- 1 Title: Dietary Composition and Feeding Preference of Mantled guereza Colobus guereza
- 2 (Rüppell, 1835),in Maze National Park, Ethiopia
- 3 Abraham Tolcha^{1*}, Matewos Masne² and Belayneh Ayechw²
- ⁴ Biodiversity Research and Conservation Center, College of Natural and Computational
- 5 Sciences, Arba Minch University, P.O. Box 21, Arba Minch, Ethiopia.
- 6 Correspondence
- 7 Email:tolcha.abraham@yahoo.com; Orcid:0000-0002-4172-5281
- 8 ²Department of Biology, College of Natural and Computational Sciences, Arba Minch
- 9 University, P.O. Box 21, Arba Minch, Ethiopia.
- 10 Co-authors' email: matewosmasneamu@gmail.com; belaynehayechw@gmail.com

12

ABSTRACT

- 13 Knowledge of feeding ecology is essential for effective management of a primate and its habitat.
- The Mantled guereza Colobus guereza is a predominantly folivorous monkey that occurs in
- different parts of Africa, including the Maze National Park in Ethiopia. Despite many studies
- 16 conducted in the area, there is no up-to-date data that was carried out on feeding ecology of the
- 17 Colobus guereza. The aim of this study is to determine the dietary composition and feeding
- 18 preference of the *Colobusguereza* in the park. To better understand this, we randomly selected
- three study groups along the Maze River. We used instantaneous scan sampling method was
- 20 used to collect feeding data from September 2021-August 2022. We followed guerezas from
- 21 6:30 to 10:30 in the morning and 13:30 to 17:25 in the afternoon collecting feeding activity data
- between 5 minute intervals during 10-minute scan duration. Overall, guerezas were observed to
- eat eight plant species and unidentified invertebrates in the park. Of these, *Trichilia emetica*
- contributed the highest proportion accounted 53.36% and 27.83% in the wet and dry season
- respectively, while unidentified invertebrates were rarely utilized over the course of this study.
- We also found that young leaves were consumed more (75.31%) in the wet while mature leaves
- were eaten more (43.61%) in the dry season. These results suggest that the *guerezas* in the park
- 28 exhibit temporal dietary flexibility. The observed dietary flexibility may be partly due to
- 29 seasonal changes in availability of food plant parts in the groups' home ranges in the park. . Our
- results suggest that maintaining the park is critical to protect food plant species for this primate,
- which at present constitutes only a few.

- 33 **Keywords/Phrases:** Colobus guereza, Conservation, Dietary composition, Feeding Preference,
- 34 Habitat, Matured leaf, Maze river, Season, Young leaf

INTRODUCTION

- 36 Understanding species' dietary composition and preferences is fundamental for guiding the
- development of sound conservation practices for a species and its habitat (Ramesh & Downs,
- 38 2013). They can also serve to identify crucial food resources and their spatio-temporal
- 39 availability, assisting in the protection and restoration of important habitats of species (Sengupta
- 40 et al., 2015).
- The ongoing habitat modification due due to a variety of anthropogenic pressures (Estrada et al.,
- 42 2017; Estrada et al., 2020; Estrada & Garber, 2022; Garber, 2022), and climate change
- provides a strong premise for studying diet composition and food preference in primate species
- For instance, about 65% of primate species are threatened with extinction, and ~75% have
- declining populations as a result of persistent human pressures on natural environments leading
- 46 to widespread loss and degradation of tropical forests (Estrada et al., 2017; Rudran, 2019).
- Habitat loss and degradation result in loss or decline of important food plant species for primates
- 48 (REFERENCE???), and this may eventually drive a primate species into extinction. Even those
- 49 primate species that occupy protected areas like national parks are equally affected by climate
- change. Climate change could affect availability of primates' food resources through in part by
- altering phenological patterns of some food plant species (REFERENCE???). The effect of
- climate change provides a strong basis for studying feeding ecology for primate species in
- protected areas in order to provide baseline feeding data that can be monitored in the future.
- Primates feed on a diverse array of plant items and animal tissues to meet their nutritional needs
- 55 (Coiner-Collier et al., 2016). In response to habitat changes, they can develop ecological and
- behavioural flexibility (Arroyo-Rodríguez & Fahrig 2014; Mekonnen et al., 2018). The studies
- show that species display microhabitat preferences, occupying specific forest strata or habitat
- 58 types (Campbell et al., 2018; Matsuda et al., 2022) in order to exploit different sources to meet
- 59 their nutritional demands. Studies have also shown that spatial and temporal resource availability

- 60 is among the factors which can determine the distribution of a primate species
- 61 (REFERENCE???).
- 62 food availability in an animal's diet is influenced by seasonal variations among other
- environmental factors (*Chouteau*, 2006). Some primate food resources, for instance, young
- leaves decline in dry season and this may compel folivorous primates to include more barks and
- 65 mature leaves in their diet (REFERENCE HERE). Dietary shifts typically correspond with
- seasonal resource scarcity (Yiming, 2006; Hanya & Chapman, 2013) and probably seasonal
- changes in chemical composition of food plant species (REFERNCES???). Thus, a shift in an
- 68 individual's diet should reflect the most profitable foods available at a specific time and place,
- 69 which may also mean the most nutritious, the easiest to find, or the easiest to process (Lambert &
- 70 *Rothman*, 2015).
- The C. guereza, a Least Concern species by IUCN (de Jong et al., 2019) feeds mainly on leaves
- 72 (Harris & Chapman 2007; Matsuda et al., 2020). The amount of different plant parts eaten vary
- among groups and seasons (Harris & Chapman 2007; Ibrahim et al., 2017; Matsuda et al., 2020).
- The *C. guereza* occurs in different parts of equatorial Africa, including Ethiopia. In Ethiopia, the
- 75 species was reported to be present in the Maze National Park by Dansan & Tekalign (2022).
- Despite many studies on its feeding ecology on different parts of its geographical range, the
- species was not studied in the in the Maze National Park up to present.
- 78 The aim of this study was to determine dietary composition, and feeding preferences of C.
- 79 guereza in the park. Here, we hypothesized that seasonal change affects food availability, which
- 80 in turn determines the dietary composition and feeding preference of the study species. Our
- 81 findings suggest that season affects the accessibility of diet components and consequently
- 82 influence feeding preferences of the *C. guereza*. This study is expected to offer an opportunity to
- 83 create and implement successful habitat conservation strategies to preserve important food
- 84 resources in the Park.

85 METHODS AND MATERIALS

- 86 Study area
- 87 We conducted this study at the Maze National Park (MzNP) along the Maze River, which is
- major habitat of target species. The area is located between Gamo and Gofa Zones, Southern
- 89 Ethiopia. It is surrounded by five districts, such as Daramalo in the south and southeast, Qucha in

the east, Oucha Alfa in the northwest, Zala in the southwest and Kambazuria in the south. The 90 Park is located between 06°18'30 and 06°29'00" N latitude and 37°7'30" to 37°22'30" E 91 92 longitude (Figure 1). The elevation ranges between 900 and 1200 meters above sea level (Befekadu & Afework, 2006). The area is one of semi-arid agro-ecological zone of Ethiopia. The 93 annual rainfall varies between 843 to 1321mm. Maze area experiences a rainy season that 94 extends from March to October, while the dry season is from November to February. The lowest 95 96 temperature recorded during the wet season is 15.3°C in June and the highest during the dry season is 33.5°C in February (Mamo, 2012; Tekalign & Bekele, 2011). The Park has remarkable 97 population of mammalian fauna such as orbi (Ourebi aourebi), bohor red buck (Redunca 98 99 redunca), buffalo (Bubalus bubalis), warthog (Phacochoerus africanus), bush buck (Tragelaphus scriptus), greater kudu (Tragelaphus strepsiceros), lesser kudu (Tragelaphus 100 101 imberbis), Water buck (Kobus ellipsiprymnus), bush pig (Potamocherus larvatus), anubus baboon (Papio anubis), vervet monkey (Chlorocebus pygerythrus), colobus monkey 102 103 (Colobusguereza), lion (Pantheraleo) leopard (Pantherapardus), wildcat (Felis silvestris), and 104 serval cat (Leptailurus serval, in addition to varied floral composition, that the portions of this 105 text were previously published as preprint (Tolcha et al., 2024). Itcomprises varieties of bird species, reptiles, amphibians and insects. Moreover, 39 larger and medium sized mammals and 106 107 196 bird species have been recorded in the Park (Tekalign & Bekele, 2011; MzNP annual officereport, 2018). 108 109 The Park is covered by savannah grassland with scattered deciduous broad leaved trees. Most of the Park area is plain, and is covered by open Combretum and Terminalia wooded vegetation. 110 111 The River Maze begins from the surrounding highlands of the Park and drains in to the southern part of the area along with different tributaries, and traverses the Park from the northern to 112 113 southern end of the area. This makes an important riverine habitat to primates, particularly for guerezas, in which no feeding activity has been detected rather than the riverine habitat over the 114 study period (Fig. 1). 115

Study groups

116

Three groups of *C. guereza* were targeted for this study. One group with three individuals at Maze camp site (group-1); another group with two individuals at Domba site (group-2); and the third group with three individuals at Lemasse site (group-3); were randomly selected along the

River Maze. We monitored those groups in their home ranges for the duration of the study, with a research team assigned to each group to look at dietary ecology and potential differences in feeding activities.

Data collection

123

124

139

140

141

142

143

144

145

146

147

148

149

Diet composition

125 We collected feeding data for 12-month period between September 2021 to August 2022) using 126 instantaneous scan sampling (Altmann 1974,2009). For the dry season, we collected data from September 2021 to February 2022, and for the wet season, from March 2022 to August 2022. The 127 feeding data were collected through direct observation, with the help of a binocular, from proper 128 viewpoints (Altmann, 2009) for a fixed period of 10 minutes with 5 minutes interval from 6:30 129 130 to 10:30 in the morning and 13:30 to 17:25 in the afternoon(Fashing et al., 2007). During scans, the plant species, plant parts, growth forms, and other animals consumed were 131 recorded(Fashing et al., 2014; Jarvey et al., 2018; Mekonnen et al., 2018). We categorized the 132 133 food components as Young leaf: a newly grown leaf that is still developing and has not yet reached its full maturity, often smaller, softer, and lighter in color compared to mature leaf; 134 Mature leaf: a fully developed leaf that has reached its maximum size and structural maturity, 135 136 typically tougher, darker in color compared to young leaf; Fruit: the reproductive structure of a plant that contains the seeds, ripe and often eaten by animals; Bark: the protective outer layer of 137 the stem or trunk of a woody plant, and composed of multiple layers, not to mean dead layers 138

but, living layers; Shoot: the aboveground vegetative part of a plant includes the stem and buds; Flower: the reproductive structure of a plant, and are responsible for sexual reproduction in

plants; Unidentified invertebrates: Small, non-vertebrate animals that could not be identified to a

specific taxonomic level, particularly insects. We then compared the number of feeding

observations for each food items.

Data analysis

We combined feeding data from the three groups were into a one dataset before the computations of proportions of each diet component. The analyses were executed in XLSTAT 2023.1.3 (1407) and SPSS software version 22. Of the total of 11520 scans, we recorded 5168 (44.86%) feeding activities over the study period, (Wet: 2382, 46.09%; Dry: 2786, 53.91%). We computed the

proportion of the diet components for seven food classes (young leaf, mature leaf, fruit, bark, shoot, flower, unidentified invertebrates) recorded through the study period by dividing the number of records of a particular diet component by the total number records from all diet components. The proportion of each diet component was then converted into percentages. The chi-square test was employed to test forthe seasonal and monthly variations in proportions of the diet components.

Field permit

The Office of Executive Research Directorate and the Biodiversity Research and Conservation Center, Arba Minch University were approved the fieldwork under research permit (AMU/TH2/BRCC/09/2014). Hereby, we can guarantee that no animal capture and tissue or blood sample was taken from the subject species, as data were recorded through direct observation without animal capture.

RESULTS

- We illustrated that seven tree plants and one shrub species, those grouped in to eight families comprised the major plant species identified as colobus feed sources in the area; of these, six plant sections were utilized by colobus as food and consumed in different proportions depending on the availability across seasons (Table 1). Nonetheless, we found no differences in the three research groups' feeding behaviors.
- Food classes used by colobus between seasons

Food plant species consumption and preferences

- 171 We found that six tree plants (*Acacia polyacantha*, *Millettia ferruginea*, *Moringa stenopetala*,
- 172 Syzygium guineense, Trichilia emetica and Ficus sycomorus) and two shrub species (Carissa
- 173 spinarum, Grewia villosa) that were grouped under seven families (Apocynaceae, Fabaceae,
- Myrtaceae, Moringaceae, Meliaceae, Moraceae and Malvaceae) were consumed by *C. guereza* in
- the study site. Except for the Fabaceae, all are represented by a single species. Overall, *Trichilia*
- emitica was the most top plant species preferred to the rest (Table 1).

During the wet season, *T. emetica* contributed the largest proportion to the total amount of young leaf consumption, accounting for 52.84% (n=948). This was followed by *Grewia villosa* at 20.68% (n=371), while *Moringa stenopetala* was rarely reported, with only 0.5% contributions (n=9) (Table 2) The second most popular food item this season was mature leaves, with *Trichilia emetica* and *Grewia villosa* making up the largest portions making up 53.12% and 46.88% respectively (Table 2). During the dry season, the *Moringa stenopetala* contributed the largest portion (386, 49.87%) of all young leaf consumption and *Millettia ferruginea* contributed the least, (0.13%) (Table 3).

Diet composition of guerezas

The annual diet of *C. guereza* comprised of young leaf, matured leaf, fruit, bark, shoot and flower (Table 4). Young leaf was the most consumed plant part in the overall annual diet. Based on seasons, there was seasonal variation in number of feeding records of all food plant items (Young leaf: $\chi 2 = 405$. 140, df = 1, p < 0.05; Mature leaf: $\chi 2 = 651$. 563, df = 1, p < 0.05; Fruit: $\chi 2 = 105$. 593, df = 1, p < 0.05; Shoot: $\chi 2 = 125$. 063, df = 1, p < 0.05). Young leaf as the major food item wasmore frequently consumed in the wet season (75.31%) while mature leaves were consumed more during the dry (43.61%) than wet season (Table 4) Interestingly, consumption of unidentified invertebrates was also recorded to increase by about 83% in the dry season (Table 4). The results also demonstrate some monthly variations in consumption of different plant parts or diet components by guerezas (Table 5).

DISCUSSION

Food plant species consumption and preferences

Comparable to other studies on feeding ecology of *C. guereza* across its geographical range, our study reports very few plant species consumed by this primate. In this study, we recorded eight plant species in the Maze National Park which are fewer than that observed in Kalinzu Forest (39 plant species) by Matsuda et al. (2020). Of these eight species, only two plant species *Trichilia emitica* (39.6%) and *Grewia villosa* (21.01%) had the highest feeding records and thus dominate

monkeys' diet. The observation of few plant species eaten by guerezas suggests that the dietary plant richness of this primate is very low in the park. This provides an urgent need to conserve the park to ensure the long-term presence of important food plant species. It appears that the guerezas in MzNP consumes food plant species as expected from its availability across its home range. Most of the plant species preferred (having high selection ratios) are those which are quite abundant in the groups's home ranges. However, this does not mean that these plant species are the most preferred plant species but rather they are fed because they are quite abundant in the habitat and not because they are most nutritious. Future studies should analyze nutrient content and other phytochemical composition of plants eaten in order to draw decisive conclusion on plant food preferences.

Our study demonstrates a seasonal variation in frequency with which certain plant species were eaten. For example, *T. emitica* was most frequently eaten during the dry season while *Syzigium guinense and Grewia villosa* were eaten in the dry season. Seasonal variation in plant phenological patterns can in part explain the observed variation in feeding plant species between seasons. We observed that monthly dietary diversity increased as the number of available plants with young leaves reduced during the dry season (Table 3). For example, the plant species such as *Ficussycomorus*, *Millettia ferruginea* and *Moringa stenopetala* were not used as food source for the study species during the wet season, because of sufficient young leaves, with exceptions thus *Moringa stenopetala* only contributed small amount in May (Table S2). On the other hand, *Moringa stenopetala* significantly contributed to the study species bearing more young leaves during the dry season (Table 4). This way, eight plant species from seven families and one non-plant source, i.e., unidentified invertebrates offered food items to the *C. guereza*in the study area. This was particularly due to the effects of the declining availability of young leaves from *Trichilia emetica* and *Grewia villosa*. Much of the dietary diversity in the study group is seemingly attributable to the availability young leaf portion of their diet.

Many colobine species, have increased dietary extent during times and areas with low

availability or quality of resources (Hu, 2011; Clink et al., 2017). The present study depicted, the

dietary extent increased with decreasing in young leaf availability during the dry season.

Food plant parts/item consumption.

We found that the guerezas exploited different plant parts, leaves being mostly eaten in the MzNP. However, it is not surprising for them to consume mostly young leaves because these monkeys like other colobines are anatomically adapted to feed on leaves (e.g. Mola et al., 2022; REFERENCES). In line with this, studies show that leaves accounted for high proportion (42–49%) by folivorous-frugivorous monkeys (*Lima et al., 2024*). Another study has shown that Bale monkey, a folivore specialist, spend more time munching on new bamboo tree leaves in Southern Ethiopia (Mekonnen *et al.*, 2018). Similarly, the leaves accounted for highest proportion of *Colobusguereza's* food items;(71.6%) in Borena-Sayint National Park, Northern Ethiopia (*Hussein et al., 2017*)and 82% in Bale Mountains National Park, Ethiopia (*Petros et al., 2018*).

Furthermore, young leaves were highly eaten compared to mature leaves. This observation is in line with a study on feeding ecology of guerezas at Saja Forest, Kaffa Zone, Southwest Ethiopia, that reported the monkeys to eat young leaves over mature leaves (Mola et al., 2022). Similarly, Matsuda et al., (2020) reported the *C. guereza* to consume up to 87% young leaves in the Kalinzu Forest in Uganda. Young leaves are preffered because they have low fiber content, high nutrients and easier to digest (REFERENCE). Thus by preferentially consuming these food items, the guerezas are able to maximize their nutrient intake while minimizing the ingestion of toxic compounds. Interestingly, the guerezas were observed to increase the consumption of invertebrates during the dry season by 83% (Table 4). The high consumption of invertebrates during the dry season could be strategy to increase intake of proteins from invertebrates rather than getting it from young leaves which were lowly eaten in this season.

The results of this study have demonstrated some seasonal dietary flexibility for the guerezas in the study site. We observed the study species use young leaves and matured leaves interchangeably during the wet and dry seasons. They consume a lot of young leaves during the wet season and mature leaves during the dry season vice versa. Throughout the study months, there were considerable changes in availability and consumption rate of diet items (Table 5). This is attributed to seasonal variations in phenological patterns that affect the availability of food items which eventually influence seasonal dietary composition for the guerezas. For instance, in the field, we observed that when young leaves were insufficient during the dry season, hence the monkeys change their diet use by increasing consumption of mature leaves. This is

consistent with the previous study where resource availability is highly variable; leaf monkeys eat more leaves during periods of low fruit availability *Hanya & Bernard (2012)*. Research findings found, proboscis monkeys varied in response to monthly changes in food availability, but did not vary among forest types (*Feilen & Marshall*,2020). In addition, the influence of seasonality on the diet reported at Tanjung Putting National Park, thus fruits comprised high proportion of the diet from January to May, while young leaves consumed the highest proportion of the diets from June to December (*Yeager*,1989). This might be attributed the fact, that the season contribute to the availability and even the quality of diet components and this drives the flexibility for feeding of the species. However, *Colobusguereza*consumed high amount of young leaf during the study period, in riverine habitat of the park.

The results of this study demonstrate that the guerezas exhibit seasonal and monthly dietary variability in response to availability of food components across months or seasons (Table 4 and 5). Dietary flexibility is a strategy that enables primates to survive during periods of food shortage (*Feilen & Marshall*,2020) or exploit different parts having different food resources across their home ranges or habitats (REFERENCE).

CONCLUSION

The results of this study demonstrate low richness of dietary plant species for guerezas in the park. The observation of only eight plant species with only two mostly eaten by the monkeys provide impetus for effective protection of the park to ensure the long-term presence of important food plant species. The reliance of this primate on few plant species gives a daunting future to the survival of this population in the face of ongoing climate change. However, seasonal dietary flexibility in plant species and food plant items (plant parts and invertebrates) provide some promising future as this observation suggest that the primate can respond to habitat changes through ecological flexibility. Our research showed that the habitat found in rivers plays

- a significant role containing all essential food plants and making a suitable place for the species
- 299 to reside. We found that plant species' parts, particularly leaves i.e., young and mature, are a
- fundamental diet items to the Colobusguereza. The plant species such as Trichilia emetica,
- 301 Grewia villosa, Syzygium guineense and Moringa stenopetala were reported among the most
- important food sources provide sufficient leaves (young, mature) to the subject species over the
- study period, and we suggest to be conserved for sustainable conservation of the species.
- Overall, we strongly recommend that the protection of the riverine habitat will result in effective
- conservation of *Colobus guereza* and its habitat in the Maze National Park.

306 Acknowledgements

- We are grateful to the Biodiversity Research and Conservation Centerand the Office of
- Executive Research Directorate, Arba Minch University for granting us the field permit needed
- to carry out this study. Our thanks should also go to all staff members of Maze National Park, for
- 310 their cooperation and support throughout this work.

311 **Funding**

- We, Abraham Tolcha and the team were funded by the Biodiversity Research and conservation
- 313 Center, ArbaMinch UniversityEthiopia, with the project code GOV/AMU/TH2/BRCC/09/2014.
- 314 The funder offered some logistics and covered financial costs during our field work.

315 Grant Disclosures

- The following grant information was disclosed; Biodiversity Research and conservation Center,
- 317 ArbaMinch University, Ethiopia, GOV/AMU/TH₂/BRCC/09/2014.

318 Competing Interests

319 The authors have no competing interests to declare.

320 Author Contributions

- 321 Abraham Tolcha: conceived and designed the all research work, led the project, performed the
- 322 experiments and field data collection, analyzed the data, prepared the draft manuscript, reviewed
- 323 the draftmanuscript and enriched, and approved the final version.
- 324 MatewosMasne: conceived and designed the experiments, performed the field data collection,
- analyzed the data, reviewed the draft manuscript, and approved the final draft.
- 326 Belayneh Ayechw: conceived and designed the experiments, performed the field data collection,
- analyzed the data, reviewed the draft manuscript, and approved the final draft.

328 **Data Availability**

329	Data will be available based on the data sharing policies and procedures of the									
330	journal. Supplemental Information									
331	Supplemental information for this work can be found online at web site of this journal.									
332										
333	REFERENCES									
334	Altmann J. 1974. Observational study of behavior: sampling methods. Behaviour49(34):227-									
335	266									
336	Altmann J. 2009. Observational Study of Behavior: Sampling Methods Author (s): Jeanne									
337	Altmann Published by: BRILL Stable URL: http://www.jstor.org/stable/4533591.									
338	Behaviour49(3):227–267. https://doi.org/10.1080/14794802.2011.585831									
339	Ameha A, Nielsen OJ, Larsen HO. 2014. Impacts of access and bene fit sharing on									
340	livelihoods and forest: Case of participatory forest management in Ethiopia. Ecological									
341	Economics97:162–171. https://doi.org/10.1016/j.ecolecon.2013.11.011									
342	Arkive 2011. Guereza (Colobus guereza) Downloaded from									
343	http://www.arkive.org/guereza/colobus-guereza/#src=portletV3api Accessed October 2011									
344	Arroyo-Rodríguez V, Fahrig L. 2014. Why is a landscape perspective important in studies of									
345	primates? American Journal of Primatology76(10):901–909.									
346	https://doi.org/10.1002/ajp.22282									
347	Befekadu R, Afework B. 2006. Population status and structure of Swayne's Hartebeest									
348	(Alcelaphus buselaphus swaynei) in Maze National Park, Ethiopia. International Journal of									
349	Ecology and Environmental Science 32:259-264.									
350	Bernard H, Matsuda I, Hanya G, Phua MH, Oram F, Ahmad AH.2018. Feeding ecology of									
351	the proboscis monkey in Sabah, Malaysia, with special reference to plant species-poor									
352	forests. In Primates in Flooded Habitats: Ecology and Conservation (Nowak K, Barnett AA,									
353	Matsuda I, eds.), pp 89–98. Cambridge, Cambridge University Press.									
354	Cancelliere EC, Chapman CA, Twinomugisha D, Rothman JM. 2018. The nutritional value									
355	of feeding on crops: Diets of vervet monkeys in a humanized landscape. African Journal of									
356	Ecology56(2):160–167. https://doi.org/10.1111/aje.12496									

357	Chaves ÓM, Stoner KE, Arroyo-rodríguez V. 2019. Differences in Diet Between Spider
358	Monkey Groups Living in Forest Fragments and Continuous Forest in Mexico Author (s):
359	Óscar M . Chaves , Kathryn E . Stoner and Víctor Arroyo-Rodríguez Published by :
360	Association for Tropical Biology and Conservation St. Biotropica44(1):105-113.
361	https://doi.org/10.1111/j. 1744-7429.2011.00766.x
362	Chouteau P. 2006. Influences of the season and the habitat structure on the foraging ecology of
363	two coua species in the western dry forest of Madagascar. Comptes Rendus - Biologies,
364	329(9): 691–701. https://doi.org/10.1016/j.crvi.2006.06.005
365	Clink DJ, Dillis C, Feilen KL, Beaudrot L, Marshall AJ.2017. Dietary diversity, feeding
366	selectivity, and responses to fruit scarcity of two sympatric Bornean primates (Hylobates
367	albibarbis and Presbytis rubicunda rubida). PLoS One12:e0173369.
368	Coiner-Collier S, Scott RS, Chalk-Wilayto J, Cheyne SM, Constantino P, Dominy NJ,
369	Elgart AA, Glowacka H, Loyola LC, Ossi-Lupo K, Raguet-Schofield M, Talebi MG,
370	Sala EA, Sieradzy P, Taylor AB, Vinyard CJ, Wright BW, Yamashita N, Lucas PW,
371	Vogel ER,2016. Primate dietary ecology in the context of food mechanical properties.
372	Journal of Human Evolution98(April 2018):103–118.
373	https://doi.org/10.1016/j.jhevol.2016.07.005
374	Dansa M, Tekalign W. 2022. Primate diversity and species' distributions in Maze National
375	Park, southern Ethiopia, African Zoology57(2):121-125. DOI:
376	10.1080/15627020.2022.2087478
377	de Jong YA, Butynski TM, Oates JF. 2019. Colobus guereza. The IUCN Red List of
378	Threatened Species 2019: e.T5143A17944705. http://dx.doi.org/10.2305/IUCN.UK.2019-
379	3.RLTS.T5143A17944705.en
380	Dunn JC, Asensio N, Arroyo-Rodríguez V, Schnitzer S, Cristóbal-Azkarate J. 2012. The
381	ranging costs of a fallback food: liana consumption supplements diet but increases foraging
382	effort in howler monkeys. <i>Biotropica</i> 44: 704–714.
383	Ego WK, Mbuvi DM, Kibet PFK. 2003. Dietary composition of wildebeest (Connochaetes
384	taurinus) kongoni (Alcephalus buselaphus) and cattle (Bos indicus), grazing on a common

385	ranch in south-central Kenya. African Journal of Ecology41(1):83-92.
386	https://doi.org/10.1046/j.1365-2028.2003.00419.x
387	Estrada A, Garber PA. 2022. Principal Drivers and Conservation Solutions to the Impending
388	Primate Extinction Crisis: Introduction to the Special Issue. International Journal of
389	Primatology43(1):1–14. https://doi.org/10.1007/s10764-022-00283-1
390	Estrada A, Garber PA, Chaudhary A. 2020. Current and future trends in socio-economic,
391	demographic and governance factors affecting global primate conservation. PeerJ8:1-35.
392	https://doi.org/10.7717/peerj.9816
393	Estrada A, Garber PA, Rylands AB, Roos C, Fernandez-Duque E, Fiore A, Di Anne-Isola,
394	Nekaris K, Nijman V, Heymann EW, Lambert JE, Rovero F, Barelli C, Setchell JM,
395	Gillespie TR, Mittermeier RA, Arregoitia LV, de Guinea M, Gouveia S, Dobrovolski
396	R, Li B. 2017. Impending extinction crisis of the world's primates: Why primates matter.
397	Science Advances3(1):https://doi.org/10.1126/sciadv.1600946
398	Fashing PJ. 2001. Feeding ecology of guerezas in the Kakamega Forest, Kenya: the importance
399	of Moraceae fruits in their diet. International Journal of Primatology 22(4):579-609.
400	Fashing PJ. 2007. African colobine monkeys: patterns of between-group interaction. In:
401	Campbell CJ, Fuentes A, Mackinnon KC, Panger M, Bearder SK, editors. Primats in
402	perspective. Oxford: Oxford University Press. p 201–224.
403	Fashing PJ, Nguyen N, Venkataraman VV, Kerby JT. 2014. Gelada feeding ecology in an
404	intact ecosystem at Guassa, Ethiopia, variability over time and implications for theropith
405	and hominin dietary evolution. American Journal of Physical Anthropology 155:1–16.
406	Feilen KL, Marshall A J. 2020. Responses to Spatial and Temporal Variation in Food
407	Availability on the Feeding Ecology of Proboscis Monkeys (Nasalis larvatus) in West
408	Kalimantan, Indonesia. Folia Primatologica 91(4): 399–416.
409	https://doi.org/10.1159/000504362
410	Ganzhorn JU, Arrigo-Nelson SJ, Boinski S, Bollen A, Carrai V, Derby A, Zhao Q. 2017.
411	The importance of protein in leaf selection of folivorous primates. American Journal of

412	<i>Primatology</i> 79(3) e22591.
413	Garber PA. 2022. Advocacy and Activism as Essential Tools in Primate Conservation.
414	International Journal of Primatology43(1):168–184. https://doi.org/10.1007/s10764-021-
415	00201-x
416	Gogarten JF, Guzman M, Chapman, CA, Koenig WD. 2012. Fastidious feeders: dietary
417 418	breadth of Bwindi chimpanzees. American Journal of Primatology 74(11): 1006-1018.
419	Groves CP. 2001. The Taxonomy of Primates. Smithsonian Institution Press, Washington, DC.
420	Hanya G, Chapman CA. 2013. Linking feeding ecology and population abundance: A review
421	of food resource limitation on primates. <i>Ecological Research</i> 28(2): 183–190.
122	https://doi.org/10.1007/s11284-012-1012-y
423	Hanya G, Bernard H. (2012). Fallback foods of red leaf monkeys (Presbytis rubicunda) in
124	Danum Valley, Borneo. International Journal of Primatology 33: 322–337.
425	Hu G. 2011. Dietary breadth and resource use of François' langur in a seasonal and disturbed
126	habitat. American Journal of Primatology 73(11):1176–1187.
127	https://doi.org/10.1002/ajp.20985
428	Hussein I, Afework B, Dereje Y. 2017. Population structure and feeding ecology of Guereza
129	(Colobus guereza) in Borena-Sayint National Park, northern Ethiopia. International Journal
430	of Biodiversity and Conservation9(11):323–333. https://doi.org/10.5897/ijbc2017.1114
431	Irwin MT, Raharison JL Raubenheimer DR Chapman CA Rothman, J. M. 2014.
432	Nutritional correlates of the "lean season": effects of seasonality and frugivory on the
433	nutritional ecology of diademed sifakas. American journal of physical anthropology,
134	153(1):78-91.
435	
436	Israel P, Sefi M, Hussein Gena YM. 2018. Population Status, Distribution, and Threats of
137	Colobus guereza gallarum in Bale Mountains National Park, Southeastern Ethiopia.

438	International Journal of Natural Resource Ecology and Management 3(3):39–45.
439	https://doi.org/10.11648/j.ijnrem.20180303.12
440	Jarvey JC, Low BS, Pappano DJ, Bergman TJ, Beehner JC. 2018. Graminivory and Fallback
441	Foods: Annual Diet Profile of Geladas (Theropithecus gelada) Living in the Simien
442	Mountains National Park, Ethiopia. <i>International Journal of Primatology</i> 39(1): 105–126.
443	https://doi.org/10.1007/s10764-018-0018-x
444	Kibaja MJ, Mekonnen A, Reitan T, Nahonyo CL, Levi M, Stenseth NC, Hernandez-
445	Aguilar RA. 2023. On the move: Activity budget and ranging ecology of endangered Ashy
446	red colobus monkeys (Piliocolobus tephrosceles) in a savanna woodland habitat. Global
447	Ecology and Conservation43(2023):1–15. https://doi.org/10.1016/j.gecco.2023.e02440
448	
449	Kifle Z, Beehner JC. 2022. Distribution and diversity of primates and threats to their survival in
450	the Awi Zone, northwestern Ethiopia. <i>Primates</i> 63(6): 637–645.
451	https://doi.org/10.1007/s10329-022-01010-3
452	Lambert JE, Rothman JM. 2015. Fallback Foods, Optimal Diets, and Nutritional Targets:
453	Primate Responses to Varying Food Availability and Quality. Annual Review of
454	Anthropology44(1):493–512. https://doi.org/10.1146/annurev-anthro-102313-025928
455	Leighton M. 1993. Modeling dietary selectivity by Bornean orangutans: Evidence for
456	integration of multiple criteria in fruit selection. International Journal of
457	Primatology14(2):257–313. https://doi.org/10.1007/BF02192635
458	Lima, I.A., Bicca-Marques, JC. 2024. Opportunistic meat-eating by urban folivorous-
459	frugivorous monkeys. Primates 65: 25-32 (2024). https://doi.org/10.1007/s10329-023-
460	01098-1
461	Mamo Y. 2012. Status of the Swayne's Hartebeest, (Alcelaphus buselaphus swaynei) meta-
462	population under land cover changes in Ethiopian Protected Areas. International Journal of
463	Biodiversity and Conservation4(12): https://doi.org/10.5897/ijbc12.024
464	Matsuda I, Tuuga A, Higashi S.2009. The feeding ecology and activity budget of proboscis

465	monkeys. American Journal of Primatology 71: 478–492.
466	Matsuda I, Hashimoto C, Ihobe H, Yumoto T, Baranga D, Clauss M, Hummel J. 2022.
467	Dietary Choices of a Foregut-Fermenting Primate, Colobus guereza: A Comprehensive
468	Approach Including Leaf Chemical and Mechanical Properties, Digestibility and
469	Abundance. Frontiers in Ecology and
470	Evolution10(March):https://doi.org/10.3389/fevo.2022.795015
471	Mekonen S, Hailemariam B. 2016. Ecological behaviour of common hippopotamus (
472	Hippopotamus amphibius, LINNAEUS, 1758) in boye wetland, jimma, ethiopia.
473	American Journal of Scientific and Industrial Research 7(2):41–49.
474	https://doi.org/10.5251/ajsir.2016.7.2.41.49
475	Mekonnen A, Fashing PJ, Bekele A, Hernandez-Aguilar RA, Rueness EK, Stenseth NC.
476	2018. Dietary flexibility of Bale monkeys (Chlorocebus djamdjamensis) in southern
477	Ethiopia: Effects of habitat degradation and life in fragments. BMC Ecology 18(1):1–20.
478	https://doi.org/10.1186/s12898-018-0161-4
479	Mekonnen A, Fashing PJ, Bekele A, Stenseth NC. 2020. Distribution and conservation status
480	of Boutourlini's blue monkey Distribution and conservation status of Boutourlini's blue
481	monkey (Cercopithecus mitis boutourlinii), a Vulnerable subspecies endemic to western
482	Ethiopia. <i>Primates</i> 61 (6): 7 85–796. https://doi.org/10.1007/s10329-020-00831-4
483	Oates JF. 1994. The natural history of African colobus monkeys. Colobine monkeys: their
484	ecology. Behaviour and Evolution 75-128.
485	Ramesh T, Downs CT. 2013. Impact of landuse on the diversity of ground-dwelling
486	invertebrates in a South African forest-grassland ecotone. Applied ecology and
	involved aces in a south i intent forest grassiana ecotone. Apprica ecotos, una
487	environmental research 11(2):145-163.
487 488	
488	environmental research11(2):145-163.

492	Science3(10):https://doi.org/10.1098/rsos.160498
493	Rudran R. 2019. Purple-faced langur Semnopithecus vetulus (Erxleben, 1777). In Primates in
494	Peril: The World's 25 Most Endangered Primates 2018–2020.
495	Saj TL, Sicotte P. 2007. Predicting the competitive regime of female colobus monkeys (Colobus
496	vellerosus) from the distribution of food resources. Behavioural Processes 74(1):72-79.
497	
498	Seiler N, Robbins MM. 2016. Factors Influencing Ranging on Community Land and Crop
499	Raiding by Mountain Gorillas. Animal Conservation 19(2): 176–188.
500	https://doi.org/10.1111/acv.12232
501	Sengupta A, McConkey KR, Radhakrishna S. 2015. Primates, provisioning and plants: effects
502	of human cultural behaviours on primate ecological functions. <i>PloS one</i> 10 (11):e0140961.
503	
504	Sha JCM, Hanya G. 2013. Temporal Food Resource Correlates to the Behavior and Ecology of
505	Food-Enhanced Long-Tailed Macaques (Macaca fascicularis). Mammal Study 38(3):163-
506	175. https://doi.org/10.3106/041.038.0305
507	Sushma HS, Ramesh KP, Kumara HN. 2022. Determinants of habitat occupancy and spatial
508	segregation of primates in the central Western Ghats, India. <i>Primates</i> 63(2): 137–147.
509	https://doi.org/10.1007/s10329-021-00966-y
510	Soendjoto MA, Alikodra HS, Bismark M, Setijanto H.2006. Jenis dan komposisi pakan
511	bekantan (Nasa- lis larvatus Wurmb) di hutan karet Kabupaten Tabalong, Kalimantan
512	Selatan (Diet and its compo- sition of the proboscis monkey [Nasalis larvatus Wurmb] in
513	rubber forest of Tabalong District, South Kalimantan). <i>Biodiversitas</i> 7: 34–38.
514	Tekalign W, Bekele A. 2011. Population status, foraging and diurnal activity patterns of oribi
515	(Ourebia ourebi) in Senkele Swayne's hartebeest sanctuary, Ethiopia. Ethiopian Journal of
516	Science 34(1): 29–38.
517	Tesfaye D, Fashing PJ, Meshesha AA, Bekele A, Stenseth NC. 2020. Feeding Ecology of the

518	Omo River Guereza (Colobus guereza guereza) in Habitats with Varying Levels of
519	Fragmentation and Disturbance in the Southern Ethiopian Highlands. International Journal
520	of Primatology42(1):64–88. https://doi.org/10.1007/s10764-020-00189-w
521	Tolcha A, Shibru S, Takele S, Dingamo T, Ayechw B. 2024. Species diversity, population
522	density and habitat association of large carnivores in Maze National Park, Ethiopia
523	(Preprint) https://doi.org/10.21203/rs.3.rs-4499316/v1
524	
525	van Casteren A, Oelze VM, Angedakin S, Kalan AK, Kambi M, Boesch C, Kühl HS,
526	Langergraber KE, Piel AK, Stewart FA, Kupczik, K. 2018. Food mechanical properties
527	and isotopic signatures in forest versus savannah dwelling eastern chimpanzees.
528	Communications Biology1(1):https://doi.org/10.1038/s42003-018-0115-6
529	Yeager CP. 1989. Feeding ecology of the proboscis monkey (Nasalis larvatus). International
530	Journal of Primatology 10(6):497–530. https://doi.org/10.1007/BF02739363
531	Yiming L. 2006. Seasonal variation of diet and food availability in a group of Sichuan snub-
532	nosed monkeys in Shennongjia Nature Reserve, China. American Journal of
533	Primatology68(3):217–233. https://doi.org/10.1002/ajp.20220
534	
535	
536	Table 1 Feeding preference (selection ratio) of food plant species consumed by Colobus

 guereza during the study period.

Family	Species		Mean annual proportion (%)	Stem/h a	Selection ratio	Rank
Apocynaceae	Carissaspinarum	Shrub	4.22	7.22	0.58	6
Fabaceae	Millettiaferruginea	Tree	2.32	4.16	0.56	7
Myrtaceae	Syzygiumguineense	Tree	17.92	5	3.58	2
Moringaceae	Moringastenopetala	Tree	7.64	4.16	1.84	4
Meliaceae	Trichiliaemetica	Tree	39.59	9.16	4.32	1
Moraceae	Ficussycomorus	Tree	0.81	4.16	0.19	8
Malyaceae	Grewiavillosa	Shrub	21.01	9.44	2 22	3

540 541 542

Table 2: Diet components consumed per plant species during wet season

Plants pecies used	Food components consumed during wet season(%)						
	YL	ML	FR	Bk	Sh	FL	Total
Carissaspinarum	0	0	6.04	0	0	0	6.04
Millettiaferruginea	0	0	0	0	0	0	0
Syzygiumguineense	12.93	0	0	0	0	0	12.93
Moringastenopetala	0.38	0	0	0	0	0	0.38
Trichiliaemetica	39.80	5.37	0	0	8.19	0	53.36
Ficussycomorus	0	0	0	0	0	0	0
Grewiavillosa	15.57	4.75	0	0	0	0	20.32
Acaciapolyacantha	6.63	0	0	0	0	0	6.63
Unidentified							0.34
invertebrates							
Total	75.31	10.12	6.04	0	8.19	0	100

543

544 545 546

Table 3: Diet components consumed per plant species during the dry season

Plantspeciesused Foodcomponentsconsumedduring drseason(%)							
	YL	ML	FR	Bk	Sh	FL	Total
Carissaspinarum	0	0	2.67	0	0	0	2.67
Millettiaferruginea	0.06	0	1.83	2.40	0	0.06	4.35
Syzygiumguineense	1.90	10.37	3.30	0	0.1	6.49	22.16
Moringastenopetala	13.86	0	0	0	0	0	13.86
Trichiliaemetica	6.44	17.30	3.55	0	0.54	0	27.83
Ficussycomorus	0	0	1.5	0	0	0	1.5
Grewiavillosa	5.57	15.94	0	0	0	0.1	21.61
Acaciapolyacantha	0	0	0	4.05	0	0	4.05
Unidentified							1.97
invertebrates							
Total	27.82	43.61	12.85	6.45	0.64	6.65	100

547

548

549

Table 4: Percentage composition of annual and seasonal dietary composition

Plant parts eaten	YL	ML	FR	Bk	Sh	Fl	Unidentified inveretebrates
Wet season	75.31	10.12	6.06	0	8.19	0	0.34
Dry season	27.82	43.82	12.85	6.45	0.64	6.65	1.97
Annual /Overall	51.57±23.7	26.97±16.9	9.46±3.4	3.22±3.2	4.42±3.7	3.32±3.3	1.16±0.8

 Table 5 Proportion of diet components used by Colobus monkeys for each month during the 13 study period

N o.	Food components	Diet components consumed by Colobus monkey over months of the year (%)											
		Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sep.	Oct.
		2021	2021	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022
1	Young leaf	20	21	25	27	38	39.5	41	46	49.5	46.5	43	40
2	Matured leaf	28.5	24	27.5	31	28	23.5	21.5	19.5	27	28	29.5	31
3	Fruit	21	17.5	15	10.5	7.5	12	8.5	13.6	6	8	9.75	9
4	Flower	14	10	9.3	8.5	6.5	9	10.5	4.5	2.5	3.5	6	4
5	Bark	3.5	4	3.45	3	2.5	2.3	3	3.4	1.2	2	1.5	4
6	Shoot	4	12.5	9	7	6	5.7	9	7	4.3	5.5	3	2.5
7	Unidentified invertebrate s	9	11	10.7 5	13	11.5	8	6.5	6	9.5	6.5	7.25	9.5