Submitted 15 October 2024
Accepted 22 January 2025
Published 12 February 2025

Corresponding authors

Tianze Cao, tianze-cao@hznu.edu.cn
Yuexia Huang,
yxhuang@hznu.edu.cn

Academic editor
Gokhan Karakiilah

Additional Information and
Declarations can be found on
page 9

DOI 10.7717/peerj.18985

() Copyright
2025 Zhang et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

pandasPGS: a Python package for easy
retrieval of Polygenic Score Catalog data

Zheyu Zhang, Jintong Zhou, Tianze Cao, Yuexia Huang, Chu Huang
and Yu Xia

School of Mathematics, Hangzhou Normal University, Hangzhou, Zhejiang, China

ABSTRACT

Background: The Polygenic Score (PGS) Catalog is a public database dedicated to
storing polygenic risk scores. To date, the database has included 5,022 polygenic risk
scores associated with 656 different traits. Although the PGS Catalog offers an official
resource representational state transfer (REST) application programming interface
(API), there is no ready-made data client tailored for any specific programming
language. Researchers are thus required to invest time in becoming familiar with the
structure of the REST API and to implement a corresponding client in their
programming language of choice to integrate PGS data into their

analytical workflows.

Methods: In this work we introduce pandasPGS, a Python package that provides
programmatic access to PGS Catalog data. After being called by the researcher,
pandasPGS will automatically select the appropriate uniform resource locator (URL)
and request the data based on the name and parameters of the called function, and
merge the obtained pagination data. In addition, pandasPGS also provides further
data pre-processing functions. According to the structure of the obtained data, it can
convert the data into several hierarchical pandas.DataFrame objects, which is
convenient for further analysis by researchers.

Results: This tool allows researchers to easily analyze PGS Catalog data using
Python. It alleviates the time cost for researchers to learn the REST APIs of PGS
Catalog. The source codes can be found in https://github.com/tianzelab/pandaspgs,
and the API documentations can be found in https://tianzelab.github.io/pandaspgs/.

Subjects Bioinformatics, Genetics, Genomics, Diabetes and Endocrinology, Data Science
Keywords Database, GWAS, PGS, Python, Data frame

INTRODUCTION

Over the past decade, based on whole-genome association studies, researchers have
discovered many traits influenced by polygenic associations. Polygenic risk scores are
weighted numbers derived from whole-genome association studies that can predict
susceptibility to certain traits based on genetic variations. The PGS Catalog (Lambert et al.,
2024a), as the only publicly accessible authoritative database established by an
authoritative institution, will attract more and more researchers to use its data for research
as the number of included data increases.

In order to facilitate researchers to perform automated analysis, PGS Catalog provides data
in JavaScript Object Notation (JSON) format through the resource representational state

How to cite this article Zhang Z, Zhou J, Cao T, Huang Y, Huang C, Xia Y. 2025. pandasPGS: a Python package for easy retrieval of
Polygenic Score Catalog data. Peer] 13:e18985 DOI 10.7717/peer;j.18985

https://github.com/tianzelab/pandaspgs
https://tianzelab.github.io/pandaspgs/
http://dx.doi.org/10.7717/peerj.18985
mailto:tianze-cao@�hznu.edu.cn
mailto:yxhuang@�hznu.edu.cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.18985
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/

Peer/

transfer (REST) application programming interface (API) (Lambert et al., 2024a). These
JSON data are divided into nine categories according to different structures. For each specific
category of data, the REST API provides several URLs and corresponding filtering
parameters. It is necessary to select qualified URL based on specific filtering parameters to
obtain data correctly.

The returned JSON data has a python dictionary-like structure, where the value of the
key “results” is an array of the requested data. This array contains data for 0 or more
specified categories based on the filter parameters. The maximum size of this array is
controlled by the Hypertext Transfer Protocol (HTTP) request parameter named “limit”
with 50 as the default value. For situations where there are more than 50 data that match
the filter parameters, we need to use the URL with key “next” in this dictionary-like
structure to request the remaining data. The server will then return JSON data with a
similar structure. When the remaining data that matches the filtering parameters exceeds
50, the array with key “results” returned at this time will only contain the 51st to 100th
data. Using the URL with key “next”, we can continue to request the remaining data. If
there are more than 150 pieces of data or more, we need to repeat this process. Developers
need to manually merge the arrays with key “results” in the above JSON structures to
obtain the data of all composite filtering parameters. If the programming language used by
the researcher does not provide a package that can retrieve this kind of data, then he will
have to spend a lot of time to familiarize himself with the usage of the PGS Catalog API

With the rise of deep learning, Python has undoubtedly become the most popular
programming language. The PGS team has open sourced a Python package called
pygscatalog (Lambert et al., 2024b). However, its main use is to query, download, and
integrate scoring files from the command line interface. To make matters worse, the APIs
are scattered across submodules in multiple three-tier folders, some lack parameter
explanations, and don’t have a complete API programming example guide. As a result, it
can be difficult for first-time users to find the right way to use these APIs. All of this makes
it inconvenient for users to write Python programs based on it. There is still a lack of a
Python tool that provides out-of-the-box data integration functions for PGS Catalog. It is
necessary and urgent to develop a Python tool that meets the above functional
requirements. This tool can effectively integrate PGS Catalog data into the current
Python-based analysis pipeline, and allows users to perform automated programming-
based analysis work.

MATERIALS AND METHODS

Retrieving data from server

pandasPGS allows users to obtain the PGS Catalog by calling the functions get_cohort(),
get_ancestry_categories(), get_performances(), get_publications(), get_releases(),
get_sample_sets(), get_scores(), get_traits(), get_child_traits() and get_trait_categories().
pandasPGS is based on the cachetools package (Tkem, 2014), so while it obtains data, it
also caches the data to reduce access to the server. The data cache validity time in
pandasPGS is set to 24 h. If the data is not accessed within 24 h, its cache will be invalid.
When the requested data is not cached, pandasPGS will assemble the URL for the data

Zhang et al. (2025), Peerd, DOI 10.7717/peerj.18985 210

http://dx.doi.org/10.7717/peerj.18985
https://peerj.com/

Peer/

request based on the specific get_*() function and the passed parameters, and then request
the data from the PGS catalog server based on the PGS Catalog REST API. When the
returned data is paginated, pandasPGS will retrieve all paginated data in sequence and
splice them together. pandasPGS will convert the obtained data into predefined objects.
pandasPGS have defined two conversion modes. When the user requests data based on the
“Thin” mode, pandasPGS will store the data in the attribute of raw_data. When the user
requests data based on the “Fat” mode, pandasPGS will convert the data of the attribute
raw_data into multiple DataFrames with hierarchical relationships based on the class
structure. For ease of demonstration, five DataFrames are used in the figure (Fig. 1). The
actual number will depend on the structure of the data. pandasPGS allows users to store
data as CSV and EXCEL files respectively by calling the functions write_csv() and
write_excel().

Convenient set operations

In order to facilitate users to organize data, pandasPGS provides some convenient set
operation functions: bind(), union(), intersect(), set_xor() and set_equal(). In order to
reduce the amount of coding for users, pandasPGS also provides the following
mathematical symbols to support set operations: +(bind), &(intersect), —(set_diff),
A(set_xor), |(union), ==(set_equal).

Helper functions for accessing web links

In order to facilitate user browsing, pandasPGS allows users to directly open the
corresponding web page by calling functions open_sample_set_in_pgs_catalog(),
open_publication_in_pgs_catalog(), open_score_in_pgs_catalog(),
open_trait_in_pgs_catalog(), open_in_dbsnp() and open_in_pubmed() with the
corresponding identifier as the input parameter.

Structure for class score and other predefined classes

The class Score is defined in pandasPGS, which has two modes. In “Thin” mode, class
Score contains two attributes: mode and raw_data. In “Fat” mode, class Score contains
nine attributes: raw_data, scores, samples_variants, samples_variants_cohorts, trait_efo,
samples_training, samples_training cohorts, ancestry_distribution and mode. If the mode
is set to Thin, the Score class will store the data in the attribute raw_data when
constructing the object. If the mode is set to Fat, the Score class will also copy the data of
the attribute raw_data and reprocess it, thereby generating the remaining seven attributes,
which are all of the pandas.DataFrame type (McKinney, 2010).

The attribute scores is the main DataFrame. The attributes samples_variants,
samples_training, trait_efo and ancestry_distribution are attached to the attribute scores.
These attributes are related to the column id in the attribute scores through their respective
score_id columns. Each row of data in the attribute scores has a one-to-many relationship
with the data in these attributes.

The attribute samples_variants_cohorts is attached to the attribute samples_variants.
They are related to each other through the column id in samples_variants and the column

Zhang et al. (2025), PeerJ, DOI 10.7717/peer|.18985 3/10

http://dx.doi.org/10.7717/peerj.18985
https://peerj.com/

Peer/

Other Python Parameterized URLs

dul
modules or users pandasPGS HTTP network PGS catalog server

: - Paginated Paginated Paginated
get_*() functions JSON 1 JSON 2 JSON n
Cache
raw data write_csv() oSy
ode) -raw data DataFrame1
BLL - DataFrame 1 write_excel()
. P}rledeﬁ];l.ed S - DataFrame 2 s 2 S EXCEL
ython objects Fat mode - DataFrame 3 DataFrame 3

- DataFrame 4

- DataFrame 5 DataFrame 4

DataFrame 5

Figure 1 The main workflow of pandasPGS. Full-size Kl DOT: 10.7717/peerj.18985/fig-1

sample_id in samples_variants_cohorts. Each row of data in the attribute samples_variants
has a one-to-many relationship with the data in the attribute samples_variants_cohorts.
Likewise, a similar relationship exists between the attribute samples_training and the
attribute samples_training cohorts, and between the attribute samples_variants and the
attribute samples_variants_cohorts.

The design of the Score-like attributes is to use attributes of type DataFrame as tables in
a relational database, and some of the columns can be used as primary keys and foreign
keys in the relational database. For example, the column id of the attribute scores is used
as the primary key, and the score_id in other attributes is used as the foreign key. This
allows the entity-relationship diagram in a relational database to well reflect the column
names in the attributes and the relationships between them (Fig. S1).

Each attribute of other predefined classes in pandasPGS is also constructed based on the
same design concept as the Score class (Figs. 52-59).

RESULTS

Example 1. Investigating trends in diabetes-related polygenic risk
scores
pandas.DataFrame is a commonly used data type in pandasPGS. It is also the cornerstone
of the Python data analysis ecological chain. This makes pandasPGS very easy to cooperate
with other Python tools to complete data analysis work. This part will demonstrate the use
of pandasPGS in conjunction with plotnine (Has2kl, 2017) to investigate the polygenic
risk score associated with the trait named “diabetes”. plotnine is a Python implementation
of ggplot2 (Wickham, 2016). The steps are as follows (code and console output are shown
in File S1):

Step 1. Import the functions and classes from pandasPGS.

Zhang et al. (2025), Peerd, DOI 10.7717/peerj.18985 4/10

http://dx.doi.org/10.7717/peerj.18985/supp-4
http://dx.doi.org/10.7717/peerj.18985/supp-5
http://dx.doi.org/10.7717/peerj.18985/supp-12
http://dx.doi.org/10.7717/peerj.18985/supp-1
http://dx.doi.org/10.7717/peerj.18985/fig-1
http://dx.doi.org/10.7717/peerj.18985
https://peerj.com/

Peer/

Step 2. Use the get_traits() function from pandasPGS to retrieve the trait data related to
“diabetes” from the PGS Catalog and assign them to the variable traits. The variable traits
is an instance of the pandasPGS.Trait class, which has six attributes that are pandas.
DataFrame objects. Among them, the traits attribute is the main attribute, and the other
five attributes are all associated with it.

Step 3. The identifier (id column) of the trait related to “diabetes” can be queried
through traits.

Step 4. Use the get_scores() function of pandasPGS to query the trait-related Score data
in Step 3 in sequence. The addition operation provided by pandasPGS is used to bind
multiple pandasPGS.Score type data to the variable diabetes_score of type pandasPGS.
Score.

Step 5. plotnine plotting uses pandas.DataFrame as the data source, and uses addition
operations to overlay layers. Based on the data obtained from pandasPGS and the API
provided by plotnine, the frequency distribution chart of Score data classified by traits can
be easily drawn. It can be seen from the figure that the polygenic risk score related to “type
2 diabetes mellitus” is the most studied trait categorized under “diabetes” (Fig. 2).

Example 2. Investigating polygenic risk scores for gestational diabetes
Gestational diabetes may cause the fetus to grow extremely quickly, increasing the
possibility of premature delivery and dystocia. In addition, gestational diabetes may also
induce other pregnancy complications, such as gestational hypertension. It may also cause
severe trauma to the birth canal after delivery, such as postpartum hemorrhage. This part
will demonstrate how to use pandasPGS to generate corresponding genotypes and scores.
The steps are as follows (code and console output are shown in File S2):

Step 1. Import the functions and classes from pandasPGS.

Step 2. Use the function get_traits() to query data related to “gestational diabetes”.
pandasPGS will return a pandasPGS.Trait object and assign it to the variable traits. Its
attribute traits is its main DataFrame. The attribute traits is the main DataFrame, and its
summary information can be obtained by printing. Use the square bracket operator to
index the data of the corresponding cell. By indexing the column id and column
description in row 1, we can query that the identifier of the corresponding trait is
“EFO_0004593” and the corresponding description is “Carbohydrate intolerance first
during diagnosed pregnancy. (NCIT: P378)”.

Step 3. Given the identifier of the corresponding trait, pandasPGS can query the
corresponding pandasPGS.Score type data through the function get_scores(). The attribute
scores is the main DataFrame, and its summary information can be obtained by printing.
The value of column id is the identifier of its pandasPGS.Score, and column name is the
name of the corresponding polygenic risk score. The value of the matches_publication
column is True, which means that the polygenic risk score has been published in a article.
The value of column trait_reported describes how the corresponding trait is named in the
article (Wu et al., 2022). The value of column variants_number is 4, indicating that the
polygenic risk score is composed of four variants.

Zhang et al. (2025), Peerd, DOI 10.7717/peerj.18985 510

http://dx.doi.org/10.7717/peerj.18985/supp-2
http://dx.doi.org/10.7717/peerj.18985
https://peerj.com/

Peer/

type 2 diabetes mellitus -

type 1 diabetes mellitus -

gestational diabetes -

endocrine system disease -

label

diabetic retinopathy -

diabetes mellitus -

age at diagnosis -

50 100
count

Figure 2 Statistical distribution of the number of polygenic scores for diabetes-related traits.
Full-size k&l DOL: 10.7717/peerj.18985/fig-2

Step 4. Metadata information for published PGS articles is stored in columns with
names begin with “publication”. For example, “publication.id” stores the identifier of this
article in PGS Catalog, and “publication.PMID” stores the identifier of this article in
PubMed.

Step 5. For understanding the applicability of this polygenic score, it is important to
understand the samples used to define the variant associations (effect sizes) used in PGS.
Such information is stored in the attribute samples_variants. In this table, we can see a
sample of 671 individuals used in the Genome-Wide Association Studies (GWAS) stage
(Buniello et al., 2019). The ancestry category associated with these individuals is East
Asian. Based on this information, one could hypothesize that the applicability of this risk
score should probably be limited to people of East Asian ancestry.

Step 6. Use read_scoring file() to download a PGS file from the PGS Catalog and
convert it into a pandas.DataFrame. It can be seen from the table that the corresponding
distributions of the four variants are rs10830963, rs1436953, rs7172432 and rs16955379.
The corresponding chromosome and position data in the chromosome are recorded in
columns hm_chr and hm_pos. The effect allele and other allele are recorded in columns
effect_allele and other_allele. The weight corresponding to the gene in the column
effect_allele is recorded in the column effect_weight.

Step 7. Taking rs10830963 as an example, we calculate its corresponding genotype and
corresponding weighted score. pandasPGS provides the function
genotype_weighted_score() for this purpose. The genotypes of rs10830963 are G/G, G/C
and C/C respectively. The weighted score of G/G is 1.327 x 2 = 2.654. The weighted score
of G/Cis 1.327 x 1 = 1.327. The weighted score of C/C is 1.327 x 0 = 0.

Zhang et al. (2025), PeerdJ, DOI 10.7717/peerj.18985 6/10

http://dx.doi.org/10.7717/peerj.18985/fig-2
http://dx.doi.org/10.7717/peerj.18985
https://peerj.com/

Peer/

Step 8. Based on the calculation process of Step 7, one can use loops to calculate the
genotypes and weighted scores of the four variants. Then one can use the function reduce()
and the method merge() of the object pandas.DataFrame to calculate a DataFame object
combination_df, which lists all combinations of genotypes composed of four variants, as
well as the corresponding weighted scores.

Step 9. The data of column genotypes is obtained by splicing together the genotype
combinations of four variants. The column scores is the sum of the corresponding four
weighted scores. Based on the results of descending sorting on the column scores, we can
see that the range of scores is 0 to 10.244. Potential patients can assess their risk based on
their genotype combination.

DISCUSSION

pandasPGS vs. quincunx

Among existing tools, quincunx (Magno, Duarte & Maia, 2022) is the only one with
similar functionality to pandasPGS. It is written in R language and can be integrated into
the current R language data analysis set. pandasPGS is more functionally complete than
quincunx (as shown in Table 1).

First, pandasPGS provides two working modes: Fat and Thin. In Fat mode, pandasPGS
will convert the obtained JSON data into pandas.DataFrame objects. In Thin mode,
pandasPGS acts like a pure client, merging paginated JSON data and converting it into a
Python list.

Second, pandasPGS has more sophisticated cache management. Cache data is divided
into nine categories according to its JSON data type. When necessary, only one or several
categories of caches can be cleared, while in quincunx all caches are cleared directly.

Third, although both quincunx and pandasPGS support set operations on the acquired
data, quincunx does not support the set_xor() method. In addition, pandasPGS also
supports the use of mathematical symbols instead of function calls to simplify set operations.

Finally, pandasPGS strictly names the column names of the converted DataFrame
according to the key names of the JSON data provided by the PGS Catalog API, but
quincunx does not do this. For example, the official documentation has data with the key
variants_genomebuild in a structure with JSON type Score. In pandasPGS this data is
stored in the variants_genomebuild column of a DataFrame, but in quincunx the column
name for this data is assembly. Users may be confused by the inconsistent naming between
official documentation and client tools.

Experiments to obtain full data for data conversion

In order to test the ability to integrate PGS Catalog data, we used pandasPGS and quincunx
respectively to obtain all types of data in PGS Catalog and convert them into
corresponding data frames (code and console output are shown in File S3). The test
results show (as shown in Table 2) that pandasPGS can successfully obtain all data and
convert it into the corresponding data frame. quincunx failed to complete due to a server
exception triggered when retrieving data of type Cohort. quincunx also failed because there
was no compatible data type when obtaining data of type PerformanceMetric and

Zhang et al. (2025), Peerd, DOI 10.7717/peerj.18985 710

http://dx.doi.org/10.7717/peerj.18985/supp-3
http://dx.doi.org/10.7717/peerj.18985
https://peerj.com/

Peer/

Table 1 pandasPGS vs. quincunx.

pandasPGS quincunx
Programming language Python R
Mode Fat or Thin Fat
Type of attribute pandas.DataFrame tidyverse.tibble
Cache management Classified Not classified
Set operations set_xor, bind, union, intersect, set_diff, set_equal bind, union, intersect,

set_diff, set_equal

Set operations based on mathematical symbol +(bind), & (intersect), —(set_diff), A(set_xor), | Unsupported
(union), ==(set_equal).

The mapping between the columns of the table and the key of JSON Strong Weak
in the PGS Catalog REST API

Table 2 Comparison of compatibility capabilities of all data conversions.

Type pandasPGS quincunx
AncestryCategory Success Success
Cohort Success Fail
PerformanceMetric Success Fail
Publication Success Success
Release Success Success
SampleSet Success Fail

Score Success Fail
TraitCategory Success Success
Trait Success Success

SampleSet, as well as Score data. Compared with quincunx, pandasPGS optimizes the
parameters of HTTP communication with the PGS Catalog server, which reduces the
server overhead and makes it less likely to trigger exceptions. pandasPGS is also developed
based on the latest release of PGS Catalog and has been thoroughly tested to ensure
compatibility with data formats.

Cache management

The PGS Catalog server has two restrictions on the REST API. First, a single IP address can
request data up to 100 times per second. Second, if there are more than 50 data requested,
the data will be paginated at 50 per page. The user must follow the URL provided by the API
with pagination parameters to get the remaining pages. pandasPGS provides data caching to
mitigate the impact of these two restrictions. Caching can prevent the program from
requesting the same data in a short period of time and triggering the first restriction, thus
avoiding IP blocking. The second restriction has an impact on users with an unstable
network connection to PGS Catalog’s servers, as the program may fail due to intermittent
network outages. The cache retains the paging data that has already been retrieved in the
event of a network outage, allowing the program to quickly recover from failures.

Zhang et al. (2025), PeerJ, DOI 10.7717/peer|.18985 8/10

http://dx.doi.org/10.7717/peerj.18985
https://peerj.com/

Peer/

pandasPGS prepares an adjustable cache pool for each get *() function. Each cache pool
can store data for up to 2,048 recent requests and is valid for 24 h. If there is a 2,049 item of
data that needs to be saved and none of the data in the cache pool has expired, the cache pool
will delete the data that has not been used for the longest time based on the least recently
used (LRU) principle. Each get * function has a parameter called “cached”. When the
parameter “cached” is set to False, pandasPGS will forcibly request the latest data from the
PGS Catalog server and store the results in the cache pool. pandasPGS provides function
reinit_cache() for reinitializing and configuring the maximum capacity of the cache pool and
data validity time, and function clear cache() for emptying the cache pool data.

CONCLUSIONS

pandasPGS is developed according to the latest release of PGS Catalog. It can obtain PGS
Catalog data that meets the filtering conditions based on the input filtering parameters and
convert it into the corresponding data frame with hierarchical relationships. Compared
with other existing tools, it is the only one that can obtain the full PGS Catalog data and
convert them into data frames.

ACKNOWLEDGEMENTS

This work was inspired by quincunx. The authors would like to thank the developers of
quincunx.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This work was supported by the key project of Zhejiang Provincial Natural Science
Foundation under grant number LZ23A010002 and the National Training Program of
Innovation and Entrepreneurship for Undergraduates of Hangzhou Normal University
under grant number 202410346057. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures

The following grant information was disclosed by the authors:

Zhejiang Provincial Natural Science Foundation: LZ23A010002.

National Training Program of Innovation and Entrepreneurship for Undergraduates of
Hangzhou Normal University: 202410346057.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions

¢ Zheyu Zhang performed the experiments, analyzed the data, prepared figures and/or
tables, authored or reviewed drafts of the article, and approved the final draft.

¢ Jintong Zhou performed the experiments, analyzed the data, prepared figures and/or
tables, authored or reviewed drafts of the article, and approved the final draft.

Zhang et al. (2025), PeerdJ, DOI 10.7717/peerj.18985 9/10

http://dx.doi.org/10.7717/peerj.18985
https://peerj.com/

Peer/

» Tianze Cao conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
article, and approved the final draft.

* Yuexia Huang conceived and designed the experiments, authored or reviewed drafts of
the article, and approved the final draft.

e Chu Huang conceived and designed the experiments, authored or reviewed drafts of the
article, and approved the final draft.

* Yu Xia conceived and designed the experiments, authored or reviewed drafts of the
article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

pandasPGS data is available at Zenodo:

CaoTianze, & zzystc66. (2025). TianzeLab/pandaspgs: The second released version.
(v0.2.0). Zenodo. https://doi.org/10.5281/zenodo.14619537.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peer;j.18985#supplemental-information.

REFERENCES

Buniello A, MacArthur JAL, Cerezo M, Harris LW, Hayhurst J, Malangone C, McMahon A,
Morales J, Mountjoy E, Sollis E, Suveges D, Vrousgou O, Whetzel PL, Amode R, Guillen JA,
Riat HS, Trevanion SJ, Hall P, Junkins H, Flicek P, Burdett T, Hindorff LA, Cunningham F,
Parkinson H. 2019. The NHGRI-EBI GWAS Catalog of published genome-wide association
studies, targeted arrays and summary statistics 2019. Nucleic Acids Research
47(D1):D1005-D1012 DOI 10.1093/nar/gky1120.

Has2k1. 2017. plotnine. Available at https://pypi.org/project/plotnine/ (accessed 1 May 2024).

Lambert SA, Wingfield B, Gibson JT, Gil L, Ramachandran S, Yvon F, Saverimuttu S, Tinsley E,
Lewis E, Ritchie SC, Wu J, Canovas R, McMahon A, Harris LW, Parkinson H, Inouye M.
2024a. Enhancing the Polygenic Score Catalog with tools for score calculation and ancestry
normalization. Nature Genetics 56(10):1989-1994 DOI 10.1038/s41588-024-01937-x.

Lambert SA, Wingfield B, Gibson JT, Gil L, Ramachandran S, Yvon F, Saverimuttu S, Tinsley E,
Lewis E, Ritchie SC, Wu J, Canovas R, McMahon A, Harris LW, Parkinson H, Inouye M.
2024b. The polygenic score catalog: new functionality and tools to enable FAIR research.
MedrXiv DOI 10.1101/2024.05.29.24307783.

Magno R, Duarte I, Maia AT. 2022. quincunx: an R package to query, download and wrangle PGS
Catalog data. Bioinformatics 38(1):294-296 DOI 10.1093/bioinformatics/btab522.

McKinney W. 2010. Data structures for statistical computing in python. In: Proceedings of the 9th
Python in Science Conference, 56-61.

Tkem. 2014. cachetools. Available at https://pypi.org/project/cachetools/ (accessed 5 May 2024).

Wickham H. 2016. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag.

Wu Q, Chen YM, Zhou ML, Liu MT, Zhang LX, Liang ZX, Chen DQ. 2022. An early prediction
model for gestational diabetes mellitus based on genetic variants and clinical characteristics in
China. Diabetology & Metabolic Syndrome 14(1):S13 DOI 10.1186/s13098-022-00788-y.

Zhang et al. (2025), Peerd, DOI 10.7717/peerj.18985 10/10

https://doi.org/10.5281/zenodo.14619537
http://dx.doi.org/10.7717/peerj.18985#supplemental-information
http://dx.doi.org/10.7717/peerj.18985#supplemental-information
http://dx.doi.org/10.1093/nar/gky1120
https://pypi.org/project/plotnine/
http://dx.doi.org/10.1038/s41588-024-01937-x
http://dx.doi.org/10.1101/2024.05.29.24307783
http://dx.doi.org/10.1093/bioinformatics/btab522
https://pypi.org/project/cachetools/
http://dx.doi.org/10.1186/s13098-022-00788-y
http://dx.doi.org/10.7717/peerj.18985
https://peerj.com/

	pandasPGS: a Python package for easy retrieval of Polygenic Score Catalog data
	Introduction
	Materials and Methods
	Results
	Discussion
	Conclusions
	flink6
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

