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ABSTRACT
Objective: Inertial measurement units (IMUs) offer a method for assessing gait
beyond the confines of a laboratory. Signal noise and calibration errors pose
significant obstacles to accurately estimating joint angles, particularly during
dynamic activities such as running. Advancements in dynamic optimisation tools
could enable a more comprehensive analysis with fewer sensors and/or low-quality
data. The objective of this study was to compare two IMU-based modelling
approaches (inverse kinematics and optimal control simulations) with optical
marker-based motion capture in reconstructing running gait kinematics.
Methods: Six participants performed treadmill running at three speeds whilst marker
trajectories and IMU signals were collected concurrently. The subject-specific
biomechanical model consisted of a 3D representation of the lower body and torso,
with contact spheres added to simulate ground contact in the optimal control
simulations. The objective of the optimal control simulations was to track the
accelerations, angular velocities, and orientations of eight sensors with simulated
signals from the model sensors. Additional constraints were enforced, reflecting
physiological and biomechanical principles and targeting dynamic consistency. The
objective of the IMU-based inverse kinematics was to minimize the difference
between the input and simulated sensor orientations. The joint kinematics derived
from both methods were compared against optical marker-based motion capture
across a range of running speeds, evaluating the absolute and normalized root mean
square errors.
Results: Compared with motion-capture joint angles, optimal control simulations
resulted in lower absolute errors (RMSE 8� ± 1) that were consistent across all speeds.
IMU-based inverse kinematics exhibited greater differences with motion capture
(RMSE 12� ± 1), which was more significant at faster speeds. The largest absolute
inaccuracies were observed in the sagittal angles when not normalizing for the joint
range of motion. The computational times for the optimal control were 46 ± 60 min,
whereas they were 19.3 ± 3.7 s for the IMU-based inverse kinematics.
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Conclusions: Compared with traditional IMU-based inverse kinematics, the optimal
control approach provides a more comparative representation of joint kinematics
from optical motion capture. This method can mitigate errors associated with closely
tracking IMU noise and drift, and it offers a dynamic analysis that considers the
underlying forces and torques producing movement. However, these advantages
come at the expense of challenges in parameter selection and computational cost.
Significance: These findings highlight the potential of using IMUs with optimal
control methods to provide a comprehensive understanding of gait dynamics across
diverse applications. IMU-based inverse kinematics remains a viable option for faster
computation and when model fidelity is less of a concern.

Subjects Bioengineering, Computational Biology, Computational Science, Biomechanics
Keywords Optimal control, Gait, Inertial measurement unit, Running, Biomechanics, Wearable
sensor, Motion capture, Computational biomechanics, Wearables

INTRODUCTION
Inertial measurement units (IMUs) are becoming increasingly common for assessing
human movement, including running gait (Blazey, Michie & Napier, 2021; Benson et al.,
2022; Zeng et al., 2022; García-de-Villa et al., 2023). These small, lightweight, and
inexpensive devices consist of an accelerometer, gyroscope, and in some cases, a
magnetometer. They can be used outside of laboratory constraints, providing a more
ecologically valid analysis. Despite their numerous benefits, IMU-based methods for
evaluating joint kinematics also present challenges. Sensor drift and noise, integration
errors, and device calibration issues pose significant challenges when deriving joint
kinematics from sensor signals, particularly in dynamic movements.

Sensor fusion methods (Picerno, 2017; Weygers et al., 2020b) or machine learning
techniques (Gholami et al., 2020; Rapp et al., 2021; Xiang et al., 2022) can be used to derive
body segment and joint kinematics. To minimize error, researchers have applied
sophisticated algorithms to filter and fuse sensor data and/or, constrain the outputs via
computational biomechanical models. These models can be combined with inverse
kinematic methods, minimizing the errors between the orientations of experimental IMUs
and analogous IMU frames on the model, while being subject to physiologically feasible
joint constraints. While kinematic outcomes have been validated with this approach,
Ferrari et al. (2010), Zhang et al. (2013), Tagliapietra et al. (2018), Karatsidis et al. (2019),
Cereatti et al. (2024) limiting an analysis to joint kinematics overlooks the interplay
between energetics, and internal and external loads in relation to gait. Biomechanical
models offer the ability to estimate other outcomes, including muscle or actuator
activation dynamics, joint and ground reaction forces, and locomotive cost (Delp et al.,
2007; Karatsidis et al., 2019; Slade et al., 2021; Lloyd, 2021). However, many applications of
musculoskeletal modelling are based on optical motion capture methods in a laboratory
setting (Dorn, Schache & Pandy, 2012; Apte, 2021).

Parameters, including kinematic measures and external and/or internal loads, are
commonly computed in a consecutive manner using inverse kinematics, inverse dynamics,
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and static optimization or computed muscle control approaches (Delp et al., 2007;
Karatsidis et al., 2019). Inverse methods depend critically on input data, with the potential
for error accumulation across steps. The temporal independence of inverse kinematics may
result in unrealistic joint angle fluctuations, as solving for each time step separately can
lead to closely tracking noise or abrupt changes in the input data. Employing inverse
dynamics to estimate joint moments and internal forces introduces dynamic
inconsistencies, necessitating residual forces and moments in the solution (Faber, van Soest
& Kistemaker, 2018). Additionally, inverse dynamics relies on directly measured external
loads, limiting data acquisition to environments where the ground reaction force is
measurable. Finally, static optimization proves suboptimal for modelling muscle forces
during highly dynamic activities, failing to account for the tendon compliance that is
pertinent in fast running (Lin et al., 2012).

One approach to reducing the dependence of the modelled kinematics on the accuracy
of the experimental data and its associated error propagation is to use biomechanical
models within an optimal control framework (Dembia et al., 2019). Optimal control
methods solve for the control variables that minimize or maximize an objective function.
In biomechanics, the objective can include minimizing errors between experimental and
modelled data and/or locomotor objectives such as minimizing muscular effort, the cost of
transport or mechanical loading (van den Bogert, Blana & Heinrich, 2011; Wang et al.,
2012; Lin, Walter & Pandy, 2018). A more dynamically consistent simulation can be
obtained in a single trajectory optimization, minimizing error propagation and the use of
residual forces or moments (van den Bogert, Blana & Heinrich, 2011; Fluit et al., 2014; Lee
& Umberger, 2016; De Groote et al., 2016). This method is highly suitable for solving
problems with unstable dynamics as seen in running gait (Dorschky et al., 2019b; Nitschke
et al., 2020; Haralabidis et al., 2021; Hosoi & Fay, 2024), while offering the ability to model
other metrics not available with inverse kinematic methods (e.g., internal forces and
torques, and energy cost, with ground contact models an option in lieu of externally
measured loads).

The use of optimal control in biomechanics has burgeoned with advancements in
computational power, available toolboxes, and methodological approaches (De Groote &
Falisse, 2021; Febrer-Nafría et al., 2023; Hosoi & Fay, 2024). Tracking IMU signals with
musculoskeletal models, combined with physiologically relevant cost functions, represents
a potentially novel method to assess locomotion in a more holistic, dynamically consistent,
and individualised manner (Dorschky et al., 2019a). Recent work has tracked acceleration
and angular velocity signals with 2D musculoskeletal models in optimal control
simulations. Minimizing the error between experimental IMUs and simulated signals from
model IMUs was able to accurately simulate walking and running gait (Dorschky et al.,
2019a). Whilst pioneering work, the use of a two-dimensional model limited the analysis
to the sagittal plane, neglecting changes in some joint angles commonly assessed in
running gait analysis, such as pelvis or hip rotations (Ceyssens et al., 2019; Vannatta,
Heinert & Kernozek, 2020).

The aim of this study was to compare biomechanical simulations using two IMU-based
methods with those from optical marker-based motion capture. Three-dimensional joint
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angles derived from optimal control simulations, which used raw IMU signals as tracking
inputs, were compared with those obtained from optical marker-based motion capture.
Additionally, the joint angles computed with IMU-based inverse kinematics were
compared with motion capture angles. It was hypothesised that the optimal control
method would better model joint kinematics compared with an inverse IMU-based
method that is more contingent on IMU data accuracy, Borno et al. (2022) and that the
level of agreement would be within the range of marker registration and scaling error
associated with motion capture (Uchida & Seth, 2022). It was anticipated that employing
an optimal control approach, while offering greater fidelity in the outcomes, would incur
greater computational costs and time.

METHODS
The University of Adelaide’s Human Research Ethics Committee approved the protocol
for this observational study (#H-2022-120). All participants were fully informed of the
experimental procedures and any associated risks and provided written informed consent
prior to enrolment in the study. A graphical overview of the study method is shown
in Fig. 1.

Participants
Six adult experienced distance runners (three male, three female) were recruited for the
study from local running clubs and social media pages. The small sample size was due to
the significant computational time involved for each participant, and is comparable to that
of optimal control-based studies, with sample sizes ranging from 1–10 (Nitschke et al.,
2020; Haralabidis et al., 2021; Veerkamp et al., 2021; Falisse, Afschrift & Groote, 2021;
Nitschke et al., 2023). The inclusion criteria were as follows: (i) Individuals aged between
18 and 50 years, (ii) BMI between 18–25. (iii) Completion of a minimum average of
50 km/week of running over the past 3 months, as self-reported or obtained from logged
training runs via a GPS watch.

Participants were excluded if they met any of the following criteria: (i) Presence of
neurological, cardiovascular, or musculoskeletal conditions; (ii) Inability to provide
informed consent; (iii) Incidence of any running-related injury over the past month that
necessitated the participant to miss three or more consecutive training runs.

The participants were instructed to continue with their usual physical training
throughout the testing period, but to abstain from intense exercise 24 h prior to the
experimental sessions and avoid unaccustomed activities that may cause abnormal levels of
physical stress.

Experimental setup
Motion capture

A lower body and torso marker set consisting of 32 reflective markers on bony landmarks
of the lower limb, pelvis and trunk (Cappozzo et al., 1995) was fitted to each participant. To
minimize movement or detachment, markers were attached using superglue on the skin
locations and double-sided adhesive tape secured with hyperfix tape over clothing or
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footwear. Marker trajectories were collected via a 10-camera Vicon Vantage V5 motion
capture system (Vicon 4.2 Motion Systems, Oxford Metrics, Oxford, UK) at 100 Hz.

IMU sensors
Eight IMeasureU Blue Trident sensors (Vicon Motion Systems Ltd, Oxford, UK) were
placed on the participants at recommended locations (Apte, 2021; Scalera et al., 2021).
Sensors were placed on the sacrum and sternum, and the anterior-medial tibia, lateral mid-
thigh, and proximal aspect of the shoe of both limbs (Fig. 2). Sensors were secured using
hyper-fix and strapping tape to limit soft-tissue artefacts (Johnson et al., 2020). A separate
custom-made housing for the pelvis sensor secured it to the participant’s waistband.
Acceleration, magnetometer and angular velocity signals were collected at 1,125 Hz.

Data collection
Prior to commencing the running trial, two static trials were collected to establish a sensor
coordinate system in the global frame. First, a static trial was performed in a neutral,
standing pose, followed by sitting on the edge of a chair while leaning back with
outstretched legs. A Light Detection and Ranging (LiDAR) point cloud of the participant
was obtained using an Apple iPad with the Scaniverse application (“Toolbox AI, 2023”) to
inform the model scaling process (McConnochie et al., 2025). All running sessions were
conducted on a motorized treadmill (Woodway Pro) located in a controlled laboratory
environment. The participants wore their own attire and footwear typical for a race or
high-effort running session. After completing a 10-min warm-up at a self-selected speed,
data were collected continuously for each participant running for three minutes at three
speeds. The collection of marker and IMU data was synchronised. Speeds were set based

Figure 1 Overview of study workflow to obtain joint kinematics from two IMU-based methods and
compare outcomes with optical marker-based motion capture.

Full-size DOI: 10.7717/peerj.19035/fig-1
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on individual ability, at a comfortable pace that minimized fatigue. Those achieving a 5 km
personal best under 20 min ran at 10, 12, and 14 km/hr, with others running at 8, 10, and
12 km/h, to represent a comparative range of steady training pace (Daniels, 2013).

Signal processing
Motion capture
The three-dimensional coordinates of the markers were reconstructed using Vicon Nexus
(v2.16). Spurious or noisy data points not corresponding to the participant’s body were
removed. Marker processing included labelling, tracking, and gap-filling, with a rigid-body
fill applied where possible. The trajectories were filtered with a low-pass Butterworth filter
with an 8 Hz cut-off. A custom MATLAB (The MathWorks, 2022b) script generated the
OpenSim input files.

IMU sensors
The acceleration and angular velocity signals to be tracked in the optimal control
simulations were filtered with a low-pass, 4th-order Butterworth filter with a cut-off
frequency of 10 Hz to reduce the effects of high-frequency noise (Weygers et al., 2020a).
Gyroscope drift was removed by linear fitting the data and detrending any measured offset
of magnitude greater than 0.001 rad/s (Bailey et al., 2021).

Figure 2 IMU and marker placement. Full-size DOI: 10.7717/peerj.19035/fig-2
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A sensor fusion algorithm was used to estimate sensor quaternions in the global space,
using raw acceleration, angular velocity and magnetometer signals (Laidig & Seel, 2022).
Due to the heading offset and potential magnetic interference observed in pilot testing, the
raw IMU signals were first rotated in 90� increments to approximately align all the sensor
axes with both the global and body segment coordinate systems based on their
approximate orientation relative to the participant in the static pose. The mean heading
angle of the sensor over each trial was set to 0�. For the foot and lower leg IMUs,
orientations outside the sagittal plane were set to zero to account for the two degrees of
freedom ankle and knee joints.

The body segment-to-sensor transformation was established using a functional
alignment calibration method (Palermo et al., 2014) with IMU data from both static poses.
Two vectors in the sagittal plane were determined from the sensor gravity vector during
each pose, calculated as the mean of the rotated accelerometer data over a stationary,
noise-free period. The superior-inferior (SI) axis of each sensor was defined solely by the
standing gravity vector. The medial-lateral axis (ML) results from the cross-product of the
two gravity vectors from each pose. The anterior-posterior (AP) axis was solved from the
SI and ML vector cross-product. A final cross-product between the AP and SI axes
redefined the ML axis to ensure orthogonality. The sensor axes coordinate vectors were
converted to quaternions, with a heading set to 0�, establishing the orientation of the
sensors on the model in the static pose.

Stride segmentation was determined from the angular velocity of the lower leg IMU
about the sagittal plane (Ben Mansour, Rezzoug & Gorce, 2015). Five strides were extracted
at the beginning, middle and end of each speed interval, resulting in 15 strides analysed at
each speed, and 45 for each participant (Souza Oliveira & Pirscoveanu, 2021). The
IMU signals were segmented based on these time points for input into each optimal
control simulation.

Data analysis
Model calibration and scaling
The simulations used a previously developed 3D OpenSim model (Rajagopal et al., 2016)
without upper limbs, and modifications to allow for fast-paced running (Lai, Arnold &
Wakeling, 2017). The model contained 23 degrees of freedom (DOF), comprising of six
DOF ground to-pelvis joint, three DOF for the lumbar and hip joints, and one DOF knee,
ankle, metatarsalphalangeal and subtalar joints.

The OpenSim models were scaled in accordance with each participant’s anthropometry
in MAP Client (Zhang et al., 2014) generating body segment scale factors via an
atlas-based statistical shape modelling process informed by skeletal anatomical landmarks
(Bakke & Besier, 2020; Akhundov et al., 2022). For the marker-based inverse kinematics,
anatomical landmarks from key marker positions during the static trial were used to
generate the subject-specific scale factors for the OpenSim model body segments. For the
model using IMUs, an independent scaling method that could be implemented without
marker trajectories was developed. A Skinned Multi-Person Linear model (SMPL) model
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was fitted to the LiDAR scan point cloud using a Basis Point Set method, Prokudin, Lassner
& Romero (2019) from which an anatomical skeleton and its landmarks were inferred
(Keller et al., 2022; McConnochie et al., 2025).

Inverse methods
The inverse kinematics problem can be formulated as:

Minimize : JðhÞ ¼
XN
i¼1

XT
t¼1

wi � jjxexp;iðtÞ � fðuðtÞ; hÞjj2 (1)

where N is the number of inputs, in this case, marker trajectories or IMU sensor
orientations. T is the number of frames or time steps, JðhÞ is the cost or objective function,
wi is a weighting factor for the given input, xexp;iðtÞ is the experimental position of the
input at time t. Lastly, fðuðtÞ; hÞ is the model-predicted position of the input at time t
based on the generalized coordinates uðtÞ and joint angles h. As the data were of
insufficient resolution to accurately capture subtalar and metatarsophalangeal joint (MTP)
kinematics in the inverse simulations, these joints were fixed.

Simulations were solved for each participant and speed using marker and IMU-based
inverse kinematics over the entire running trial. Strides were then segmented using the
time points determined from the lower-leg IMU angular velocity. Three degree of freedom
pelvis and hip angles, and knee flexion, and ankle flexion angles were extracted over each
of the 15 strides at each speed for comparison with the IMU-based methods. All kinematic
data were time-normalized to 0% to 100% of the gait cycle, with reference to the right
footstrike.

Motion-capture inverse kinematics
Using the marker-scaled model, optical marker-based motion capture joint kinematics
were computed over the entire trial using the inverse kinematics solver in Opensim v4.4
(Seth et al., 2018). Joint angles were calculated by minimizing the sum of the squared
differences between the positions of virtual markers on the model and experimental
marker trajectories. The weighting factors for each marker were determined heuristically.
Those markers with a greater tendency towards soft tissue artefacts and/or placed on
clothing (i.e., pelvis and thigh markers) had a lower contribution to the objective. An
exemplary inverse kinematics settings file is provided at https://doi.org/10.5281/zenodo.
14796986.

IMU inverse kinematics
IMUs were placed on the LiDAR-scaled OpenSim model with the pitch and yaw
determined from the static calibration poses, and a heading of 0�. Differences between the
experimental sensor orientations and the orientations of the virtual IMU frames placed on
this model were minimized using the OpenSense (Borno et al., 2022) inverse kinematics
solver in OpenSim v4.1. Equal weighting factors were applied to each sensor in the
objective function.
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Optimal control simulations
IMU data tracking simulations of running gait were formulated as optimal control
problems which were solved using direct collocation in OpenSim Moco (version 4.4.1)
(Dembia et al., 2019) in Python 3.8 on a Phoenix High-Performance Computer (256 GB
RAM, 72 CPU).

The models were identical to those used in the IMU-based inverse method, except that
in the optimal control simulations, the model joints were driven by torque actuators with
an activation time constant of 0.01 s. The optimal torques ranged from 50 to 500 Nm
depending on the joint and degree of freedom, with a control activation limit of 5.
Additional residual actuators were added to the pelvis rotational and vertical translation
degrees of freedom with optimal values of 1 NM and 25 N respectively.

Contact between the foot and the ground was modelled using 11 ground-contact
spheres on each foot, approximating a previously published Hunt-Crossley foot-ground
contact model (Hunt & Crossley, 1975; Serrancolí et al., 2019). The spheres were placed
evenly across the plantar surface in proportion to the foot size (Fig. 3). The static and
dynamic friction and transition velocity properties were consistent with reference values of
0.8 and 0.5 respectively. The modulus (3.06 MPa) and damping coefficient (2.0 s/m) of the
contact elements modelled the deformation and energy return of the heel region of a
human foot in an athletic shoe (Aerts & De Clercq, 1993). Passive damping was added to
the lower limb and lumbar joints, to model ligaments and other passive structures
(Anderson & Pandy, 2001). To improve the modelled foot-ground contact mechanics
(Falisse, Afschrift & Groote, 2021) the MTP joint was unlocked in these simulations, with a
linear rotational spring force with a stiffness of 25 Nm/rad added to represent the MTP
joint passive structures (Sasaki, Neptune & Kautz, 2009).

Initial guess
Optimization problems require an initial guess that serves as a starting point for the solver
to search the solution space. A suitable initial guess is pertinent for optimal control
modelling to avoid excessive computational effort or convergence on a local minimum that
does not resemble the desired motion. As such, a guess was generated from a tracking
simulation of generic kinematics from running at 14.4 km/h (Nitschke et al., 2020).

Objective equation

The optimal control problem can be formulated as follows: Minimize Jðx; uÞ subject to the
following constraints:

_x ¼ f ðxðtÞ; uðtÞÞ
xð0Þ ¼ x0
uðtÞ 2 U ; 8t 2 ½0;T�:

(2)

In this equation, the objective function Jðx; uÞ ¼ Jeffort þ JtrackIMU þ JtrackIK þ JGRF
represents the cost to be minimized over the time period T. The primary objective of these
simulations was to determine the model states x and controls u that minimize errors in
tracking experimental data, subject to the system dynamics and constraints. The objective
function consisted of the following terms each with individual weightings wNi
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As the primary objective, the 3D orientations, accelerations and angular velocities of the
input IMUs are tracked with the signals from the analogous virtual IMUs placed on the
model (Eq. (3)).

Jtrack IMU ¼
Z T

0

1
N1

wN1

XN1

k¼1

X
i¼x;y;z

ai;kðtÞ � lai;kðtÞ
rak

� �2

þ xi;kðtÞ � lxi;k
ðtÞ

rxk

� �2

þ hi;kðtÞ � lhi;kðtÞ
rhk

� �2
" #

dt (3)

where N1 is the number of IMUs (8) and a, w, and h represent the accelerations and
angular velocities of the IMU frame and orientations in the global frame in the x, y and z
coordinates respectively. l is the corresponding signal from the virtual sensor on the
model. Differences were normalized to the measurement standard deviation r.

A secondary aim was to minimize effort (Miller et al., 2012; Miller & Hamill, 2015; De
Groote & Falisse, 2021; Veerkamp et al., 2021) (Eq. (4)).

Jeffort ¼ 1
D

ZT
0

wN3

XN3

i¼1

l3i ðtÞ
" #

dt (4)

Figure 3 OpenSim model foot contact geometry. Full-size DOI: 10.7717/peerj.19035/fig-3
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where D is the distance travelled by the model’s centre of mass, liðtÞ is the value of the
control actuator at time t and N3 is the number of actuators. A larger weighting w3 was
applied to the model’s residual actuators in the effort goal term to penalize their use.

An objective tracking generalized joint kinematics from a dataset of fast running
kinematics was added to act as a regularisation term, to assist with convergence and noise
reduction (Nitschke et al., 2020) (Eq. (5)).

JtrackIK ¼ 1
T

ZT
0

1
N2

wN2

XN2

i¼1

xiðtÞ � liðtÞð Þ2
" #

dt: (5)

Here, N2 is the number of joint kinematics and liðtÞ is the value of the input state
variable at time t. An additional tracking goal was added to track the knee and hip flexion
angles from the IMU inverse kinematics solved for in OpenSense, as this was found to
improve joint angle agreement in the sagittal plane in pilot testing.

A generalized ground reaction force trajectory in the horizontal and vertical directions
from the same dataset was tracked (Nitschke et al., 2020) to improve the model foot contact
with the ground. The error between the force trajectory scaled in proportion to the
participant’s bodyweight and ground reaction forces modelled from the contact sphere,
were minimized in the vertical and horizontal directions (Eq. (6)).

JGRF ¼ 1
W

ZT
0

wN4

X
j¼x;z

GRFjðtÞ � GRFj;ref ðtÞ
� �" #

dt (6)

where GRF is the ground reaction force from the modelled contact spheres at time t, and
GRFref is the reference force. W is the model’s body weight.

The optimal control formulation weights w for each of these objectives were determined
heuristically. The values were chosen to minimize the sum of Pearson correlations when
comparing model kinematics with the analogous experimentally tracked/measured data on
a subset of five strides from each participant. The weighting factors for the acceleration,
angular velocity and orientations of the IMUs were 0.002, 0.01 and 3, respectively. The
joint kinematics tracking, effort minimization, and ground reaction force goal weighting
factors were 1, 0.5 and 1,000, respectively. Note that due to the different magnitudes and
units of the goal inputs, these weighting factors do not represent the relative contribution
to the overall simulation objective. Instead, these weightings were chosen with the aim of
having approximately 90% of the objective comprised of the tracking of each of the three
IMU signals, with the remaining contribution from the auxiliary goals. An example
optimal control setup file is available at https://doi.org/10.5281/zenodo.14796986.

Bounds on the time taken to complete a full gait cycle, along with constraints on
problem states and controls, were applied to limit the solution space and ensure that the
solution was within a feasible range for human running locomotion. The state bounds were
set to to the joint ranges of the optical motion capture reference data �5–10�, depending
on the variable. A CasADi solver (Andersson et al., 2019) within OpenSim Moco was used
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to solve the predictive simulations. Convergence and constraint tolerances were set to
0.001 and 0.005 respectively.

Statistical analysis
Joint kinematics were extracted in the body and joint reference systems, based on ISB
conventions (Wu et al., 2002). The root mean square error (RMSE) was computed for each
participant over each time normalized gait cycle, comparing data from marker-based
kinematics with each of the optimal control simulations and IMU-based kinematics. To
allow for relative comparisons between different motion planes, the RMSE was normalized
by the average joint range of motion for each participant at each speed (Ren, Jones &
Howard, 2008). All the data are reported as the mean � SD.

To ensure the integrity of the dataset, optimal control simulations with a RMSE
exceeding 30� for any given joint angle were subjected to visual inspection. If a simulation
displayed anomalous joint angle trajectories, the simulation was inspected qualitatively,
and if it was deemed to have converged on an unrealistic solution (i.e., did not resemble a
running gait pattern), it was excluded from further analysis. Any simulation that failed, or
did not converge on a solution within 15 h or 7,000 iterations, was also excluded from the
analysis.

RESULTS
The participant characteristics and their personal best times are outlined in Table 1

Out of the 270 total simulations, 266 successfully converged on a solution. Among
them, three were identified as outliers, involving Participant 3 running at medium and fast
speeds. The mean simulation time across all successful optimal control simulations was
46 � 60 min. The longest time was 8 h and 46 min, again for Participant 3 (Fig. 4A).
IMU-based simulation and marker-based inverse kinematics had much shorter and more
consistent computational times, with average solve times of 19.3 � 3.7 and 3.7 � 0.4
seconds per stride respectively (Fig. 4B).

Compared with marker-based inverse kinematics, the mean (� SD) RMSE across all
joint angles was 7� � 1� in the optimal control simulations, ranging from 4�–12�. The
errors ranged from 4�–26�, with a mean of 10� � 1� using IMU-based inverse kinematics
(Table 2A, Fig. 5). Errors in the optimal control simulations did not differ in magnitude
with faster speeds (Fig. 6A). This finding was also seen in the IMU-based inverse
kinematics (Fig. 6B), excluding knee flexion where errors were greater at slower speeds
(Fig. 5). When normalising differences to the joint range of motion, lumbar extension still
exhibited the greatest differences comparing the optimal control approach with motion
capture. The normalized errors for the IMU-based kinematics were greatest for pelvic tilt
(Table 2B).

Qualitative comparisons between optimal control simulations and marker-based
inverse kinematics revealed regions of notable difference for lumbar extension over the gait
cycle, and periods of hip and knee flexion (40–80% gait cycle), and ankle flexion (0–20%
gait cycle) (Fig. 7). When comparing OpenSense IMU inverse kinematics with
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marker-based inverse kinematics, these errors tended to be larger in magnitude, with
regions of greater error in the lumbar and pelvis joints seen outside the sagittal plane.

DISCUSSION
This study compared two IMU-based modelling approaches for reconstructing joint
motion: optimal control simulations seeking to minimize differences between
experimental and simulated IMU signals, and IMU-based inverse kinematics. A 3D,
subject-specific biomechanical model was used in both methods to model running gait
across various speeds. Optical marker-based motion capture was employed as the
comparative gold standard to assess the accuracy of the modelled joint kinematics.

This study confirmed the hypothesis that an optimal control modelling approach more
closely resembles the joint kinematics obtained from optical motion capture than
traditional inverse-based methods using IMUs. The average RMSE was found to be 7� and
10� for each of the methods, with a consistent level of agreement observed across all speeds,
where the mean errors within participants did not differ by more than 2�. The lowest errors
with marker-based inverse kinematics in both methods were in joint angles outside the
sagittal plane (Fig. 5) IMU-based inverse kinematics had greater errors than optimal
control simulations in 10 out of 11 joint angles, with magnitudes up to 26� seen in
knee flexion (Table 2). Conversely, when the joint range of motion was considered,
normalised errors were smallest in knee flexion for the optimal control simulations
compared with motion capture (Table 2B). These results underscore the ability of an
optimal control approach to effectively capture three-dimensional motion at moderate to
fast running speeds.

While optimal control generally showed better agreement with motion capture than did
IMU-based inverse kinematics, this was not observed for the lumbar flexion degree of
freedom. A fixed offset between joint angle outcomes, with the optimal control simulations
having a more upright torso, was not observed between marker and IMU-based
inverse-kinematic approaches. Optimal control simulations must also satisfy system
dynamics to arrive at a solution. With the torso being a large and heavy model body
segment, reducing lumbar flexion would minimize the need for high actuator forces to
maintain any forward lean. The necessity of maintaining an upright posture may therefore
come at the expense of tracking lumbar flexion. In the IMU-based kinematics the greatest
difference was observed in the pelvic tilt degree of freedom. This fixed offset observed in

Table 1 Participant characteristics, including best times over the 5 km (a) or 10 km (b) distance, and experimental treadmill running speeds.

Participant Gender Body mass (kg) Height (cm) BMI (kg. m2) 5a/10b km best time Running speeds (km/h)

1 M 59.2 173 19.8 17:26a 10,12,14

2 F 72 172.5 24.2 37:35b 10,12,14

3 M 82.1 186 23.7 19:15a 10,12,14

4 F 51.2 162 19.5 21:54a 8,10,12

5 F 61.4 164 22.8 21:06a 8,10,12

6 M 80.2 178.5 25.2 18:36a 10,12,14
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Figure 4 Simulation times separated by participant and speed for optimal control simulations (A) and IMU-based inverse kinematics (B).
Full-size DOI: 10.7717/peerj.19035/fig-4
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pelvic tilt could be attributed to differences in static postures when placing the IMUs on
participants. Given the lack of consistent offset observed across participants, method
uniformity was prioritized over individual correction factors.

A similar offset pattern emerged for the ankle flexion angle during the stance phase. The
difference here may reflect the simulation’s attempts to employ appropriate contact
mechanics to appropriately balance forces and facilitate forward running propulsion,
rather than adhering to tracking foot IMU signals. In contrast, the inverse simulations did
not consider contact tracking with the ground; hence ankle angles were dictated only by
kinematic constraints and the tracking of sensor orientations, allowing the foot to
penetrate the ground. This observation highlights a trade-off between realistic contact

Table 2 Raw (A) and normalised (B) RMSE (�STD) for each joint and speed betweenmotion capture and optimal control simulations (OC) or
IMU-based inverse kinematics (IK). Maximum values for each condition are highlighted in bold.

Slow Medium Fast Average

OC IK OC IK OC IK OC IK

(A)

Pelvis tilt 4.84 ± 0.74 6.99 ± 0.53 4.89 ± 0.88 6.83 ± 0.57 5.07 ± 1.14 6.81 ± 1.01 4.93 ± 0.92 6.88 ± 0.70

Pelvis list 5.62 ± 0.67 5.83 ± 0.41 5.62 ± 0.72 5.72 ± 0.46 5.82 ± 0.76 5.71 ± 0.65 5.69 ± 0.72 5.75 ± 0.51

Pelvis rotation 3.87 ± 0.79 4.21 ± 0.60 4.27 ± 0.97 4.34 ± 0.63 4.28 ± 0.87 4.39 ± 0.68 4.14 ± 0.88 4.31 ± 0.64

Lumbar extension 12.41 ± 1.48 7.21 ± 0.70 12.43 ± 1.69 7.37 ± 0.74 12.43 ± 1.81 7.63 ± 1.00 12.42 ± 1.66 7.40 ± 0.81

Lumbar bending 5.11 ± 0.72 8.37 ± 0.62 5.25 ± 1.00 8.02 ± 0.61 5.42 ± 1.20 7.93 ± 1.01 5.26 ± 0.97 8.11 ± 0.75

Lumbar rotation 5.91 ± 1.14 8.71 ± 0.73 5.99 ± 1.39 8.30 ± 0.73 6.14 ± 1.41 8.18 ± 0.99 6.01 ± 1.31 8.40 ± 0.82

Hip flexion 9.15 ± 0.75 15.77 ± 0.66 9.34 ± 1.10 14.60 ± 0.70 9.68 ± 1.54 13.74 ± 1.35 9.39 ± 1.13 14.70 ± 0.90

Hip adduction 5.85 ± 0.69 6.56 ± 0.45 5.97 ± 0.78 6.41 ± 0.47 6.12 ± 0.87 6.37 ± 0.59 5.98 ± 0.78 6.45 ± 0.50

Hip rotation 6.89 ± 0.83 7.89 ± 0.59 7.53 ± 1.47 7.91 ± 0.65 7.53 ± 1.42 7.92 ± 0.87 7.32 ± 1.24 7.91 ± 0.70

Knee angle 8.08 ± 0.77 25.87 ± 0.85 8.19 ± 1.05 23.33 ± 0.89 8.57 ± 1.37 21.56 ± 0.77 8.28 ± 1.06 23.59 ± 0.84

Ankle angle 11.90 ± 0.59 14.62 ± 0.60 12.10 ± 0.78 14.82 ± 0.61 12.39 ± 0.95 15.05 ± 0.89 12.13 ± 0.77 14.83 ± 0.70

Mean 7.24 ± 0.83 10.18 ± 0.61 7.42 ± 1.08 9.79 ± 0.64 7.59 ± 1.21 9.57 ± 0.89 7.42 ± 1.04 9.85 ± 0.71

(B)

Pelvis tilt 0.41 ± 0.06 0.6 ± 0.05 0.4 ± 0.07 0.57 ± 0.05 0.4 ± 0.09 0.55 ± 0.08 0.4 ± 0.07 0.57 ± 0.06

Pelvis list 0.33 ± 0.04 0.35 ± 0.02 0.32 ± 0.04 0.33 ± 0.03 0.33 ± 0.04 0.33 ± 0.04 0.33 ± 0.04 0.34 ± 0.03

Pelvis rotation 0.29 ± 0.06 0.31 ± 0.05 0.3 ± 0.07 0.3 ± 0.04 0.29 ± 0.06 0.29 ± 0.05 0.29 ± 0.06 0.3 ± 0.05

Lumbar extension 0.74 ± 0.09 0.41 ± 0.04 0.7 ± 0.09 0.4 ± 0.04 0.67 ± 0.09 0.39 ± 0.05 0.7 ± 0.09 0.4 ± 0.04

Lumbar bending 0.21 ± 0.03 0.35 ± 0.03 0.21 ± 0.04 0.33 ± 0.03 0.21 ± 0.05 0.32 ± 0.04 0.21 ± 0.04 0.33 ± 0.03

Lumbar rotation 0.17 ± 0.03 0.24 ± 0.02 0.16 ± 0.04 0.23 ± 0.02 0.16 ± 0.04 0.22 ± 0.03 0.16 ± 0.04 0.23 ± 0.02

Hip flexion 0.17 ± 0.01 0.29 ± 0.01 0.16 ± 0.02 0.26 ± 0.01 0.16 ± 0.03 0.23 ± 0.02 0.16 ± 0.02 0.26 ± 0.01

Hip adduction 0.23 ± 0.03 0.26 ± 0.02 0.23 ± 0.03 0.25 ± 0.02 0.23 ± 0.03 0.24 ± 0.02 0.23 ± 0.03 0.25 ± 0.02

Hip rotation 0.46 ± 0.06 0.53 ± 0.04 0.48 ± 0.09 0.5 ± 0.04 0.46 ± 0.09 0.48 ± 0.05 0.47 ± 0.08 0.5 ± 0.04

Knee angle 0.09 ± 0.01 0.28 ± 0.01 0.09 ± 0.01 0.24 ± 0.01 0.09 ± 0.01 0.22 ± 0.01 0.09 ± 0.01 0.25 ± 0.01

Ankle angle 0.24 ± 0.01 0.3 ± 0.01 0.24 ± 0.02 0.3 ± 0.01 0.25 ± 0.02 0.3 ± 0.02 0.24 ± 0.02 0.3 ± 0.01

Mean 0.3 ± 0.04 0.36 ± 0.03 0.3 ± 0.05 0.34 ± 0.03 0.3 ± 0.05 0.33 ± 0.04 0.3 ± 0.05 0.34 ± 0.03
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modelling and the representation of true joint angles without considering external loads.
Although better results may have been obtained in the optimal control simulations by
tracking measured ground reaction forces rather than generic forces scaled with body
weight, the requirement for force plates in conjunction with IMUs is less translatable to
real-world data collection.

Past research comparing IMU kinematics with motion capture methods in running gait
is limited when considering an inverse kinematics or optimal control approach. For
inverse kinematics, the RMSE in two studies ranged from 5–8� (Lin et al., 2023) and
18–28�, reduced to 5–8� with an offset correction (Nüesch et al., 2017). In this study, no
offset correction was applied, and comparable error magnitudes (4–26�) were observed in
IMU-based inverse kinematics. In the case of optimal control, errors ranging from 5–9�

have been reported (Dorschky et al., 2019b), typically increasing when fewer sensors are
used (Dorschky et al., 2024) and consistent with the errors observed in this study (4–12�).
The aforementioned study revealed increasing accuracy in more distal joints, unlike the
findings of this study. The improved ankle flexion accuracy could be a consequence of the
use of variable temporal weighting factors. Periods with large artefacts in the signal, such as
during foot strike, would ideally not be tracked as closely in the optimal control

Figure 5 RMSE between IMU-based optimal control simulations (filled) and marker-based inverse kinematics (outline) methods with optical
motion capture over each joint angle and speed. Full-size DOI: 10.7717/peerj.19035/fig-5
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Figure 6 Box plots of the RMSE with marker-based inverse kinematics for both optimcal control simulations (A) and IMU-based inverse
kinematics (B), separated by participant and speed over all joint angles. Full-size DOI: 10.7717/peerj.19035/fig-6
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simulations, however, a temporal change in weighting factors was not a feature currently
available in the optimal control software.

Machine learning methods are increasingly popular alternatives to both inverse
kinematics and optimal control simulations for deriving biomechanical outcomes from
IMU sensor data without relying on explicitly defined biomechanical models (Xiang et al.,
2022). These methods have demonstrated accurate kinematic predictions across various
movement types, often requiring fewer sensors and showing robustness to noise (Dorschky
et al., 2020; Hernandez et al., 2021; Rapp et al., 2021; Xiang et al., 2022; García-de-Villa
et al., 2023; Gholami, Napier & Menon, 2020). However, machine learning approaches also
face challenges, including the need for large, high-quality datasets for training, the
potential for over-fitting, and models trained only specific to a particular motion,
population, or individual (Gurchiek, Cheney & McGinnis, 2019). Unlike a musculoskeletal
modelling approach, these methods typically only evaluate a limited range of outcomes in
one domain, such as kinematics, ground reaction forces, or joint forces (Xiang et al., 2022).
While machine learning can eliminate the need for detailed input parameters, it typically
lacks the direct insight that biomechanical models can provide, limiting its interpretability

Figure 7 Joint kinematics between marker-based motion capture (orange), optimal control simulations (blue) and IMU-based inverse
kinematics (green). RMSE is plotted below each joint, with shading indicating the standard deviation in absolute error.

Full-size DOI: 10.7717/peerj.19035/fig-7
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for understanding underlying movement strategies (Gurchiek, Cheney & McGinnis, 2019;
Rodu et al., 2024).

Marker-based motion capture is considered the reference standard; however, it is
pertinent to acknowledge the inherent errors associated with this method, which could
impact the accuracy of the study findings when compared to true joint angles. Motion
capture systems can have errors of 1–5 mm, Chiari et al. (2005) compounded by soft tissue
artefacts of up to 10 mm (Leardini et al., 2005). The marker registration error further
contributes to this uncertainty; a 2 cm difference resulted in a variation in peak ankle, knee,
and hip sagittal angles of up to 15� (Uchida & Seth, 2022). The finding that the resulting
joint angles were within the bounds of other experimental data provides further confidence
in the study findings in light of this uncertainty. Ultimately, the modelling relevance of this
study lies in the ability to measure gait changes within and between individuals, which
were observed across participants at different running speeds.

A key strength of this modelling approach lies in the incorporation of a
three-dimensional model in both methods. Modelling outside the sagittal plane could
capture more intricate aspects of human locomotion, such as hip adduction and foot
pronation, which can be particularly pertinent in running gait analysis. The ability of the
model to capture these out-of-plane movements in optimal control simulations was
demonstrated, with no region having an RMSE greater than 10�. Moreover, the
multi-segment foot model used in the optimal control simulations allowed the MTP joint’s
role during the push-off phase of running gait to be accounted for, enhancing the realism
of the simulations and ground contact modelling (Falisse, Afschrift & Groote, 2021).

A limitation lies in the use of a torque-driven model in the optimal control simulations.
These models lump synergistic muscle forces together and assume that the maximal torque
exerted at a joint is a function of the kinematics of that joint alone. Torque-driven
simulations typically have fewer unknown parameters compared to individual
muscle-model simulations. It is feasible that this approach could be extended to
incorporate muscle-driven simulations, where the optimization process includes muscle
dynamics and activation patterns to more accurately represent the underlying physiology.
This was avoided, however, due to the significant increase in computational cost and
simulation complexity involved in simulating muscle dynamics, and remains an area for
future improvement.

A further limitation lies in the potential generalizability of the approach. The small
sample size in this study restricts the applicability of the results to broader populations,
particularly those with varying anthropometric characteristics or gait patterns. Moreover,
while the approach has been validated for running gait, its application to other dynamic
activities or non-linear movement patterns remains unexplored. Additionally, the
controlled laboratory environment may not fully capture the variability present in
real-world conditions. Although the method appears translatable to field settings, it has not
yet been tested in such environments.

The sensor setup employed in this study consisted of eight sensors. The IMU tracking
strategy using optimal control could be adapted to situations with fewer IMUs, which
offers advantages in cost and convenience (Dorschky et al., 2024). In such cases,
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emphasizing the minimization of effort and tracking generic running kinematics is likely
needed to compensate for body segments lacking IMUs. Fewer sensors could thus make
the motion more generalised, limiting the ability to model unique gait patterns. Given that
the goal of this study was to achieve optimal agreement with subject-specific motion
capture kinematics, all available sensors were utilized in the simulations. The IMU-based
inverse kinematics approach, which is solely dependent on the sensor orientations to
estimate joint angles, is unlikely to be adaptable to involving fewer sensors for gait analysis.

The greater resolution of optimal control simulations comes at the expense of
computational time and user input. On average, the simulations took nearly 150 times the
duration of IMU-based inverse kinematics (Fig. 4). Not accounted for is the additional
time spent iteratively testing the simulation parameters to ensure convergence on a feasible
solution. Unlike inverse methods, optimal control presents limitless inputs, including the
initial guess, weighting factors, and constraint combinations. While the ability of these
simulations to more closely replicate gold-standard kinematics underscores the potential
of optimal control in biomechanical modelling, it is important to acknowledge that this
setup remains somewhat subjective, without a universal method of application. The
consistent application of weighting factors and constraints across participants and speeds
demonstrates the robustness of the approach used in this study. However, critical
questions regarding the integrity of the control problem and the influence of input
parameters on outcomes remain unanswered. As such, the intricate nature of optimal
control may not align with the practicality and ease of use required for everyday
individuals to deploy IMU sensors effectively in field settings, posing barriers to
widespread adoption and implementation of this approach without further development.

On the other hand, inverse kinematics, both IMU-based and marker-based, is
computationally simpler to implement and solve than optimal control methods, with
significantly shorter computational times and fewer input parameters. These methods
assume that joint motion can be accurately determined solely based on endpoint positions,
neglecting the underlying dynamics of the system. This simplification may lead to less
accurate representations of joint motion and its associated drivers, particularly in dynamic
tasks or when dealing with complex movement patterns. The choice between these
approaches depends on the specific research questions, available time and resources, and
desired level of detail and accuracy in the modelling process.

The findings of this study have important implications for the field of biomechanics and
the assessment of human movement. Optimal control simulations not only outperformed
IMU-based inverse kinematics in accuracy in this study, but also offer distinct advantages
in biomechanical modeling over both inverse and machine learning approaches. These
simulations enable the simultaneous estimation of outcomes such as ground reaction
forces, muscle activations, joint loads, and kinematics through a single trajectory
optimization that adheres to physiological and physical principles. Beyond data tracking,
optimal control methods allow a wide range of objectives to be considered, including
optimality principles underlying gait (Miller et al., 2012; De Groote & Falisse, 2021). In
addition to the tracking of IMU signals, the cost function in this study included goals
related to minimizing effort, enforcing joint angle symmetry, and, to a lesser extent,
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tracking generic kinematics and ground reaction force trajectories. Aligning the modelling
approach with the fundamental objectives of locomotion reduces the limitations associated
with traditional IMU-based methods. Reducing the dependence on potentially error-prone
experimental IMU data mitigates inaccuracies in the step-wise computation of outcome
variables. In addition, by optimizing control inputs (muscles or torque actuators), these
simulations provide insights into how activation patterns and strategies achieve specific
movements, making them particularly effective at capturing the complex interactions of
forces and dynamics in human movement. Future research should continue to explore the
potential of optimal control methods with inertial sensors, encompassing diverse
locomotion forms, populations, and clinical and sporting applications. Efforts to refine the
objective function and associated weighting factors used in optimal control simulations
could further enhance model accuracy and validity.

CONCLUSION
This study demonstrated the ability of two modelling methods using IMUs to reproduce
joint kinematics, with closer agreement to optical marker-based motion capture observed
with optimal control modelling. The use of a three-dimensional, torque-driven
biomechanical model and a custom model-scaling method allowed for a precise and
comprehensive representation of gait in a single dynamic optimal control simulation. An
optimal control paradigm enhances the robustness of IMU data to noise and errors,
presenting a promising solution to mitigate limitations seen in traditional inverse-based
approaches that rely heavily on and are more susceptible to errors in experimental data.
Inverse kinematics provides a more straightforward and computationally efficient
solution, making it more suitable for real-time applications and situations where
computational resources are limited. Optimal control simulations also integrate dynamic
constraints, providing a more comprehensive understanding of the underlying forces and
activations driving the observed movements. This approach, when integrated with IMUs,
opens new possibilities for advanced biomechanical modelling methods, such as modelling
metabolic cost or muscle activation dynamics.
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