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ABSTRACT
Background. Rotavirus is the leading cause of severe dehydrating diarrhea in children
under 5 years worldwide. Timely diagnosis is critical, but access to confirmatory testing
is limited in hospital settings. Machine learning (ML) models have shown promising
potential in supporting symptom-based diagnosis of several diseases in resource-limited
settings.
Objectives. This study aims to develop a machine-learning predictive model integrated
with multiple sources of clinical parameters specific to rotavirus infection without
relying on laboratory tests.
Methods. A clinical dataset of 509 children was collected in collaboration with the
Regional Institute of Medical Sciences, Imphal, India. The clinical symptoms included
diarrhea and its duration, number of stool episodes per day, fever, vomiting and
its duration, number of vomiting episodes per day, temperature and dehydration.
Correlation analysis is performed to check the feature-feature and feature-outcome
collinearity. Feature selection using ANOVA F test is carried out to find the feature
importance values and finally obtain the reduced feature subset. Seven supervised
learning models were tested and compared viz., support vector machine (SVM), K-
nearest neighbor (KNN), naive Bayes (NB), logistic regression (Log_R) , random forest
(RF), decision tree (DT), andXGBoost (XGB). A comparison of the performances of the
seven models using the classification results obtained. The performance of the models
was evaluated based on accuracy, precision, recall, specificity, F1 score, macro F1, F2,
and receiver operator characteristic curve.
Results. The seven ML models were exhaustively experimented on our dataset and
compared based on eight evaluation scores which are accuracy, precision, recall,
specificity, F1 score, F2 score, macro F1 score, and AUC values computed.We observed
that when the seven ML models were applied, RF performed the best with an accuracy
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of 81.4%, F1 score of 86.9%, macro F1-score of 77.3%, F2 score of 86.5% and area
under the curve (AUC) of 89%.
Conclusions. The machine learning models can contribute to predicting symptom-
based diagnosis of rotavirus-associated acute gastroenteritis in children, especially in
resource-limited settings. Further validation of the models using a large dataset is
needed for predicting pediatric diarrheic populations with optimum sensitivity and
specificity.

Subjects Computational Biology, Gastroenterology and Hepatology, Infectious Diseases,
Pediatrics, Data Mining and Machine Learning
Keywords Rotavirus, Gastroenteritis, Machine learning, Disease diagnosis, Supervised learning,
Child health

INTRODUCTION
Diarrheal disease is the second leading cause of mortality and morbidity in children
worldwide (WHO, 2024). Rotavirus infection is a major cause of acute gastroenteritis
(AGE) in children under 5 years of age worldwide. Rotavirus, a major enteric viral pathogen
associated with diarrheal disease, is responsible for more than 500,000 deaths per year and
is estimated to cause approximately 36% of hospitalizations in children globally (Crawford
et al., 2017; Kotloff et al., 2017). Rotavirus infection continues to pose a major public health
burden in children of low-income countries despite the availability of routine rotavirus
vaccine immunization (Aliabadi et al., 2015). For example, rotavirus was associated with an
estimated annual 11.37 million episodes of AGE in children in India, requiring 3.27 million
outpatient visits and 872,000 inpatient admissions, resulting in a total direct expenditure of
10.37 billion Indian rupees per year (Giri et al., 2019; John et al., 2014). The introduction of
oral rotavirus vaccines has substantially reduced the severity and the burden of rotavirus-
associated AGE worldwide (Zaman et al., 2010). However, the mortality and morbidity of
rotavirus-led infection are still a major challenge in low- and middle-income countries
despite rotavirus vaccine introduction and relatively high coverage of vaccination (Cunliffe
et al., 2014). Several African countries have conducted studies to investigate the impact of
routine rotavirus vaccination, but the results revealed that rotavirus-associated deaths and
hospitalizations remain unchanged within 2–3 years post-vaccine introduction (Varghese,
Kang & Steele, 2022;Otieno et al., 2020). The moderate efficacy of oral rotavirus vaccines in
developing countries is well recognized and likely due to a multifaceted attribute, including
genetic background, malnutrition, comorbidities, or environmental enteropathy (Lee,
2021). The moderate rotavirus vaccine effectiveness in children of developing countries
may be addressed by improving vaccine coverage and booster doses and developing a
next-generation vaccine using the recently described plasmid-based reverse genetics system
for rotavirus (Lee, 2021; Desselberger, 2020).

Rotavirus infection spreads easily via the fecal-oral route and causes acute watery
diarrhea, fever, nausea, vomiting, and abdominal pain. If untreated, severe rotavirus
infection can lead to severe dehydration and even death in children. Therefore, timely
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diagnosis and management of rotavirus infection are critical, especially in children under
5 years, where the disease burden is the highest (Kotloff et al., 2017; Iturriza-Go’mara,
Kang & Gray, 2004). Health professionals often diagnose rotavirus based on symptoms
and physical examination of the afflicted children. The clinical presentation and stool
characteristics of rotavirus-associated diarrhea are often non-specific, and other pathogens
may cause similar illnesses. Therefore, confirmation of diarrheal stools requires laboratory
testing. Current diagnosis of rotavirus infection uses an enzyme immunoassay (EIA) to
detect group A-specific VP6 antigen in the feces of diarrheal children. The performance
of the commonly used EIA is considered satisfactory but requires specific reagents and
equipment. Further confirmation tests are done by extracting double-stranded RNA of
rotavirus from the stool samples and reverse transcription polymerase chain reaction (RT-
PCR) and sequencing of VP7 or VP4 genes. Despite the high specificity and sensitivity of
RT-PCR, this gold-standard method demands skilled manpower, reagents, and associated
equipment, thereby limiting the use of RT-PCR in research institutions and well-equipped
hospital establishments to detect the genetic material of rotavirus (Iturriza-Go’mara,
Kang & Gray, 2004; Malik et al., 2013). Hence, routine EIA and RT-PCR testing methods
for rotavirus are not accessible in many resource-limited settings where the majority of
rotavirus infections are reported.

Machine learning integration into the healthcare sector has the potential to revolutionize
medical diagnostics, treatment, and clinical laboratory testing. The artificial intelligence-
based machine and deep learning predictive (ML) models have been successfully applied
in healthcare sectors for the diagnosis of many diseases, including gastrointestinal disease
(Owasis et al., 2019), diabetes (Tigga & Garg, 2020), cervical cancer (Ijaz, Attique & Son,
2020), and coronary artery disease (Ozbilgin, Kurnaz & Aydın, 2023). To better measure the
effectiveness of routine vaccination and rotavirus-associated disease burden in developing
countries, including India, cost-effective and field-deployable rapid diagnostic testing kits
are crucial. Currently, there is limited availability of rapid diagnostic test kits for rotavirus
disease. There is limited work done on the development of ML-assisted predictive models
for the diagnosis of rotavirus-led diarrhea in the pediatric population (Kananura, 2022).
Machine learning (ML) involves training algorithms on datasets to create mathematical
models that can make predictions of many diseases, including cancer (Kourou et al., 2014).
ML models using clinical data such as symptoms, biomarkers, and demographics have
proved useful in identifying rare inherited diseases (Gomes & Ashley, 2023). Analysis of
proteomics data with the help ofML has led to the identification of biomarkers for alcoholic
liver disease, Alzheimer’s disease, and Parkinson’s disease (Mann et al., 2021). Hence, ML
or artificial intelligence (AI)-assisted biological data processing can contribute as an
alternative, low-cost, and accessible predictive method complementing the requirements
of laboratory diagnosis of many human diseases.

A limited investigation has reported the potential application of ML-based predictive
models for the diagnosis of pediatric diarrhea. A substantial negative association was found
between the rate/coverage of pentavalent vaccination and the prevalence of diarrhea among
children living in rural Uganda (Kananura, 2022). Infectious disease outbreaks pertaining
to diarrhea are a leading cause of morbidity and mortality in South Africa. The climate
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variables such as precipitation, humidity, evaporation, and temperature were correlated
with diarrhea outbreaks among children in South Africa (Abdullahi, Nitschke & Sweijd,
2022). Machine learning algorithms have been able to specifically predict Clostridioides
difficile-associated infectious diarrhea in hospitalized patients (Panchavati et al., 2022).
Similarly, ML models have been used to efficiently predict positive cases of waterborne
diseases such as typhoid and malaria (Hussain et al., 2023). Several supervised learning-
based ML techniques have been applied in medical research for developing predictive
and diagnostic models for various diseases (Jia et al., 2019; Fuhad et al., 2020; Guo et al.,
2020; Ul Abideen et al., 2020). Rotavirus infection in children of low- and middle-income
countries is still a major pediatric health burden, and the introduction of rotavirus vaccines
has substantially decreased the severity of rotavirus-associated AGE (Aliabadi et al., 2015).
In practice, the symptoms described by patients, physical examinations performed by
physicians, and laboratory test results are generally needed to evaluate a patient’s status
and diagnose a specific disease. However, little research has been conducted into the
predictive power and accuracy that can be achieved using clinical symptom data alone
for the diagnosis of specific diseases. However, little research has been conducted into the
predictive power and accuracy that can be achieved using only clinical symptom data for the
diagnosis of specific diseases. Furthermore, there is a lack of research on the development
and validation of such ML-assisted prediction of rotavirus-led diarrhea in the pediatric
population (Kananura, 2022).

Therefore, the purpose of this study is to develop predictive models that physicians can
use to make decisions in hospital settings based on ML using clinical symptoms. We will
then validate our model through a comparison of its predictions with the diagnoses of
physicians. We developed a machine learning model for diagnostic prediction integrating
multiple data sources by utilizing clinical parameters collected in collaboration with the
Regional Institute of Medical Sciences, Imphal, India, for pediatric rotavirus diarrhea. This
study employed seven supervised machine learning models, including SVM, KNN, naive
Bayes, logistic regression, random forest, decision tree, and XGBoost.

MATERIALS AND METHODS
Data collection and preprocessing
The seven clinical symptoms such as diarrhea duration,maximumnumber of stool episodes
per day, vomiting duration per day, vomiting episodes per day, dehydration, fever, and
temperature pertaining to 509 diarrheal children who visited the Pediatric Department of
the Regional Institute of Medical Sciences (RIMS), Imphal, India from December 2015
to March 2019, were retrospectively analyzed. The datasets were utilized for training and
validation of machine learning predictive models (Table 1) (Vesikari et al., 1984). The raw
data associated with the study are provided as a Supplementary File. The collected data
also included demographic attributes such as the name of the patient, age, sex, vaccination
status (Rotavirus vaccines: Rotarix & Rotateq), residential address, family occupation, and
family status. Written informed consent was obtained from the study participants, and
this study was approved by the Tezpur University Human Ethical Committee ((Number
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Table 1 Summary of clinical dataset that was employed in training and testing of machine learning models. The seven parameters of the clinical
symptoms of diarrheic children who visited the Pediatric Department, Regional Institute of Medical Sciences, Imphal, India from December 2015 to
March 2019 were retrospectively analyzed. The datasets were utilized for training and validation of machine learning predictive models.

Sl. no Attributes Missing
values

Values
(min–max)

Type

Feature 0. Vomiting episodes per day 0 0–10 Numerical
Feature 1. Vomiting duration (days) 0 0–3 Numerical
Feature 2. Diarrhea duration (days) 0 1–20 Numerical
Feature 3. Fever 0 Positive–Negative Categorical
Feature 4. Maximum number of stools (days) 0 0–20 Numerical
Feature 5. Dehydration 0 1–3 Numerical
Feature 6. Temperature 0 Mild–Moderate–Normal Categorical
Predictive feature Rotavirus (+ve/-ve) by ELISA 0 Positive–Negative Categorical

DoRD/TUEC/10-14/2017/4(b)). The dataset was pre-processed by encoding the data
into numeric values and removing duplicate entries. Predictive symptoms such as fever,
dehydration, diarrhea, and number of stools per day were the most important features
obtained according to correlation feature ranking. Of the data collected from 509 diarrheic
children, stool samples of 365 diarrheic children tested positive for the presence of rotavirus
VP6 antigen using groupA-specific anti-VP6 antibody in an ELISA (Devi et al., 2022). These
samples were confirmed by amplification of VP7 or VP4 genes using the polymerase chain
reaction (PCR) followed by sequencing. To develop ML-based predictive methods, models
were trained using 80% of the dataset and tested using the remaining 20% data (Table 1).
First, data was preprocessed by handling missing values and assessing correlations among
various features. Subsequently, seven classification models are applied. Their performances
were evaluated based on 20% testing dataset using prediction accuracy, precision, recall,
specificity, F1 score, F2 score, macro F1 score, and ROC curves were plotted, and the AUC
value for each algorithm was computed. The overall workflow is shown schematically in
Fig. 1.

Feature selection
In this work, we performed a feature correlation analysis on the dataset to understand the
underlying relationships among the various features, determine the interdependencies,
and assess the effect of each feature on the target feature (Gopika & ME A.M.K, 2018).
This analysis also helps to understand the redundant features, multicollinearity, and the
correlation between different features.

We have also used the filter-based feature selection (FBFS) technique, specifically the
ANOVA-F test, to identify the most important clinical features from the dataset. FBFS
techniques use statistical methods such as similarity, variance, dependence, information,
correlation, and distance to indicate the relationship between the input and the target
features. In the ANOVA F-test, each feature is compared to the target to find any statistically
significant relationship between them (Mishra et al., 2019). By using correlation analysis
and the ANOVA F test as a combined approach, we gain insight into both relationships
and statistically significant differences between the features.
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Figure 1 A schematic framework of machine learning predictive models. A dataset of 509 children with
diarrheic symptoms in the ratio of 80:20 was used for training and testing the seven supervised machine
learning algorithms. The best-performing models were selected and developed as predictive diagnostic
models for rotavirus diarrhea in the pediatric population.

Full-size DOI: 10.7717/peerj.19025/fig-1

Machine learning models
In this study, we used seven supervised machine-learning algorithms to predict positive
cases of rotavirus infection. Based on the patient’s symptoms, the prediction was made
using SVM, KNN, Log_R, RF, DT, NB, and XGB. The models are briefly described below.

Support vector machine
SVM is utilized for classification and regression to effectively handle non-linear data with
high accuracy and speed, especially when variable relationships are unclear (Hearst et al.,
1998). SVM has been effectively used in bioinformatics, especially in disease diagnosis and
prediction (Maglogiannis, Loukis & Zafiropoulos, 2009). Srivastava, Kumar & Singh (2022)
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proposed a hybrid disease diagnosis framework for diabetes prediction using LS-SVM.
Similarly, Elsedimy, AboHashish & Algarni (2024) proposed a heart disease detectionmodel
based on the quantum-behaved particle swarm optimization (QPSO) algorithm and SVM
to analyze and predict heart disease risk.

K-nearest neighbor
KNN classifies cases based on distance functions, adjustable through the ‘K’ parameter,
making it flexible for classification and regression (Xing & Bei, 2020). Chandel et al.
(2016) carried out experimental research using the RapidMiner tool, and the findings
indicate that the K-nearest neighbor method outperforms naive Bayes in detecting thyroid
disease. Alanazi (2022) proposed a method for identifying and predicting chronic diseases
using machine learning algorithms like convolutional neural network (CNN) and KNN,
showcasing higher accuracy compared to other algorithms.

Logistic regression
Log_R is ideal for binary classification. It calculates probabilities using a logistic function
and evaluates multiple independent variables (Nick & Campbell, 2007). Ambrish et al.
(2022) discussed a logistic regression model for classifying heart disease. The model
achieved an accuracy of 87.02%.

Decision tree
DT, which splits data based on feature values, is easy to understand and quick to use
but it is prone to overfitting unless pruned (Costa & Pedreira, 2023). Tanner et al. (2008)
demonstrated the effectiveness of decision algorithms in diagnosing dengue and forecasting
severe disease, aiding in patient care and public health efforts.

Random forest
RF is an ensemble of decision trees that enhances classification accuracy and is robust against
noise,making it suitable for large datasets (Breiman, 2001).Khalilia, Chakraborty & Popescu
(2011) observed that the RF ensemble learning method outperformed other techniques in
predicting disease risks based on patients’ medical diagnosis history, achieving an average
AUC of 88.79%. Wang et al. (2020) analyzed the clinical characteristics of COVID-19
patients using a random forest algorithm to predict patient outcomes and identify potential
risk factors for mortality.

XGBoost
XGBoost, or eXtreme Gradient Boosting, is known for its high performance in boosting
prediction accuracy and is particularly effective for structured, complex datasets (Chen &
Guestrin, 2016). Sankar et al. (2022) proposed an XGBoost algorithm for accurate thyroid
disease prediction, outperforming traditional methods with a 2% increase in accuracy, this
emphasizes the importance of early detection in preventing adverse health conditions.

Naive Bayes
NB is a probabilistic classifier based on Bayes’ theorem that efficiently handles large
datasets with many features and is widely used in medical diagnostics (Mathur & Joshi,
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2019). Trihartati & Adi (2016) present a study on identifying tuberculosis in humans using
the naïve Bayesian method, achieving an average accuracy of 85.95%. Each of the methods
discussed above varies in flexibility and computational speed, from fast to moderate to
slow, and their practical applications are well-documented in respective software manuals
and scientific literature.

Performance evaluation metrics
The results of the classification models were validated using 20% testing dataset and seven
validation indices: accuracy, precision, recall, specificity, F1, macro F1, F2 scores, and the
receiver operating characteristic curve (ROC) (Lever, Krzywinski & Altman, 2016). The
evaluation metrics, calculated from confusion matrices, are detailed in Table 2. Accuracy
represents the number of correctly classified samples among all samples produced by the
model. Precision reflects the proportion of actual positive samples among all retrieved
positive samples, serving as a measure of quality. Recall measures the completeness of the
model, represented by the fraction of actual positive samples that were identified as positive.
The F1 score indicates the model’s reliability and is calculated as the harmonic mean of
precision and recall. The F2 score places greater emphasis on recall than on precision and
ranges from 0 to 1, with higher values indicating better performance in terms of recall.
The macro F1 score computes the unweighted mean of all F1 scores for each class (Opitz,
2022). The ROC technique is widely used for disease classification. It is a probability curve
where classification performance is assessed by the area under the ROC curve (AUC),
which measures the model’s ability to distinguish between classes (Ma & Huang, 2007).
The area under the ROC curve (AUC) graphically represents the performance of binary
classification models in predicting positive or negative classes of diseased and non-diseased
individuals. The performance evaluation metrics were computed using the predicted labels
and the actual labels of the testing samples.

RESULTS
In this study, we present an in-depth analysis of seven selectedmachine learningmodels and
explore their potential for predicting rotavirus infection in children from low- and middle-
income countries, where the cases of rotavirus-associated AGE remain high compared
to those in developed countries. The dataset included 509 diarrheal children who visited
the Pediatric Department of the RIMS, Imphal, India, from December 2015 to March
2019. According to our previous study, the RIMS serves as a catchment care hospital
that covers patients from many districts in Manipur state, India. Of the 509 diarrheal
children, stool samples from 365 diarrheal children were confirmed by ELISA for the
presence of rotavirus antigen using group A-specific anti-VP6 antibodies. The remaining
144 stool samples did not have rotavirus infection despite the symptoms associated with
the diarrheal children (Table 1). These samples were confirmed by the polymerase chain
reaction (PCR) amplification of VP7 or VP4 genes and sequencing (Devi et al., 2022). Of
the 509 preprocessed data samples, 80% were utilized for training and 20% for testing
during model development and evaluation.
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Table 2 Performance measurement matrices of machine learning models.Description and formulation
of performance metrices of eight different supervised machine learning algorithms.

Metrics Description Formula

Accuracy Percentage of satisfactory cases among all occur-
rences

TP+TN
TP+FP+FN+TN

Precision Percentage of true positive predictions among all
positive cases

TP
TP+FP

Recall (Sensitivity) Proportion of all true positive cases among all ac-
tual positive cases

TP
TP+FN

Specificity Proportion of true negative cases removed or de-
tected among all negative cases

TN
TN+FP

F1-score The harmonic mean of Precision and recall 2∗ Precision∗Recall
Precision+Recall

Macro-F1-score This is the unweighted mean of the f1 score. F1class_1+F1class_2+...+F1class_n
n

F2-score This emphasizes recall more than precision. This
is more significant when false negative is more im-
portant than false positive.

5∗ Precision∗Recall
4∗(Precision+Recall)

In Table 1, we summarize the dataset concerning clinical features of diarrheic children.
Computed correlation values between the different medical features and rotavirus (the
target disease) are shown in Fig. 2. We can see in the figure that of the seven features of our
dataset, five features have a positive correlation with the decision feature, i.e., ‘rotavirus.’.
The features ‘vomiting episodes per day’, ‘vomiting duration in days’, ‘fever’, ‘maximum
number of stools (days)’, and ‘temperature’ have correlation values of 0.087, 0.036, 0.069,
0.06, and 0.039, respectively with ’rotavirus’, indicating a positive correlation. In contrast,
two features ‘diarrhea duration (days)’ and ‘dehydration’ are negatively correlated with the
values of −0.047 and −0.027, respectively. These features may be considered important
decision factors. According to published research findings, the occurrence of fever and
vomiting are commonly associated with rotavirus diarrhea compared to non-rotavirus
diarrhea in children (Salim et al., 2014). Our correlation analysis between each of the
features also shows two of the features, ‘‘fever’’ and ‘‘temperature,’’ having a high correlation
of 0.67 (Fig. 2).

The results of the ANOVA-F test showed that ‘fever’ (with a F-test score of 4.69),
‘vomiting episodes per day’ (F-test score of 3.64), and ‘temperature’ (1.514) are the most
important features for predicting rotavirus infection related to the target (Fig. 3). The
scores of the other features are given as ‘vomiting duration in days’ (0.75), ‘diarrhea
duration in days’ (0.44), ‘maximum number of stools per day’ (0.36), and ‘dehydration’
(0.12) when related to the target. Looking at the importance values of the features, we can
observe a similarity with the correlation results listed above; in most cases, the features
related to fever, vomiting episodes per day, temperature, vomiting duration in days,
maximum number of stools (days), and diarrhea duration have a significant influence in
the prediction of rotavirus disease. The features identified using the ANOVA-F test are
also listed as potential factors for diagnosing rotavirus, as reported previously (Nnukwu
et al., 2017). Nnukwu et al. (2017) reported that rotavirus disease usually starts with the
onset of vomiting and fever, followed by mild to frequently profuse diarrhea resulting in
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Figure 2 Correlation matrix features . Seven clinical parameters that are presented by diarrheic children
(n= 509) were utilized to find the correlation of the features with the outcome of rotavirus disease.

Full-size DOI: 10.7717/peerj.19025/fig-2

dehydration, imbalance in electrolytes, and death. Rotavirus infection in children with
diarrhoea is correlated as reported previously, while the children with no presentation
of diarrhoea is tested negative for rotavirus infection (Nnukwu et al., 2017). ANOVA F
test feature ranking showed high scores for both fever and temperature. Hence, we have
performed our analysis by considering both the features. We have performed additional
analysis to re-evaluate the performance ofMLmodels removing either fever or temperature
to avoid collinearity. We observed a slight increase or decrease in the performance of some
ML models, while the performance of some ML models remained unchanged both at
accuracy and AUC under condition when either of the features (i.e., fever or temperature)
were retained or removed (Figs. S2 and S3, Table S2).

To attain the goal of identifying the potential diagnostic factors and analyzing the
influence of feature selection on the accuracy of classification, we performed the analysis
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Figure 3 Feature selection using the ANOVA F test. Top six features except dehydration have been se-
lected for performance measurement and evaluation using seven supervised machine learning algorithms.

Full-size DOI: 10.7717/peerj.19025/fig-3

using the reduced feature set, omitting the dehydration feature. This set was identified
based on the ANOVA-F test scores of each clinical feature. All seven classification models,
such as RF, NB, DT, KNN, SVM, logistic regression, and XGBoost, were trained on 80%
train dataset and 20% testing dataset. The total computational time consumed during the
training of prediction models was 1.6714 s (Table S1). Table 3 shows the classification
results of the ML models based on 20% testing dataset concerning accuracy, precision,
recall, F1 score, macro F1, F2 score, and specificity in predicting rotavirus disease. Of the
seven supervised learning models tested, the RF, XGBoost, and DT models showed good
performance with an accuracy of 81.4%, 78.4%, and 72.5%, respectively (Table 3). RF
also recorded the highest F1 and macro F1 scores. For the other scores of recall, F2, and
specificity, RF obtained scores above 85%, showing a good overall performance. In the
present study of classification, the RF, XGBoost, and DT exhibited good performance with
AUC values of 89%, 84.9%, and 78.6%, respectively (Fig. 4). The classification results in
Table 3 indicate that the highest accuracy reported was 81.4% achieved by RF with an
F1-score of 0.869 (Table 3).

The confusion matrices are reported on 20% of the test dataset to further evaluate the
performance of the best MLmodels (RF and XGBoost). The row of the matrix corresponds
to the actual class, and each column contains the predicted class. The rotavirus positive
and negative cases are denoted as 1 and 0, respectively, and the cases are reported in
the confusion matrix. XGBoost predicted 18 rotavirus positives as positive cases and 62
rotavirus negatives as negative cases. The 11 negative values were wrongly predicted as
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Table 3 Performance evaluationmetrics of machine learning models. The performance of ML models
was measured by evaluation metrics using six feature set.

Algo. Accuracy Precision Recall F_macro F1 score F2 score Specificity
(%)

SVM 71.57 0.7157 1 0.4171 0.8343 0.9264 100
KNN 69.6 0.714 0.959 0.4396 0.819 0.897 95.89
Logistic Regression 71.6 0.716 1 0.42 0.834 0.926 100
Naïve Bayes 65.7 0.702 0.904 0.422 0.790 0.854 90.41
Decision Tree 72.5 0.7647 0.89 0.607 0.823 0.862 89.04
Random Forest 81.4 0.875 0.86 0.773 0.869 0.865 86.3
XGboost 78.4 0.849 0.735 0.735 0.849 0.849 84.93

rotavirus-positive cases, and 11 positive cases were incorrectly predicted as rotavirus-
negative (Fig. S1B). On the other hand, both XGBoost and the RF were able to precisely
classify 259 and 252 rotavirus-negative samples as negative cases from the training data,
respectively (Figs. S1A and S1C). In contrast, the RF model predicted 20 rotavirus-positive
cases as positive and 63 rotavirus-negative cases as negative. The 10 negative cases were
incorrectly predicted as rotavirus-positive, while nine positive rotavirus cases were wrongly
predicted as rotavirus-negative (Fig. S1D).

DISCUSSION
In healthcare,MLmodels have shown capability in the diagnosis of diseases based on patient
characteristics. In this study, seven different supervised learning-basedML techniques have
been applied to develop diagnostic models for pediatric rotavirus diarrhea as an alternative
cost-effective method for diagnosing rotavirus disease detection (Jia et al., 2019; Fuhad
et al., 2020; Guo et al., 2020; Ul Abideen et al., 2020). The datasets included the seven
parameters of clinical symptoms such as fever, diarrhea, and its duration, number of
stool episodes, vomiting and its duration, number of vomiting episodes, temperature, and
dehydration. These parameters pertain to 509 diarrheal children in a rural setting who
visited the Pediatric Department, RIMS, Imphal, India, from December 2015 to March
2019 (Devi et al., 2022). These seven scoring parameters are included in the Vesikari clinical
severity scoring system and are currently recognized as the most accurate system for use
in developing country rotavirus vaccine trials (Vesikari et al., 1984). The results of several
published works implicated the lack of specific symptoms of rotavirus gastroenteritis in
either inpatients, outpatients, or age (Binka et al., 2003; Vesikari, Sarkkinen & Maki, 1981).
However, rotavirus-positive children generally have a shorter duration from disease onset
to hospital visits (Senecal et al., 2008; Kim et al., 2005).

We performed correlation analysis to find the relationship between clinical symptoms
and their impact on rotavirus disease outcome. Feature scaling could help normalize the
data, potentially leading to better overall results for the models in general. However, since
medical studies do not advocate any data manipulation (as it might introduce bias), we
have not used scaling and have kept all the feature values unchanged. The heat map of
the correlation plot showed that fever and temperature exhibited a positive correlation
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Figure 4 Machine learning prediction of rotavirus-associated acute gastroenteritis.Machine learn-
ing prediction of rotavirus-associated acute gastroenteritis. Five supervised ML algorithms (RF, XGB, DT,
KNN, & Log_R) showed good performance based on the receiver operator characteristic curve (ROC).
The ROC curve takes the false-positive rate as the horizontal axis and the true-positive rate as the verti-
cal axis. The horizontal axis represents the proportion of the actual negative instances in the positive class
predicted by the classifier to all negative instances. The vertical axis represents the proportion of the actual
positive instances in the positive class predicted by the classifier to all positive instances. The area under
the curve (AUC) represents the ability of models to differentiate between positive and negative values dur-
ing prediction.

Full-size DOI: 10.7717/peerj.19025/fig-4

with the outcome of rotavirus disease. Because the symptoms and duration of diarrhea,
vomiting, fever, and dehydration commonly occur with diarrheal illnesses caused by other
etiological agents, the findings suggest that there is no combination of symptoms or specific
symptoms that confirms that a person has rotavirus infection (Vesikari et al., 1981). We
performed correlation analysis on the feature space to understand the relationship and
interdependencies between features as well as the influence of these features on the target
outcome (rotavirus). This analysis revealed that five out of seven features have a positive
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correlation with the target. It was also found that there is a high correlation between
two features (fever and temperature). Furthermore, the feature selection technique of the
ANOVA-F test was used to identify the most important features. This analysis ranked
both fever and temperature with high scores, showing that both features contribute to the
diagnosis of rotavirus disease (Nnukwu et al., 2017). Feature based feature selection is an
important statistical method of selecting the best feature for performance measurement
and evaluation of ML models. Hence, ‘dehydration’ received a very low score in both
our correlation and FBFS analysis and excluded from ML model-based performance
measurement. It has been reported that dehydration is found clinically relevant and
positively correlated with the rotavirus infection in children with diarrhoea in Nigeria
(Nnukwu et al., 2017; Junaid et al., 2011). The relative performance of seven supervised
machine-learning algorithms is helpful in the identification and selection of an appropriate
machine-learning algorithm for the prediction of rotavirus disease (Uddin et al., 2019). RF,
XGBoost, and DT demonstrated good performance with an accuracy of 81.4%, 78.4%, and
72.5%, respectively, for all seven features. RF, XGBoost, and decision tree models predict
rotavirus-associated AGE with the precisions of 87.5%, 84.9%, and 76.47%, respectively.
The diagnostic ability of ML models has been determined by the confusion matrix and
the area under the receiver operating characteristic curve. In this study, RF and XGBoost
showed better performance in classifying feature space with AUC values of 89% and 84.9%,
respectively. The reason behind the improved accuracy achieved by RF is that it does not
require normalization or scaling of the data, avoids overfitting, and is good at discovering
patterns from complex medical datasets. In a previous work, a supervised gradient-boosted
ML technique was developed to identify predictors of diarrhea and the result showed a
test accuracy of 70% in rural and 100% in urban settings in Uganda (Kananura, 2022).
Rotavirus AGE has a unique clinical presentation profile that remains consistent across
regions and economic settings. Studies have found that vomiting and fever accompanying
diarrhea differ across studies, possibly based on the age of children, inpatient and outpatient.
Vomiting and diarrhea occur in more than 50% of patients with rotavirus. Dehydration is
often found in rotavirus-positive participants than in rotavirus-negative subjects (Nyambat
et al., 2009; Zaman et al., 2009). Therefore, when we removed dehydration from the input
feature set, there was a negligible increase in the evaluation scores. However, our correlation
analysis indicates that most features equally contributed to this dataset, which is the ideal
case for a decision tree to work well.

The ML models were tested using a small dataset of clinical parameters collected from
509 diarrheal children who visited RIMS, Manipur, India. The dataset was collected from a
single hospital, and the MLmodel performance may vary using clinical features of different
patient populations. In addition to supervised machine learning models, neural network
architectures and hyperparameters could be utilized formodel optimization and validation.
Moreover, as a future direction of work, a meta-ensemble model may be envisioned and
exhaustively tested on a larger and geographically diverse rotavirus dataset to further
validate the effectiveness of ML models as a low-cost diagnostic tool.
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CONCLUSIONS
This study described the performance of seven different supervised ML methods for the
identification of predictors of rotavirus-associated diarrhea in children in resource-limited
settings, and the models, especially RF, XGBoost, and DT, showed good performance in
predicting rotavirus-led AGE. In conclusion, RF and XGBoost models have the potential
for integration into health information systems to enable a low-cost predictive method for
diagnosis of rotavirus in low- and middle-income countries in a resource-limited hospital
setting from electronic records.
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