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Contrast in the density and biomass of ûsh in a reef system
with diûerent ûshing intensity in the Mexican Caribbean
Jose Manuel Jose Manuel Castro Perez Corresp., 1 , Carmen A Villegas Sánchez 1 , Alejandro Medina Quej 1 , Rigoberto
Rosas Luis 2 , Jesús Ernesto Arias González 3

1 División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/Instituto Tecnológico de Chetumal, Chetumal, Q.R., Mexico
2 Cátedra CONACyT. Tecnologico Nacional de Mexico /Instituto Tecnológico de Chetumal, Chetumal Quintana Roo, México, Cátedras CONACyT.
Tecnológico Nacional de México /Instituto Tecnológico de Chetumal, Chetumal Quintana Roo, México, Chetumal, Quintana Roo, Mexico
3 Centro de Investigación y Estudios Avanzados del I.P.N-Unidad Mérida, Merida, Yucatán, Mexico

Corresponding Author: Jose Manuel Jose Manuel Castro Perez
Email address: jose.cp@chetumal.tecnm.mx

A wide range of ûsh species are caught in reef ûsheries. However, ûshing eûorts tend to be
highly selective in favor of large species, which generally have low population growth
rates, making them more vulnerable to overûshing. When the decline of large predators
occurs, ûshing eûorts start to focus on catching species from lower trophic levels, which
can cause a trophic cascade eûect.The objective of this research was to detect changes in
the density and biomass of ûsh communities in areas with diûerent ûshing intensity in the
study area.This study was carried out in the Banco Chinchorro Biosphere (BCBR) in the
Mexican Caribbean and analyze the eûect of ûshing intensity on ûsh density and biomass,
comparing data obtained from visual censuses with dependent information of the ûshery.
Evidence was found of a relationship between high ûshing exploitation and low levels of
density and biomass for Epinephelus striatus, E. guttatus and Lachnolaimus maximus. The
decline of predators of non-commercial species had no eûect on the density and biomass
of these species. The density and biomass of commercially important ûsh species were
inûuenced by the presence of algae, octocorals, hydrocorals and by variations in their
catch per unit of eûort (CPUE).This study detected that density and biomass have
decreased in some species belonging to the Serranidae and Lutjanidae families in areas
with high ûshing intensity. On the other hand, little evidence was found that the density
and total biomass of families of noncommercially important species increased through the
decline of their predators. These results are consistent with previous work documenting
how ûshing activity aûects ûsh species with high trophic levels. The information generated
will help the Reserve's managers make decisions towards better management and
conservation of ûshery resources.
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33 Abstract

34 A wide range of fish species are caught in reef fisheries. However, fishing efforts tend to be 
35 highly selective in favor of large species, which generally have low population growth rates, 
36 making them more vulnerable to overfishing. When the decline of large predators occurs, fishing 
37 efforts start to focus on catching species from lower trophic levels, which can cause a trophic 
38 cascade effect.The objective of this research was to detect changes in the density and biomass of 
39 fish communities in areas with different fishing intensity in the study area.This study was carried 
40 out in the Banco Chinchorro Biosphere (BCBR) in the Mexican Caribbean and analyze the effect 
41 of fishing intensity on fish density and biomass, comparing data obtained from visual censuses 
42 with dependent information of the fishery. Evidence was found of a relationship between high 
43 fishing exploitation and low levels of density and biomass for Epinephelus striatus, E. guttatus 

44 and Lachnolaimus maximus. The decline of predators of non-commercial species had no effect 
45 on the density and biomass of these species. The density and biomass of commercially important 
46 fish species were influenced by the presence of algae, octocorals, hydrocorals and by variations 
47 in their catch per unit of effort (CPUE).This study detected that density and biomass have 
48 decreased in some species belonging to the Serranidae and Lutjanidae families in areas with high 
49 fishing intensity. On the other hand, little evidence was found that the density and total biomass 
50 of families of noncommercially important species increased through the decline of their 
51 predators. These results are consistent with previous work documenting how fishing activity 
52 affects fish species with high trophic levels. The information generated will help the Reserve's 
53 managers make decisions towards better management and conservation of fishery resources.

54

55 Keywords: coral reef; artisanal fishing; fish assemblage structure; Banco Chinchorro biosphere 
56 reserve; México.
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61 Introduction

62 The increase in global fishing levels has generated environmental problems that are of public 

63 interest (Pauly et al., 2002), such as trophic cascade effects that weaken habitat and key species 

64 (Scheffer et al., 2005), encourage the proliferation of invasive species (Daskalov, 2002), ), 

65 impact sustainability of other exploitation efforts (Libralato et al., 2004) and enhance the 

66 negative effects of climate change to the ocean (Gaines et al., 2018). There is wide recognition 

67 that fish stocks throughout the world are under stress because of overfishing, coastal 

68 development, human population growth and climate change (Savo, Morton & Lepofsky, 2017; 

69 Russ et al., 2021).

70 Small-scale fisheries, including those in reef systems, are an important source of livelihood and 
71 food security for more than 1 billion people worldwide (Adam et al., 2015; Babcock, Tewfik & 

72 Burns-Perez, 2018). In the western Caribbean, more than a million people depend on the 
73 integrity and health of the Mesoamerican Reef System (MRS) for their livelihoods. The national 
74 economies of four countries (Belize, Guatemala, Honduras, and Mexico) benefit substantially 
75 from reef fishery resources and attractiveness as international tourist destinations (Zeller, 

76 Graham & Harper, 2011); however, there have been few studies on the effects of fisheries on 
77 reef fish communities in the Caribbean (Pauly et al., 2002; Adam et al., 2015).
78

79 Although a wide range of fish species are caught in reef fisheries, fishing efforts tend to be 

80 highly selective in favor of large species, which generally have low rates of population growth, 

81 making them more vulnerable to overfishing (Sadovy de Mitcheson et al., 2013). Commercial 

82 species often include higher predators, such as serranids (groupers), lutjanids (snappers) and 

83 balistids (trigger fish). The decline of these species can increase the abundance of prey, leading 

84 to trophic cascade effects that influence the base of the food chain (Mumby et al., 2006; Ruppert 

85 et al., 2017). When large predators decline, fishing efforts shift to targeting species from lower 

86 trophic levels, which can lead to the depletion of these species as fisheries move down the food 

87 web (Jackson et al., 2001; Mumby et al., 2006, 2012). On the other hand, in recent years, it has 

88 been found that coral bleaching in large areas of reefs due to the effect of climate change 

89 (Hoegh-Guldberg et al., 2018) and the increase in the frequency or intensity of environmental 

90 disturbances such as hurricanes (Knutson et al., 2010) has much more direct effects on fish 

91 (Graham et al., 2020) and on benthos (Cheal et al, 2017; Hughes et al., 2018; Russ et al., 2021) 

92 than fishing. The coral reef systems of the Banco Chinchorro Biosphere Reserve (BCBR) 

93 support many different species, which are the main component of fisheries in the area. These 

94 fisheries are generally small-scale, artisanal and multispecific; however, economic progress, 

95 increasing coastal tourism, and an increase in human population have led to greater competition 

96 for fishing resources and possible overfishing. Most of the fishers live in the City of Chetumal, 

97 but spend 15 to 30 days in Cayo Centro in the RBBC to carry out their fishing activities. 

98 Approximately 41 motor boats powered by an outboard motor operate in the study area. The 

99 capture is made daily and freediving equipment is used for it. This shows that fish in this reserve 

100 face various threats, both local and global, and understanding these impacts is crucial for 

101 developing effective management strategies.

102
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103

104 The fisheries in the BCBR are closely associated with the extraction of the spiny lobster 

105 (Panulirus argus) and the queen conch (Aliger gigas), although several species of fish are also 

106 caught throughout the year, including fishing conducted during spawning aggregations of 

107 different species, such as Lutjanus analis and Baliste capriscus (Castro-Pérez, González & 

108 Arias-González, 2011). The federal and state governments of Mexico declared the BCBR a 

109 marine protected area on July 19, 1996, with the purpose of conserving and protecting mangrove 

110 and coral ecosystems. However, the management program that was established for these 

111 purposes was carried out with few scientific studies of the flora and fauna in this complex reef 

112 (INE-SEMARNAP, 2000). However, to improve the fishing management plans in marine 

113 protected areas, it is necessary to incorporate technical and scientific opinions as well as the 

114 knowledge of users and handlers. In the study area, there are few works on the ecology of 

115 commercially important fish and their fisheries (e.j., Sosa-Cordero et al. 1991; Loreto, Lara & 

116 Schmitter-Soto 2003; Castro-Pérez, González & Arias-González, 2011; Fulton, Caamal & 

117 Bourillón,  2014; Fulton et al 2016; Rodríguez-Zaragoza et al., 2016; Castro et al., 2018) and 

118 there is no information on the effect of fishing activity on fish communities. For this reason, the 

119 present research proposes the following hypothesis: are there changes in the density and biomass 

120 of commercially important fish species in areas with different fishing intensities in the BCBR?

121

122 Materials ö methods

123 Area of study

124 The BCBR is part of the Mesoamerican Reef System, which covers 1000 km along the coasts of 
125 Honduras, Guatemala, Belize and Mexico, and it is located in southeastern Mexico in the state of 
126 Quintana Roo, 42 km from the Mahahual coast (18°47�- 18°23� N & 87°14� - 87°27� W). This 
127 reef was declared a marine protected area under the category of biosphere reserve in 1996. (Fig. 
128 1A). Oval in shape, the BCBR covers an area of approximately 814.2 km2 (45 km long and 18 
129 km wide) and is composed of three cays: Cayo Norte (0.4 km²), Cayo Centro (5.4 km2), and 
130 Cayo Lobos (0.1 km2) (Chávez & Hidalgo, 1984; Jordán & Martin, 1987). The reef lagoon 
131 covers approximately 553.7 km2, its depth gradually decreases from south to north with values 
132 ranging from 2 to 12 m (González et al., 2003).

133 Data collection.

134

135 This study analyzed data obtained from samplings carried out in 2007 and 2008. However, the 

136 resulting information is of great relevance to understanding how fish communities are affected 

137 by fishing in the study area, mainly due to how difficult the sampling logistics are to carry out 

138 this type of study.

139

140

141 Sampling of the fishery.

142
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143 We used data from fishing cooperative to identify sites with different fishing intensities in the 
144 study area. Although three cooperatives operate in the study area, only the Langosteros del 
145 Caribe cooperative was sampled due to the complexity of working with all of them 
146 simultaneously. For this purpose, a monthly record of fish species caught was maintained from 
147 August 2007 to June 2008. During one week each month, the catches from the boats that arrived 
148 at the vessel that received the product were recorded. The weight was measured with a top 
149 loading balance with a capacity of 20 kg and an accuracy of 5 g. The fishing locations were 
150 recorded by consulting the position with the captain and using a map of the study area divided 
151 into 36 fishing quadrats (Fig. 1C). The catch per unit of effort (CPUE) was calculated as 
152 kilograms of fish caught per fisher per hour (kg· fisher -1· hr-1) for each quadrant.

153 Sampling of fish communities

154 The underwater visual census (UVC) method was used to record the abundance and size of the 
155 reef fish using the linear transect technique proposed by Brock (1954). Five UVCs (replicas) 
156 were carried out at each sampling station, during the same day and time. Within a 50 m transect, 
157 the observer recorded the species detected at a distance of 2 m on each side of the transect and 5 
158 m in front of him. For each observation, the diver recorded the abundance per species and 
159 estimated the total length of the fish. Fish lengths were estimated in 1 cm intervals for fish 0 to 
160 10 cm TL and in 5 cm intervals for fish >10 cm TL. A total of 650 UVCs were performed 
161 throughout the study area between August and September 2008 (Fig. 1B).
162

163 Sampling of the benthic groups in the reef habitats

164

165 The benthic cover was estimated to evaluate the characteristics of the habitat on the same date 
166 and in the sampling stations where the biological data of the reef fishes were obtained with 
167 UVCs. A video camera was used to film the benthic substrate at each sampling station along five 
168 linear 50 m transects, with the footage then analyzed by stopping the image at specific time 
169 intervals, until 40 frames per transect are obtained. In each frame, at a series of 13 marked points 
170 (520 points per transect) that were systematically distributed around the monitor, the benthic 
171 organisms were identified according to six higher levels, known as morphostructural groups 
172 (MSG): scleractinian corals; octocorals; hydrocorals; algae; seagrass; and sponges (Arias-

173 González et al., 2011). 
174

175 It is important to mention that this working group currently has permission (Oficio No. 
176 F00.9/DRBBCH/151/2024) to carry out research work without collecting or handling specimens 
177 of species not considered at risk within the Banco Chinchorro Biosphere Reserve.
178

179

180

181

182

183

184 Data analysis
185

186 Areas with different fishing intensities
187
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188 Castro-Pérez, González & Arias-González (2011) identified seven fishing zones in the BCBR 
189 using the CPUE values for fish of commercial importance in 30 fishing quadrants. Six other 
190 quadrants were not used in the analyses because no catches were recorded (Fig. 1C). In the 
191 present study, with the purpose of reducing the effect of the structural complexity of the benthos 
192 to detect the direct and indirect effects of fishing, 21 fishing quadrants were used, located mainly 
193 on the reef slope and in the southern section of the reef lagoon, which are characterized by high 
194 structural complexity. Combining the CPUE data of the 10 commercially important species of 
195 the 21 quadrants, belonging to the 5 zones identified through multidimensional scaling analysis 
196 (MDS) by Castro-Pérez, González & Arias-González (2011), being the following zones: Zone 1 
197 (Quadrants 4, 34 and 36); Zone 2 (Quadrant 5); Zone 5 (Quadrant 25); and Zone 7 (Quadrants 2, 
198 10, 15, 19, 21, 23, 24, 24, 26, 27, 28, 29, 30, 31, 32, 33 and 35). The similarity between quadrats 
199 was calculated using the Bray-Curtis index. The similarity coefficients were used to construct the 
200 similarity dendrogram; subsequently, data were permutated 999 times for a distribution to 
201 determine ANOSIM�s R statistic (R = 0 is identical, R = -1 or 1 is most divergent), which 
202 facilitated the discovery of patterns among the quadrats and, thus, the detection of areas with 
203 different fishing intensities. Both analyses were performed with PRIMER 6.0 software (Clarke & 

204 Gorley, 2001).

205 Changes in the density and biomass of fish species due to fishing
206

207 The density (individuals/100 m2) and biomass (kilogram/100 m2) of each of the species were 
208 estimated to determine changes in these variables due to the fishing of species of commercial and 
209 non-commercial importance using data obtained from UVCs. The fish biomass was calculated 

210 via the exponential function , where W is the weight in kilograms, L is the length (class ÿ= ÿÿÿ
211 mark) obtained from the length intervals and a and b are the constants from the length-weight 
212 relationship obtained from both Claro & García-Arteaga (1994) and FishBase,  and  where  no  
213 relationship  was  available  for  species, that of a closely related species as applied. The average 
214 density and total biomass of commercially and noncommercially important species were 
215 compared among areas with different fishing intensities (detected via the similarity dendrogram) 
216 by means of a one-way analysis of variance (ANOVA). Subsequently, a multiple range test 
217 (Fisher�s least significant difference, or LSD) (Zar, 1999) was applied to ascertain which areas 
218 presented differences. The data were log(x)-transformed to fulfill both normality assumptions 
219 (Shapiro�Wilk test) and homoscedasticity (Levene�s test) (Zar, 1999). The same statistical tests 
220 were used to verify the average density and biomass differences among areas with different 
221 levels of fishing intensity for each of the eight species caught with the most frequency in the 
222 study area: Epinephelus striatus, Epinephelus guttatus, Lachnolaimus maximus, Lutjanus analis, 
223 Lutjanus griseus, Mycteroperca bonaci, Ocyurus chrysurus, and Sphyraena barracuda (Castro-

224 Pérez, González & Arias-González, 2011). Moreover, differences in the average density and 
225 biomass of the noncommercial species were tested among areas of different fishing intensities. 
226 For this purpose, these species were grouped into twelve families: Acanthuridae, Balistidae, 
227 Chaetodontidae, Haemulidae, Holocentridae, Kyphosidae, Labridae, Malacanthidae, Mullidae, 
228 Pomacanthidae, Scaridae, and Serranidae.

229 Relationship of density and biomass with fishing pressure and benthic variables.

230 The fish assemblages found in the different UVCs can vary for at least three reasons: fishing 
231 effort, differences in environmental conditions, and random variation (Clua & Legendre, 2008). 
232 Two redundancy analyses (RDA) were carried out using the CANOCO v4.5 program (Ter Braak 
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233 & Smilauer, 2002), which separately related the density and biomass of the eight commercially 
234 important fish species with the coverage data for the different benthic morphostructural groups 
235 and the CPUE values for the species of greatest commercial interest. These multivariate methods 
236 were applied following the gradient length criterion, the species response models pertaining to 
237 the environment and the linear-type CPUE data. The density and biomass values were 
238 transformed via the Hellinger distance (Legendre & Gallagher, 2001), while the statistical 
239 significance was tested by means of Monte Carlo permutations (N = 9999).
240

241 Results
242

243 Areas with different fishing intensities
244

245 Based on the dendrogram using the CPUE values of the most commercially important species, 
246 the formation of three groups was detected with a similarity index of 60 % (Fig. 2A). The 
247 ANOSIM test provided statistical support to determine that the three groups were different in 
248 their composition and abundance (R = 0.99; P < 0.05). Considering this spatial separation and 
249 the distribution of the CPUE values for these quadrants, it was observed that Group 1 included 
250 quadrants that mainly belonged to the reef lagoon in the southern section of the study area (Cayo 
251 Lobos), which presented high CPUE values. Group 2 was formed by quadrats located on the reef 
252 slope, with intermediate CPUE values, while Group 3 generally contained quadrats located on 
253 the reef slope, with high CPUE values. In accordance with the above and to detect changes in the 
254 density and biomass of the fish species caused by the fishing activity, three areas with different 
255 fishing intensities were classified in the BCBR: Forereef Moderate Level Fishing (FRMLF); 
256 Forereef High Level Fishing (FRHLF); and Reef Lagoon High Level Fishing (RLHLF) (Fig. 
257 2B).
258

259 Changes in the density and biomass of fish species due to fishing

260 Analysis of the group of commercially important species among the areas of different fishing 
261 intensities revealed that the average density and biomass values showed significant differences 
262 (one-way ANOVA, P < 0.05). The highest values for these variables were recorded in the 
263 moderate fishing area and differed (LSD, P < 0.05) from the density and biomass of fish found in 
264 the high fishing areas (FRHLF and RLHLF), which were like each other (LSD, P > 0.05) (Fig. 
265 3A). The analysis of the group of noncommercial species did not reveal differences between the 
266 density and biomass values for the areas that presented different fishing efforts (one-way 
267 ANOVA, P > 0.05) (Fig. 3B).

268 The individual analysis of the eight commercially important species found that E. guttatus, E. 

269 striatus and L. maximus showed significant differences in their density and biomass values (one-
270 way ANOVA, P < 0.05). The values of these variables decreased in the high fishing areas, which 
271 did not show significant differences between them (LSD, P > 0.05) but differed (LSD, P < 0.05) 
272 from the moderate fishing zone (FRMLF) that showed high values of density and biomass of 
273 these species (Fig. 4).

274 The density and biomass per family of noncommercial species in the areas with different fishing 
275 intensities did not show significant differences (one-way ANOVA, P > 0.05), except for the 
276 Scaridae family (one-way ANOVA, P < 0.05). The analysis with the LSD test showed that the 
277 lowest values of density and biomass were present in the moderate fishing zone, but it differed (P 
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278 < 0.05) from the zones where the highest catches occurred (FRHLF and RLHLF), which were 
279 statistically similar (P > 0.05) (Fig. 5).

280 Relationship of density and biomass with fishing pressure and benthic variables.

281 The results of the redundancy analysis (RDA) showed low correlations (0.32 to 0.45) between 
282 the benthic coverage (seagrass, octocorals, hydrocorals and algae) and the CPUE fishing variable 
283 with the density and biomass of commercially important fish species. The percentage of variance 
284 explained was 78.1 to 88.0.

285 The arrangement of the density and environmental variables in the RDA undertaken in the 
286 present study revealed that along the first axis, the seagrass cover was associated with the 
287 quadrats belonging to the FRMLF and RLHLF areas and had a positive relationship with the 
288 density of S. barracuda and L. griseus. The hydrocoral cover was related to the quadrats in the 
289 FRHLF area. The octocoral cover and the grouped CPUE quadrats in the FRHLF area were 
290 detected along the second axis, with these variables revealing a strong positive association with 
291 the density of O. chrysurus. Algae cover was linked to the quadrats in the FRMLF area (C4 and 
292 C2), presenting a positive relationship with B. capriscus and a negative relationship with the 
293 density of L. analis (Fig. 6A).

294 Finally, the results of the RDA, considering biomass and environmental variables, show that 
295 within the first axis there is a relationship between the highest algal cover with the quadrats (C4 
296 and C21) belonging to the FRMLF area, which have a negative relationship with the biomass of 
297 L. analis. The second axis showed that the octocoral, hydrocoral and CPUE cover was associated 
298 with the quadrats mainly pertaining to the FRHLF area, with the hydrocorals and the biomass of 
299 E. striatus, E. guttatus, L. griseus and S. barracuda showing a negative relationship among the 
300 CPUE results (Fig. 6B).

301

302

303

304

305

306

307

308

309 Discussion

310 Areas with different fishing intensities

311 This study used CPUE values to detect and analyze three areas with different fishing intensities 

312 within the BCBR to identify changes in the biomass and density of reef fish. Although the 

313 fishing quadrats of the areas were found in structurally complex habitats, their location and type 

314 of habitat within the system influenced their fishing intensity. The quadrats of the areas with high 
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315 intensities of fish exploitation (FRHLF and RLHLF) were located mainly on the reef slope and 

316 the southern part of the reef lagoon (Cayo Lobos), where a great variety of habitats provide the 

317 fishing communities a greater surface area in which to search for the target resource, namely, the 

318 spiny lobster. In contrast, the quadrats in the area with the least fishing intensity (FRMLF) were 

319 located primarily in the middle and northern part of the reef complex, in which fishing efforts are 

320 carried out less frequently. In reference to the above, González et al. (2003) mention that there is 

321 a north-south bathymetric gradient in the RBBC. Shallow depths are defined by extensive sandy 

322 bottoms in the central and northern portion of the lagoon, while the southern area of the lagoon is 

323 deeper, with more frequent coral ridges and patches. The well-developed barrier reef in the 

324 southern portion of the lagoon is attributed to the greater influence of the Cayman Current in this 

325 area.

326 Changes in the density and biomass of fish species due to fishing

327 The results of the present study provide evidence that fishing activity has caused detectable 

328 changes in the density and biomass of commercially important fish species in the BCBR. The 

329 lower density and biomass of the commercial species in the areas of high fishing intensity reflect 

330 the extraction of top predators, such as species belonging to the Serranidae and Lutjanidae 

331 families. This may be related to the selectivity of the fishing equipment used in the reef complex, 

332 which usually consists of harpoons (Castro-Pérez, González & Arias-González, 2011), via which 

333 the fishers catch the most expensive and in-demand species in local markets (Mumby et al., 

334 2012; Kadison et al., 2017). Therefore, the reduction of the species most valuable to fishing 

335 communities may be imminent, leading to the exploitation of other less economically important 

336 species, such as scarids, balistids and pomacanthids, which could lead to future fishing down the 

337 food web. Various studies have found that the decrease in the density and biomass of carnivorous 

338 and piscivorous species (Serranidae, Lutjanidae and Caranidae) is caused by an increase in 

339 fishing pressure (Friedlander & DeMartini, 2002; Williams et al., 2011; Valdivia, Cox & Bruno, 

340 2017). However, it cannot be ruled out that other factors may be involved in the changes in these 

341 ecological variables, such as the effects of habitat characteristics (e.j., Bell & Galzin, 1984; 

342 Graham &Nash, 2013; Bertocci, Sousa-Pinto & Duarte, 2017; Helder, Burns & Green, 2022).

343 Individual analysis of the eight commercially important species found that E. striatus, E. guttatus 
344 and L. maximus showed a lower density and biomass in areas with high fishing intensity. The 
345 latter can be attributed to the fact that these species have a high economic value in local markets 
346 (US$ 7.79 kg-1), and for this reason, they are caught all year round throughout the reef system 
347 through selective fishing, although the highest captures of the first two species were in 
348 November, December and January (J. Castro, 2011, pers. comm.), months in which these species 
349 have been documented to aggregate for reproduction (Aguilar-Perera & Aguilar-Davila, 1996; 
350 Sala, Ballesteros & Starr, 2001; Dahlgren et al., 2016). It has been reported in several locations 
351 in the Caribbean that these three species form an essential part of the small-scale fishery (Sadovy 

352 de Mitcheson et al., 2013; Sherman et al., 2018). E. striatus and E. guttatus have been highly 
353 exploited due to their reproductive aggregations that facilitate their capture at predictable sites 
354 and seasons (Sadovy De Mitcheson et al., 2013; Cheung et al., 2013; Sherman et al., 2017), 
355 which is why E. striatus is currently listed as threatened by the International Union for 
356 Conservation of Nature Red List (IUCN), while E. guttatus is considered a minor concern. L. 

357 maximus is a monandric and protogynous hermaphroditic species (McBride & Johnson, 2007), 

PeerJ reviewing PDF | (2024:09:106576:1:1:NEW 7 Dec 2024)

Manuscript to be reviewed

Are you referring to spearfishing? If so, consider using this term, as it is more commonly recognized.



358 characteristics that have led to a decrease in its population due to overfishing (Ault, Smith & 

359 Bohnsack, 2005); therefore, at the regional level, this condition is classified as vulnerable by the 
360 IUCN.
361

362 In the Mexican Caribbean, there is little information on the biology and fisheries of many 
363 commercially important species; therefore, there is an urgent need to implement fisheries 
364 management and regulation strategies for these species. The only federal law concerning 
365 commercially important fish species in the study area is for the Nassau grouper E. striatus, which 
366 is associated with the closed season for the Red grouper Epinephelus morio and other species of 
367 grouper from the Gulf of Mexico and Caribbean Sea, which runs from 01 February to 31 March 
368 of each year.
369

370 The present research found little evidence that the density and total biomass of families of 
371 noncommercially important species increased through the elimination of their predators. This 
372 may be due to the small number of predatory species that are captured in the BCBR, causing a 
373 moderate indirect effect on the prey populations (Jennings & Polunin, 1997; Roff et al., 2016).

374 The differences in the density and biomass values found in the Scaridae family between areas 
375 with different fishing intensities may be linked to the size of the organisms that make up the 
376 family. These organisms are generally large in size (e.g., Scarus vetula and Sparisoma viride), 
377 causing them to be less susceptible to predation. In this reef system, organisms (E. striatus, M. 

378 bonaci, L. analis and S. barracuda) that are capable of consuming large prey are eliminated, 
379 leaving smaller predatory species (mesopredators) limited in their capacity to prey on larger 
380 organisms. This may have caused an increase in the density and biomass of the scarids in the 
381 highly fished areas (FRHLF and RLHLF). While some studies have found that families of large-
382 bodied organisms are more vulnerable to fishing than families of smaller organisms (Friedlander 

383 & DeMartini, 2002; Hawkins & Roberts, 2004), there is little scientific evidence that species of 
384 the Scaridae family are being caught in the BCBR. The foregoing is the result of the 
385 implementation of awareness programs on the protection of parrotfish by the authorities of the 
386 reserve toward the fishers. These species are currently on the list of protected species in the 
387 Official Mexican Standard NOM-059-SEMARNAT.

388

389 Relationship of density and biomass with fishing pressure and benthic variables.

390 The density and biomass of the main commercially important fish species in the areas with 

391 different fishing intensities were mainly influenced by the presence of algae, octocorals, 

392 hydrocorals and CPUE. Although some of these benthic groups contributed to the structural 

393 complexity of the reefs, the most important component was the scleractinian corals, which 

394 showed no association with the ecological variables of the fish species. This was because the 

395 fishing quadrants were located on reefs with high structural complexity. Although attempts were 

396 made in this study to reduce the effect of structural complexity on fish species density and 

397 biomass (Luckhurst & Luckhurst, 1978; Chabanet et al., 1997; Darling, 2017), it was evident that 

398 specific benthic groups and CPUE explained the observed changes in the density and biomass of 

399 fish assemblages in the BCBR. The effect of fishing was based on the negative relationship 
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400 found between CPUE and the density and biomass of highly exploited species such as E. 

401 striatus, E. guttatus, L. griseus and S. barracuda.

402

403 Although there was a detectable effect of fishing on certain commercially important fish species, 
404 there was no evidence that this activity affected the structure of the fish community (top-down 
405 trophic cascade effect) that could cause a phase change of benthic groups, as found on highly 
406 exploited reefs (Jackson et al., 2001; Mumby et al., 2006; Mumby & Steneck, 2008). Castro-

407 Pérez, González & Arias-González (2011) mentioned that reef-fish fishing in this reserve was 
408 moderate because the target species was usually the spiny lobster Panulirus argus and fish were 
409 only occasionally caught. This is reflected in the results of this study, where it is observed that 
410 there are effects of fishing on some high trophic level species belonging to the Lutjanidae and 
411 Serranidae families, and no evidence was found that fishing is affecting noncommercial species, 
412 although fishers are now beginning to target these species for sale as grouper fillets. It is 
413 therefore important that reserve managers adopt a range of general management and 
414 conservation measures to protect top predators that are highly valued in markets, as well as large 
415 herbivores. Species-specific measures (e.g. size limits, closes during the reproductive season, 
416 fishing moratoria, etc.) may also be implemented.

417 Conclusion

418 In the BCBR throughout the year, the largest fishing exploitation is for the spiny lobster, but in 
419 the months when this crustacean begins to be scarce, the fishers focus their greatest fishing 
420 efforts on the main species of commercially important fish. Due to the above, this study has 
421 detected evidence that the density and biomass have decreased in some species belonging to the 
422 Serranidae and Lutjanidae families in areas with higher fishing intensity along BCBR, therefore, 
423 there is an urgent need to implement fisheries management and regulation strategies for these 
424 species. On the other hand, little evidence was found that the density and total biomass of 
425 families of noncommercially important species increased through the elimination of their 
426 predators. This may be due to the small number of predatory species that are captured in the 
427 BCBR, causing a moderate indirect effect on the prey populations. Finally, although attempts 
428 were made to reduce the effect of structural complexity on the density and biomass of fish 
429 species, it was found that certain benthic groups and CPUE explained the observed changes in 
430 the density and biomass of fish assemblages in the BCBR. 

431
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Figure 1
Location of the study area. (B) Distribution of the sampling stations for ûsh and benthic
organisms. (C) scheme of the ûshing quadrats
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Figure 2
(A) Dendrogram obtained from the Bray3Curtis similarity coeûcients and used for
identifying quadrats with diûerent ûshing intensities based on the CPUE data. (B)
Location of the areas with diûerent ûshing intensities.

FRMLF = forereef moderate-level ûshing; FRHLF = fore-reef high-level ûshing; and RLHLF =
reef lagoon high-level ûshing.
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Figure 3
Comparison of the average (± SE) density and biomass among areas with diûerent
ûshing intensities. (A) commercial species. (B) noncommercial species.

The homogeneous groups (LSD test, P > 0.05) are shown by the same letters for each
treatment (areas): FRMLF = forereef moderate-level ûshing; FRHLF = forereef high-level
ûshing; and RLHLF = reef lagoon high-level ûshing.
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Figure 4
Comparison of the average (± SE) density and biomass per species of commercial
importance among areas with diûerent ûshing intensities.

The homogeneous groups (LSD test, p > 0.05) are shown by the same letters for each
treatment (areas): FRMLF = forereef moderate-level ûshing; FRHLF = forereef high-level
ûshing; and RLHLF = reef lagoon high-level ûshing.
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Figure 5
Comparison of the average (± SE) density and biomass of the Scaridae family caught
among the areas with diûerent ûshing intensities.

The homogeneous groups (LSD test, p > 0.05) are shown by the same letters for each
treatment (areas): FRMLF = forereef moderate-level ûshing; FRHLF = forereef high-level
ûshing; and RLHLF = reef lagoon high-level ûshing.
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Figure 6
Ordination of the RDA data for the density (A) and biomass (B) of commercial ûsh with
benthic coverage and the CPUE. The symbols represent the areas with diûerent ûshing
intensities: (red circle) FRMLF; (green square) FRHLF; and (yellow circle) RLHLF.

The abbreviations corresponding to the species are the following: Balcap (Balistes capriscus);
Epigut (Epinephelus guttatus); Epistr (Epinephelus striatus); Lacmax (Lachnolaimus

maximus); Lutana (Lutjanus analis); Lutgri (Lutjanus griseus); Mycbon (Mycteroperca bonaci);
Ocychr (Ocyurus Chrysurus); and Sphbar (Sphyraena barracuda). The letter C = ûshing
quadrat; FRMLF = forereef moderate-level ûshing; FRHLF = forereef high-level ûshing; and
RLHLF = reef lagoon high-level ûshing.
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