
A comparison of tree community assemblage and
diversity of secondary forests between the birch and
pine-oak belts in the mid-altitude zone of the Qinling
Mountains, China (#8413)

1

First submission

Please read the Important notes below, and the Review guidance on the next page.
When ready submit online. The manuscript starts on page 3.

Important notes

Editor and deadline
Aaron Ellison / 25 Jan 2016

Files 7 Figure file(s)
7 Table file(s)
4 Other file(s)
Please visit the overview page to download and review the files
not included in this review pdf.

Declarations No notable declarations are present

For assistance email peer.review@peerj.com

https://peerj.com/submissions/8413/reviews/86903/
https://peerj.com/submissions/8413/
mailto:peer.review@peerj.com


Review
guidelines

2

Please in full read before you begin

How to review

When ready submit your review online. The review form is divided into 5 sections. Please consider
these when composing your review:
1. BASIC REPORTING
2. EXPERIMENTAL DESIGN
3. VALIDITY OF THE FINDINGS
4. General comments
5. Confidential notes to the editor

You can also annotate this pdf and upload it as part of your review

To finish, enter your editorial recommendation (accept, revise or reject) and submit.

BASIC REPORTING

Clear, unambiguous, professional English
language used throughout.

Intro & background to show context.
Literature well referenced & relevant.

Structure conforms to PeerJ standard,
discipline norm, or improved for clarity.

Figures are relevant, high quality, well
labelled & described.

Raw data supplied (See PeerJ policy).

EXPERIMENTAL DESIGN

Original primary research within Scope of
the journal.

Research question well defined, relevant
& meaningful. It is stated how research
fills an identified knowledge gap.

Rigorous investigation performed to a
high technical & ethical standard.

Methods described with sufficient detail &
information to replicate.

VALIDITY OF THE FINDINGS

Impact and novelty not assessed.
Negative/inconclusive results accepted.
Meaningful replication encouraged where
rationale & benefit to literature is clearly
stated.

Data is robust, statistically sound, &
controlled.

Conclusion well stated, linked to original
research question & limited to supporting
results.

Speculation is welcome, but should be
identified as such.

The above is the editorial criteria summary. To view in full visit https://peerj.com/about/editorial-
criteria/

https://peerj.com/submissions/8413/reviews/86903/
https://peerj.com/about/author-instructions/#standard-sections
https://peerj.com/about/policies-and-procedures/#data-materials-sharing
https://peerj.com/about/aims-and-scope/
https://peerj.com/about/aims-and-scope/
https://peerj.com/about/editorial-criteria/
https://peerj.com/about/editorial-criteria/


A comparison of tree community assemblage and diversity of
secondary forests between the birch and pine-oak belts in the
mid-altitude zone of the Qinling Mountains, China
Zongzheng Chai, Dexiang Wang

Deforestation is a major driver of forest loss and fragmentation, threatening forest
biodiversity worldwide. The conservation and restoration of secondary vegetation is thus
an important developmental goal. Birch and pine-oak belts have been the two main types
of vegetation in the mid-altitude zone of the Qinling Mountains in China but are now mainly
covered by secondary growth following large-scale deforestation. Assessing the recovery
and sustainability of these forests is essential for their management and restoration. We
investigated and compared the tree community assemblages and diversity patterns of
secondary forests between birch and pine-oak belts in the Huoditang forest region of the
Qinling Mountains after identical natural recoveries. Both the birch and pine-oak belts had
richspeciescompositions and similar floristiccomponents but clearly different tree
community structures. Niche and neutral processes simultaneously influenced the
distribution of species and the community dynamics of the belts. Tree diversity was
significantly higher for the birch than the pine-oak belt. Monitoring biodiversity is essential
for the recovery and development of forest resources in the Qinling Mountains to
safeguard biodiversity, especially tree diversity.
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22

23 Abstract: Deforestation is a major driver of forest loss and fragmentation, threatening forest biodiversity 

24 worldwide. The conservation and restoration of secondary vegetation is thus an important developmental goal. 

25 Birch and pine-oak belts have been the two main types of vegetation in the mid-altitude zone of the Qinling 

26 Mountains in China but are now mainly covered by secondary growth following large-scale deforestation. 

27 Assessing the recovery and sustainability of these forests is essential for their management and restoration. We 

28 investigated and compared the tree community assemblages and diversity patterns of secondary forests 

29 between birch and pine-oak belts in the Huoditang forest region of the Qinling Mountains after identical 

30 natural recoveries. Both the birch and pine-oak belts had rich species compositions and similar 

31 floristic components but clearly different tree community structures. Niche and neutral processes 

32 simultaneously influenced the distribution of species and the community dynamics of the belts. Tree diversity 

33 was significantly higher for the birch than the pine-oak belt. Monitoring biodiversity is essential for the 

34 recovery and development of forest resources in the Qinling Mountains to safeguard biodiversity, especially 

35 tree diversity.

36 Subjects: Ecology, Biodiversity, Conservation Biology, Plant Science

37 Key words: biodiversity conservation, restoration effect, floristic composition, coexistence mechanism

38 Conserving biodiversity in forests has been a significant global concern (Brockerhoff et al. 2008; 

39 Ratcliffe et al. 2015), because forest ecosystems provide services essential to human well-being and refuges for 

40 terrestrial plants and animals (Schuldt & Scherer-Lorenzen 2014; Sharma et al. 2010). Rapid changes in forest 

41 landscapes due to urbanization, agriculture, road construction, and especially deforestation have caused forest 

42 loss and fragmentation, threatening forest biodiversity worldwide (Elliott & Swank 1994; Imai et al. 2014; 
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43 Jung et al. 2014).Urgent intervention for conserving biodiversity and forest remnants is thus necessary (Jactel 

44 & Brockerhoff  2007; Nyafwono et al. 2014; Oishi & Doei 2015). 

45 Large areas of original forest in China were cut between the 1950s and 1980s. After years of protection, 

46 secondary forests formed with varying patterns of natural succession (Kan et al. 2015), which now account for 

47 approximately 50% of the total forests in China (Chen et al. 1994 ; Yan et al. 2013; Yang et al. 2013). Forest 

48 restoration has been increasingly addressed by the Chinese government and ecologists, because deforestation 

49 has caused serious environmental problems and the loss of ecological services (Huang et al. 2006; Zhang et al. 

50 2010b).

51 The Qinling Mountains are speciose and a key region of biodiversity of global importance. The forests 

52 in the mountains unfortunately suffered from large-scale deforestation in the 1960s and 1970s.Young 

53 secondary forests now cover large areas and increasingly define the prospects of long-term conservation of 

54 ecosystemic services and biodiversity (Cheng et al. 2015; Wang et al. 2015). The mid-altitude zone covers a 

55 large area, with complicated geomorphology and various climatic and soil conditions, and is characterized by 

56 the richest species diversity in the Qinling Mountains. Birch (Betula) and pine-oak (Pinus-Quercus) belts are 

57 the two main types of vegetation in the zone (Figure 1) (Liu et al. 2001) and play important roles in the 

58 establishment and maintenance of ecosystems and their functions, such as the conservation of soil and water 

59 (Chai & Wang 2015; Lei et al. 1996b; Lei et al. 1996c). 

60 Previous studies of the vegetational community assemblage and diversity of belts of birch and pine-oak 

61 in the Qinling Mountains found that: (1) both types of belts had high species richness and diversity (Lei et al. 

62 1996b; Lei et al. 1996c; Wang et al. 2015; Zhang et al. 2014), (2) the developmental stage influenced the 

63 community assemblage and diversity pattern (Chai & Wang 2015; Ma et al. 2014; Zhang et al. 2014); and (3) 
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64 environmental factors influenced the community assemblage, diversity pattern, and especially micro-habitats 

65 and soil conditions (Lei et al. 1996b; Ren et al. 2012; Wu et al. 2012; Zhao et al. 2003). These studies, 

66 however, did not compare the characteristics of the birch and pine-oak belts, especially the secondary 

67 vegetation that established at the same time and region after clear-cutting. This information is essential for 

68 assessing the sustainability of forests and the role they play in the conservation of biodiversity and the 

69 management of the forest ecosystems.

70 We investigated and compared the tree community assemblages and diversity patterns of secondary 

71 forests in the birch and pine-oak belts in the Huoditang forest region of the Qinling Mountains after identical 

72 natural recoveries. We aimed to improve our understanding of the status of secondary forests and to contribute 

73 to the success of vegetational restoration and conservation of biodiversity.

74 Materials and methods

75 Study site

76 The Qinling Mountains are in the transitional region between the subtropical and warm temperate zones 

77 of central China and are generally considered as the physical geographical dividing line between southern and 

78 northern China. The mountains are valuable reservoirs of biodiversity and play a key role in the maintenance 

79 of other natural resources, such as soils, air, and water. The vegetation of, and environmental change in, the 

80 mountains have long been of academic interest due to the unique geographical location (Dang et al. 2010; 

81 Huang et al. 2006; Wang et al. 2015; Zhang et al. 2013). The vegetation displays a vertical zonation. The zones 

82 in Figure 2 represent a general model for Taibai Mountain, the highest peak in the Qinling Mountains, with a 

83 summit altitude of 3767 m a.s.l.. The zones extend laterally and vary locally (Fang & Gao 1963; Zhao et al. 

84 2014). 
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85 The birch belt at 2200-2700 m contains Betula albosinensis Burk., B. utilis D. Don, B. luminifera H. Winkl., 

86 and B. platyphylla Suk. Pine-oak mixed forests and mosaic pure forests of Pinus tabuliformis Carr., P. 

87 armandii Franch., and Quercus aliena var. acutiserrata Maxim. are distributed at 800-2300 m and constitute 

88 the pine-oak belt (Liu et al. 2001). These two forest belts are the most common types in the mid-altitude zone 

89 (1300-2600 m) of the Qinling Mountains.

90 We conducted a field survey at the Qinling National Forest Ecosystem Research Station in the Huoditang 

91 forest region in Ningshan County (Figure 3A). The Huoditang forest region at 850-2470 m in the typical 

92 vertical vegetational zone on the south slopes of the Qinling Mountains, and the research station is in the mid-

93 altitude zone between 1400 and 2400 m. The birch belt is distributed at higher elevations of the mid-altitude 

94 zone (1800-2400m), and the pine-oak belt is widely distributed at lower elevations (1300-2000 m) (Wang et al. 

95 2015). 

96 Most areas of the Huoditang forest region were last cut during the 1960s and 1970s, which undoubtedly 

97 contributed to the regeneration of diverse natural secondary forests, and 95% of the area is consequently now 

98 covered by secondary growth (Cheng et al. 2013; Lei et al. 1996a). The forest region has rich plant resources 

99 and complex forest types, and the area of secondary forest is large and centrally distributed. The Huoditang 

100 forest was thus favorable for studying the secondary forests in the Qinling Mountains (Chai & Wang 2015; 

101 Cheng et al. 2013; Lei et al. 1996a; Wang et al. 2015).

102 Field sampling

103 We divided the birch and pine-oak belts into five forest types (Table 1) based on a previous study (Lei et al. 

104 1996a) and a reconnaissance survey. These forest types are the most common in the mid-altitude zone of the 

105 Huoditang forest region. A total of 50 permanent plots (30 × 30 m) were established, 25 plots for each of the 
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106 birch and pine-oak belts, using typical sampling methods for surveying the floristic composition, diversity, and 

107 structure of the forests. Five plots were randomly placed in each of the five forest types in each of the birch 

108 and pine-oak belts. The total study area was 4.5 hm2. The elevation, slope, aspect, and GPS location of each 

109 plot were determined. The forest types met the following criteria: (1) stand age of approximately 50-60 a, 

110 representing the earliest and largest secondary forests after the deforestations, (2) minimal disturbance after 

111 cutting, and (3) similar habitat conditions among the forest types.

112 All trees with a diameter at breast height (DBH, at 1.3 m) ≥5 cm were marked, and their locations were 

113 determined using a total station (TOPCON-GTS-602AF). Canopy closure, stem height (height of the first 

114 major branch), tree height, DBH, crown width, and health status were surveyed for the trees in each plot 

115 following the Forestry Standards “Observation Methodology for Long-term Forest Ecosystem Research” of 

116 People’s Republic of China (LY/T 1952-2011). 

117 Data analysis

118 Importance values (IVs)

119 The Importance value (IV) of species is defined as average of its relative density (RD), relative frequency 

120 (RF), and relative dominance (Rd), and IVs of tree species were calculated using the following equations 

121 (Arbainsyah et al. 2014): 

122 Density (𝐷) =
Number of individuals of a species

Area of all sample units

123 Relative abundance (𝑅𝐷) =
Number of individuals of a species

Density for all species × 100%

124 Frequency (𝐹) =
Number of quadrats containing a certain specis

Total number of quadrats

125 Relative Frequency (𝑅𝐹) =
Frequency of a certain species 

Total number of species × 100%
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126 Dominance (𝑑) =
Basal area of a species

Area of all sample units

127 Relative Dominance (𝑅𝑑) =
Dominance of one specis
Domiance of all species × 100%

128 IV= (RD+RF+Rd)/3

129 Species accumulation curves (SACs)

130 SACs are used to compare the diversity properties of community data sets. The classic “random” 

131 method finds the mean SAC and its standard deviation by randomly permutating the data (Gotelli & Colwell, 

132 2001). We obtained a SAC for the tree species by computing the cumulative number of species encountered as 

133 the number of plots sampled increased (or total area). The plots were randomly laid, and this procedure was 

134 repeated 100 times for obtaining the mean SAC and its standard deviation.

135 Species abundance distribution (SAD)

136 The following six SAD models were considered: broken-stick, niche-preemption, log-normal, Zipf, 

137 Zipf-Mandelbrot, and neutral-theory models (Table 2, the details of these models see the introduction of 

138 common species abundance distribution models in the supplementary materials). The Kolmogorov-Smirnov 

139 (K-S) test was applied for comparing the discrepancy of the fitted and observed SAD patterns; this test is 

140 recommended for testing the agreement to models of abundance distribution (Hill & Harmer, 1998; Basset et 

141 al., 1998) because it is more powerful than the chi-square test. The Akaike Information Criterion (AIC) and 

142 Bayesian Information Criterion (BIC) methods were also used to compare the models and identify the best 

143 model by using log-likelihoods (log L) of the fitted models as the input (Filho et al., 2002). AIC and BIC are 

144 calculated by:

145 AIC=-2log L+2k

146 BIC=-2log L+ k log (n)
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147 where k is the parameter number in the fitted model and n is the sample size.

148 Diversity indices 

149       We used six common diversity indices, including distance-independent (Table 3, Codes 1-4) and 

150 distance-dependent (Table 3, Codes 5 and 6) indices (Hui et al. 2011).

151 Mingling (M) describes the spatial segregation of different species in a multispecies forest and is 

152 defined as the proportion of the four nearest neighbors that are different species from a reference tree i:

153 𝑀𝑖 =
1
4

𝑛

∑
𝑗 = 1

𝑣𝑖𝑗,    𝑣𝑖𝑗 = {1, 𝑖𝑓 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑗 𝑖𝑠 𝑛𝑜𝑡 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑎𝑠 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑡𝑟𝑒𝑒 𝑖,
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 0 �

154 Accordingly, the mean mingling is:

155 𝑀 =
1

𝑁𝑠𝑝

𝑁𝑠𝑝

∑
𝑖 = 1

𝑀𝑖 =
1

4𝑁𝑠𝑝

𝑁𝑠𝑝

∑
𝑖 = 1

4

∑
𝑗 = 1

𝑣𝑖𝑗

156 where Nsp is the number of trees of species sp in the community.

157 The status of spatial diversity (MSi) of a tree species is determined by the relative species richness within 

158 structural unit i and the degree of mingling of the reference tree and can be expressed as:

159 𝑀𝑆𝑖 =
𝑠𝑖

5 ∙ 𝑀𝑖

160 Where Si is the number of tree species in the neighborhood of reference tree i, including tree i.

161 The species average spatial status (MSsp) is defined as:

162 𝑀𝑆𝑠𝑝 =
1

5𝑁𝑠𝑝

𝑁𝑠𝑝

∑
𝑖 = 1

𝑀𝑖 ∙ 𝑆𝑖

163 The tree species spatial diversity (TSS) of a tree population is the sum of the average spatial diversity 

164 states of the various tree species:

165 𝑇𝑆𝑆 = 𝑀𝑆𝑠𝑝1 + 𝑀𝑆𝑠𝑝2 + ⋯ + 𝑀𝑆𝑠𝑝𝑛
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166 =
𝑛

∑
𝑠𝑝 = 1[ 1

5𝑁𝑠𝑝

𝑁𝑠𝑝

∑
𝑖 = 1

(𝑀𝑖 ∙ 𝑆𝑖)]
167 where n is the number of tree species. The maximum value that TSS can assume is equal to the number of 

168 species in the community, provided each species is exactly represented by one tree, in which case all MSspi are 

169 equal to 1 and TSS equals the maximum tree species richness. Species richness is minimum when a community 

170 contains only one species and TSS is zero (Hui et al. 2011).

171 We eliminated edge effects and improved the accuracy of the calculations of the distance-dependent 

172 diversity indices (Table 3, Codes 5 and 6) by establishing a 5-m buffer zone around the plots. Only trees in the 

173 reduced window (20×20 m) we reused as reference trees in the statistical analysis, and the individual trees in 

174 the buffer zone were only considered to be the nearest neighbors of the trees in the reduced window. This edge 

175 correction could individually evaluate each tree to determine whether all n nearest neighbors were truly located 

176 within the plot.

177 R version 3.1.3(R Core Team 2015) was used for all statistical analyses. The distance-independent 

178 diversity indices (Table 3, Codes 1-4), SAC, SAD, and CA were conducted using the vegan (Oksanenet al. 

179 2008) and untb (Robin 2009) packages. The figures were drawn and the data were manipulated using the 

180 ggplot2 (Hadley 2015) and reshape2 (Hadley 2014) packages, respectively.

181 Results
182 Tree species composition

183 A total of 50 tree species belonging to 30 genera in 16 families were identified among 5686 individual 

184 trees (DBH≥5 cm) in the 50 plots (totaling 4.5 hm2) from the 10 typical secondary forest stands in the two 

185 forest belts in the mid-altitude zone of the Qinling Mountains. The attributes of the stands are summarized in 

186 Table 4. The 25 plots of the birch belt contained 2934 individual trees in 43 species (27 genera, 16 families). 
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187 The 25 plots of the pine-oak belt contained 2752 individual trees in 41 species (28 genera, 14 families) (Tables 

188 S1 and 4).

189 Four species, Q. aliena var. acutiserrata, P. armandii, Toxicodendron vernicifluum (Stokes) F. A. Barkl., 

190 and Carpinus turczaninowii Hance had the broadest distributions, irrespective of forest type. The dominant 

191 species in the birch belt were B. albo sinensis (IV=10.63%), P. armandii (10.19%), Acer davidii Franch. 

192 (8.76%), T. vernicifluum (8.25%). The dominant species in the pine-oak belt were Q. aliena var. acutiserrata 

193 (26.15%), P. tabuliformis (22.50%), P. armandii (20.05%), and T. vernicifluum (10.27%) (Table S1).

194 The seven most common families were Pinaceae, Fagaceae, Aceracea, Betulaceae, Anacardiaceae, 

195 Rosaceae, and Lauraceae. These families accounted for 91.44% of all trees recorded and were among the ten 

196 most important families in both the birch and pine-oak belts. Aceraceae, Pinaceae, and Betulaceae were the 

197 dominant families with the highest values of overall relative importance (ORI) in the birch belt. Pinaceae, 

198 Fagaceae, and Anacardiaceae were the dominant families in the pine-oak belt (Table 5).

199 Acer, Betula, Pinus, Toxicodendron, Tsuga, Quercus, and Carpinus were among the most common and 

200 important genera in both forest belts. Acer, Betula, and Pinus were the dominant genera with the highest ORIs 

201 in the birch belt. Pinus, Quercus, and Toxicodendron were the dominant genera in the pine-oak belt (Table 6).

202 Species accumulation curves

203       The species accumulation curve for the birch belt rapidly approached an asymptote and the cumulative 

204 number of species in the pine-oak belt tended to increase as the number of sample plots increased. The species 

205 accumulation curves indicated that species richness was higher in the birch than the pine-oak belt (Figure 4).

206 Distribution of species abundance 

207 The observed SADs of the tree communities of the birch and pine-oak belts, together with the 
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208 distributions fitted by the six classical models (broken-stick, niche-preemption, log-normal, Zipf, Zipf-

209 Mandelbrot, and neutral-theory), are shown in Figure 3. The effects of the simulations were tested by Akaike’s 

210 Information Criterion, the Bayesian Information Criterion, and Kolmogorov-Smirnov tests (Table 7).

211 The niche-preemption, neutral-theory, broken-stick, and log-normal models simulated SAD of the birch 

212 belt well. The observed SAD departed from the outputs of the Zipf-Mandelbrot and Zipf models (Figure 5, 

213 Table 7). The niche-preemption and neutral-theory models were much superior to the other models and should 

214 be suitable for simulating SAD patterns for birch belts. The Zipf-Mandelbrot, neutral-theory, log-normal, and 

215 Zipf models simulated SAD well, and the Zipf-Mandelbrot and neutral-theory models were better suited to the 

216 SAD patterns of the pine-oak belt.

217 Species diversity patterns

218 Species richness, Shannon-Wiener, Simpson, McIntosh, mean mingling, and TSS diversity indices were 

219 significantly higher in the birch than the pine-oak belt (Figure 6). The trends of all diversity indices were 

220 mostly consistent, with higher indices in the birch than the pine-oak belt. The indices differed significantly 

221 among the forest stands in the pine-oak but not the birch belt and were significantly lower in oak forests (QA) 

222 than pine-oak mixed forests (PAQA, PTQA) and pine forests (PA, PT).

223 Discussion

224 Tree species composition

225 The birch and pine-oak belts had rich species compositions and similar floristic components. The mid-

226 altitude zone in the Qinling Mountains is rich in forest resources and species diversity that provide an 

227 important gene pool (Lei et al. 1996a; Wang et al. 2015). Birch and pine-oak belts are the two main forest 

228 types in the zone (Liu et al. 2001; Zhao et al. 2014), with rich species compositions (Lei et al. 1996b; Lei et al. 
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229 1996c; Wang et al. 2015; Zhang et al. 2014), in agreement with our findings. The numbers of species, genera, 

230 and families are very similar between the belts (Tables S1, 5, and 6), perhaps due to the similarity of their 

231 habitats. The range of the mid-altitude zone (1300-2600 m) is relatively small, especially in our study forests 

232 distributed between 1400 and 2400 m, so altitude would have little effect on species distribution and 

233 composition. These two forest belts share most species of trees and have similar floristic components.

234 Mechanism of coexistence of tree communities

235 Niche and neutral processes are simultaneously influencing the distribution of species and the 

236 community dynamics of the birch and pine-oak belts. The neutral-theory model was suited to the data for 

237 species abundance for both belts, which identified randomness as the main ecological process determining the 

238 distributional pattern of species abundance in these two forest belts. These forests can thus maintain a dynamic 

239 balance during growth and development and are amenable to stable and sustainable development, supporting 

240 the findings by Lei et al. (1996a, b, and c).

241 The niche-preemption model was also suitable for simulating SAD patterns for the birch belt, which 

242 showed that niche theory was important in the community assemblages of the birch belt. Lei et al. (1996b) 

243 reported that the constructive species B. albo sinensis was unstable in our study area, and regeneration was 

244 poor. The continuity of B. albo sinens populations was maintained by gap regeneration, supporting the 

245 regeneration-niche hypothesis (Grubb 1977). The above analysis suggests that both neutral and niche theories 

246 have played important roles in understanding the mechanisms of species coexistence in the birch belt.

247 The combination of the Zipf-Mandelbrot (niche-based model) and neutral-theory models suggested that 

248 the pine-oak belt contains progressive successional communities and can maintain community stability and 

249 sustainable development during succession, consistent with the findings by Chai & Wang (2015) and Lei et al. 
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250 (1996a). We concluded that the successional characteristics of pine-oak forests accords 

251 with the ecological interpretations of the Zipf-Mandelbrot model that climax species need more time and costs 

252 to replace the pioneer species during succession but ultimately survive for a long time. Species of pines are 

253 common pioneer species and are often later succeeded by climax species of oaks (Gracia et al., 2002; Yu et al., 

254 2013; Broncano et al., 1998), and pine-oak mixed forests are usually an initial successional stage after a 

255 disturbance in pine forests where pines mainly dominate the forest canopy and oaks predominate in the 

256 understory (Gracia et al. 2002; Yu et al. 2013). Our results support this successional series, and our previous 

257 observations and studies also suggest that pine-oak mixed forests become oak forests within a few decades in 

258 the Qinling Mountains (Kang et al., 2011; Xu, 1990; Yu et al., 2013).

259 Many studies have warned against drawing relevant conclusions based on the ability of exclusive models 

260 to fit SAD patterns (Chen 2014), because the data may be equally well fitted by more than one model, which 

261 may provide substantially different interpretations. Our results at least suggest a possibility that niche and 

262 neutral processes are simultaneously influencing the distribution of species and the community dynamics of 

263 the birch and pine-oak belts. Both the findings by Legendre et al. (2009) for a subtropical evergreen 

264 broadleaved forest at the Gutianshan National Nature Reserve in eastern China and by Zhang et al. (2010a) for 

265 a temperate forest at Changbaishan in northeastern China also indicated that niche and neutral processes were 

266 simultaneously regulating species coexistence. 

267 Tree diversity patterns 

268 Tree diversity was significantly higher in the birch than the pine-oak belt, for a number of reasons. (1) The 

269 distributional range suited the birch belt better. (Lei et al. 1996a) reported that the birch belt was distributed 

270 toward the upper limit of the mid-altitude zone (1800-2400m), but the pine-oak belt was distributed at lower 

PeerJ reviewing PDF | (2016:01:8413:0:0:CHECK 3 Jan 2016)

Manuscript to be reviewed

aabarker
Cross-Out

aabarker
Highlight

aabarker
Sticky Note
a single

aabarker
Cross-Out

aabarker
Cross-Out

aabarker
Sticky Note
three main



271 elevations (1200-2000 m). Species richness and diversity in the study area were highest between 1800 and 

272 2200 m. (2) These two belts were the most common forest types, but the dominance of constructive species 

273 differed between the belts as the forests developed. The constructive species B. albo sinensis was not dominant 

274 in the birch belt; B. albo sinensis consocition community hardly ever existed, and was always mixed with other 

275 tree species (Lei et al. 1996b). In contrast, the constructive species P. tabuliformis, P.armandii, and Q.aliena 

276 var. acutiserrata predominated in the pine-oak belt (Liu et al. 2001). These dominances were reflected by the 

277 importance-value index (Table S1). IV was highest for B. albo sinensis in the birch belt (10.63%) but only 

278 slightly higher than for the other dominant tree species. The IVs of the constructive species Q. aliena var. 

279 acutiserrata (IV=26.15%), P. tabuliformis (IV=20.05%), and P. armandii (IV=22.50%) in the pine-oak belt 

280 indicated evident advantages. (3) The species accumulation curves (Figure 4) suggested that our sample size 

281 reasonably represented the expected number of species for the birch belt, but our sampling was less extensive 

282 for the pine-oak belt. The species diversity of the birch belt was nevertheless significantly higher than that of 

283 the pine-oak belt under the same sampling conditions.

284 Similarity among the forest stands

285 The tree community structures clearly differed between the birch and pine-oak belts. Cluster analysis with 

286 group averages based on the species composition and abundance of forest stands divided the ten forest stands 

287 into two major groups, corresponding to the birch and pine-oak belts (Figure 7), indicating commonness and 

288 differences among the ten forest stands. Both the cluster and CA analyses were thus sufficient to demonstrate a 

289 clear difference between the belts. Previous studies have shown that climate change (Zhao et al. 2014), the 

290 influence of species interaction on the pattern of floristic composition, and small-scale topographic variation, 

291 especially elevation (Lei et al. 1996a), among forest stands can affect the distribution of forest stands in the 
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292 mid-altitude zone of the Qinling Mountains.

293 Maintenance and monitoringof tree diversity

294 Monitoring biodiversity is essential for the recovery and development of forest resources in the Qinling 

295 Mountains to safeguard biodiversity, and tree diversity should be an especially crucial aspect of the monitoring. 

296 The Qinling Mountains have high biodiversity, support a large variety of plants and wildlife, and play a key 

297 role in the maintenance of other natural resources, such as soil, air, and water (Wang et al. 2015; Yu et al. 2014; 

298 Zhao et al. 2014). The forests, however, have been harvested since the 1950s, and much of the area is now 

299 covered by secondary growth that has low productivity and poor community stability (Chai & Wang 2015; Li 

300 et al. 2004). Protecting biodiversity and forest resources in the mountains has become a focus of attention (Lei 

301 et al. 1996a; Wang et al. 2015; Zhao et al. 2014). Enhancing the multi-functionality of forests is a goal of 

302 modern and sustainable forest management, which tries to balance a multitude of economic, ecological, and 

303 societal demands. Increasing the tree diversity of forests is particularly promising (Schuldt & Scherer-

304 Lorenzen 2014). Tree diversity can reduce the severity and extent of insect damage to host trees by providing 

305 associational resistance (Castagneyrol et al. 2014; Conner et al. 2014; Schuldt & Scherer-Lorenzen 2014), and 

306 can serve as a robust indicator of forest degradation, because the diversity of trees often correlates with that of 

307 other taxa, and patterns in remotely sensed data of forest canopies often correlate with floristic patterns, 

308 implying a potential tool of the large-scale monitoring of trees (Imai et al. 2014). We thus conclude that the 

309 maintenance and monitoring of tree diversity should be included in the efforts to conserve forest resources in 

310 the Qinling Mountains. 
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1
Birch (A) and pine-oak (B) belts in the mid-altitude zone of the Qinling Mountains, China.
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2
The vertical zones of vegetation in the Qinling Mountains, China (Zhao et al, 2014)
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3
Distribution of sample plots

A, the location of the Qinling Mountains in China, and the red point represent Huoditang

forest region. B, the distribution of the 50 sample plots in10 forest stands of the birch and

pine-oak belts in the mid-altitude zone of the Huoditang forest region.
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4
Species accumulation curvesof the typical secondary forests for the birch (A) and pine-
oak (B)belts in the mid-altitude zone of the Qinling Mountains, China.

The dark blue line is the average species accumulation curve, the shaded light blue areas

represent the distributional interval of the standard deviations from 100 random

permutations of the data, and the box plots represent the distribution of the species

accumulation curve from 100 random permutations of the data.
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5
Species-abundance distribution and model fittings of the typical secondary forests for
the birch (A) and pine-oak (B) belts in the mid-altitude zoneof the Qinling Mountains,
China
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6
Diversity indices of the typical secondary forests for the 10 forest stands (left) and
twoforest belts(right) in the mid-altitude zone of the Qinling Mountains, China

S, species richness; H′, shannon-wiener index; D, simpson index; D m , mcIntosh index; M is

the mean mingling index; TSS, tree species spatial diversity.
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7
Dedrogram from the cluster analysis (left) and CA ordination diagram (right) of the 10
typical secondary forestsin thebirch and pine-oak beltsin the mid-altitude zone he
Qinling Mountains,China.
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Table 1(on next page)

Main forest types of the birch and pine-oak belts in the mid-altitude zone of the
Huoditang forest region of the Qinling Mountains, China
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Forest belt Forest stand Code

Birch Betula albosinensis BA

Tsuga chinensis + Betula albosinensis TCBA

Pinus armandii+ Betula albosinensis PABA

Carpinus turczaninowii+ Betula albosinensis CTBA

Abies fargesii+ Betula albosinensis AFBA

Pine-oak Pinus armandii PA

Pinus tabuliformis PT

Quercus aliena var. acutiserrata QA

Pinus armandii+ Quercus aliena var. acutiserrata PAQA

Pinus tabuliformis + Quercus aliena var. acutiserrata PTQA

1

PeerJ reviewing PDF | (2016:01:8413:0:0:CHECK 3 Jan 2016)

Manuscript to be reviewed



Table 2(on next page)

Six main models for the distribution of species abundance

PeerJ reviewing PDF | (2016:01:8413:0:0:CHECK 3 Jan 2016)

Manuscript to be reviewed



Model Equation Code Reference

Broken-stick 𝑎𝑟 =
𝑁
𝑆

𝑆

∑
𝑘 = 𝑟

1
𝑘

(1) MacArthur (1957)

Niche-preemption 𝑎𝑟 = 𝑁𝛼(1 ‒ 𝑎)𝑟 ‒ 1 (2) Motomura (1932)

Log-normal 𝑎𝑟 = exp [log (𝑢) + log (𝜎)Φ] (3) Preston (1948)

Zipf 𝑎𝑟 = 𝑁𝑝1𝑟𝛾 (4)

Zipf-Mandelbrot 𝑎𝑟 = 𝑁𝑐(𝑟 + 𝛽)𝛾 (5)
Frontier (1987)

Neutral-theory 𝜙𝑛 = 𝜃
𝐽!

𝑛!(𝐽 ‒ 𝑛)!
Γ(𝛾)

Γ(𝐽 + 𝛾)

𝛾

∫
0

Γ(𝑛 + 𝑦)
Γ(1 + 𝑦)

Γ(𝐽 ‒ 𝑛 + 𝛾 ‒ 𝑦)
Γ(𝛾 ‒ 𝑦) exp ( ‒ 𝑦𝜃/𝛾)𝑑𝑦 (6) Hubbell (2001)

1 Notes: ,expected abundance of species of rank r; S, number of species; N, number of individuals; a standard normal function; , estimated proportion 𝑎𝑟 Φ,  𝑝1

2 of the most abundant species; , , and c, estimated parameters in each model. For the neutral-theory model, , which is equal to (z-𝛼 𝜎,𝛾,𝛽 Γ(z) = ∫∞
0 𝑡𝑧 ‒ 1𝑒 ‒ 𝑡dt

3 1)!, for integer z, , s a fundamental diversity number, and m is the migration rate.γ =
𝑚(𝐽 ‒ 1)

1 ‒ 𝑚 𝜃 i
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Table 3(on next page)

Six main distance-independent and –dependent diversity indices
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Distance Diversity index Equation Code Reference

Independent Species richness S= total number of species 1

Shannon-Wiener 𝐻 =‒
𝑠

∑
𝑖 = 1

𝑝𝑖ln (𝑝𝑖) 2
(Shannon & Weaver 

1949)

Simpson 𝐷 = 1 ‒
𝑠

∑
𝑖 = 1

𝑝2
𝑖 3 (Simpson 1949)

McIntosh 𝐷𝑚 = 𝑁 ‒ ( 𝑠

∑
𝑖 = 1

𝑁2
𝑖)1/2/(𝑁 ‒ 𝑁1/2) 4 (McIntosh 1967)

Dependent

Mean mingling 𝑊 =
1

𝑁𝑠𝑝

𝑁𝑠𝑝

∑
𝑖 = 1

𝑀𝑖
5 (Gadow & Hui 2002)

Tree species spatial 

diversity
𝑇𝑆𝑆 =

𝑛

∑
𝑠𝑝 = 1

[ 1
5𝑁𝑠𝑝

𝑁𝑠𝑝

∑
𝑖 = 1

(𝑀𝑖 ∙ 𝑆𝑖)] 6 (Hui et al. 2011)

1 Notes: N, total number of individuals in the population; Ni, number of individuals of species i; pi, proportion of individuals of 

2 species i in the community; Nsp, number of trees of species sp in the community.
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Table 4(on next page)

Summary of the stand attributes of the typical secondary forests in the mid-altitude
zone of the Qinling Mountains, China. See Table 1 for the stand codes
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Forest stand Forest belt

Item
BA TCBA

PAB

A
CTBA AFBA PA PT QA

PAQ

A
PTQA Birch Pine-oak

Sample number 5 5 5 5 5 5 5 5 5 5 25 25

Forest area (m2) 4500 4500 4500 4500 4500 4500 4500 4500 4500 4500 22500 22500

Stand age (a) 50-60 50-60 50-60 50-60 50-60 50-60 50-60 50-60 50-60 50-60 50-60 50-60

Family number 13 12 13 11 10 13 10 10 10 8 16 14

Genera number 22 19 20 17 16 18 16 13 17 14 27 28

Species number 32 27 32 25 25 24 22 17 22 17 43 41

min 13.04 13.32 14.06 16.70 13.90 17.87 14.06 16.27 14.94 14.77 13.04 14.06

max 16.94 17.18 16.12 19.06 17.24 21.44 19.42 22.23 20.08 21.04 19.06 22.23

Diameter at 

breast 

height (cm) mean 14.77 14.43 15.24 18.00 15.26 19.27 16.37 18.68 16.81 17.36 15.54 17.70

min 8.46 10.89 9.75 10.08 12.14 17.25 10.39 10.39 10.18 12.87 8.46 10.18

max 10.44 11.81 14.82 11.01 16.56 20.21 19.17 19.04 16.11 19.48 16.56 20.21

Tree

height (m)

mean 9.54 11.18 12.09 10.51 14.91 19.13 13.66 13.59 13.57 16.22 11.65 15.23

min 0.60 0.70 0.70 0.55 0.00 0.70 0.50 0.50 1.30 1.65 0.00 0.50

max 11.35 11.40 15.05 8.65 10.15 11.75 9.50 9.60 10.05 16.85 15.05 16.85

Crown

width (m)

mean 3.98 3.96 4.44 3.91 4.44 4.20 3.30 4.18 4.90 5.51 4.17 4.36

min 29.44 24.50 30.20 21.54 26.34 24.48 32.82 31.82 21.13 22.91 21.54 21.13

max 37.31 33.25 45.44 30.70 32.40 37.05 46.78 64.16 38.09 43.87 45.44 64.15

Basal area

 (m2 hm-2)

mean 31.99 27.28 34.80 26.27 30.02 30.98 40.36 43.41 30.44 36.10 30.07 36.26

min 1122 967 1400 800 944 767 1156 1167 822 1067 800 767

max 1867 1478 2100 878 1411 1189 1789 1789 1456 1356 2100 1789

Stand

density

(trees hm-2) mean 1511 1345 1593 835 1235 929 1493 1385 1073 1236 1304 1223

1
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Table 5(on next page)

Ten most important tree families, in descending order of overall relative importance
(ORI), for the birch and pine-oak belts in the mid-altitude zone of the Qinling Mountains,
China
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Rank Birch belt R.Ab R.Fr ORI Pine-oak belt R.Ab R.Fr ORI

1 Aceraceae 23.59 11.31 34.9 Pinaceae 46.84 17.24 64.08

2 Pinaceae 19.39 11.31 30.7 Fagaceae 33.68 15.17 48.85

3 Betulaceae 15.78 11.31 27.09 Anacardiaceae 6.8 13.79 20.59

4 Rosaceae 12.07 11.31 23.38 Betulaceae 3.85 11.72 15.57

5 Anacardiaceae 7.74 10.41 18.15 Lauraceae 2.18 8.97 11.15

6 Fagaceae 7.53 10.41 17.94 Cornaceae 1.89 7.59 9.48

7 Salicaceae 6.95 5.88 12.83 Juglandaceae 1.53 5.52 7.05

8 Lauraceae 1.87 7.24 9.11 Aceraceae 1.13 5.52 6.65

9 Araliaceae 2.22 5.88 8.1 Tiliaceae 0.69 3.45 4.14

10 Bignoniaceae 1.64 4.98 6.62 Rosaceae 0.65 3.45 4.1

∑1 ‒ 10 98.78 90.04 188.82 ∑1 ‒ 10 99.24 92.42 191.66

∑11 ‒ 16 1.22 9.95 11.17 ∑11 ‒ 14 0.76 7.59 8.35

1 Notes: R.Ab, relative abundance; R.Fr, relative frequency.
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Table 6(on next page)

Ten most important tree genera, in descending order importance (ORI), for the birch
and pine-oak belts in the mid-altitude zone of the Qinling Mountains, China
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Rank Birch belt R.Ab R.Fr ORI Pine-oak belt R.Ab R.Fr ORI

1 Acer 23.59 7.55 31.14 Pinus 44.33 14.12 58.45

2 Betula 10.02 7.55 17.57 Quercus 33.68 12.43 46.11

3 Pinus 8.52 7.55 16.07 Toxicodendron 6.58 11.3 17.88

4 Sorbus 8.45 7.55 16 Carpinus 2.58 7.34 9.92

5 Toxicodendron 7.74 6.95 14.69 Lindera 1.85 6.21 8.06

6 Tsuga 7.6 6.95 14.55 Juglans 1.27 4.52 5.79

7 Quercus 7.53 6.95 14.48 Acer 1.13 4.52 5.65

8 Carpinus 3.99 6.34 10.33 Tsuga 1.09 3.95 5.04

9 Cerasus 3.61 5.74 9.35 Betula 0.76 3.95 4.71

10 Populus 5.42 2.72 8.14 Larix 1.16 2.82 3.98

∑1 ‒ 10 86.47 65.85 152.32 ∑1 ‒ 10 94.43 71.16 165.59

∑11 ‒ 27 13.53 34.12 47.65 ∑11 ‒ 28 5.56 28.77 34.33

1 Notes: R.Ab, relative abundance; R.Fr, relative frequency.
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Table 7(on next page)

Goodness of fit of the six models for the typical secondary forests for the birch and pine-
oak belts in the mid-altitude zoneof theQinling Mountains, China
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Birch belt Pine-oak belt
Testing

AIC BIC K-S AIC BIC K-S

Broken-stick 501.31 501.31 0.23 3673.52 3673.52 0.54***

Preemption 310.98 312.74 0.16 1216.36 1218.07 0.46***

Log-normal 522.74 526.26 0.21 770.25 773.67 0.20

Zipf 994.30 997.82 0.40** 779.51 782.93 0.24

Zipf-Mandelbrot 314.76 320.05 1.00*** 488.08 493.22 0.15

Neutral model 421.62 425015 0.20 416.27 419.69 0.25

θ 19.121 0.012

m 7.497 0.392

1 Notes: θ and m are parameters of the neutral-theory model; ***, P<0.001; **, P<0.01; *, P<0.05; AIC, Akaike’s Information Criterion; BIC, Bayesian 

2 Information Criterion; K-S, statistic of the Kolmogorov-Smirnov test.
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