Dietary Composition and Feeding Preference of Mantled guereza *Colobus guereza* (Rüppell, 1835), in Maze National Park, Ethiopia (#99661)

Second revision

Guidance from your Editor

Please submit by 24 Jan 2025 for the benefit of the authors .

Structure and Criteria

Please read the 'Structure and Criteria' page for guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the <u>materials page</u>.

- 1 Tracked changes manuscript(s)
- 1 Rebuttal letter(s)
- 1 Figure file(s)
- 5 Table file(s)
- 7 Raw data file(s)

Field study

- Have you checked the authors field study permits?
- Are the field study permits appropriate?

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty is not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Dietary Composition and Feeding Preference of Mantled guereza *Colobus guereza* (Rüppell, 1835), in Maze National Park, Ethiopia

Abraham Tolcha Corresp., 1, Matewos Masne 2, Belayneh Ayechw 2

Corresponding Author: Abraham Tolcha Email address: tolcha.abraham@yahoo.com

Knowledge of feeding ecology is essential for effective management of a primate and its habitat. The Mantled guereza Colobus guereza is a predominantly folivorous monkey that occurs in different parts of eastern Africa, including the Maze National Park in Ethiopia. Despite many studies conducted in the area, there is no up-to-date data that was carried out on feeding ecology of the Colobus guereza. The aim of this study is to determine the dietary composition and feeding preference of the *Colobus guereza* in the park. To better understand this, we randomly selected three study groups along the Maze River. We used instantaneous scan sampling method to collect feeding data from September 2021-August 2022. We followed guerezas from 6:30 to 10:30 in the morning and 13:30 to 17:25 in the afternoon collecting feeding activity data between 5 minute intervals during 10-minute scan duration. Overall, guerezas were observed to eat eight plant species and unidentified invertebrates in the park. Of these, Trichilia emetica contributed the highest proportion accounted 53.36% and 27.83% in the wet and dry season respectively, while unidentified invertebrates were rarely utilized over the course of this study. We also found that young leaves were consumed more (n=1794, 75.31%) in the wet while mature leaves were eaten more (n=1215, 43.61%) over the other diet components in the dry season. These results suggest that the *querezas* in the park exhibit temporal dietary flexibility. The observed dietary flexibility may be partly due to seasonal changes in availability of food plant parts in the groups' home ranges in the park. Our results suggest that maintaining the park is critical to protect food plant species for this primate, which at present constitutes only a few.

Biodiversity Research and Conservation Center, College of Natural and Computational Sciences, Arba Minch University, Ethiopia. Correspondence Email: tolcha.abraham@yahoo.com Orcid: 0000-0002-4172-5281, Arba Minch, Southern, Ethiopia

² Department of Biology, College of Natural and Computational Sciences, Arba Minch University, Ethiopia., Arba Minch, Southern, Ethiopia

- 1 Title: Dietary Composition and Feeding Preference of Mantled guereza Colobus guereza
- 2 (Rüppell, 1835), in Maze National Park, Ethiopia
- 3 Abraham Tolcha^{1*}, Matewos Masne² and Belayneh Ayechw²
- 4 ¹Biodiversity Research and Conservation Center, College of Natural and Computational
- 5 Sciences, Arba Minch University, P.O. Box 21, Arba Minch, Ethiopia.
- 6 Correspondence
- 7 Email: tolcha.abraham@yahoo.com; Orcid:0000-0002-4172-5281
- 8 ²Department of Biology, College of Natural and Computational Sciences, Arba Minch
- 9 University, P.O. Box 21, Arba Minch, Ethiopia.
- 10 Co-authors' email: <u>matewosmasneamu@gmail.com</u>; <u>belaynehayechw@gmail.com</u>

ABSTRACT

- 13 Knowledge of feeding ecology is essential for effective management of a primate and its habitat.
- 14 The Mantled guereza Colobus guereza is a predominantly folivorous monkey that occurs in
- different parts of eastern Africa, including the Maze National Park in Ethiopia. Despite many
- studies conducted in the area, there is no up-to-date data that was carried out on feeding ecology
- 17 of the Colobus guereza. The aim of this study is to determine the dietary composition and
- 18 feeding preference of the *Colobus guereza* in the park. To better understand this, we randomly
- 19 selected three study groups along the Maze River. We used instantaneous scan sampling method
- 20 to collect feeding data from September 2021-August 2022. We followed guerezas from 6:30 to
- 21 10:30 in the morning and 13:30 to 17:25 in the afternoon collecting feeding activity data between
- 5 minute intervals during 10-minute scan duration. Overall, guerezas were observed to eat eight
- 23 plant species and unidentified invertebrates in the park. Of these, *Trichilia emetica* contributed
- 24 the highest proportion accounted 53.36% and 27.83% in the wet and dry season respectively,
- 25 while unidentified invertebrates were rarely utilized over the course of this study. We also found
- 26 that young leaves were consumed more (n=1794, 75.31%) in the wet while mature leaves were
- eaten more (n=1215, 43.61%) over the other diet components in the dry season. These results
- 28 suggest that the *guerezas* in the park exhibit temporal dietary flexibility. The observed dietary
- 29 flexibility may be partly due to seasonal changes in availability of food plant parts in the groups'
- 30 home ranges in the park. Our results suggest that maintaining the park is critical to protect food
- 31 plant species for this primate, which at present constitutes only a few.

35

- 33 Keywords/Phrases: Colobus guereza, Conservation, Dietary composition, Feeding Preference,
- 34 Habitat, Matured leaf, Maze river, Season, Young leaf

INTRODUCTION

- 36 Habitat change and climate change are significantly limiting species' access to essential food
- 37 sources (Terborgh, 2015; Ellsworth, 2017), and leading to biodiversity loss (Maestre et al.,
- 38 2012). Understanding species' dietary composition and preferences is fundamental for guiding
- 39 the development of sound conservation practices for a species and its habitat (Ramesh & Downs,
- 40 2013). Feeding ecology studies can be used to identify crucial food resources and their spatio-
- 41 temporal availability (Sengupta et al., 2015) and to quantify the effects of habitat change, loss
- 42 and fragmentation on animal populations (*Irwin et al., 2010*).
- 43 The ongoing habitat modification due to a variety of anthropogenic pressures (Estrada et al.,
- 44 2017; 2020; Estrada & Garber, 2022; Garber, 2022), and climate change provides a strong
- 45 premise for studying diet composition and food preference in primate species. For instance,
- 46 about 65% of primate species are threatened with extinction, and ~75% have declining
- 47 populations as a result of persistent human pressures on natural environments leading to
- 48 widespread loss and degradation of tropical forests (Estrada et al., 2017; Rudran, 2019). Habitat
- 49 loss and degradation result in loss or decline of important food plant species for primates
- 50 (Estrada et al., 2017; de Paula Mateus et al., 2018), and this may eventually drive a primate
- 51 species into extinction. Even those primate species that occupy protected areas like national
- 52 parks are equally affected by climate change. Climate change could affect availability of
- primates' food resources through in part by altering phenological patterns of some food plant
- 54 species (*Pinto et al., 2023*). The effect of climate change provides a strong basis for studying
- 55 feeding ecology for primate species in protected areas in order to provide baseline feeding data
- that can be monitored in the future.
- 57 Primates feed on a diverse array of plant items and animal tissues to meet their nutritional needs
- 58 (Coiner-Collier et al., 2016). In response to habitat changes, they can develop ecological and
- 59 behavioural flexibility (Arroyo-Rodríguez & Fahrig 2014; Mekonnen et al., 2018). Studies
- 60 indicate that species exhibit microhabitat preferences, occupying specific forest strata or habitat

types (Campbell et al., 2018; Matsuda et al., 2022) to exploit various resources that meet their 61 nutritional requirements. The spatial and temporal resource availability is among the factors 62 which can determine the distribution of a primate species (Mendoza-Soto et al., 2024). Food 63 availability in animal's diet is influenced by seasonal variations among other environmental 64 factors (Chouteau, 2006). Some primate food resources, for instance, young leaves decline in dry 65 season and this may compel folivorous primates to include more barks and mature leaves in their 66 diet (Arseneau-Robar et al., 2021). Dietary shifts typically correspond with seasonal resource 67 68 scarcity (Yiming, 2006; Hanya & Chapman, 2013) and probably seasonal changes in chemical composition of food plant species (Matsuda et al., 2022; Ravhuhali et al., 2022). Thus, a shift in 69 an individual's diet should reflect the most profitable foods available at a specific time and place. 70 which may also mean the most nutritious, the easiest to find, or the easiest to process (Lambert & 71 72 *Rothman*, 2015). Primates are among the most endangered mammals, facing significant threats from habitat loss, 73 hunting, and the illegal pet trade (Cowlishaw et al., 2004; Estrada et al., 2017). While their 74 75 general feeding ecology is well understood, it is important to recognize that feeding ecology is highly site-specific and species-specific, influenced by factors such as local vegetation, seasonal 76 resource availability, and competition with other species (Chapman et al., 2002; Estrada et al., 77 2017). To guide ecological restoration efforts and inform sustainable forest management 78 practices, we need site-specific information to ensure the availability of critical food resources 79 for primates (Ganzhorn et al., 2017). The Colobus guereza is a Least Concern species by IUCN 80 (de Jong et al., 2019), and occurs in different parts of equatorial Africa, including Ethiopia. In 81 Ethiopia, the species was reported to be present in the Maze National Park by Dansan & 82 Tekalign (2022). It feeds mainly on leaves (Harris & Chapman 2007; Matsuda et al., 2020). The 83 84 amount of different plant parts eaten vary among groups and seasons (Harris & Chapman 2007; Ibrahim et al., 2017; Matsuda et al., 2020). Despite many studies on its feeding ecology on 85 different parts of its geographical range, the species was not studied in the Maze National Park 86 up to present. 87 88 The aim of this study was to determine dietary composition, and feeding preferences of C. guereza in the park. Here, we hypothesized that seasonal change affects food availability, which 89 in turn determines the dietary composition and feeding preference of the study species. Our 90 findings suggest that season affects the accessibility of diet components and consequently 91

- 92 influence feeding preferences of the C. guereza. This study is expected to offer an opportunity to
- 93 create and implement successful habitat conservation strategies to preserve important food
- 94 resources in the Park.

METHODS AND MATERIALS

96 Study area

95

- 97 We conducted this study at Maze National Park (MzNP) along the Maze River, a critical habitat
- 98 for our target species. This park is located in a bio-diverse region of southern Ethiopia, situated
- 99 between the Gamo and Gofa Zones. It provides a unique and varied landscape that supports a
- rich array of flora and fauna. The park is situated between 6°18'30" to 6°29'00" N latitude and
- 101 37°7'30" to 37°22'30" E longitude, positioning it within a specific ecological and climatic zone
- of Ethiopia. The elevation ranges from 900 to 1200 meters above sea level, which influences the
- 103 climate, vegetation, and biodiversity (Befekadu & Afework, 2006). The annual rainfall varies
- between 843 mm and 1321 mm, which reflect variability in precipitation. The Maze area's
- 105 climate exhibits a distinct seasonal pattern characterized by a rainy season from March to
- October and a dry season from November to February. The lowest temperature during the rainy
- season is 15.3°C in June, suggesting relatively mild temperatures, which may be beneficial for
- plant growth and biodiversity during this time, and the highest temperature during the dry season
- is 33.5°C in February (Mamo, 2012), indicating hotter conditions that could lead to water stress
- 110 for plants and increased evaporation rates.
- 111 The park is home to a remarkable variety of mammalian fauna (e.g. orbi *Ourebi aourebi*, bohor
- 112 red buck Redunca redunca, buffalo Syncerus caffer, warthog Phacochoerusafricanus, bush buck
- 113 Tragelaphus scriptus, greater kudu (Tragelaphus strepsiceros), lesser kudu (Tragelaphus
- imberbis), Water buck Kobus ellipsiprymnus, bush pig Potamocherus larvatus, anubus baboon
- 115 Papio anubis, vervet monkey Chlorocebus pygerythrus, Mantled guereza Colobus guereza, lion
- 116 Panthera leo leopard Panthera pardus, wildcat Felis silvestris, and serval cat Leptailurus serval,
- in addition to varied floral composition. It also comprises varieties of bird species, reptiles,
- amphibians and insects.
- 119 Maze National Park (MzNP) is predominantly covered by savannah grassland interspersed with
- scattered deciduous broad-leaved trees, creating a diverse landscape that supports a variety of
- wildlife. The majority of the park consists of plains enriched by open vegetation dominated by
- 122 Combretum and Terminalia species, which play a critical role in providing habitat and food

- sources for the local fauna. The Maze River, originating from the surrounding highlands, flows along with its numerous tributaries, traverses the park from the northern to the southern end.
- creating vital riparian zones that serve as corridors for wildlife movement and habitat for aquatic
- and semi-aquatic species. This unique combination of savannah grasslands and riverine habitats
- makes MzNP an important area for our target species.
- 128 The Maze River is essential to the park's biological well-being because it forms verdant riparian
- areas that provide a variety of species with places to reproduce and feed. Given an important
- 130 habitat to primates, particularly for guerezas, in which no feeding activity has been detected
- rather than the riverine habitat over the study period (Fig. 1).

132 Study groups

- 133 Three groups of *C. guereza* were targeted for this study. One group with three individuals at
- Maze camp site (group-1); another group with two individuals at Domba site (group-2); and the
- third group with three individuals at Lemasse site (group-3); were randomly selected along the
- River Maze. We monitored those groups in their home ranges for the duration of the study, with
- a research team assigned to each group to look at dietary ecology and potential differences in
- 138 feeding activities.

139 Data collection

140

Plant phenology and dietary preferences

- During reconnaissance before starting actual data collection for this study, we made marking for
- individual plants (trees, shrubs) with DBH \geq 10 cm. To assess food availability, we collected
- vegetation data within the three groups' home range using randomly located nine plots of $20 \text{m} \times 10^{-1}$
- 20m for large trees i.e., \geq 10 cm in diameter at breast height, DBH). We placed the plots within
- the home range of each study group and we carefully observed all plant parts being used as food
- sources for each month over the study period. Each month, all stems in every plot were carefully
- examined through the study year and assigned to one of its food items (young leaf, mature leaf,
- 148 fruit, bark, shoot and flower). We computed selection ratios for each plant species that was
- observed to have been fed by the *Colobus guereza*. Values close to zero indicate rejection,
- 150 implies the plant species was eaten less than would be expected based on its availability, while
- 151 large values show preference selected more than predicted based on availability. Thus, the

avoidance of an item does not to indicate the item is never consumed and does not mean a non-152 food item (Clink et al., 2017). We sampled a total of 9 plots, each accounted 20m × 20m = 153 400m^2 , i.e., a total area of $(400\text{m}2 \times 9 = 3600\text{m}^2)$, 3 plots for each site (Maze camp site, Domba 154 site, Lemasse site) within the home ranges' of three randomly selected study groups along the 155 Maze River. Due to the homogeneity of the habitat, there is no need to compare the dietary 156 composition differences between the groups. Most plant species were identified in the field, 157 while those that could not be identified were collected and later brought to Arba Minch 158 University for further examination and taxonomic identification by experts. For the analysis of 159 food availability, we used 12 months of phenological data concerning the eight plant species that 160 were most frequently consumed by the study species. 161

Diet composition

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

We collected feeding data for 12-month period between September 2021 to August 2022) using instantaneous scan sampling (Altmann 1974,2009). For the dry season, we collected data from September 2021 to February 2022, and for the wet season, from March 2022 to August 2022. The feeding data were collected through direct observation using binoculars from designated viewpoints (Altmann, 2009). Observations were conducted for a fixed period of 10 minutes, with 5-minute intervals, during the morning from 6:30 to 10:30 and in the afternoon from 13:30 to 17:25 (Fashing et al., 2007). During scans, the plant species, plant parts, growth forms, and other animals consumed were recorded (Fashing et al., 2014; Jarvey et al., 2018; Mekonnen et al., 2018). We categorized the food components as Young leaf: a newly grown leaf that is still developing and has not yet reached its full maturity, often smaller, softer, and lighter in color compared to mature leaf; Mature leaf: a fully developed leaf that has reached its maximum size and structural maturity, typically tougher, darker in color compared to young leaf; Fruit: the reproductive structure of a plant that contains the seeds, ripe and often eaten by animals; Bark: the protective outer layer of the stem or trunk of a woody plant, and composed of multiple layers, not to mean dead layers but, living layers; Shoot: the aboveground vegetative part of a plant includes the stem and buds; Flower: the reproductive structure of a plant, and are responsible for sexual reproduction in plants; Unidentified invertebrates: Small, non-vertebrate animals that could not be identified to a specific taxonomic level, particularly insects. We then compared the number of feeding observations for each food items.

Data analysis

- We combined feeding data from the three groups were into a one dataset before the computations 183 of proportions of each diet component. The analyses were executed in XLSTAT 2023.1.3 (1407) 184 and SPSS software version 22. Of the total of 11520 scans, we recorded 5168 (44.86%) feeding 185 activities over the study period, (Wet: 2382, 46.09%; Dry: 2786, 53.91%). We computed the 186 proportion of the diet components for seven food classes (young leaf, mature leaf, fruit, bark, 187 shoot, flower, unidentified invertebrates) recorded through the study period by dividing the 188 189 number of records of a particular diet component by the total number records from all diet components. The proportion of each diet component was then converted into percentages. The 190 chi-square test was employed to test for the seasonal and monthly variations in proportions of the 191 diet components. To assess the feeding preferences of various food plant species in a given 192 193 habitat, we computed the selection ratio for each species. Stem density measurement for each food plant species present in the study area, we calculated the total stem density, which 194 195 represents the number of stems per unit area. We also determined the percentage of each food plant species relative to the total number of food plants in the study area. 196
- 197 Computation of Selection Ratio: The selection ratio (SR) for each species was calculated using
- the formula: SR = Percentage of Species/Stem Density Percentage
- 199 Where: The percentage of a certain food plant species among all food plants is referred to as the
- 200 percentage of species. The stem density percentage describes the ratio of the stem density of a
- 201 particular food plant species to the total stem density of all species.
- 202 Thus, a species is preferred over others in the habitat if the selection ratio is greater than 1. A
- species may be avoided if its selection ratio is smaller than 1, which indicates that it is less
- 204 desirable. A selection ratio equal to 1 indicates neutral selection, meaning the species is utilized
- 205 in proportion to its availability.

206 Field permit

- 207 The Office of Executive Research Directorate and the Biodiversity Research and Conservation
- 208 Center, Arba Minch University were approved the fieldwork under research permit
- 209 (AMU/TH2/BRCC/09/2014). Hereby, we can guarantee that no animal capture and tissue or
- 210 blood sample was taken from the subject species, as data were recorded through direct
- 211 observation without animal capture.

214

229

RESULTS

Food plant species consumption and preferences

- 215 We found that six tree plants (Acacia polyacantha, Millettia ferruginea, Moringa stenopetala,
- 216 Syzygium guineense, Trichilia emetica and Ficus sycomorus) and two shrub species (Carissa
- 217 spinarum, Grewia villosa) that were grouped under seven families (Apocynaceae, Fabaceae,
- 218 Myrtaceae, Moringaceae, Meliaceae, Moraceae and Malvaceae) were consumed by C. guereza in
- 219 the study site. Except for the Fabaceae, all are represented by a single species. Overall, *Trichilia*
- *emitica* was the most top plant species preferred to the rest (Table 1).
- During the wet season, *Trichilia emetica* contributed the largest proportion to the total amount of
- young leaf consumption, accounting for 52.85% (n=948). This was followed by *Grewia villosa*
- at 20.68% (n=371), while Moringa stenopetala was rarely reported, with only 0.5%
- 224 contributions (n=9) (Table 2). The second most popular food item this season was mature leaves,
- with Trichilia emetica and Grewia villosa making up the largest portions making up 53.12% and
- 226 46.88% respectively (Table 2). During the dry season, the *Moringa stenopetala* contributed the
- largest portion (386, 49.87%) of all young leaf consumption and *Millettia ferruginea* contributed
- 228 the least (0.13%) (Table 2).

Diet composition of guerezas

- 230 The annual diet of C. guereza comprised of young leaf, matured leaf, fruit, bark, shoot and
- 231 flower (Table 3). Young leaf was the most consumed plant part in the overall annual diet. Based
- on seasons, there was seasonal variation in number of feeding records of all food plant items
- 233 (Young leaf: $\chi 2 = 405$. 140, df = 1, p < 0.05; Mature leaf: $\chi 2 = 651$. 563, df = 1, p < 0.05; Fruit:
- 234 χ 2 = 105. 593, df = 1, p < 0.05; Shoot: χ 2 = 125. 063, df = 1, p < 0.05). Young leaf as the major
- 235 food item was more frequently consumed in the wet season (n=1794, 75.31%) while mature
- leaves were consumed more over the other food components during the dry (n=1215, 43.61%)
- 237 than wet season (Table 3). Interestingly, consumption of unidentified invertebrates was also
- recorded to increase by about 1.63% in the dry season (Table 3). The results also demonstrate
- 239 some monthly variations in consumption of different plant parts or diet components by guerezas
- 240 (Table 4).

241

DISCUSSION

Food plant species consumption and preferences

Comparable to other studies on feeding ecology of *Colobus guereza* across its geographical range, our study reports very few plant species consumed by this primate. In this study, we recorded eight plant species in the Maze National Park which are fewer than that observed in Kalinzu Forest (39 plant species) by Matsuda et al. (2020). Of these eight species, only two plant species *Trichilia emitica* (39.6%) and *Grewia villosa* (21.01%) had the highest feeding records and thus dominate monkeys' diet. The observation of few plant species eaten by guerezas suggests that the dietary plant richness of this primate is very low in the park. This provides an urgent need to conserve the park to ensure the long-term presence of important food plant species. It appears that the guerezas in MzNP consumes food plant species as expected from its availability across its home range. Most of the plant species preferred (having high selection ratios) are those which are quite abundant in the groups's home ranges (Table 1 and 5). However, this does not necessarily indicate that they are the most nutritious or preferred food sources, but rather they are fed because they are quite abundant in the habitat and not because they are most nutritious. Future studies should analyze nutrient content and other phytochemical composition of plants eaten in order to draw decisive conclusion on plant food preferences.

Our study demonstrates a seasonal variation in frequency with which certain plant species were eaten. For example, *Trichilia emitica* was most frequently eaten during the dry season while *Syzigium guinense* and Grewia villosa were eaten in the dry season. Seasonal variation in plant phenological patterns can in part explain the observed variation in feeding plant species between seasons. We observed that monthly dietary diversity increased as the number of available plants with young leaves reduced during the dry season (Table 2). For example, the plant species such as *Ficus sycomorus*, *Millettia ferruginea* and *Moringa stenopetala* were not used as food source for the study species during the wet season, because of sufficient young leaves, with exceptions thus *Moringa stenopetala* only contributed small amount in May (Table S2). On the other hand, *Moringa stenopetala* significantly contributed to the study species bearing more young leaves during the dry season (Table 2). This way, eight plant species from seven families and one non-plant source, i.e., unidentified invertebrates offered food items to the *C. guereza* in the study area. This was particularly due to the effects of the declining availability of young leaves from *Trichilia emetica* and *Grewia villosa*. Much of the dietary diversity in the study group is

- seemingly attributable to the availability young leaf portion of their diet.
- 274 Many colobine species, have increased dietary extent during times and areas with low
- availability or quality of resources (Hu, 2011; Clink et al., 2017). The present study depicted, the
- 276 dietary extent increased with decreasing in young leaf availability during the dry season.

Food plant parts/item consumption.

- 279 We found that the guerezas exploited different plant parts, leaves being mostly eaten in the
- 280 MzNP. However, it is not surprising for them to consume mostly young leaves because these
- 281 monkeys like other colobines are anatomically adapted to feed on leaves that facilitate their leaf-
- eating habits, including their preference for young leaves due to their nutritional benefits (e.g.
- 283 Gonzalez & McGraw, 2021; Mola et al., 2022). In line with this, studies show that leaves
- accounted for high proportion (42–49%) by folivorous-frugivorous monkeys (Lima et al., 2024).
- Another study has shown that Bale monkey, a folivore specialist, spend more time munching on
- 286 new bamboo tree leaves in Southern Ethiopia (Mekonnen et al., 2018). Similarly, the leaves
- accounted for highest proportion of *Colobus guereza's* food items (71.6%) in Borena-Savint
- National Park, Northern Ethiopia (Hussein et al., 2017) and 82% in Bale Mountains National
- 289 Park, Ethiopia (Petros et al., 2018).
- 290 Furthermore, young leaves were highly eaten compared to mature leaves. This observation is in
- 291 line with a study on feeding ecology of guerezas at Saja Forest, Kaffa Zone, Southwest Ethiopia,
- that reported the monkeys to eat young leaves over mature leaves (*Mola et al.*, 2022). Similarly,
- 293 Matsuda et al., (2020) reported the C. guereza to consume up to 87% young leaves in the
- Kalinzu Forest in Uganda. Young leaves are preferred because they have low fiber content, high
- 295 nutrients and easier to digest (Kumar & Singh, 2018). Thus by preferentially consuming these
- 296 food items, the guerezas are able to maximize their nutrient intake while minimizing the
- 297 ingestion of toxic compounds. Interestingly, the guerezas were observed to increase the
- consumption of invertebrates during the dry season by 1.63% (Table 2). The high consumption
- 299 of invertebrates during the dry season could be strategy to increase intake of proteins from
- invertebrates rather than getting it from young leaves which were lowly eaten in this season.
- 301 The results of this study have demonstrated some seasonal dietary flexibility for the guerezas in
- 302 the study site. We observed the study species use young leaves and matured leaves
- interchangeably during the wet and dry seasons. They consume a lot of young leaves during the

wet season and mature leaves during the dry season and vice versa. Throughout the study 304 months, there were considerable changes in availability and consumption rate of diet items 305 (Table 5). This is attributed to seasonal variations in phenological patterns that affect the 306 availability of food items which eventually influence seasonal dietary composition for the 307 guerezas. For instance, in the field, we observed that when young leaves were insufficient during 308 the dry season, hence the monkeys change their diet use by increasing consumption of mature 309 leaves. This is consistent with the previous study where resource availability is highly variable: 310 311 folivorous monkeys eat more leaves during periods of low fruit availability Hanya & Bernard (2012). Research findings found, proboscis monkeys varied in response to monthly changes in 312 food availability, but did not vary among forest types (Feilen & Marshall, 2020). In addition, the 313 influence of seasonality on the diet reported at Tanjung Putting National Park, thus fruits 314 315 comprised high proportion of the diet from January to May, while young leaves consumed the highest proportion of the diets from June to December (Yeager, 1989). This might be attributed 316 317 the fact, that the season contribute to the availability and even the quality of diet components and this drives the flexibility for feeding of the species. However, Colobus guereza consumed high 318 319 amount of young leaf during the study period, in riverine habitat of the park. The results of this study demonstrate that the guerezas exhibit seasonal and monthly dietary 320 variability in response to availability of food components across months or seasons (Table 4 and 321 5). Dietary flexibility is a strategy that enables primates to survive during periods of food 322 shortage (Feilen & Marshall, 2020) or exploit different parts having different food resources 323

325

326

327

328

329

330

331

332

333

334

324

CONCLUSION

The results of this study demonstrate low richness of dietary plant species for guerezas in the park. The observation of only eight plant species with only two mostly eaten by the monkeys provide impetus for effective protection of the park to ensure the long-term presence of important food plant species. The reliance of this primate on few plant species gives a daunting future to the survival of this population in the face of ongoing climate change. However, seasonal dietary flexibility in plant species and food plant items (plant parts and invertebrates) provide some promising future as this observation suggest that the primate can respond to habitat changes through ecological flexibility. Our research showed that the habitat found in rivers plays

across their home ranges or habitats (Mekonnen et al., 2018).

- a significant role containing all essential food plants and making a suitable place for the species
- 336 to reside. We found that plant species' parts, particularly leaves i.e., young and mature, are a
- fundamental diet items to the Colobus guereza. The plant species such as Trichilia emetica,
- 338 Grewia villosa, Syzygium guineense and Moringa stenopetala were reported among the most
- important food sources provide sufficient leaves (young, mature) to the subject species over the
- study period, and we suggest to be conserved for sustainable conservation of the species.
- Overall, we strongly recommend that the protection of the riverine habitat will result in effective
- conservation of *Colobus guereza* and its habitat in the Maze National Park.

343 Acknowledgements

- 344 We are grateful to the Biodiversity Research and Conservation Center and the Office of
- Executive Research Directorate, Arba Minch University for funding us to carry out this study.
- Our thanks should also go to all staff members of Maze National Park, for their cooperation and
- 347 support throughout this work.

348 Funding

- We, Abraham Tolcha and the team were funded by the Biodiversity Research and conservation
- 350 Center, Arba Minch University Ethiopia, with the project code GOV/AMU/TH2/BRCC/09/2014.
- 351 The funder offered some logistics and covered financial costs during our field work.

352 Grant Disclosures

- 353 The following grant information was disclosed; Biodiversity Research and conservation Center,
- Arba Minch University, Ethiopia, GOV/AMU/TH₂/BRCC/09/2014.

355 Competing Interests

356 The authors have no competing interests to declare.

357 Author Contributions

- 358 Abraham Tolcha: conceived and designed the all research work, led the project, performed the
- experiments and field data collection, analyzed the data, prepared the draft manuscript, reviewed
- the draftmanuscript and enriched, and approved the final version.
- 361 MatewosMasne: conceived and designed the experiments, performed the field data collection,
- analyzed the data, reviewed the draft manuscript, and approved the final draft.
- 363 Belayneh Ayechw: conceived and designed the experiments, performed the field data collection,
- analyzed the data, reviewed the draft manuscript, and approved the final draft.

365 Data Availability

366	Data will be available based on the data sharing policies and procedures of the
367	journal.Supplemental Information
368	Supplemental information for this work can be found online at web site of this journal.
369	
370	REFERENCES
371	Altmann J. 1974. Observational study of behavior: sampling methods. Behaviour 49(34):227-
372	266
373	Altmann J. 2009. Observational Study of Behavior: Sampling Methods Author (s): Jeanne
374	Altmann Published by : BRILL Stable URL : http://www.jstor.org/stable/4533591. <i>Behaviour</i>
375	49(3):227–267. https://doi.org/10.1080/14794802.2011.585831
376	Ameha A, Nielsen OJ, Larsen HO. 2014. Impacts of access and bene fit sharing on
377	livelihoods and forest: Case of participatory forest management in Ethiopia. <i>Ecological</i>
378	Economics 97:162–171. https://doi.org/10.1016/j.ecolecon.2013.11.011
379	Arroyo-Rodríguez V, Fahrig L. 2014. Why is a landscape perspective important in studies of
380	primates? American Journal of Primatology 76(10):901–909.
381	https://doi.org/10.1002/ajp.22282
382	Befekadu R, Afework B. 2006. Population status and structure of Swayne's Hartebeest
383	(Alcelaphus buselaphus swaynei) in Maze National Park, Ethiopia. International Journal of
384	Ecology and Environmental Science 32: 259-264.
385	Bernard H, Matsuda I, Hanya G, Phua MH, Oram F, Ahmad AH. 2018. Feeding ecology of
386	the proboscis monkey in Sabah, Malaysia, with special reference to plant species-poor
387	forests. In Primates in Flooded Habitats: Ecology and Conservation (Nowak K, Barnett AA,
388	Matsuda I, eds.), pp 89–98. Cambridge, Cambridge University Press.
389	Cancelliere EC, Chapman CA, Twinomugisha D, Rothman JM. 2018. The nutritional value
390	of feeding on crops: Diets of vervet monkeys in a humanized landscape. African Journal of
391	Ecology 56(2):160–167. https://doi.org/10.1111/aje.12496
392	Chapman, CA, Balko, EA. 2002. Primate and forest dynamics: The role of the primate
393	community in forest regeneration. In: Primate Ecology and Conservation (pp. 64-92).

394	Cambridge University Press.
395	Chaves ÓM, Stoner KE, Arroyo-rodríguez V. 2019. Differences in Diet Between Spider
396	Monkey Groups Living in Forest Fragments and Continuous Forest in Mexico Author (s):
397	Óscar M. Chaves, Kathryn E. Stoner and Víctor Arroyo-Rodríguez Published by:
398	Association for Tropical Biology and Conservation St. <i>Biotropica</i> 44(1): 105–113.
399	https://doi.org/10.1111/j. 1744-7429.2011.00766.x
400	Chouteau P. 2006. Influences of the season and the habitat structure on the foraging ecology of
401	two coua species in the western dry forest of Madagascar. Comptes Rendus - Biologies,
402	329(9): 691–701. https://doi.org/10.1016/j.crvi.2006.06.005
403	Clink DJ, Dillis C, Feilen KL, Beaudrot L, Marshall AJ. 2017. Dietary diversity, feeding
404	selectivity, and responses to fruit scarcity of two sympatric Bornean primates (Hylobates
405	albibarbis and Presbytis rubicunda rubida). PLoS One 12:e0173369.
406	Coiner-Collier S, Scott RS, Chalk-Wilayto J, Cheyne SM, Constantino P, Dominy NJ,
407	Elgart AA, Glowacka H, Loyola LC, Ossi-Lupo K, Raguet-Schofield M, Talebi MG,
408	Sala EA, Sieradzy P, Taylor AB, Vinyard CJ, Wright BW, Yamashita N, Lucas PW,
409	Vogel ER, 2016. Primate dietary ecology in the context of food mechanical properties.
410	Journal of Human Evolution 98(April 2018):103–118.
411	https://doi.org/10.1016/j.jhevol.2016.07.005
412	Cowlishaw G, Dunbar, RIM. 2004. Primate Conservation Biology. University of Chicago
413	Press.
414	Dansa M, Tekalign W. 2022. Primate diversity and species' distributions in Maze National
415	Park, southern Ethiopia, African Zoology 57(2):121-125. DOI:
416	10.1080/15627020.2022.2087478
417	de Jong YA, Butynski TM, Oates JF. 2019. Colobus guereza. The IUCN Red List of
418	Threatened Species 2019: e.T5143A17944705. http://dx.doi.org/10.2305/IUCN.UK.2019-
419	3.RLTS.T5143A17944705.en
42 0	de Paula Mataus D. Craenaveld I. Fischer D. Taubart F. Martins VF. Huth A. 2018

421	Defaunation impacts on seed survival and its effect on the biomass of future tropical forests
122	Oikos 127(10):1526–1538. https://doi.org/10.1111/oik.05084
123	Dunn JC, Asensio N, Arroyo-Rodríguez V, Schnitzer S, Cristóbal-Azkarate J. 2012. The
124	ranging costs of a fallback food: liana consumption supplements diet but increases foraging
125	effort in howler monkeys. <i>Biotropica</i> 44: 704–714.
126	Ego WK, Mbuvi DM, Kibet PFK. 2003. Dietary composition of wildebeest (Connochaetes
127	taurinus) kongoni (Alcephalus buselaphus) and cattle (Bos indicus), grazing on a common
128	ranch in south-central Kenya. African Journal of Ecology 41(1):83–92.
129	https://doi.org/10.1046/j.1365-2028.2003.00419.x
430	Ellsworth P. 2017. "Phenological mismatches and species interactions in climate change."
431	Ecological Applications 27(4):1222-1233.)
132	Estrada A, Garber PA. 2022. Principal Drivers and Conservation Solutions to the Impending
133	Primate Extinction Crisis: Introduction to the Special Issue. International Journal of
134	Primatology 43(1): 1–14. https://doi.org/10.1007/s10764-022-00283-1
135	Estrada A, Garber PA, Chaudhary A. 2020. Current and future trends in socio-economic,
136	demographic and governance factors affecting global primate conservation. <i>PeerJ</i> 8:1–35.
437	https://doi.org/10.7717/peerj.9816
138	Estrada A, Garber PA, Rylands AB, Roos C, Fernandez-Duque E, Fiore A, Di Anne-Isola,
139	Nekaris K, Nijman V, Heymann EW, Lambert JE, Rovero F, Barelli C, Setchell JM,
140	Gillespie TR, Mittermeier RA, Arregoitia LV, de Guinea M, Gouveia S, Dobrovolski
141	R, Li B. 2017. Impending extinction crisis of the world's primates: Why primates matter
142	Science Advances 3(1): https://doi.org/10.1126/sciadv.1600946
143	Fashing PJ. 2001. Feeding ecology of guerezas in the Kakamega Forest, Kenya: the importance
144	of Moraceae fruits in their diet. International Journal of Primatology 22(4):579-609.
145	Fashing PJ. 2007. African colobine monkeys: patterns of between-group interaction. In:
146	Campbell CJ, Fuentes A, Mackinnon KC, Panger M, Bearder SK, editors. Primats in
147	perspective. Oxford: Oxford University Press. p 201–224.

148	Fashing PJ, Nguyen N, Venkataraman VV, Kerby JT. 2014. Gelada feeding ecology in an
149	intact ecosystem at Guassa, Ethiopia, variability over time and implications for theropith
450	and hominin dietary evolution. American Journal of Physical Anthropology 155:1–16.
451	Feilen KL, Marshall AJ. 2020. Responses to Spatial and Temporal Variation in Food
452	Availability on the Feeding Ecology of Proboscis Monkeys (Nasalis larvatus) in West
453	Kalimantan, Indonesia. Folia Primatologica 91(4):399–416.
154	https://doi.org/10.1159/000504362
455	Ganzhorn JU, Arrigo-Nelson SJ, Boinski S, Bollen A, Carrai V, Derby A, Zhao Q. 2017.
456	The importance of protein in leaf selection of folivorous primates. American Journal of
457	Primatology 79(3) e22591.
458	Garber PA. 2022. Advocacy and Activism as Essential Tools in Primate Conservation.
459	International Journal of Primatology 43(1):168–184. https://doi.org/10.1007/s10764-021-
460	00201-x
461	Gogarten JF, Guzman M, Chapman, CA, Koenig WD. 2012. Fastidious feeders: dietary
462	breadth of Bwindi chimpanzees. American Journal of Primatology 74(11): 1006-1018.
463	Gonzalez M A, McGraw WS. 2021. Feeding ecology and adaptations of colobine monkeys: A
464	review of recent findings. <i>Primates</i> 62(3): 345-358. doi:10.1007/s10329-021-00863-5.
465	Hanya G, Chapman CA. 2013. Linking feeding ecology and population abundance: A review
466	of food resource limitation on primates. Ecological Research 28(2):183–190.
467	https://doi.org/10.1007/s11284-012-1012-y
468	Hanya G, Bernard H. (2012). Fallback foods of red leaf monkeys (Presbytis rubicunda) in
169	Danum Valley, Borneo. International Journal of Primatology 33: 322–337.
470	Hu G. 2011. Dietary breadth and resource use of François' langur in a seasonal and disturbed
471	habitat. American Journal of Primatology 73(11):1176–1187.
472	https://doi.org/10.1002/ajp.20985
473	Hussein I, Afework B, Dereje Y. 2017. Population structure and feeding ecology of Guereza
174	(Colobus guereza) in Borena-Sayint National Park, northern Ethiopia. International Journal

175	of Biodiversity and Conservation 9(11):323–333. https://doi.org/10.5897/ijbc2017.1114
176	Irwin MT, Raharison JL Raubenheimer DR Chapman CA Rothman, J. M. 2014.
177	Nutritional correlates of the "lean season": effects of seasonality and frugivory on the
478	nutritional ecology of diademed sifakas. American journal of physical anthropology,
179	153(1):78-91.
180	Israel P, Sefi M, Hussein Gena YM. 2018. Population Status, Distribution, and Threats of
481	Colobus guereza gallarum in Bale Mountains National Park, Southeastern Ethiopia.
182	International Journal of Natural Resource Ecology and Management 3(3):39–45.
183	https://doi.org/10.11648/j.ijnrem.20180303.12
184	Jarvey JC, Low BS, Pappano DJ, Bergman TJ, Beehner JC. 2018. Graminivory and Fallback
185	Foods: Annual Diet Profile of Geladas (Theropithecus gelada) Living in the Simien
186	Mountains National Park, Ethiopia. International Journal of Primatology 39(1):105–126.
187	https://doi.org/10.1007/s10764-018-0018-x
488	Kibaja MJ, Mekonnen A, Reitan T, Nahonyo CL, Levi M, Stenseth NC, Hernandez-
189	Aguilar RA. 2023. On the move: Activity budget and ranging ecology of endangered Ashy
190	red colobus monkeys (Piliocolobus tephrosceles) in a savanna woodland habitat. Global
491	Ecology and Conservation 43(2023):1–15. https://doi.org/10.1016/j.gecco.2023.e02440
192	Kifle Z, Beehner JC. 2022. Distribution and diversity of primates and threats to their survival in
193	the Awi Zone, northwestern Ethiopia. Primates 63(6):637-645.
194	https://doi.org/10.1007/s10329-022-01010-3
495	Lambert JE, Rothman JM. 2015. Fallback Foods, Optimal Diets, and Nutritional Targets:
196	Primate Responses to Varying Food Availability and Quality. Annual Review of
497	Anthropology 44(1):493–512. https://doi.org/10.1146/annurev-anthro-102313-025928
498	Leighton M. 1993. Modeling dietary selectivity by Bornean orangutans: Evidence for
199	integration of multiple criteria in fruit selection. International Journal of Primatology
500	14(2):257–313. https://doi.org/10.1007/BF02192635
501 502	Lima, I.A., Bicca-Marques, JC. 2024. Opportunistic meat-eating by urban folivorous-frugivorous monkeys. <i>Primates</i> 65: 25–32 (2024). https://doi.org/10.1007/s10329-023-01098-1

503 504 505 506 507 508	Gómez M, Bowker MA, Soliveres S, Escolar C, García-Palacios P, Berdugo M, Valencia E Gozalo B, Gallardo A, Aguilera L, Arredondo T, Blones J, Boeken B, Zaady, E. 2012. Plan species richness and ecosystem multifunctionality in global drylands. <i>Science</i> 335(6065): 214–218. https://doi.org/10.1126/science.1215442
509	Mamo Y. 2012. Status of the Swayne's Hartebeest, (Alcelaphus buselaphus swaynei) meta-
510	population under land cover changes in Ethiopian Protected Areas. International Journal of
511	Biodiversity and Conservation 4(12):https://doi.org/10.5897/ijbc12.024
512	Matsuda I, Tuuga A, Higashi S. 2009. The feeding ecology and activity budget of proboscis
513	monkeys. American Journal of Primatology 71:478–492.
514	Matsuda I, Hashimoto C, Ihobe H, Yumoto T, Baranga D, Clauss M, Hummel J. 2022.
515	Dietary Choices of a Foregut-Fermenting Primate, Colobus guereza: A Comprehensive
516	Approach Including Leaf Chemical and Mechanical Properties, Digestibility and
517	Abundance. Frontiers in Ecology and Evolution
518	10(March):https://doi.org/10.3389/fevo.2022.795015
519	Mekonen S, Hailemariam B. 2016. Ecological behaviour of common hippopotamus (
520	Hippopotamus amphibius, LINNAEUS, 1758) in boye wetland, jimma, ethiopia.
521	American Journal of Scientific and Industrial Research 7(2):41–49.
522	https://doi.org/10.5251/ajsir.2016.7.2.41.49
523	Mekonnen A, Fashing PJ, Bekele A, Hernandez-Aguilar RA, Rueness EK, Stenseth NC.
524	2018. Dietary flexibility of Bale monkeys (Chlorocebus djamdjamensis) in southern
525	Ethiopia: Effects of habitat degradation and life in fragments. BMC Ecology 18(1):1-20.
526	https://doi.org/10.1186/s12898-018-0161-4
527	Mekonnen A, Fashing PJ, Bekele A, Stenseth NC. 2020. Distribution and conservation status
528	of Boutourlini's blue monkey Distribution and conservation status of Boutourlini's blue
529	monkey (Cercopithecus mitis boutourlinii), a Vulnerable subspecies endemic to western
530	Ethiopia. Primates 61(6):785–796. https://doi.org/10.1007/s10329-020-00831-4
531	Mola M, Ayiza A, Asnakew M, Abuye T. 2022. Population Status, Diurnal Activity Pattern,

532	Feeding Ecology, and Habitat Association of Colobus Monkey (Colobus guereza) in Saja
533	Forest, Kaffa Zone, Southwest Ethiopia. International Journal of Ecology 2022.
534	https://doi.org/10.1155/2022/5090212
535 536	Oates JF. 1994. The natural history of African colobus monkeys. Colobine monkeys: their ecology. <i>Behaviour and Evolution</i> 75-128.
537	Pinto MP, Beltrão-Mendes R, Talebi M, de Lima AA. 2023. Primates facing climate crisis in
538	a tropical forest hotspot will lose climatic suitable geographical range. Scientific Reports,
539	13(1):1–13. https://doi.org/10.1038/s41598-022-26756-0
540	Ramesh T, Downs CT. 2013. Impact of landuse on the diversity of ground-dwelling
541	invertebrates in a South African forest-grassland ecotone. Applied ecology and environmental
542	research 11(2):145-163.
543	Ripple WJ, Abernethy K, Betts MG, Chapron G, Dirzo R, Galetti M, Levi T, Lindsey PA,
544	Macdonald DW, Machovina B, Newsome TM, Peres CA, Wallach AD, Wolf C. 2016.
545	Bushmeat hunting and extinction risk to the world's mammals. Royal Society Open Science
546	3(10): https://doi.org/10.1098/rsos.160498
547	Rudran R. 2019. Purple-faced langur Semnopithecus vetulus (Erxleben, 1777). In Primates in
548	Peril: The World's 25 Most Endangered Primates 2018–2020.
549	Saj TL, Sicotte P. 2007. Predicting the competitive regime of female colobus monkeys (Colobus
550	vellerosus) from the distribution of food resources. Behavioural Processes 74(1):72-79.
551	Seiler N, Robbins MM. 2016. Factors Influencing Ranging on Community Land and Crop
552	Raiding by Mountain Gorillas. Animal Conservation 19(2):176–188.
553	https://doi.org/10.1111/acv.12232
554	Sengupta A, McConkey KR, Radhakrishna S. 2015. Primates, provisioning and plants:
555	effects of human cultural behaviours on primate ecological functions. PloS one
556	10(11): e0140961.
557	Sha JCM, Hanya G. 2013. Temporal Food Resource Correlates to the Behavior and Ecology of
558	Food-Enhanced Long-Tailed Macaques (Macaca fascicularis). Mammal Study 38(3):163-

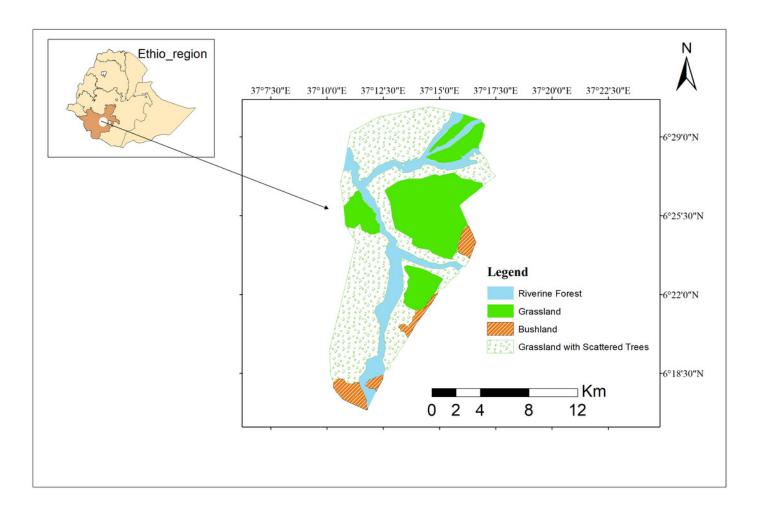

559	175. https://doi.org/10.3106/041.038.0305
560	Sushma HS, Ramesh KP, Kumara HN. 2022. Determinants of habitat occupancy and spatial
561	segregation of primates in the central Western Ghats, India. Primates 63(2):137-147.
562	https://doi.org/10.1007/s10329-021-00966-y
563	Soendjoto MA, Alikodra HS, Bismark M, Setijanto H. 2006. Jenis dan komposisi pakan
564	bekantan (Nasa- lis larvatus Wurmb) di hutan karet Kabupaten Tabalong, Kalimantan
565	Selatan (Diet and its compo- sition of the proboscis monkey [Nasalis larvatus Wurmb] in
566	rubber forest of Tabalong District, South Kalimantan). <i>Biodiversitas</i> 7:34–38.
567	Terborgh J. 2015. "Tropical Forests and the Future: The Threat of Deforestation." In Forest
568	Ecosystems: Analysis at Multiple Scales. Springer, pp. 305-343.
569	Tekalign W, Bekele A. 2011. Population status, foraging and diurnal activity patterns of oribi
570	(Ourebia ourebi) in Senkele Swayne's hartebeest sanctuary, Ethiopia. Ethiopian Journal of
571	Science 34(1): 29–38.
572	Tesfaye D, Fashing PJ, Meshesha AA, Bekele A, Stenseth NC. 2020. Feeding Ecology of the
573	Omo River Guereza (Colobus guereza guereza) in Habitats with Varying Levels of
574	Fragmentation and Disturbance in the Southern Ethiopian Highlands. International Journal
575	of Primatology 42(1):64–88. https://doi.org/10.1007/s10764-020-00189-w
576	van Casteren A, Oelze VM, Angedakin S, Kalan AK, Kambi M, Boesch C, Kühl HS,
577	Langergraber KE, Piel AK, Stewart FA, Kupczik, K. 2018. Food mechanical properties
578	and isotopic signatures in forest versus savannah dwelling eastern chimpanzees.
579	Communications Biology 1(1):https://doi.org/10.1038/s42003-018-0115-6
580	Yeager CP. 1989. Feeding ecology of the proboscis monkey (Nasalis larvatus). International
581	Journal of Primatology 10(6):497–530. https://doi.org/10.1007/BF02739363
582	Yiming L. 2006. Seasonal variation of diet and food availability in a group of Sichuan snub-
583	nosed monkeys in Shennongjia Nature Reserve, China. American Journal of Primatology
584	68(3): 217–233. https://doi.org/10.1002/ajp.20220
585	

Figure 1

Study area map

Figure 1 Study area map of Maze National Park. Image credit: ArcGIS.

Table 1(on next page)

Feeding preference

Table 1 Feeding preference (selection ratio) of food plant species consumed by Colobus guereza during the study period.

PeerJ

- 1 Table 1 Feeding preference (selection ratio) of food plant species consumed by Colobus guereza
- 2 during the study period.

Family	Species		% of food plant species	% stem density Stem/h a	Selection ratio	Rank
Apocynaceae	Carissa spinarum	Shrub	4.22	7.22	0.58	6
Fabaceae	Millettia ferruginea	Tree	2.32	4.16	0.56	7
Myrtaceae	Syzygium guineense	Tree	17.92	5	3.58	2
Moringaceae	Moringa stenopetala	Tree	7.64	4.16	1.84	4
Meliaceae	Trichilia emetica	Tree	39.59	9.16	4.32	1
Moraceae	Ficus sycomorus	Tree	0.81	4.16	0.19	8
Malvaceae	Grewia villosa	Shrub	21.01	9.44	2.22	3
Fabaceae	Acacia polyacantha	Tree	5.24	4.44	1.18	5

Table 2(on next page)

Diet components

The proportion of dietary components from different plant species and non-plant sources consumed during the wet season (March to August) and the dry season (September to February) throughout the study period.

- Table 2 The proportion of dietary components from different plant species and non-plant sources consumed during the wet season
- 2 (March to August) and the dry season (September to February) throughout the study period.

Food items used	Food components consumed during wet and dry seasons (%)													
	Wet						Total	Dry						Total
	YL	ML	FR	Bk	Sh	FL		YL	ML	FR	Bk	Sh	FL	
Carissa	0	0	6.04	0	0	0	6.04	0	0	2.67	0	0	0	2.67
spinarum														
Millettia	0	0	0	0	0	0	0	0.06	0	1.83	2.4	0	0.06	4.35
ferruginea											0			
Syzygium	12.93	0	0	0	0	0	12.93	1.90	10.	3.30	0	0.	6.49	22.16
guineense									37			1		
Moringa	0.38	0	0	0	0	0	0.38	13.8	0	0	0	0	0	13.86
stenopetala								6						
Trichilia	39.80	5.37	0	0	8.19	0	53.36	6.44	17.	3.55	0	0.	0	27.83
emetica									30			54		
Ficus	0	0	0	0	0	0	0	0	0	1.5	0	0	0	1.5
sycomorus														
Grewia villosa	15.57	4.75	0	0	0	0	20.32	5.57	15.	0	0	0	0.1	21.61
									94					
Acacia	6.63	0	0	0	0	0	6.63	0	0	0	4.0	0	0	4.05
polyacantha											5			
Unidentified	-	-	-	-	-	-	0.34	-	-	-	-	-	-	1.97
invertebrates														
Total	75.31	10.1	6.04	0	8.19	0	100	27.8	43.	12.8	6.4	0.	6.65	100
		2						2	61	5	5	64		

Table 3(on next page)

Percentage composition

Table 3: Percentage composition of annual and seasonal dietary composition

Table 3: Percentage composition of annual and seasonal dietary composition

Plant parts eaten	YL	ML	FR	Bk	Sh	Fl	Unidentified inveretebrates
Wet season	75.31	10.12	6.06	0	8.19	0	0.34
Dry season	27.82	43.82	12.85	6.45	0.64	6.65	1.97
Annual /Overall	51.57±23.7	26.97±16.9	9.46±3.4	3.22±3.2	4.42±3.7	3.32±3.3	1.16±0.8

Table 4(on next page)

Proportion of diet components

Table 4 Proportion of diet components used by *Colobus guerezas* for each month during the study period

PeerJ

1 Table 4 Proportion of diet components used by *Colobus guerezas* for each month during the

2 study period

N	Food components	Diet components consumed by Colobus guerezas over months of the year (%)											
0		Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sep.	Oct.
		2021	2021	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022
1	Young leaf	31.6 4	25.2 7	30.4 5	29.8 3	75.1 2	76.8 8	70.4 8	76.0 7	77.1 4	76.6	20.5 5	28.6 6
2	Matured leaf	37.3 9	41.0 5	39.5 3	39.9 1	9.67	6.99	11.1 9	9.07	8.57	15.6	53.2	50.6 1
3	Fruit	17.9 2	18.5 3	11.8 8	15.4 5	6.52	8.06	8.57	6.05	6.43	0	11.1 9	6.91
4	Bark	4.2	5.46	6.48	5.58	0	0	0	0	0	0	5.7	4.87
5	Shoot	0.45	3.37	1.08	0.43	7.49	8.06	9.05	8.81	7.86	7.8	0	0.61
6	Flower	6.64	4.42	8.64	5.37	0	0	0	0	0	0	7.54	7.32
7	Unidentified invertebrates	1.77	1.9	1.94	3.43	1.2	0	0.74	0	0	0	1.82	1.02

Table 5(on next page)

Plant species composition

Table 5 Plant species composition along trials of study species' home range

1 Table 5 Plant species composition along trials of study species' home range

Family	Species	Growth	Number of plants recorded over transects									
		form	Maze camp site (Group-1)			Domba site (Group-2)			Lemasse site (Group-3)			
			\mathbf{P}_1	P_2	P_3	P_4	P_5	P_6	P_7	P_8	P ₉	
Apocynaceae	Carissa spinarum	Shrub	4	2	0	5	1	4	2	0	8	26
Fabaceae	Millettia ferruginea	Tree	3	0	4	0	3	0	4	0	1	15
Fabaceae	Tamarindus indica	Tree	2	5	0	0	1	0	3	2	0	13
Balanitaceae	Balanites aegyptiaca	Tree	0	1	3	4	1	0	1	1	0	11
Anacardiaceae	Rhus glutinosa	Tree	1	0	0	1	0	2	0	2	0	6
Ebenaceae	Diospyros abyssinica	Tree	1	0	0	2	0	1	0	1	0	5
Salicaceae	Flacourtia indica	Tree	0	0	2	0	4	0	1	0	0	7
Olacaceae	Ximenia americana	Tree	0	2	1	0	0	1	0	0	2	6
Myrtaceae	Syzygium guineense	Tree	4	2	0	3	1	0	2	5	1	18
Moringaceae	Moringa stenopetala	Tree	3	2	1	2	1	0	2	0	4	15
Fabaceae	Piliostigma thonningii	Tree	0	0	3	1	0	0	5	2	0	11
Meliaceae	Trichilia emetica	Tree	2	5	1	5	3	8	4	3	7	38
Moraceae	Ficus sycomorus	Tree	1	4	0	1	2	3	1	2	1	15
Rhamnaceae	Ziziphus spina- christi	Tree	0	3	2	0	0	2	3	1	2	13
Malvaceae	Grewia villosa	Shrub	3	6	1	2	5	8	7	0	2	34
Rubiaceae	Gardenia ternifolia	Tree	0	1	1	2	0	0	1	2	0	7
Anacardiaceae	Sclerocarya birrea	Tree	2	1	0	2	0	1	3	0	0	9
Combretaceae	Terminalia brownii	Tree	1	0	4	0	1	3	0	1	2	12
Malvaceae	Grewia mollis	Tree	2	1	0	2	0	2	1	0	2	10
Rutaceae	Harrisonia abyssinica	Tree	0	0	2	1	0	1	1	0	1	6
Fabaceae	Acacia polyacantha	Tree	1	3	0	0	2	4	1	2	3	16
	Sub-total		30	38	25	33	25	40	42	24	36	293
Total			93			98			102			

2

3

4