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ABSTRACT

The necessity for effective automatic fall detection mechanisms in older adults is
driven by the growing demographic of elderly individuals who are at substantial health
risk from falls, particularly when residing alone. Despite the existence of numerous
fall detection systems (FDSs) that utilize machine learning and predictive modeling,
accurately distinguishing between everyday activities and genuine falls continues to
pose significant challenges, exacerbated by the varied nature of residential settings.
Adaptable solutions are essential to cater to the diverse conditions under which falls
occur. In this context, sensor fusion emerges as a promising solution, harnessing
the unique physical properties of falls. The success of developing effective detection
algorithms is dependent on the availability of comprehensive datasets that integrate
data from multiple synchronized sensors. Our research introduces a novel multisensor
dataset designed to support the creation and evaluation of advanced multisensor fall
detection algorithms. This dataset was compiled from simulations of ten different
fall types by ten participants, ensuring a wide array of scenarios. Data were collected
using four types of sensors: a mobile phone equipped with a single-channel, three-
dimensional accelerometer; a far infrared (FIR) thermal camera; an $8x8$ LIDAR;
and a 60—64 GHz radar. These sensors were selected for their combined effectiveness in
capturing detailed aspects of fall events while mitigating privacy issues linked to visual
recordings. Characterization of the dataset was undertaken using two key metrics: the
instantaneous norm of the signal and the temporal difference between consecutive
frames. This analysis highlights the distinct variations between fall and non-fall events
across different sensors and signal characteristics. Through the provision of this dataset,
our objective is to facilitate the development of sensor fusion algorithms that surpass
the accuracy and reliability of traditional single-sensor FDSs.

Subjects Geriatrics, Human-Computer Interaction, Computational Science, Data Mining and
Machine Learning, Rehabilitation
Keywords Sensor fusion, Dataset, Fall detection
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INTRODUCTION

The global increase in elderly populations presents significant challenges for home
care systems and the prevention of accidents, particularly among seniors who

live independently (Sanderson, Scherbov & Gerland, 2017). A prevalent risk for this
demographic is the incidence of falls, which remains a critical concern (Kalache et al.,
2007). According to the World Health Organization, approximately 28-35% of people
over the age of 65 fall each year, and this figure increases to 32—42% for those aged 70 or
older (Kalache et al., 2007). The likelihood of falling increases with age and as individuals
become more frail.

The prevalence of falls among the elderly is a significant concern due to the high risks
of injury and the impact on quality of life. According to recent studies, falls are a leading
cause of injury-related deaths in older adults, highlighting the urgent need for effective fall
detection systems (FDSs).

Crucially, research involving 110 individuals aged over 90 years showed that only
about half of those who fell could get up without assistance (Fleming ¢ Brayne, 2008).
Falls can lead to various adverse health outcomes ranging from minor injuries such as
fractures (Melton et al., 2010) and abrasions to severe complications like dehydration,
hypothermia, pneumonia (Fleming ¢ Brayne, 2008), and more severe conditions such
as internal infections, bleeding, cellulitis, ulcers, chest pain, fainting, heart attacks, and
potentially death (Tinetti, Liu ¢ Claus, 1993). The psychological impact is also significant,
as many seniors develop a fear of falling again, severely limiting their mobility and daily
activities (Ambrose, Paul & Hausdorff, 2013).

However, current classifications for aging-related diseases are fragmented, limiting
effective diagnosis and intervention for fall risks. A comprehensive framework
encompassing cellular dysfunction and tissue senescence could improve diagnostic
precision and preventative care. Such a system would enable better health outcomes
for elderly populations by supporting tailored interventions for aging-related
conditions (Calimport et al., 2019).

In response to these issues, the last decade has seen an increased focus on developing
and enhancing FDSs that not only detect falls but also provide early assistance and help
prevent falls among the elderly during their routine activities (Forbes, Massie ¢ Craw,
20205 Fischinger et al., 2016). FDSs have also been incorporated into care robots, enabling
them not only to detect falls but also to respond to them (Fischinger et al., 2016; Wei et al.,
20245 Elwaly, Abdellatif & El-Shaer, 2024). FDSs typically use computational algorithms
based on predictive analytics or machine learning techniques and require comprehensive
training datasets to accurately differentiate between actual falls and normal daily activities
like walking or sitting. Fall detection technology categorizes into three primary types:
visual, ambient, and wearable sensors. Wearable sensors have the disadvantage of being
invasive, requiring the user to continuously wear a device; if forgotten or uncharged,
monitoring fails. Ambient systems are highly sensitive to environmental changes, such
as furniture movement, which demands frequent adjustments to maintain accuracy.
Visual sensors, while effective, can raise privacy concerns and may perform poorly in
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low-light conditions. Visual sensors encompass technologies such as visible spectrum
cameras (Rajabi ¢ Nahvi, 2015; El Kaid, Baina ¢ Baina, 2019; Shu ¢ Shu, 2021), infrared
cameras (Taramasco et al., 2018; Mastorakis & Makris, 2014), and Microsoft Kinect (Yajai
et al., 2015; Kalinga et al., 2020). Ambient sensors include options like radio frequency
(RF) sensors (Ji, Xie & Li, 2023; Mager, Patwari ¢ Bocca, 2013), Doppler radars (Yoshino,
Moshnyaga & Hashimoto, 2019; Liang et al., 2012), and LIDAR sensors (Frovik, Malekzai ¢
ovsthus, 2021; Bouazizi, Ye ¢ Ohtsuki, 2021). Wearable technologies involve devices such
as accelerometers, gyroscopes, magnetometers, barometers, and inertial measurement
units (Khojasteh et al., 2018; Mahmud & Sirat, 2015; Sucerquia, Lépez & Vargas-Bonilla,
2018).

Despite strides in technological and algorithmic development, overcoming the
complexities of FDS remains fraught with challenges (Thakur ¢ Han, 2022; Orejel Bustos et
al., 2023). These challenges are highlighted by ongoing issues like high false positive rates
and difficulties in distinguishing actual falls from routine activities.

The core of these difficulties lies in the real-world complexities of residential
environments where falls occur. Varied home layouts, furniture placements, and individual
movement habits create numerous scenarios that can lead to falls. To effectively mitigate
these challenges, it is crucial to advance the development of FDSs that are adept at
managing these environmental complexities (Igual, Medrano ¢ Plaza, 2013; Xu, Zhou &
Zhu, 2018). Sensor fusion algorithms offer an approach to overcoming the challenges of
accurate fall detection within FDSs (Cagnoni et al., 2009; Wang, Ellul &~ Azzopardi, 2020).
By combining data from various sensors, these algorithms not only enhance detection
accuracy but also significantly reduce both false positives and false negatives, which
are critical for reliable fall detection. For example, integrating data from cameras and
accelerometers (Ozcan, Velipasalar & Varshney, 2016), along with data from doppler radar
and infrared sensors (Liu et al., 2014), boosts the reliability of detections. A fundamental
requirement for these algorithms is the availability of data from multiple sensors.

Despite the exploration of various multimodal approaches to fall detection in existing
studies, most datasets lack a wide range of privacy-conscious sensors. To the best of the
authors’ knowledge, current multisensor databases do not include radar, low-cost LIDAR,
and thermal imaging. This article distinguishes itself by presenting a comprehensive
multisensor dataset that incorporates these sensors along with an accelerometer, effectively
addressing these gaps. Our main contribution lies in creating a privacy-preserving dataset
that facilitates future advancements in sensor fusion algorithms and real-world fall detection
applications.

RELATED WORK

The field of fall detection research has seen significant growth in multisensorial datasets,
emphasizing the importance of integrating various sensor types for comprehensive
monitoring. Systematic reviews highlight the benefits of multisensory data, enabling
researchers to collect detailed information that enhances the accuracy and reliability of fall
detection systems.
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The URFall dataset (Kwolek ¢ Kepski, 2014) integrates synchronized inertial data from
an IMU, including accelerometer and gyroscope readings, and visual data from a Kinect
sensor, which provides both RGB and depth information. It includes data from five subjects
performing 30 simulated falls from standing and sitting positions, as well as daily activities.

The CMDFALL dataset (Tran et al., 2018) was developed to support human fall analysis
by integrating multimodal data from various sensors, including seven Kinect cameras
providing RGB, depth, and two accelerometers. The dataset features activities from 50
subjects, each performing 20 tasks that include eight types of falls and 12 common daily
activities.

The UP-Fall Detection and Activity Recognition dataset (Martinez-Villaserior et al.,
2019) comprises multimodal data gathered from four inertial measurement units (IMUs)
positioned on the neck, waist, thigh, and wrist, an electroencephalogram (EEG) helmet,
and four ambient infrared presence sensors, capturing accelerometer, gyroscope, EEG, and
infrared presence/absence signals. Seventeen volunteers, aged 18 to 24, each performed six
daily activities and five types of simulated falls, with each activity repeated three times per
subject.

The KFall dataset (Yu, Jang ¢» Xiong, 2021) comprises motion data collected from 32
male participants with an average age of 24.9 & 3.7 years, performing 21 types of daily
activities and 15 simulated falls. A nine-axis inertial sensor on the lower back recorded
acceleration, angular velocity, and orientation at 100 Hz, with synchronized video at 90 Hz.

There are relatively few public databases that simultaneously provide data from both
wearable and contextual sensors. Multisensory datasets leverage these varied modalities to
capture a comprehensive range of fall-related information. This approach addresses the
limitations of single-modality datasets, enabling a more nuanced understanding of fall
events and supporting the development of more accurate and effective detection systems.

In comparison to the datasets presented in Table 1, our dataset includes a diverse array
of multimodal sensors, each of distinct nature, that simultaneously capture various aspects
of falls across different falling scenarios. Additionally, this dataset distinctively avoids
the use of RGB cameras to ensure the privacy of individuals. Furthermore, by utilizing
low-cost sensors, we make our solution more accessible for broader research and practical
deployment.

METHODS

Ethical approval and study procedures
This study was conducted with the approval of the Ethics Committee of Universidad Andrés
Bello, under Approval Act number 032/2023. The committee reviewed and approved all
proposed ethical and methodological aspects, ensuring the protection and respect for
the dignity and rights of the participants. The research focused on data collection for
the “QUIDA dataset”, aimed at enhancing FDSs, specifically designed for the elderly
population.

Participants were fully informed about the study objectives, involved procedures,
potential benefits, and associated risks of their participation. All activities were conducted
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Table 1 Public datasets on falls that incorporate both wearable and contextual sensors. Columns include the dataset name, reference, total
recorded falls, types of falls, number of participants, age range, and sensor modalities used. In the sensor modality column: acc represents
accelerometer data, gyro stands for gyroscopic data, RGB indicates RGB camera video, depth refers to depth map video, EEG denotes
electroencephalographic data, IR refers to infrared presence sensor data, and mag indicates magnetometer data.

Dataset Reference Falls Types Subjects Ages Modalities

URFall Kwolek & Kepski (2014) 30 4 5 26— acc, gyro, RGB, depth

CMDFall Tran et al. (2018) 400 8 50 21-40 acc, RGB, depth

UPFall Martinez-Villasefior, Ponce ¢ 255 5 17 18-24 acc, gyro, EEG, IR
Espinosa-Loera (2018)

KFall Yu, Jang & Xiong (2021) 2346 15 32 249 + 3.7 acc, gyro, mag, RGB

in a controlled and safe environment, using gymnastics mats and other safety measures
to minimize any risk of injury. Participation was voluntary, and all participants provided
written informed consent before participating in the study.

The confidentiality and anonymity of the collected data were paramount. In line with
ethical practices reccommended by the committee, no digital records of sensitive participant
data were made. Only necessary data for the study objectives were encoded and stored,
and only authorized personnel had access to this information. This approach ensures the
integrity and privacy of the information, complying with the ethical standards required.

Data capture

The data was captured using four different sensors in a room with gymnastics mats placed
in the middle and a desktop to the side. The center of the mats is the designated fall area
and people move along the length of the mats for the experiments.

The first sensor is the accelerometer of a Samsung Galaxy A14 smartphone, securely
placed on the participant’s torso between the T5 and T10 vertebral levels using an adjustable
harness. This anatomical location was chosen due to its proximity to the body’s center
of mass, providing a more representative measure of trunk balance and control during
movement. The smartphone integrates an STMicroelectronics LSM6DSL 6-DoF inertial
measurement unit (IMU), whose accelerometer has a maximum acceleration range of £16
g with a resolution of 0.488 mg. Data was recorded at a sampling frequency of 62.5 Hz (16
ms period), which is well-suited for capturing falls, as their primary frequency components
typically lie within the 2-3.5 Hz range (Huynh & Tran, 2021). This sampling rate also
exceeds the recommended minimum of 40 Hz for accelerometers used in physical activity
monitoring (Meng & Kim, 2011).

Mounted on the ceiling approximately 2.7 m above the ground and directly above the
mats, an 8 x 8 STMicroelectronics VL53L5CX LIDAR was installed. It was programmed
to operate at 10 Hz (100 ms period), with an approximate field of view of 2 x 2 meters
centered on the fall area. About 20 cm from the LIDAR sensor, a Texas Instruments
IWR6843A0P 60-64 GHz radar was installed. It operated at 8.3 Hz (120 ms period) and
had an approximate field of view of 4 x 4 meters. Given its broad area of vision, the radar
was off center from the fall area. Finally, a Melexis MLX90640 32 x 24 far infrared (FIR)
thermal camera was strategically mounted on the desktop 1.5 m from and centered on the
fall area, at 1 meter above ground and programmed to operate at 2.6 Hz (384 ms period).
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The FIR camera interfaced with a Raspberry Pi 4 via I>C, the LIDAR sensor was attached
to an ESP32 microcontroller via I?C, which then connected to a computer through USB,
and the radar was directly connect to a computer through USB, as shown in Fig. 1.

Figure 2 illustrates the block diagram of the multisensor system, depicting the
arrangement of the various components including sensors, a Raspberry Pi, and other
processing units. The diagram outlines the data flow and connectivity between the devices,
such as the harness with a mobile phone, LIDAR, radar, and a far infrared thermal camera,
all integrated into a room designed for fall detection experiments.

Throughout the experiments, continuous data recording of all sensors at the same time
took place, with the exception of occasional interruptions caused by cable unplugging
incidents during the data collection process. The mobile phone’s accelerometer was
configured to record continuous blocks of 12 s for each fall and during walking period
of the protocol. All sensors, with the accelerometer being the sole exception, employed
custom software for the capture and recording of sensor data. Figure 3 shows a sample of
the data captured by these sensors.

It should be noted that the sensors used in this study (LIDAR, thermal cameras,
accelerometers and radar) intrinsically favor privacy, since the information they capture
does not allow personal identification. In addition, the data reported are presented
anonymously, protecting the identity of the participants.

Dataset generation

In order to create the dataset, each participant was required to perform a series of tasks.
The study involved a phase of walking without falling and simulating 10 different types of
falls. The activities were sequenced as follows:

1. Walking without falling
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Except for the mobile phone accelerometer, custom Python programs were used to
capture data from the various sensors. All the captured data included a timestamp which
was then used to synchronize the time series of all the sensors.

Dataset description
The dataset supporting this study is publicly accessible on the Open Science Framework
(OSF) platform at https:/doi.org/10.17605/0SF.IO/N]GDV. It is organized with individual
directories for each subjects, containing four CSV files corresponding to the different
sensors. The mean and standard deviation for the age, weight, height, and Body Mass
Index (BMI) of the participants are presented in Table 2. In each sensor’s CSV file, the
first column presents the timestamp in Unix time, with subsequent columns providing
sensor-specific data.

Columns 2, 3, and 4 of the accelerometer CSV contain acceleration along the X-axis
(left-right), Y-axis (craniocaudal), and Z-axis (anteroposterior), respectively, measured
in meters per second squared (m/s?).
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Table 2 Statistics of the subjects.

Characteristic Male

Female
Subjects (n) 8 2
Age (years) 245+ 3.51 255+ 2.12
Weight (kg) 78.62+ 7.11 74+ 2.70
Height (m) 1.78 =+ 0.05 1.63 = 0.09
Body Mass Index (kg/m?) 2456+ 1.23 27.75+ 7.28

The FIR camera’s CSV file contains data in columns 2 to 769, representing the
temperature in degrees Celsius (°C) for each pixel in a 32 x 24 matrix.

In the LIDAR CSV, columns 2 to 65 detail the ambient light received by the Single-
photon avalanche diode (SPAD) array, quantified in kilo-counts per second per SPAD
(keps/SPAD). Columns 66 through 129 in the dataset represent the count of targets
identified for each matrix element. In these columns, a value of 1 denotes a successful
distance measurement at the respective matrix element, whereas a value of 0 indicates an
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inability to measure the distance. Columns 130 to 193 show the number of SPADs active
for the current measurement. Columns 194 to 257 represent the photon count during
the vertical-cavity surface-emitting laser (VCSEL) pulse, also in kcps/SPAD. The standard
deviation of the measured distance in meters is specified in columns 258 to 321. Columns
322 to 385 provide the distance measurements in meters for the matrix elements, and
columns 386 to 449 describe the status of each matrix element, with more details available
in the UM2884 document by STMicroelectronics. Finally, columns 514 to 577 provide the
reflectance percentage of the object.

The radar CSV file uses a variable number of columns on each row depending on the
number of points detected. Specifically, the number of columns equals 1+ 77 for n detected
points. Every block of seven consecutive columns represents a single point and their rows
indicate the (x,y,z) position (m), Doppler (m/s), SNR (dB), noise (dB) and tracking ID.

The file named ‘Falls.csv’, located in the root directory, records the timings of falls for
the different participants. The data is organized such that each column corresponds to
a different subject, arranged sequentially. The first column pertains to the first subject,
the second column to the second subject, and this pattern continues across columns.
Additionally, each row in the file represents a separate instance of a fall.

Dataset segmentation

To separate fall and no-fall events within the dataset, the following procedure was used
to segment each recording into discrete frames. This segmentation was based on manual
annotations marking the exact instances of falls captured in the dataset. Following each
annotated fall, a predefined interval determined by user-defined parameters, e.g., 2 s,
defines a window both 2 s before and 2 s after the annotated fall event. This window size is
chosen to encompass the entire fall event, ensuring that all relevant data points within the
segment are captured.

For cases not classified as falls, segments of equal width were defined using measurements
outside the segments labeled as falls, maintaining a balance between fall and no-fall samples
at a ratio of 1:N, in this case N = 3. This segmentation strategy not only guarantees the
representation of both event types within the dataset, but also allows the synchronization
of events across different sensor data streams, despite their different sampling rates.

The synchronization of the four sensors was ensured by performing a specific action
that generated a clear, simultaneous peak across all signals, achieved through a sudden
movement accompanied by arm flapping. The RGB camera was also included in this
synchronization process. The exact moment of the fall was determined by analyzing the
visual recording, allowing for precise alignment of the sensor data with the observed fall
event. This approach provided a consistent reference point for data analysis across all
modalities.

Thus, each segment, whether representing a fall or a no-fall event, is synchronized to
represent the same event across all sensor modalities, albeit with a different number of data
points due to the different sampling frequencies of each sensor. This approach ensures a
comprehensive and consistent representation of each event, facilitating subsequent analysis
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Figure 4 Illustration of the segmentation tool employed to divide the dataset into Fall and No-Fall seg-
ments.
Full-size & DOI: 10.7717/peer;j.19004/fig-4

and classification based on these segmented data sets. To visualize the segmentation process
described, refer to the schematic illustration provided in Fig. 4.

Feature extraction

For characterizing the dataset, our aim is to distinguish between fall and non-fall events
using simple yet effective features. This approach helps to emphasize the fundamental
differences between these event categories, facilitating their future identification and
analysis.

To characterize the captured sensor data from matrices such as those from LIDAR, radar,
and thermal cameras, the Frobenius norm (or L2 norm) is employed in two distinct ways:
instantaneously and as a difference between consecutive frames. The Frobenius norm, a
measure of a matrix’s magnitude, is calculated by squaring each element of the matrix,
summing all these squared values across both axes, and then taking the square root of this
sum (Amir et al., 20245 Jefiza et al., 2017).

The mathematical formulations for instantaneous metric is as follows:

ZZlaij,tlz (1)

i=1 j=1

Instantaneous Matrix Norm =

where A denote the signal matrix A, at time ¢, where x and y represent the rows and columns
of the matrix, respectively. This norm reflects the instantaneous power or intensity of the
sensor data.

The mathematical formulations for difference between the norms of consecutive frames:

V m n
Matrix Norm Difference = ZZ aij.c — aije—1 |2 (2)
i=1 j=1
For the three signals from the accelerometer, the Euclidean norm (or L2 norm) is utilized
to analyze the signals’ aggregate intensity at any given instant as well as the intensity changes
between consecutive readings.
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Table 3 Summary of the different types of falls, alongside corresponding measurements obtained from various sensors. Each cell displays the
mean value, with the standard deviation provided in parentheses.

Fall type

radar (m)

accel. (m/s?)

thermal (°C)

LIDAR (m)

Backward while walking backward
Forward caused by tripping
Caused by fainting

Backward while attempting to sit down
Backward with straight legs
Forward with straight legs
Forward with knee flexion
Backward with knee flexion
Lateral falling with straight legs
Lateral falling with knee flexion
No falls

1.114 (0.941)
1.292 (1.090)
1.398 (0.980)
1.422 (0.997)
1.307 (0.958)
1.261 (0.848)
1.085 (0.846)
1.371 (0.980)
1.527 (1.089)
1.407 (1.085)
1.236 (1.434)

10.350 (2.356)
10.568 (3.353)
10.533 (2.467)
10.323 (1.902)
10.617 (2.571)
10.640 (2.590)
10.359 (2.209)
10.772 (3.576)
10.528 (2.526)
10.687 (3.071)
10.144 (2.934)

13.843 (2.541)
14.774 (2.772)
15.822 (2.861)
14.925 (2.517)
14.031 (2.905)
14.031 (2.519)
13.243 (1.985)
14.881 (3.744)
14.142 (2.640)
14.977 (3.077)
13.474 (5.425)

0.511 (0.358)
0.392 (0.253)
0.381 (0.275)
0.441 (0.289)
0.332(0.213)
0.444 (0.299)
0.375 (0.256)
0.542 (0.373)
0.542 (0.341)
0.440 (0.278)
0.399 (0.476)

The mathematical formulation for the instantaneous metric is expressed as follows:

Vector Norm =/ x2 +y? + z7. (3)

This equation calculates the Euclidean norm for the accelerometer data at time ¢, where
X¢> ¥, and z; denote the acceleration values along the X, Y, and Z axes, respectively.
This measure reflects the overall intensity or “power” of the motion captured by the
accelerometer at that specific moment.

To capture the dynamic nature of the data by analyzing changes between consecutive
readings, the difference in norms between two successive frames is computed as:

Vector Difference Norm = \/(xt —xt—1)2+ (e —ye—1)* + (2 —ze-1)?. (4)

This formula determines the change in intensity of the accelerometer’s signals from
one time frame to the next, illuminating the rate of change in motion. This comparison
between the instantaneous norm and the difference norm aids in understanding both the
magnitude and the variation of movement, facilitating the differentiation between fall and
no-fall events.

RESULTS

Our primary goal is to provide a valuable resource for research and development in
advanced fall detection technologies. In this context, Table 3 offers a summary of the
different types of falls, alongside corresponding measurements obtained from various
sensors. Each column details the sensor readings in specific units: radar measurements in
meters (m), accelerometer readings in meters per second squared (m/s?), thermal sensor
data in degrees Celsius (°C), and LIDAR measurements also in meters (m). Each cell not
only reports a mean value but also the standard deviation in parentheses, providing a
detailed and quantitative perspective of each fall event.

Beyond these basic values, we have employed a set of additional metrics to more deeply
characterize the captured data. These metrics include the instantaneous norm and the
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difference in norms between consecutive frames, allowing for a finer assessment of the
significant differences between fall and non-fall events. These evaluations are visually
represented in Figs. 5, 6, 7 and 8 which complement and enrich our understanding of the
interaction between different types of data and their relevance for practical applications in
fall detection.

Our study applies two distinct metrics to characterize fall and no-fall events across four
different sensor modalities: radar, accelerometer, thermal camera, and LIDAR. For each
sensor type, we examine the instantaneous norm and the difference in norms between
consecutive frames. Since our dataset includes ten falls across ten subjects, we present the
mean of each metric accompanied by a dispersion range represented by a two-standard
deviation interval around the mean.

The radar sensor data reveals significant differences between fall and no-fall events,
particularly when examining the instantaneous norm, as shown in Fig. 5. This distinction
is due to the Doppler effect, which captures the speed of moving objects and makes
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falls distinguishable in terms of signal characteristics. In contrast, the difference metric,
while still useful, shows a more subtle differentiation between the two event types. This
statement suggests that although radar can clearly detect the immediate impact of a fall,
the subsequent change is less noticeable.

Figure 6 shows the accelerometer data, which indicates a clear distinction between fall and
no-fall events for both metrics. However, the first metric, representing the instantaneous
norm, highlights the difference more clearly. This metric effectively captures the essence of
the acceleration changes associated with a fall, with signals of significantly higher amplitude.
This significant difference can be attributed to the accelerometer’s inherent sensitivity to
changes in motion, which makes the initial impact and subsequent movements more
apparent.

Figure 7 presents the thermal camera data analysis, which shows a clear difference only
in the second metric between fall and no-fall events. This is due to the fact that changes in
the subject’s position within the camera’s field of view do not affect the overall intensity
captured in the thermal images. As a result, the global intensity remains relatively stable
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across both types of events, leading to minimal variation in the instantaneous metric.
Therefore, the metric that focuses on differences between frames is particularly effective in
highlighting falls because it captures the spatial displacement associated with such events.

The LIDAR sensor, depicted in Fig. 8, produces results that are comparable to those of
the thermal camera. However, the difference metric is more effective in distinguishing falls
from other activities. This metric highlights the spatial changes that are characteristic of a
fall, which are less apparent when considering only the instantaneous norm. This passage
highlights the importance of analyzing frame-to-frame variations in order to identify falls
using the spatially dense data supplied by LIDAR.

DISCUSSION

This study introduces a novel dataset that documents both fall and no-fall incidents,
utilizing an array of four sensor types: LIDAR, thermal imaging, accelerometers, and
radar. These sensors capture a variety of physical attributes, offering a detailed and
multifaceted perspective on the dynamics of falls. The dataset facilitates the investigation
of complex fall patterns and behaviors, which were previously challenging to discern,
thus enhancing the development and fine-tuning of fall detection algorithms. While the
dataset’s scope—covering 10 individuals and 10 fall types—may seem restricted and its
simulated nature potentially less valuable, it is crucial to emphasize that the goal of this
project is to create a synchronized multisensor dataset for crafting more sophisticated data
fusion solutions. Beginning with this foundational dataset allows us to establish initial
performance benchmarks and delve into the intricacies of fall detection via sensor data
fusion. This starting point also offers a chance to learn from simulated falls, preparing the
groundwork for future studies involving more authentic fall scenarios. Looking ahead, we
intend to broaden this initial dataset by including a wider range of scenarios and enlarging
the participant pool. This expansion will build on the established baseline, progressively
refining the reliability and practicality of our algorithms. The dataset serves the increasing
need for synchronized multisensory datasets critical for testing and advancing such
systems. It is extensive, including synchronized data from multiple sensors, and lays a solid
foundation for developing algorithms capable of accurately detecting and predicting falls.
For our study, we used specific metrics to characterize the data derived from fall
and no-fall events, which provided valuable insights. The analysis revealed that the
instantaneous norm metric was more effective in distinguishing between fall and no-
fall events for the radar and accelerometer sensors. This distinction can be attributed
to the inherent properties of these sensors. They measure changes in velocity (Doppler
effect) and acceleration, respectively, which are pronounced during fall events. In contrast,
thermal cameras and LIDAR sensors were more effectively differentiated by the difference
metric. A fall captured by an infrared camera does not necessarily induce a change in
the instantaneous metric, such as a global intensity shift of the pixels. However, the
difference between consecutive frames can reveal the distinction between fall and non-
fall events. The variation in metric effectiveness across different sensor types highlights
the complexity involved in accurately detecting falls and underscores the importance
of selecting appropriate metrics to improve fall detection algorithm performance. The
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dataset used in this study may present a limitation, as simulated falls can differ from real
falls. Authentic falls are typically involuntary, with complex dynamics and compensatory
movements that reduce impact. In contrast, simulated falls follow repetitive, specific
patterns that lack this spontaneity, potentially reducing the accuracy of models trained
exclusively on such data when applied in real-world environments (Casilari ¢ Silva, 2022;
Bagala et al., 2012).

For future work, it would be beneficial to expand the comparative analysis between fall
and no-fall events by including a wider range of variables and more complex scenarios.
Specifically, incorporating scenarios that simulate everyday activities in more challenging
and realistic settings could significantly improve the detection systems, making them more
applicable to real-world environments. Also, we plan to include the continuous recording
of an experimental subject performing daily activities over a prolonged period, which
will provide a richer array of realistic signals to further enhance the model’s robustness.
We also plan to incorporate additional smartphone sensors, such as the gyroscope and
magnetometer, to capture more detailed motion data and improve fall characterization.
Furthermore, the use of next-generation sensors, which are more sensitive and compact,
offers a promising way to improve the system. Adding technologies such as WiFi and
Kinect to the sensor suite could further improve fall detection and daily activity monitoring
systems, making them more accurate and effective in supporting the elderly. On the other
hand, our dataset is slightly unbalanced, with a ratio of 1 to 3 between fall and no-fall events.
In future work, we plan to address this imbalance using techniques such as oversampling or
undersampling to generate synthetic data for the minority class. Furthermore, identifying
movement patterns during a fall is a complex challenge, and to minimize the risk of
injury we work with young people. However, this limits the representation of different
levels of mobility that may be present in older people and partly restricts the applicability
of the system. Despite the efforts made in this research, future consideration should be
given to including a variety of mobility levels in order to ensure the effectiveness of the
system for a broader spectrum of users. Another important aspect for future research is
the improvement of wearable devices used in fall detection. Since these devices are often
subjected to torsion and other forces during daily activities, it is crucial that they are
both flexible and durable. A promising option is the application of flexible electronics
technologies, as discussed in the research (Gao et al., 2024). This study suggests that the
integration of flexible materials can significantly enhance the adaptability and comfort of
wearable sensors, which is essential to ensure their functionality and acceptance by users in
real environments. Additionally, another future improvement to consider is the integration
of various sensors into a single device that allows for real-time data reading and analysis.
Currently, data acquisition is performed separately for each sensor, which can discourage
adoption due to the dispersion of the devices and their complex placement. An integrated
device could significantly simplify usage and notably improve the user experience.

According to our study framework, our study focused on the identification of fall
patterns, without considering movements after the fall event. Considering post-fall
movements could enrich the analysis, providing valuable information for immediate
intervention decisions and in the future for the development of specific rehabilitation
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strategies. Given these considerations, part of the future focus of the study will be to
include, within the study, post-fall event patterns.

Our main objective is focused on the technical aspects such as sensors selection and
measure of signals for the different output, but we recognize the importance of real world
validation for the demonstration of the practical usefulness of our methods in fall detection
scenarios. Although this study does not include validation in real-world implementations,
we consider this aspect as crucial for future research. We recognize the necessity of
real-world validation, for example field trials in various environments (Broadley et al.,
2018), where the falls are likely to occur. By addressing this aspect, we want to enhance the
applicability and reliability of our method for real-world fall detection applications.
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