.016 8.34 0.88-79.0 0.065
Stage IV 47.6 4.05-560 0.002 85.6 1.29-5663 0.037
Unknown 4.32 0.25-73.9 0.3 1.73 0.09-33.5 0.7
Chemotherapy
No - - - -
Yes 0.36 0.13-0.97 0.043 0.42 0.12-1.39 0.2
Hormone therapy
No - -
Yes 4.06 0.90-18.3 0.069
Surgery
Lumpectomy - -
Modified radical mastectomy 1.25 0.31-5.09 0.8
Other 2.32 0.64-8.41 0.2
Simple mastectomy 0.94 0.21-4.23 0.9
Radiation
No - -
Yes 2.31 0.52-10.3 0.3
Additional radiation
No - -
Yes 6.61 1.40-31.3 0.017 0.79 0.02-31.4 0.9
Post chemotherapy
No - -
Yes 1.55 0.34-7.00 0.6
Risk score 1.16 1.09-1.24 <0.001 1.11 1.03-1.20 0.008

common MAPK signal pathway (Fig. 7), which consisted of the KEGG analysis of CeRNA
(Fig. 3B). In addition, both the GEO and TCGA datasets demonstrated significantly reduced
expression of CA12 (P < 0.01), GFRAI (P < 0.01), and NPTX1 (P < 0.01) in TNBC tissue

(Fig. 8).

Identification of the CircRNAs associated with MAPK signal pathway
Based on the GSEA analysis result, we constructed a ceRNA network to identify circRNAs
associated with the MAPK signal pathway (Fig. 9A and Table S4). As illustrated in

Fig. 9B, hsa_circ_0005455, hsa_circ_000632, hsa_circ_0001666, and hsa_circ_0000069
emerged as key regulators of CA12, GFRAI, NPTXI, which are critical components

of the MAPK signal pathway. Specifically, hsa_circ_0005455 regulates NPTX1 through
hsa-miR-135a/b-5p, hsa-miR-130a/b-3p, hsa-miR-454-3p, and hsa-miR-301a/b-3p.

Zhu et al. (2025), PeerdJ, DOI 10.7717/peerj.19063 12/25
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Similarly, hsa_circ_0001666 modulated GFRAI through hsa-miR-300 and hsa-miR-381-
3p, while hsa_circ_0000632 regulated CA12 through the hsa-miR-520 family (a/b/c/d/e),
hsa-miR-302 family (a/b/d/e), and hsa-miR-372/373-3p. Furthermore, cirRNAs such as
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hsa_circ_0005455 and hsa_circ_00000069 targets hsa-miR-135b-5p, thereby co-regulating
NPTX1 expression. Our analysis confirmed the significant differential expression of seven
key IncRNAs: ADAMTS9-AS1, MAGI2-AS3, ADAMTS9-AS2, DIO30S, WDFY3-AS2,
MEGS3, and TPRG1-AS1 (Fig. 10). Among the 22 miRNAs identified in our network,
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three miRNAs (miR-139-5p, miR-130a-5p, and miR-135b-5p) demonstrated significant
associations with clinical outcomes in TNBC patients (Fig. 11). Notably, validation using
the TCGA database provided strong evidence for the clinical relevance of these regulatory
networks. These TCGA-based findings substantially support the clinical significance of our
identified regulatory network components.

DISCUSSION

TNBC is one of the most malignant and aggressive breast cancer subtypes, characterized
by the absence of ER, PR, and HER2, and it exhibits a higher rate of recurrence and
mortality compared to other subtypes (Bianchini et al., 2016). Increasing evidences have
reported that circRNAs critically influence the modulation of TNBC development (Me:
et al., 2020). Xu et al. (2019) revealed that circTADA2 suppressed the progression and
metastasis of TNBC through targeting miR-203a-3p/SOCS3 axis. CircKIF4A modulated
the proliferation and migration of TNBC via interacting with miR-375 (Tang et al., 2019).
In Chen et al. (2018), circEPSTI1 was considered a positive predictor for the progression
of TNBC, and the knockdown of the circEPSTI1 constrained the TNBC cell proliferation
and caused apoptosis (Chen et al., 2018). The functions of circRNAs included acting

as ceRNA or miRNA sponges, regulating of gene transcription, and functioning as a
tumor promoter or suppressor (Legnini et al., 2017; Wang et al., 2018; Zhang et al., 2019).
CircRNAs performed the standard biological process in the ceRNA model. Zhao et al.
(2019) employed bioinformatics mining technology to identify the breast cancer-associated
circRNAs through ceRNA analysis. However, most of the ceRNA networks followed the
circRNA-miRNA-mRNA model (Zhao et al., 2019). Given that IncRNA also competitively
targeting the miRNA in the progression of TNBC (Liu et al., 2019), we incorporated the
DEIncRNAs and constructed a IncRNA-miRNA-circRNA-mRNA ceRNA network model of
TNBC based on microarray data in this research. Notably, we identified the MAPK signaling
pathway as a central regulatory hub, consistent with recent findings demonstrating the
importance of ceRNA regulatory networks in TNBC pathogenesis (Wang et al., 2023; Yu et
al., 2024).

It is the first study reporting the profile of the CeRNA (CircRNAs/LncRNAs/miRNAs/m-
RNAs) network, including both circRNAs and LncRNAs in TNBC. The TNBC-associated
ceRNA consisted of 15 circRNAs, 34lncRNAs, 73miRNAs, and 107mRNAs, with the MAPK
signal pathway playing a pivotal role in the tumorigenesis process of TNBC. Activation
of MAPK signaling has been associated with the evasion and improved clinical prognosis
in TNBC (Loi et al., 2016). Additionally, we utilized the TCGA dataset as a validation
cohort and found that SH3BGRL2, CA12, LRP8, NAV3, GFRA1, DCDC2, CDC7, ABAT,
and NPTXI were co-expressed in the TCGA and ceRNA network. The prognostic model
based on the nine DEGs had a close relationship with the prognosis of TNBC. The
GSEA of the nine DEGs indicated that high expression of NPTX1, GFRAI, and CAI2 was
significantly associated with the MAPK signal pathway. Furthermore, CircGFRA1 had been
proved previously to serve as ceRNA in TNBC, modulating GFRA1 expression through
sponging miR-34a (He et al., 2017). The ceRNA network associated with the MAPK signal
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pathway demonstrated that hsa_circ_0005455, hsa_circ_000632, hsa_circ_0001666, and
hsa_circ_0000069 were involved in regulating the activity of the NPTXI, GFRAI, and
CA12. Further analysis identified seven differentially expressed IncRNAs (ADAMTS9-
AS1, MAGI2-AS3, ADAMTS9-AS2, DIO30OS, WDFY3-AS2, MEG3, and TPRG1-AS1)
associated with the ceRNA-MAPK signaling pathway that exhibited significant differential
expression in TCGA dataset. Notably, decreased expression of miR-139-5p, miR-130a-5p,
and miR-135b-5p correlated with improved overall survival in patients with TNBC. Within
the ceRNA network, we found that hsa_circ_0005455 and hsa_circ_00000069 potentially
co-regulate NPTX1 expression by targeting hsa-miR-135b-5p, with hsa_circ_0005455 and
hsa-miR-135b-5p exhibiting the highest connectivity degree in the network (Table S6).
Despite the significant findings of our study, it is important to acknowledge several
limitations. First, our analysis primarily relies on bioinformatic approaches and public
databases, which may not fully capture the complex biological interactions in TNBC
tissue microenvironments. The ceRNA regulatory networks we identified require further
experimental validation. Second, the circRNA expression data used in our study was derived
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from microarray analysis, which may not detect all circRNA isoforms due to technical
limitations. Additionally, while we identified several circRNAs associated with the MAPK
pathway, their exact molecular mechanisms and potential protein-coding capabilities
require further investigation. Third, although our prognostic model shows promising
results, it was developed and validated using retrospective data. External validation using
prospective cohorts from multiple institutions would be necessary to establish its clinical
utility.

CONCLUSION

In summary, this study preliminarily indicated that the prognostic model based on the
ceRNA network was associated with clinical outcome, and the MAPK signal pathway played
a critical role in the progress of TNBC. Importantly, we found that the has_circ_0005455,
has_circ_0000632, has_circ_0001666, and has_circ_00000069 were involved in modulating
the MAPK signal pathway in the progression of TNBC. The results provided novel insights
into the underlying mechanism of TNBC progression and promoted the development of
biomarkers in predicting the prognosis of patients with TNBC.
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