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ABSTRACT

Background. To adapt to environmental changes, diapausing silkworm eggs remain
dormant during the early stages of embryonic development. Various methods have
been used to terminate silkworm egg diapause and promote egg hatching.

Methods. To elucidate the molecular mechanisms by which corona and other treat-
ments terminate silkworm egg diapause, we collected eggs at 1, 6, and 20 h after
treatments and sequenced their transcriptomes.

Results. The results showed that both corona and hydrochloric acid (HCI) treatments
effectively terminated diapause and promoted egg hatching, with corona treatment
inducing faster hatching than HCI treatment. Differentially expressed gene (DEG)
analysis revealed the presence of fewer DEGs at 1 h, with a marked increase observed
at 6 and 20 h post treatment. Functional enrichment analysis showed that the FoxO
signaling pathway was activated at 6 h, with more substantial gene expression changes
observed after corona treatment. In addition, HCI treatment appeared to activate the
heat shock protein and hormone-regulated pathways. Our study results provide a basis
for further analysis of the molecular mechanisms underlying diapause termination in
silkworm eggs.

Subjects Agricultural Science, Bioinformatics, Developmental Biology, Zoology

Keywords Corona treatment, Hydrochloric acid treatment, Diapause, RNA sequencing,
Silkworm, FoxO signaling pathway

INTRODUCTION

Diapause, a state of developmental arrest, is observed in various animals and is characterized
by low energy consumption. This state helps animals survive extreme environmental
conditions such as cold, heat, and drought, increasing their chances of survival and
reproduction (Podrabsky ¢ Hand, 2015). Insects can undergo diapause at different
developmental stages, including eggs, larvae, pupae, and adults (Feng et al., 2012; Xu et
al., 2004).

Silkworm (Bombyx mori), an economically important insect domesticated in China for
over 5,000 years, provides silk, a valuable textile raw material with increasing applications
in various industries (Xia et al., 2007; Xia et al., 2004). Silkworms are a typical example of
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egg-diapausing insects, which enter diapause during the late gastrula stage (Nakagaki et al.,
1991). Environmental factors influence egg diapause in silkworm; in colder regions, eggs
enter diapause and hatch only once or twice a year, whereas in warmer regions such as
southern China, eggs generally bypass diapause, undergoing multiple reproductive cycles
annually (Liang et al., 2014). After egg laying, silkworm embryos undergo rapid division
and growth; however, in diapausing eggs, cell division slows down and the embryos remain
in the G2 phase after 72 h, halting further development (Nakagaki et al., 1991). In silkworm
production, diapausing eggs can resume development when exposed to certain chemical
or physical stimuli, such as acid treatment or friction (Gong et al., 2016; Zhang et al., 2022).

Although various methods have been developed to prevent diapause, the underlying
diapause molecular mechanisms remain poorly understood (Sonobe et al., 1979; Yamamoto,
Mase & Sawada, 2013). Current evidence suggests that the diapause hormone, secreted by
neurosecretory cells in the suboesophageal ganglion, helps regulate diapause in insects
(Yamashita, 1996). In addition, the conversion of glucose to trehalose and glycerol has
been shown to improve survival during diapause, with these substances being rapidly
degraded in diapausing eggs. Genome-wide microarrays, RNA sequencing (RNA-seq), and
liquid chromatography—mass spectrometry have also been used to compare diapause and
non-diapause eggs (Akitomo et al., 2017; Fan et al., 2013; Gong et al., 2016; Sasibhushan,
Ponnuvel & Vijayaprakash, 2013). However, it remains unclear whether various methods
of diapause prevention share the same molecular mechanisms (Chino, 1958).

Here, we aimed to elucidate the molecular mechanisms through which corona treatment
prevents diapause in silkworm embryos and compare the effects of corona treatment and
conventional hydrochloric acid (HCI) treatment. Using high-throughput transcriptome
sequencing, we analyzed gene expression at multiple time points during early embryonic
development after treatment. The results of this study provide valuable insights into the
identification of key genes and the molecular regulatory network involved in preventing
diapause in silkworm eggs through corona treatment.

MATERIALS AND METHODS

Silkworm materials

In this study, the silkworm strain 7532 was bred by the Guangxi Zhuang Autonomous
Region Sericulture Technology Promotion Station. Domesticated silkworms were reared
until moths hatched. Male and female moths were allowed to self-cross for 4 h, after which
female moths were placed on silkworm egg paper to lay eggs. The eggs were maintained at
25 °C for three days and then stored at 5 °C for further analysis.

Silkworm egg treatment

After 50 days, silkworm eggs were removed from refrigeration and left at room temperature
for 4 h before treatment. The eggs were divided into three groups (each group contains
120-150 eggs): (1) acid treatment at 47.2 °C for 5 min and 30 s (HCl relative density =
1.092) (Zhao et al., 2012), (2) corona treatment (12 KV, 1 min) (Zhang et al., 2022), and
(3) control, which received no treatment. Samples were collected at 1, 6, and 20 h after
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treatment (HAT) and immediately frozen in liquid nitrogen for further analysis. Two
replicates were prepared for each treatment group.

RNA extraction, library construction, and sequencing

Total RNA was extracted using a TRIzol reagent kit (Invitrogen, Carlsbad, CA, USA)
according to the manufacturer’s protocol. RNA quality was assessed using an Agilent
2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA) via RNAse-free agarose gel
electrophoresis. mRNA was enriched using oligo(dT) beads, fragmented, and reverse-
transcribed into cDNA using NEBNext Ultra RNA Library Prep Kit for Illumina (NEB #
7530; New England Biolabs, Ipswich, MA, USA). The cDNA fragments were purified, ligated
with Illumina sequencing adapters, and size-selected using agarose gel electrophoresis. The
ligation products were then subjected to polymerase chain reaction (PCR) amplification,
and the resulting cDNA library was sequenced using the Illumina NovaSeq 6000 platform.

RNA-seq data analysis

Adapter sequences and low-quality reads were removed from each dataset using fastp
(version 0.18.0) (Chen et al., 2018). An index of the reference genome was constructed,
and paired-end clean reads were mapped to this reference genome using HISAT?2 (version
2.2.4) via the “-rna-strandness RF” option and other default parameters (Kim et al.,
2019). Clean reads were then used for gene assembly and abundance calculations. The
silkworm reference genome and annotation files were downloaded from the National
Center for Biotechnology Information genome database (accession no. ASM15162v1) (Xia
et al., 2004). The fragments per kilobase of transcript per million mapped reads (FPKM)
values were calculated via StringTie (version 1.3.1) and HISAT2 (Langmead ¢ Salzberg,
2012; Pertea et al., 2016). The statistical power of this experimental design, calculated in
RnaSeqSampleSize was 0.84 (https:/cqs-vumec.shinyapps.iofnaseqsamplesizeweb/) (Zhao et
al., 2018). Differentially expressed gene (DEG) analysis was conducted using DESeq (Love,
Huber ¢ Anders, 2014), and transcripts showing an absolute log2 (fold change) value of
> 1 and a p-value of < 0.05 were considered differentially expressed. Time series expression
patterns of the three groups were analyzed using Mfuzz (Kumar ¢ Futschik, 2007). DEGs
were further subjected to Gene Ontology functional analysis and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway analysis (Boyle et al., 2004; Kanehisa et al., 2007,
Kanehisa & Goto, 2000). RNA-seq data are available at NCBI BioProject (accession number
PRJNA1165327).

Validation of gene expression patterns

Ten genes were selected for validation using quantitative reverse transcription-PCR (qRT-
PCR). First-strand cDNA was synthesized using a TUREscript 1st Strand cDNA Synthesis
Kit (Aidlab, Beijing, China). Gene-specific primers are listed in Table S1. Actin3 was used
as an internal control. gRT-PCR was conducted using 2 x SYBR® Green Master Mix (DBI,
Langsing, M1, USA) and 1Q5 (Bio-Rad, Hercules, CA, USA) with a cycling temperature of
60 °C and a single peak on the melting curve to obtain a single product according to the
manufacturer’s instructions. The 20 wL reaction volume consisted of forward and reversed
primers (1 pL), 2 x SYBR® Green Master Mix (10 pL), ddH20 (6 wL), and cDNA (2 pL).
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Three technical replicates were prepared for each gene. Relative gene expression levels

were calculated using the 27 44Ct

method and visualized graphically. All the numerical
data in figures are presented as mean =+ standard deviation (SD) of three independent
experiments. The obtained data were subjected to unpaired a two-tailed Student’s -tests

using GraphPad Prism software (version 8).

RESULTS

Effects of corona and HCI treatments on diapause termination in
silkworm eggs

The results showed that silkworm eggs began hatching on the ninth day (Fig. 1A). By the
tenth day, over 80% of the corona-treated eggs had hatched, whereas approximately 5%
of the HCl-treated eggs had hatched. Moreover, none of the untreated eggs had hatched.
Although the hatching rate of HCl-treated eggs eventually reached that of corona-treated
eggs, the incubation period for corona-treated eggs was relatively shorter (Fig. 1B). To
explore the molecular mechanisms through which corona treatment terminates diapause,
we conducted further transcriptomic analyses of early-stage corona-treated silkworm eggs.

RNA-seq of corona-treated, HCI-treated, and control groups

RNA samples from the control and corona-treated groups were collected at 1, 6, and 20
HAT. For comparison, RNA samples from the HCl-treated group were collected at 6 and
20 HAT. These samples were defined in Table 1 and sequenced using Illumina sequencing
(Table 1). In total, approximately 752 million raw reads were obtained, with an average of
47 million reads per sample (Table S2). After filtering, >94% of the reads were classified
as clean (Table S3). The clean reads were mapped to the silkworm reference genome, with
a mapping rate of > 84% (Table 54). Over 64% of the mapped reads corresponded to
genes, with > 95% mapped to exons and approximately 30% mapped to intergenic regions
(Table S5).

DEGs in corona-treated, HCI-treated, and control groups
First, we analyzed the correlation among corona-treated, HCl-treated, and control samples.
The results showed a high degree of correlation between corona-treated samples at 1 h and
control samples (at 1, 6, and 20 h), indicating that there was almost no difference between
the corona-treated eggs of 1 HAT and control samples. E6 showed higher similarity to H20
and E20 than to H6 and CK20. The high similarity between E20 and H20 indicated that
both the corona and HCI treatments after 20 h can activate the expression of genes required
for embryonic development, potentially initiating the development process (Fig. 2A).
Comparisons between the treated and control groups showed relatively low numbers
of DEGs in CK1 vs. E1 (109 DEGs, with 70 upregulated and 39 downregulated genes) and
H20 vs. E20 (62 DEGs, with 34 upregulated and 28 downregulated genes) (Tables 56 and
S7). However, at 6 HAT, 1,168 DEGs (502 upregulated and 666 downregulated genes) were
observed in CK6 vs. E6 and 809 DEGs (503 upregulated and 306 downregulated genes)
in CK6 vs. H6 (Tables S8 and S9). At 20 HAT, 1,116 DEGs (468 upregulated and 648
downregulated genes) were detected in CK20 vs. E20 and 1,351 DEGs (531 upregulated

Zhang et al. (2025), PeerdJ, DOI 10.7717/peerj.18966 4/15


https://peerj.com
http://dx.doi.org/10.7717/peerj.18966#supp-3
http://dx.doi.org/10.7717/peerj.18966#supp-4
http://dx.doi.org/10.7717/peerj.18966#supp-5
http://dx.doi.org/10.7717/peerj.18966#supp-6
http://dx.doi.org/10.7717/peerj.18966#supp-7
http://dx.doi.org/10.7717/peerj.18966#supp-8
http://dx.doi.org/10.7717/peerj.18966#supp-9
http://dx.doi.org/10.7717/peerj.18966#supp-10
http://dx.doi.org/10.7717/peerj.18966

Peer

B
* %k
1
* %k ok
—
% %k %k %k
100 TEEE
£ 80
e
© 60
1h 6h 20h 4d 6d 5
=
£ 40
8
£ 20
0
S & &
& & °
< & &o‘
N
Oo‘oéb ®

7d 8d 9d 10d 12d

Figure 1 Comparison of the effects of corona and HCl treatments on silkworm eggs. (A) Images of
eggs at different developmental stages from various treatment groups. 1#, corona treatment; 2#, HCI treat-
ment; 3#, control. Red arrows indicate eggshells left by larvae after hatching. (B) Hatching rates of larvae
from different groups at 10 days. Error bars represent one standard deviation (n = 3; **p < 0.01; ****p <
0.0001).

Full-size &l DOI: 10.7717/peer;j.18966/fig-1

Table 1 List of samples.

Treatment 1h 6h 20h
No treatment CK1 CKe6 CK20
Corona (Electrically) treated E1l E6 E20
HCI treatment H6 H20

and 820 downregulated genes) in CK20 vs. H20 (Tables S10 and S11). The similarity
between E6 and H20 or E20 was even higher than that between E6 and H6, indicating
substantial differences between E6 and H6. In particular, 947 DEGs (293 upregulated and
654 downregulated genes) were observed in H6 vs. E6 (Fig. 2B).

Functions of DEGs in multiple comparison groups

As samples treated after 1 h and control samples showed minimal differences and the control
group showed limited variation across the three time points, our study focused on DEGs
between the treated groups (at 6 and 20 h) and the control group. Functional analysis of
DEGs in the four comparison groups showed that DEGs in CK6 vs. E6 were mainly enriched
in FoxO signaling pathway and vitamin B6 metabolism (Fig. 3A). Conversely, DEGs in CK6
vs. H6 were mainly enriched in pathways related to longevity regulation, protein processing
in the endoplasmic reticulum, and arginine and proline metabolism (Fig. 3B). At 20 HAT,
DEG enrichment in CK20 vs. E20 and CK20 vs. H20 showed certain similarities. The
main enriched pathways in both comparison groups included glycolysis/gluconeogenesis,
vitamin B6 metabolism, and pentose phosphate pathway (Figs. 3C and 3D).
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Figure 2 Analysis of DEGs. (A) Correlation coefficients between gene expression datasets. Red and blue
colors indicate positive and negative correlation coefficients between samples, respectively. (B) Number of
DEGs among the comparison groups.

Full-size & DOI: 10.7717/peerj.18966/fig-2

Identification of DEGs involved in corona and HCI treatments

Gene function enrichment analysis revealed differences in gene expression were observed
between corona and hot HCI treatments at 6 h. A comparison of DEGs at multiple time
points between the treated and control groups showed only nine common DEGs across
five comparison groups and 129 common DEGs across four comparison groups (Figs. 4A
and 4B). This suggests that corona and HCI treatments may modulate different pathways
to promote silkworm embryonic development.

At 6 HAT, DEG analysis showed that two comparison groups—CK6 vs. E6 and CK6
vs. H6—shared 295 DEGs, and their functions were mainly related to cellular senescence.
The CK6 vs. E6 comparison group had 873 specific DEGs, which were mainly enriched
in purine metabolism, whereas the CK6 vs. H6 comparison group had 514 specific DEGs,
which were mainly related to the longevity regulating pathway and protein processing in
the endoplasmic reticulum (Fig. 4C).

At 20 HAT, the number of common DEGs between CK20 vs. E20 and CK20 vs. H20
increased to 888, with their functions enriched in the Toll and Imd signaling pathways and
insect hormone biosynthesis. The CK20 vs. E20 comparison group had 228 specific DEGs,
which were mainly associated with the p53 signaling pathway, whereas the CK20 vs. H20
comparison group had 463 specific DEGs, which were enriched in the purine metabolism
pathway (Fig. 4D).

FoxO signaling pathway response to corona treatment

After corona treatment, the FoxO signaling pathway was notably enriched. Corona
treatment likely induces DNA damage, which may lead to the upregulation of CDK2
and Rasl. Rasl promotes the expression of FoxO genes, whereas CDK2 has been shown to
inhibit the expression of downstream FoxO genes. The interplay between these factors may
result in a complex regulatory effect on the overall expression of FoxO genes (Figs. 5A and
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removing them from refrigeration (Fig. 5C).

5B). FoxO genes ultimately influence the expression levels of cell cycle-related genes, such
as Cyclin B2/B3 (significantly upregulated after treatment) and Cyclin G2 (downregulated
after treatment) genes (Figs. 5A and 5B). These results suggest that corona treatment
activates cell cycle regulation through the FoxO signaling pathway. Further validation of
corona-treated samples using QRT-PCR showed that the expression patterns of most genes,
except for Rasl, were consistent with the RNA-seq data. In addition, several genes in the
control group showed changes in expression levels across the three time points, which
may be related to the process of adjusting the silkworm eggs to room temperature after
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Heat shock proteins and insect hormone biosynthesis may be involved
in embryonic development via HCI treatment

The results showed that the enriched pathways in the HCl-treated group differed
significantly from those in the corona-treated group. Notably, HCI treatment increased
the expression of multiple heat shock protein (HSP)-related genes, potentially activating
downstream pathways such as longevity regulation and ER-associated degradation (Figs.
6A and 6B). In addition, hormone-related pathways may be activated, with upregulated
expression of ALDH and CYP18AI possibly promoting the production of juvenile and
molting hormones (Figs. 6A and 6B). Examination of HCl-treated samples through qRT-
PCR showed that the expression levels of HSP70 and ALHD were significantly upregulated
at 1 and 6 HAT. Conversely, the corona-treated group showed relatively minimal changes.
Similarly, the expression levels of sHSP20 and CYPI8A showed significant upregulation
at 6 HAT compared with those at 1 HAT. Fluctuations in gene expression levels in the
control group were also observed, possibly due to temperature changes after removing the
eggs from refrigeration (Fig. 6C). Although 1-h data from RNA-seq were unavailable, gene
expression trends were generally consistent with QRT-PCR results.

DISCUSSION

Silkworm, an economically important insect, undergoes diapause and other physiological
adaptations to survive adverse conditions, such as cold and drought. Research has indicated
a link between diapause tendencies in offspring and environmental conditions experienced
by parental embryos (Podrabsky ¢ Hand, 2015). In sericulture, various methods are
used to artificially terminate diapause in silkworm eggs. These methods include traditional
techniques such as acid immersion and refrigeration (Zhao et al., 2012) as well as treatments
involving hydrogen peroxide (Shen, Zhao ¢ Liu, 2003), dimethyl sulfoxide (Yamarmoto,
Mase & Sawada, 2013), and corona (Zhang et al., 2022). Despite these advancements, the
molecular mechanisms underlying diapause termination in silkworms remain unclear, and
it is unknown whether different termination methods share the same mechanism.

In this study, we showed that both corona and HCI treatments effectively terminated
diapause in silkworm eggs. However, corona-treated eggs exhibited a shorter embryonic
development period and earlier hatching than HCl-treated eggs. Notably, at 6 HAT, the
corona-treated samples showed higher similarity to the 20 HAT samples of corona-treated
and HCl-treated, suggesting that corona treatment induces earlier embryonic development.
This further indicates that the mechanisms underlying diapause termination via corona
and HCI treatments may differ.

When DEGs from corona and HCI treatments were analyzed for KEGG pathway
enrichment, significant differences were noted. At 6 HAT, DEGs from the corona-
treated group were enriched in the FoxO signaling pathway, whereas those from the
HCl-treated group were mainly enriched in the longevity regulating pathway. This suggests
a divergence in the early mechanisms of diapause termination. However, at 20 HAT,
DEGs from both treatment groups showed significant enrichment in pathways such as
glycolysis/gluconeogenesis, vitamin B6 metabolism, and pentose phosphate pathway,
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all of which are fundamental to developmental processes and provide essential energy
for embryonic development (Lin ¢ Xu, 2016). Current evidence indicates that glycolysis
is closely related to insect diapause, with the expression of HK—a key enzyme in the
glycolytic pathway—being significantly higher in non-diapause Drosophila than in diapause
Drosophila (Castro-Sosa et al., 2017). Our results indicated that after diapause termination,
both corona- and HCl-treated silkworm eggs largely restore normal embryonic metabolism
within 20 h, transitioning into the developmental stage. The 6-h post-treatment period
represents a critical phase in the early regulation of gene expression during diapause
termination, warranting further investigation.

As mentioned previously, the molecular mechanisms underlying diapause termination
via corona and HCI treatments may differ, especially at 6 HAT. During corona treatment,
the applied current damages DNA, leading to the activation of genes involved in the
FoxO signaling pathway. FoxO plays a critical role in regulating the cell cycle, with its
expression being regulated by genes such as Ras (Kloet et al., 2015). Conditional activation
of FoxO factors has been linked to cellular proliferation and cell fate (Lasick et al., 2023;
Lei & Quelle, 2009; Schmidt et al., 2002). In particular, during diapause regulation, FoxO
may activate cell cycle-dependent kinase inhibitors to maintain the quiescent state of
the cell cycle (Karp & Greenwald, 2013). In mosquitoes, at least 72 genes with FoxO
binding sites have been identified, many of which are functionally associated with diapause
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(Sim & Denlinger, 2008; Sim ¢ Denlinger, 2013; Sim et al., 2015). The FoxO factors exert a
negative regulatory effect on the cell cycle. Our study indicates that the downregulation of
FoxO3 in the treatment groups may play a role in initiating the development of silkworm
embryos. While RASI positively regulates FoxO3 expression, the qRT-PCR results align
with our expectations. However, the discrepancy between RNA-seq and qRT-PCR data
suggests that the involvement of RASI in FoxO expression regulation warrants additional
experimental validation. We hypothesized that corona-induced DNA damage activates the
FoxO regulatory pathway, thereby terminating silkworm embryo diapause.

Interestingly, hot HCI treatment may be associated with a different mechanism for
diapause termination. In the present study, substantial activation of HSPs, including HSP70
and HSP20, suggesting that heat shock plays a dominant role in diapause termination
process. The role of small HSPs in diapause has been investigated previously, with proteins
such as ArHSP21 and ArHSP22 being expressed in diapause eggs and degraded upon
diapause termination (Qiu ¢ MacRae, 2008a; Qiu ¢ MacRae, 2008D).

In this study, we also demonstrated that the method of cold storage and preservation
of silkworm eggs may significantly affect gene expression. When the eggs were returned to
room temperature, changes in gene expression were noted, raising the question of whether
these genes are related to the survival of silkworm eggs in response to low temperatures.
In addition, as RNA-seq data were not available for 1 h post HCI treatment, the 1-h
post-treatment qRT-PCR data provided a valuable reference for further speculation on the
timing of gene responses.

CONCLUSION

This study compared corona and HCI treatments methods for terminating silkworm
egg diapause using transcriptomic analysis. We revealed that the molecular mechanisms
involved in diapause termination differ between the corona and HCI treatments. Corona
treatment may regulate embryonic development through the FoxO signaling pathway,
whereas HCI treatment may regulate it through the induction of HSPs and synthesis of B.
mori hormones. These results provide a reference for further understanding the molecular
mechanisms of diapause termination in silkworms and lay a theoretical foundation for
breeding and production applications.
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