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Plant resistance to herbivores involves physical and chemical plant traits that
prevent/diminishes damage by herbivores and hence, may promote coevolutionary arm-
races between interacting species. Although Datura stramonium’s concentration of
tropane alkaloids is under selection by leaf beetles, it is not known whether chemical
defense reduces seed predation by the specialist weevil, Trichobaris soror, and if it is
evolving by natural selection. We measured infestation by T. soror as well as the
concentration of the plants’ two main tropane alkaloids in 278 D. stramonium plants
belonging to 31 populations in central Mexico. We assessed whether the seed predator
exerted preferences on the levels of both alkaloids and whether they affect plant fitness.
Results show great variation across populations in the concentration of scopolamine and
atropine in both leaves and seeds of plants of D. stramonium, as well as in the intensity of
infestation and the proportion of infested fruits by T. soror. The concentration of
scopolamine in seeds and leaves are negatively associated across populations. We found
that scopolamine concentration increases plant fitness. Our major finding was the
detection of a positive relationship between the population average concentrations of
scopolamine with the selection differentials of scopolamine. Such spatial variation in the
direction and intensity of selection on scopolamine may represent a coevolutionary
selective mosaic. Our results support the view that variation in the concentration of
scopolamine among-populations of D. stramonium in central Mexico is being driven, in
part, by selection exerted by T. soror, pointing an adaptive role of tropane alkaloids in this
plant species.
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21 Introduction

22 The coevolutionary process involves reciprocal selection-adaptation between interacting 

23 species through time (Dawkins & Krebs, 1979; Thompson, 1999; Thompson, 2005). This 

24 adaptation and counter-adaptation p h e n o m e n o n  could result in a coevolutionary arms 

25 race, a process of offense-defense (Dawkins & Krebs, 1979).  A coevolutionary relationship 

26 between plants and herbivores may generate symmetrical or asymmetrical selective pressures 

27 between interacting species. These selective pressures may be different spatially and could 

28 produce a geographic structure of interactions (Forde, Thompson & Bohannan, 2004; 

29 Gomulkiewicz et al., 2002; Nuismer, Thompson & Gomulkiewicz, 2000; Thompson, 1999; 

30 Thompson, 2005). In some locations the interacting species exert reciprocal selection pressures 

31 to one another (coevolutionary hot spots), whereas in other locations reciprocal selection is 

32 highly asymmetric (coevolutionary cold spots) (Gomulkiewicz et al., 2002; Nuismer, Thompson 

33 & Gomulkiewicz, 2000; Thompson, 1999; Thompson, 2005).

34 A coevolutionary arms race between herbivores and plants may be favored in 

35 specialized interactions as in the case of insects that detoxify specific compounds 

36 (Janzen, 1969; Janzen, 1973; Schoonhoven, Van Loon & Dicke, 2005). For instance, the aphid 

37 Macrosiphum albifrons is adapted to consume Lupinus angustifolius with a low content of 

38 alkaloids (Philippi et al., 2015); however, dietary specialist herbivore insects may also be 

39 adapted to tolerate secondary metabolites of their host plants without switching to  other  

40 different  host  plants  (Laukkanen et  al . ,  2012) . In Arabidopsis thaliana, the abundance 

41 of two aphid herbivore species is correlated to a genetic polymorphism of the plant´s resistance 

42 locus. This polymorphism is under selection due to changes in population size of the two aphid 

43 species (Züst et al., 2012).
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44 Host-parasite systems, that exert reciprocal selection pressures, offer the opportunity to 

45 assess the asymmetry in selection pressures and the potential to produce adaptation (Greischar & 

46 Koskella, 2007). Local adaptation may produce population differentiation as a by-product of 

47 natural selection (Kawecki & Ebert, 2004). This process is well illustrated by the weevil 

48 Curculio camelliae (Coleoptera: Curculionidae) that parasitizes the fruits of Camellia japonica 

49 (Theaceae) (Iseki, Sasaki & Toju, 2011; Toju, 2007; Toju, 2009; Toju & Sota, 2006). The fruits 

50 of C. japonica are capsules with a thick pericarp, dehiscent, with three locules and one seed per 

51 cavity (Okamoto, 1988). Females of C. camelliae perforate the thick pericarp with its long 

52 rostrum, modified labial cavity in insects (Resh & Cardé, 2009), and oviposit on the seeds (Toju, 

53 2007). A successful weevil infestation, or oviposition, depends on the phenotypic match between 

54 the rostrum length and pericarp thickness. These two traits that mediate the interaction vary 

55 geographically and are under selection (Toju, 2007; Toju, 2009; Toju & Sota, 2006). Some 

56 evidence, however, indicates that these phenotypic characteristics may also vary according to 

57 abiotic factors, i. e. the latitude (Iseki, Sasaki & Toju, 2011). Furthermore, infestation by the 

58 weevil C. camelliae increases at higher-altitude localities and its obligated host plant decreases 

59 its resistance (Toju 2009). In the C. camelliae-C. japonica system, natural selection acts on 

60 pericarp thickness that is a physical barrier that prevents infestation by weevils (Toju, 2007; 

61 Toju, 2009; Toju, 2011; Toju & Sota, 2006).

62 In the annual herb Datura stramonium, tropane alkaloids function either as resistance 

63 characters preventing foliar damage by herbivores and/or as phagostimulants to them (Castillo et 

64 al., 2013; Castillo et al., 2014; Shonle & Bergelson, 2000). Evidence shows that alkaloid 

65 concentration in D. stramonium varies across populations (Castillo et al., 2014) and that such 

66 differentiation in chemical defense could be adaptive (Castillo et al., 2015). In some populations, 
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67 dietary specialist and generalist folivores select against atropine concentration, whereas 

68 scopolamine is positively selected selected by the dietary specialist folivore Lema daturaphila 

69 and by the generalist grasshopper Sphenarium purpurascens (Castillo et al., 2014). Fruits of D. 

70 stramonium are parasitized by Trichobaris soror (Coleoptera: Curculionidae) that reduces plant 

71 fitness by consuming the seeds (Cabrales-Vargas, 1991; Cruz, 2009; De-la-Mora, Piñero & 

72 Núñez-Farfán, 2015). However, to what extent alkaloids of D. stramonium could affect 

73 infestation by the seed predator is not known. Here, we analyzed the relationship between 

74 tropane alkaloids produced by D. stramonium and infestation by the specialized seed predator T. 

75 soror across multiple populations in central Mexico. We aimed to determine whether D. 

76 stramonium’s tropane alkaloids prevent infestation by T. soror. Specifically, we addressed the 

77 following questions. 1. Are alkaloids resistance characters that prevent/reduce infestation by 

78 weevils? 2. Do seed predators exert natural selection upon plant´s alkaloids concentration? And 

79 3. Do variation of both alkaloid concentration and infestation by weevils across populations is 

80 correlated to the localities’ environmental conditions? (v. gr., Toju, 2009).

81 Materials and methods

82

83 Study system

84 The weevil Trichobaris soror (Coleoptera: Curculionidae) is intimately associated to the life 

85 cycle of D. stramonium (Bello-Bedoy, Cruz & Núñez-Farfán 2011a, Borbolla, 2015; 

86 Cabrales-Vargas, 1991). Trichobaris soror is distributed mainly in central Mexico (Barber, 

87 1935; De-la-Mora, Piñero & Núñez-Farfán, 2015); adult weevils feed on leaves, calyx and 

88 floral tissues of D. stramonium. After mating, females oviposit at the base of developing 

89 fruits. Their larvae feed exclusively on immature seeds inside the developing fruit where 
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90 they build tunnels with their own feces. Larvae pupate in the fruit and sometimes are 

91 parasitized by wasps. The weevils hibernate inside the fruit of D. stramonium until the 

92 next rainy season (Bello-Bedoy, Cruz & Núñez-Farfán 2011a, Borbolla, 2015; Cabrales-

93 Vargas, 1991).

94 Besides the seed predator, D. stramonium (Solanaceae) is preyed upon by 

95 specialist leaf-beetles (Lema trilineata and Epitrix parvula, Coleoptera: Chrysomelidae). 

96 This weed species has been widely studied in relation to its resistance characters 

97 (a lkaloids ,  leaf  t r ichomes)  against these leaf herbivores (Bello-Bedoy & Núñez-

98 Farfán, 2011b; Cabrales-Vargas, 1991; Carmona & Fornoni, 2013; Castillo et al., 2013; 

99 Castillo et al., 2014; Núñez-Farfán & Dirzo, 1994; Shonle & Bergelson, 2000; Valverde, 

100 Fornoni & Núñez-Farfán, 2001). However, i t  is  unknown if chemical defense of D. 

101 stramonium prevents the infestation by the weevil  T. soror.

102

103 Sampled populations

104 During the reproductive season of D. stramonium (September-November) in 2007, we 

105 sampled different populations across Central Mexico. We collected an average of 30 

106 plants from 31 populations (Fig. 1, Table S1). For each plant, all mature fruits were 

107 collected and individually bagged and labeled. Before opening, the width and length of 

108 each fruit was measured to calculate its volume with the equation:

109

110 𝑉= (43)(𝜋)(𝑙𝑒𝑛𝑔𝑡ℎ)((𝑤𝑖𝑑𝑡h2 )2)
111
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112 We estimated the number of expected seeds by multiplying the volume by 0.026 

113 (Fornoni, Valverde & Núñez‐Farfán, 2004).  In the laboratory, we  opened the fruits to 

114 determine the infestation, by counting the weevils. Also, for each fruit we counted the 

115 number of remaining, sound, seeds after predation.

116

117 Seed predator´s infestation measures

118 We measured the intensity of infestation by T. soror to D. stramonium as the number of 

119 weevils divided by the number of fruits per plant (Greischar & Koskella, 2007). Also, we 

120 measured the infestation as the proportion of infested fruits per plant.

121

122 Alkaloid concentration

123 We quantified the concentration of leaf atropine and scopolamine per plant (Boros et 

124 al. 2010), by means of high-performance liquid chromatography (HPLC), following 

125 Castillo et al. (2013). We obtained the average leaf  alkaloid concentration from a 

126 sample of 8-10 plants per population. In order to assess if leaf and seeds alkaloid 

127 concentration are correlated, we measured alkaloids of mature seeds in a subsample of 

128 119 plants of 14 populations (Table S2).

129

130 Characterization of environmental variables

131 In order to control for some concomitant environmental variation, the values of mean annual 

132 temperature and precipitation for the 31 studied populations of the D. stramonium were obtained 

133 from Worldclim (Hijmans & Graham, 2006). We characterized each population by calculating 
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134 the Lang´s aridity index (Rehman, 2010), as the ratio of population mean annual precipitation 

135 and mean annual temperature. Values between 0-20 correspond to deserts, 20-40 arid habitats, 

136 40-60 wet type steppes, 60-100 wet woodlands and 100-160 wet forests (Perry, 1986).

137

138 Statistical analyses

139 We assessed the among-population variation in the intensity of infestation, the proportion of 

140 infested fruits by T. soror, and the concentration of atropine and scopolamine in seeds and in 

141 leaves, using generalized linear model (GzLM), assuming a gamma distribution and a log link 

142 function. Our hypothesis is that infestation by the seed predator does not vary among 

143 populations of D. stramonium. 

144 The relationship between the concentration of atropine and scopolamine in both leaves 

145 and seeds was tested through generalized linear mixed models (GzLMM), with a gamma 

146 distribution, a log link function and population as a random factor. Data were obtained from 

147 individual plants from a subsample of 14 populations. In order to assess the effect of the seed 

148 predator on plant fitness, we performed a GzLMM of the number of remaining sound seeds, as 

149 estimator of fitness, as a function of the proportion of infested fruits per plant and population as a 

150 random factor. Again, we assumed a gamma distribution and a log link function. Similarly, we 

151 tested if the concentration of atropine and scopolamine in leaves increases plant individual 

152 fitness. We assumed the population  proportion of infested fruits interaction as a random 

153 factor.

154 Selection differentials (S) that account for direct and indirect selection acting on a trait 

155 were calculated through Pearson correlation coefficient for each population (Lande & 
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156 Arnold, 1983). The concentration of atropine and scopolamine in seeds and leaves was 

157 standardized ( x '  (x )2


). As a proxy of plant fitness we used the estimated number of seeds 

158 per plant (other examples in Kingsolver et al., 2001). The relative fitness was defined as the 

159 ratio between individual fitness and population average fitness. Selection differentials were 

160 estimated for each population by  co r r e l a t i ng  a lka lo id  concen t r a t i on  s t anda rd i zed  

161 ( a t rop ine  o r  s copo lamine )  w i th  relative fitness (such in Sobral et al., 2013; Sobral 

162 et al., 2015). 

163 In order to explore the effect of selection exerted by the seed predation and environmental 

164 variables on the concentrations of scopolamine and atropine in both leaves and seeds, across 

165 populations of D. stramonium, we performed generalized linear models (GzLM) (such in 

166 Herrera, Castellanos & Medrano, 2006; Sobral et al., 2015). In each model we included the 

167 selection differential of the corresponding alkaloid, latitude, longitude, altitude, and Lang’s index 

168 of each population. We assumed a gamma distribution (log link function) for alkaloid 

169 concentration in leaves, and a Gauss inverse (identity link function) for seeds. We selected the 

170 models with lowest corrected AIC values, namely those that explain better the relationship 

171 between the variables and consider the sample size (Akaike, 1974; SPSS, 2011). Statistical 

172 analyzes were performed with SPSS v20.0 statistical package (SPSS, 2011).

173

174 Results

175 We detected wide variation in concentration of scopolamine and atropine in leaves (Fig. 2; 

176 Table 1) and seeds (Fig. 3; Table 1) across populations of D. stramonium. The proportion of 

177 infested fruits as well as the intensity of infestation by T. soror to plants of D. stramonium 
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178 varied significantly among populations (Fig. 4; Table 1). Variation in the average proportion 

179 of infested fruits ranged from zero (populations Coatepec, Huitzuco and Jalapa) up to 90% 

180 (populations Teotihuacan and Tlaxiaca; Fig. 4). The average intensity of infestation by T. 

181 soror varies from populations without infestation up to those with 5 weevils per fruit, per 

182 plant. 

183 The concentration of atropine and scopolamine in leaves is positive and 

184 significantly related (N = 117, Estimate = 0.289, S.E. = 0.055, t = 5.285, P < 0.0001, AICc 

185 = 306), while the correlation of scopolamine in leaves and seeds is negative (N = 117, 

186 Estimate = -1.29, S.E. = 0.484, t = -2.666, P = 0.009, AICc = 305.279). Similarly, the 

187 concentration of scopolamine in leaves and atropine in seeds are negatively related (N = 117, 

188 Estimate = -1.061, S.E. = 0.481, t = -2.206, P = 0.029, AICc = 307.407).

189 The number of sound remaining seeds per plant showed a negative relationship with 

190 the proportion of infested fruits T. soror (N = 278; Estimate = -0.629, S.E. = 0.266; t = -

191 2.367; P = 0.019; AICc = 832.46). We found that the number of remaining sound seeds 

192 shows a positive relationship with both scopolamine concentration in leaves (N = 278; 

193 Estimate = 0.200, S.E. = 0.076; t = 2.639; P = 0.009; AICc = 886.85) and seeds (N = 119; 

194 Estimate = 13.56, S.E. = 3.56; t = 3.81; P < 0.0001; AICc = 403.32). 

195 A GzLM of the population average of scopolamine concentration in leaves is 

196 positively related to the selection differential (S) of leaf scopolamine (Table 2, Fig. 5A). The 

197 same result, although marginally significant, was detected for scopolamine in seeds. 

198 In the case atropine concentration in seeds, the GzLM indicates a positive and highly 

199 significant relationship with the Lang´s aridity index; atropine concentration in leaves is 

200 marginally significant in its relationship with Lang´s aridity index (Table 2, Fig. 5B).
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201

202 Discussion

203 Populations of D. stramonium vary in the concentration of alkaloids in leaves. This result is 

204 in agreement with the study of Castillo et al. (2013). Here, we found that populations of D. 

205 stramonium also vary in the concentration of alkaloids in seeds, in the intensity of 

206 infestation, as well as in the proportion of infested fruits by T. soror. The concentration of 

207 scopolamine in seeds and leaves is negatively associated across populations. Although such 

208 a pattern was not detected for atropine, the concentration of scopolamine and atropine in 

209 leaves, positively covary across populations. Remarkably, we detected that scopolamine 

210 concentration in both leaves and seeds enhances individual plant fitness. Our major finding 

211 was the detection of a positive relationship between the population average concentration of 

212 scopolamine in both leaves and seeds with the selection differentials of scopolamine. This 

213 implies that natural selection explains the among population variation in scopolamine 

214 concentration. Thus, T. soror is driving, at least in part, the variation in chemical defense in 

215 D. stramonium (Castillo et al., 2015).

216 A previous study has reported that scopolamine plays a role in the interaction 

217 between D. stramonium and its main folivore insects in central Mexico (Castillo et al., 

218 2014). Here, we found that among-populations of D. stramonium, plants with higher 

219 concentration of scopolamine in leaves had a higher number of remaining sound seeds. This 

220 suggests that scopolamine acts as a defense character against T. soror, resulting in fewer 

221 consumed or damaged seeds. A similar trend has been found in the hemiparasitic plant 

222 Castilleja indivisa (Adler, 2000), where the alkaloid lupanine, obtained from its host plant, 

223 Lupinus texensis, reduces damage to its flowers by herbivores and increases visitation by 

PeerJ reviewing PDF | (2015:12:8177:2:0:NEW 14 Mar 2016)

Manuscript to be reviewed



224 pollinators, thus enhancing plant fitness, measured as the number of seeds. 

225 The fact that the concentration of scopolamine in leaves and seeds are negatively 

226 correlated, probably pointing an allocation trade-off (Kariñho-Betancourt et al., 2015), this does 

227 not preclude that scopolamine concentration in leaves had a negative effect on the seed predator. 

228 Adult females and males of T. soror courtship, mate, and feed on D. stramonium leaves (J. 

229 Núñez-Farfán, personal observation). When feeding, adult weevils produce small holes on the 

230 leaf blade, and sometimes damage can be severe (Cabrales-Vargas, 1991). Thus, it  i s  l i k e l y  

231 t h a t  T .  s o r o r ’ s  females, while feeding, might “assess” the chemical resistance level of 

232 a plant (i.e., atropine/scopolamine concentration in leaves) and select which plants are 

233 suitable to oviposit. This would result in lower or null oviposition in those plants with 

234 high concentration of scopolamine in leaves. Some evidence in this line shows a close 

235 relationship between Trichobaris and Datura. For instance, Trichobaris bridwelli 

236 oviposits preferentially on D. stramonium rather than on tobacco plants (Nicotiana 

237 tabacum) (Cuda & Burke, 1991), since T. bridwelli does not tolerate the pyridine alkaloids 

238 of tobacco (Cuda & Burke, 1991). On the other hand, Diezel et al. (2011) have 

239 experimentally demonstrated that T. mucorea, a species that burrows into the stems of 

240 Nicotiana attenuata, increases infestation on transgenic plants of N. attenuata where the 

241 chemical defenses (jasmonic acid and nicotine) were silenced.

242 The role of scopolamine as defense against herbivory in D. stramonium is supported 

243 by the findings of Castillo et al., (2014). In such study, they detected positive selection on 

244 scopolamine concentration in leaves in two populations of D. stramonium, one preyed upon 

245 by the dietary specialist Lema daturaphila, and the other by the dietary generalist 

246 Sphenarium purpurascens. However, also negative selection on scopolamine was detected in 
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247 a third population of D. stramonium preyed by L. daturaphila. Thus, the resistance role of 

248 tropane alkaloids of D. stramonium varies according to the type of herbivore and the tissue 

249 they consume, as well as the environmental conditions of populations (Castillo et al., 2014). 

250 Further studies are needed to determine the independent and join selective effects of 

251 folivores and seed predators on the concentration of scopolamine in seeds and leaves of D. 

252 stramonium.

253 The GzLM shows that atropine in seeds covaries positively with the Lang´s index. That is 

254 to say, populations of dry environments have less atropine concentration. It has been reported that 

255 alkaloid production may be water limited, decreasing in concentration in dry environments 

256 (Baricevic et al., 1999). In the interaction between Curculio camelliae-Camellia japonica, the 

257 expression of defense is also affected by the habitat’s environmental conditions; infestation by the 

258 weevil was higher at high altitudes, where the fruits of C. japonica trees have thinner pericarps 

259 (Toju, 2009). Thus, the evolution of chemical defense against herbivores in D. stramonium can 

260 also be environmentally conditioned.

261 We found evidence of natural selection on chemical resistance of D. stramonium since 

262 higher scopolamine concentration increases plant fitness. The GzLM analysis revealed a positive 

263 relationship between the population average concentrations of scopolamine in both leaves and 

264 seeds with their selection differential of scopolamine. This relationship suggests that the among-

265 population variation in chemical defense of D. stramonium is molded by T. soror. Thus, 

266 populations of D. stramonium vary in the direction and strength of selection on chemical defense, 

267 an expectation of the geographic mosaic of coevolution (i.e., hot spots and cold spots; Thompson, 

268 2005). Previous evidence has demonstrated that leaf herbivores exert selection pressures over 

269 physical and chemical defenses of D. stramonium (Valverde, Fornoni & Núñez-Farfán, 2001; 
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270 Castillo et al., 2014). This is the first evidence that seed predators also exert a significant selective 

271 pressure on chemical defense of D. stramonium. 
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1
Figure 1

Datura stramonium populations sampled in Central Mexico. The number each population

corresponds to the locality given in Table S1.
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Figure 2

Average (+1 S.E.) concentration of scopolamine (A) and atropine in leaves (B), in 31

populations of Datura stramonium from central Mexico.
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Figure 3

Average (+1 S.E.) concentration of scopolamine (A) and atropine (B) in seeds, in 14

populations of Datura stramonium from central Mexico.
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Table 1(on next page)

Table 1

Generalized linear models of the among population variation in the concentration of

scopolamine and atropine in leaves and seeds, as well as the intensity of infestation (average

number of weevils per fruit, per plant), and the proportion of infested fruits per plant in

Datura stramonium.
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1

2

3

4

5

6

7

8

9

10

11

12 Notes

13 AICc, The corrected Akaike information criterion, gives a measure of the relative quality of a statistical 
14 model, considering the sample size.

Response variable N d.f. Wald´s Chi-
square 

P AICc 

Scopolamine of leaves 278 31 684.55 < 0.0001 345.19

Atropine of leaves 278 31 875.11 < 0.0001 212.17

Scopolamine of seeds 119 14 13 441.13 < 0.0001 817.18

Atropine of seeds 119 14 13 062.42 < 0.0001 777.75

Intensity of infestation 859 28 835.98 < 0.0001 74.73

Proportion of infested 
fruits

859 28 1 562.36 < 0.0001 1 732.56
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Figure 4

Average (+1 S.E.) proportion of infested fruits per plant (A) and intensity of infestation (the

total number of weevils divided by the total number of fruits per plant) (B) by Trichobaris

soror, in 31 populations of Datura stramonium from central Mexico.
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Table 2(on next page)

Table 2

Generalized linear models of population average of the concentration of scopolamine and

atropine in leaves and seeds of Datura stramonium, as a function of the selection differential

(S) for the corresponding alkaloid, and environmental variables.
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1

2

3

4

5

6

7

8

9

10

11

12

13

14 Notes
15 AICc, The corrected Akaike information criterion, gives a measure of the relative quality of a statistical model, considering the sample size. 
16

Response variable Factors N d.f. Wald´s Chi-square P AICc 

Scopolamine of leaves Lang´s aridity index 31 1 0.134 0.714 72.973
 Altitude  1 1.563 0.211
 Latitude  1 0.552 0.458
 Longitude  1 0.993 0.319
 S Scopolamine  1 5.662 0.017

Scopolamine of seeds Lang´s aridity index 14 1 3.444 0.063 121.19
 Altitude  1 2.665 0.103
 Latitude  1 0.579 0.447
 Longitude  1 0.912 0.339
 S Scopolamine  1 3.006 0.083

Atropine of leaves Lang´s aridity index 31 1 3.557 0.059 61.072
 Altitude  1 3.419 0.064
 Latitude  1 0.004 0.95
 Longitude  1 0.001 0.976
 S Atropine  1 0.812 0.367

Atropine of seeds Lang´s aridity index 14 1 11.291 0.001 122.06
 Altitude  1 0.002 0.967
 Latitude  1 1.666 0.197
 Longitude  1 1.288 0.256
 S Atropine  1 0.011 0.918
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Figure 5

Relationships between (A) the population average of scopolamine concentration in leaves

with S Scopolamine of leaves (ρ = 0.3079), and (B) the population average of atropine concentrations

in seeds with the Lang´s index (ρ = 0.6434).
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