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Teeth provide valuable information about an individual9s life cycle and serve as a powerful
tool for visualizing population-level changes associated with density-dependent processes.
In pinnipeds, teeth are used to estimate the age of individuals based on the count of
growth layer groups (GLG) in the dentine.In this study, we analyzed changes in tooth size
and GLG widths in the canines ofOtaria ûavescensthroughout the past 100 years, linking
these to ûuctuations in population abundance. A total of 76 male individuals from
Patagonia were analyzed, classiûed into two periods: harvest and postharvest.The length
and diameter of each tooth were measured prior to sagittal sectioning. Only for the
postharvest period body length was recorded. Longitudinal sections of the upper canine
were prepared, age was determined and the width of each GLG was measured in the
resulting half-tooth. Results indicated that a positive correlation (F = 62.90; p < 0.001; n =
50; r2= 0.59) between body length and tooth length in postharvest individuals, suggesting
that tooth growth is a reliable indicator of body growth. Individuals from the harvest period
had narrower GLGs (t = 3.75; p < 0.001) and smaller tooth size (t = 3.48; p < 0.001)
compared to those from the postharvest period. These results indicate that somatic growth
of individuals may vary with population numbers and resources available. Also, that hard
structures like teeth are excellent tools for visualizing density-dependence eûects.
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14 Abstract 

15

16 Teeth provide valuable information about an individual�s life cycle and serve as a 

17 powerful tool for visualizing population-level changes associated with density-dependent 

18 processes. In pinnipeds, teeth are used to estimate the age of individuals based on the count of 

19 growth layer groups (GLG) in the dentine. In this study, we analyzed changes in tooth size and 

20 GLG widths in the canines of Otaria flavescens throughout the past 100 years, linking these to 

21 fluctuations in population abundance. A total of 76 male individuals from Patagonia were 

22 analyzed, classified into two periods: harvest and postharvest. The length and diameter of each 

23 tooth were measured prior to sagittal sectioning. Only for the postharvest period body length was 

24 recorded. Longitudinal sections of the upper canine were prepared, age was determined and the 

25 width of each GLG was measured in the resulting half-tooth. Results indicated that a positive 

26 correlation (F = 62.90; p < 0.001; n=50; r2= 0.59) between body length and tooth length in 

27 postharvest individuals, suggesting that tooth growth is a reliable indicator of body growth. 

28 Individuals from the harvest period had narrower GLGs (t = 3.75; p < 0.001) and smaller tooth 

29 size (t = 3.48; p < 0.001) compared to those from the postharvest period. These results indicate 

30 that somatic growth of individuals may vary with population numbers and resources available. 

31 Also, that hard structures like teeth are excellent tools for visualizing density-dependence effects.

32
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34 Introduction

35 Density-dependent is a mechanism that occurs in K strategist species and is noted or 

36 measured when population abundance approaches carrying capacity (McLaren & Smith 1985). 

37 The changes caused by density-dependent occur dramatically and can be seen in a relatively 

38 short time (Fowler 1981; Lima 1995). Density-dependent regulation can generate physiological 

39 or behavioral changes in individuals within a population (Fowler 1990). In particular, hard 

40 structures like teeth provide information about individual�s life cycle and are powerful tools for 

41 visualizing population-level changes associated with density-dependent processes.

42 Age determination of individuals is one of the most important parameters for studying the 

43 population dynamics of mammals (McLaren & Smith 1985; Scheffer & Myrick 1980). In the 

44 past, several methods have been used to estimate the approximate age of individuals, such as 

45 body length, lens weight, cranial sutures, tooth wear, and corpora albicantia count (McLaren & 

46 Smith 1985). However, none of these techniques provided precise information on the age of an 

47 individual (Scheffer & Myrick 1980). Since the 1950s, pinniped teeth have been used to estimate 

48 ages by counting growth layer groups (GLGs) found in the dentine and/or the cement (Scheffer 

49 1950). This technique is mostly used in marine mammals as it provides more accurate 

50 information on the chronological age of the individual (Crespo 1988; Laws 1952, 1953; Loza et 

51 al. 2016; Read et al. 2018; Scheffer 1955).

52 In pinnipeds, it is generally assumed that one GLG corresponds to the amount of tissue 

53 accumulated during a year of life. In tooth-thin sections observed with transmitted light, a GLG 

54 is composed of a thin, clear band and a broader, opaque band (valley and ridge, respectively, in 

55 acid-etched sections of half-tooth) (Crespo 1988; Crespo et al. 1994; Laws 1952, 1953, 1962; 

56 Scheffer 1955). The opaque bands correspond to the feeding period, and the light bands 

57 correspond to the fasting season usually associated with the reproductive season (Crespo 1988). 

58 The deposition of a GLG can be modified by physiological events such as pregnancy, lactation, 

59 weaning, fasting, moulting, and sexual maturity (Bengtson 1988; Boyd & Roberts 1993; 

60 Mansfield 1991) or by extreme climatic conditions (Heredia et al. 2021; Dellabianca et al. 2012; 

61 Wittmann et al. 2016). 

62 The dentine of pinnipeds, like that of other mammals, is composed of 35% organic 

63 components mainly collagen fibers and mucopolysaccharides, and 65% inorganic components, 

64 including hydroxyapatite and small amounts of zinc, strontium, fluorine, magnesium, 

65 manganese, lead, iron and tin (Klevezal et al. 1996). Dentine is formed by the activity of cells 

66 called odontoblasts, which are located in the wall of the pulp cavity (Klevezal et al. 1996). 

67 Particularly, dentine presents a high sensitivity to diet changes, and the mineralization process of 

68 GLGs depends on the contribution of vitamins and minerals ingested with food (Klevezal et al. 

69 1996; Laws 1962). Consequently, the physiological mechanisms of mineralization can be 

70 affected by a nutritional deficit, leading to sparse deposition of minerals that structure the GLG 

71 (Boyd & Roberts 1993; Hanson et al. 2009; Klevezal et al. 1996; Knox et al. 2014; Wittmann et 

72 al. 2016). Since GLGs are deposited from the pulp cavity, it is important to consider the normal 

73 progressive decrease in the width of the GLG with the age of the animal before relating this 

74 information to food availability or growth (Boyd & Roberts 1993). Therefore, the various events 

75 throughout an individual�s life cycle are reflected in the dentine deposits on their teeth. This 

76 could generate patterns in the tooth growth that could reflect the life history of the individual 

77 (Boyd & Roberts 1993; Newsome et al. 2006, 2007).
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78 The South American sea lion (SASL, Otaria flavescens) population from Patagonia has 

79 experienced a drastic reduction in size over a relatively short period and then began a slow 

80 recovery after sealing ended (Crespo & Pedraza 1991; Dans et al. 2004; Grandi et al. 2015; 

81 Reyes et al. 1999; Romero et al. 2017). In Argentina, large scale commercial sealing of SASL 

82 began in 1917 and ended in 1962 (Romero et al. 2017). Skin and blubber were used for leather, 

83 fur and oil production, and the remains of the animals were discarded on the coast, generating 

84 ossuaries near the factories (Bastida 1963; Carrara 1952; Crespo & Pedraza 1991). Península 

85 Valdés (in northern Patagonia), Tierra del Fuego and Malvinas Islands supported the most 

86 heavily exploited stocks of the Atlantic Ocean (Romero et al. 2017, Baylis et al. 2015). The 

87 northern and central Patagonian population dropped drastically from an estimated 440,000 

88 individuals in the preharvest period to 20,000 individuals in a few years, a reduction of more 

89 than 90% of its original abundance (Romero et al. 2017). After the harvest ceased, the population 

90 reached its minimum abundance and then began to recover (Romero et al. 2017). Romero et al. 

91 (2017) observed that populations of SASL have a nonlinear relationship with density, assuming 

92 an �overcrowding� or compensatory density-dependent process that affects the population 

93 growth rate at high densities. These changes in abundance over time provide a favorable scenario 

94 for testing possible changes related to density-dependent phenomena. Before the commercial 

95 harvest, SALS abundance was probably in equilibrium with the per capita food availability in 

96 the environment, resulting in individuals of a certain body size. At the end of the harvest, 

97 population density was so low that individuals likely had greater per capita food availability that 

98 ultimately would lead to a larger body size.

99 The variation in individual size could also be related to the reaction norm of the genotype. 

100 Norm of reaction represents the range of phenotypic variation produced by a genotype in 

101 response to environmental variation (Woltereck 1909). Studying reaction norms is important for 

102 understanding various aspects of phenotypic evolution (Bhumika & Singh 2019). Phenotypic 

103 plasticity is defined as the ability of a particular genotype to produce more than one phenotype in 

104 response to changing environmental conditions such as temperature, population density, 

105 nutrition, etc. (Yang & Pospisilik 2019). Phenotypic plasticity provides species with the ability to 

106 facilitate adaptive changes and increase phenotypic diversity, thereby enabling them to better 

107 cope with environmental changes (Yang & Pospisilik, 2019). In this context, it is expected that 

108 individual growth will be reflected in teeth growth pattern, which could be modified over time 

109 due to density-dependent effects and the norm of reaction of the genotype. 

110 Therefore, the objective of this work was to analyze potential changes in the upper 

111 canines of male Otaria flavescens related to changes in population abundance over the past 100 

112 years.

113 Materials and methods

114 Sample and study area

115 A total of 76 upper canine teeth of male SASL from northern and central Patagonia were 

116 analyzed (Fig. 1). The sample belongs to the Osteological Marine Mammal Scientific Collection 

117 of CESIMAR - CONICET, Argentina (Table S1).

118 Individuals were classified into periods according to their time of death: harvest (1917-

119 1962) and postharvest (1963-2017). The individuals from the harvest period (n = 26) 

120 corresponded to the sealing time when population abundance was high and presumably at 

121 carrying capacity. These individuals were obtained from the ossuary at Punta Norte (42°04´S, 
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122 63°45´W), Península Valdés, Argentina (Fig. 1). The postharvest period includes individuals (n 

123 = 50) found dead on the coasts or incidentally caught in commercial trawl fisheries in northern 

124 and central Patagonia (Fig. 1). Only sub-adult and adult individuals (i.e., older than 4 years are 

125 sexually mature, Grandi et al. 2010) were selected to avoid differences related to ontogeny.

126

127 Data collection and tooth preparation

128 The length (L) and diameter (D) of each tooth were measured using a digital caliper (Mitutoyo, 

129 minimum value 0.01 mm), before sagittal sectioning. For the postharvest period, body length 

130 (Standard Length, LS) was recorded using a measuring tape (minimum measurement 1 mm). 

131 Subsequently, upper canines were sagittally sectioned through the center of the pulp cavity with 

132 a handsaw. The best half-tooth was selected, polished, and etched in 5% nitric acid. Each half-

133 tooth was then rinsed, dried at room temperature, and rubbed with acetone to enhance GLG 

134 contrast (Fig. 2) (Crespo et al. 1994).

135 The inner surface of the half-teeth was photographed using a Cannon Rebel camera. Two 

136 observers independently counted the number of GLGs on each half-tooth in different reading 

137 sessions, and final age assignments were based on consensus (Table S1). Then GLG width was 

138 measured in the dentine using Leica Application Suite V3.4.0 software, which allowed for 

139 plotting lines on the edge of each GLG and measuring width considering the scale of the 

140 photograph. Measurements were taken on the polished surface of the most concave side of half-

141 tooth (Fig. 2), from the neonatal line (i.e., the line laid at birth) to the pulp cavity in a staggered 

142 manner (Fig. 2). As GLG width varies throughout its entire path, the measurements were taken in 

143 the most stable width area (i.e., the central area of the tooth). Measurements of the first GLG 

144 were excluded from the sample, since they presented high variability.

145

146 Data analysis

147 To study the relationship between tooth length (L) and individual size (LS), linear 

148 regression was performed to analyze whether tooth size is a good proxy of body size. This was 

149 done using postharvest individuals, as body length data from the harvest period individuals were 

150 unavailable. T-Student analyses were conducted to evaluate differences in tooth length (L) and 

151 diameter (D) between the harvest and postharvest periods. 

152 Generalized linear mixed models with a normal error distribution were used to assess 

153 whether there were differences in the width of the growth layers (GLGW) between periods. The 

154 response variable, GLGW, was modeled using two predictor variables: the period as a 

155 categorical variable (harvest and postharvest) and n°GLG as a continuous variable (which is the 

156 number of each growing layer). Individual id was used as a random covariable. Two of the most 

157 suited autocorrelation structures were used to model the temporal dependence of the response 

158 variable within each tooth. The gls function from the "MASS" library (Venables & Ripley 2002) 

159 and the lme function of the "nlme" v. 3.1-127 package (Pinheiro & Bates 2000) were 

160 implemented with R (R Core Team 2017). The modelling procedures followed Zuur et al. 

161 (2009), and models were selected using the Akaike Information Criterion (AIC) (Zuur et al. 

162 2009).

163

164 Results 
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165 The body length and tooth length in individuals from the postharvest period showed a 

166 significant linear regression (F = 62.90; p < 0.001; n = 50; r2= 0.59), suggesting that tooth 

167 growth is a good indicator of body growth (Fig. 3). Additionally, there were differences in tooth 

168 length (L) and diameter (D) between harvest and postharvest period, with teeth from the harvest 

169 period being significantly shorter (t = 3.48; p < 0.001; Fig. 4) and thinner (t = 3.75; p < 0.001; 

170 Fig. 4) compared to those from the postharvest period. 

171 The best models are presented in terms of �AIC (Table 1), and as a rule of thumb values 

172 that are less than two should be given consideration as the selected model (Burnham & Anderson 

173 2004). The Akaike Information Criterion (AIC) favours Model 4, as shown in Table 1. Model 4 

174 includes the predictor variables: period (harvest, post-harvest), n°GLG, individual as a random 

175 effect, and an AR1 temporal autocorrelation structure (Table 1). All variables were significant. 

176 The model results indicated that individuals from the harvest period had smaller GLG 

177 widths compared to those from the postharvest period (Fig. 5). Additionally, the models slopes 

178 are equal, showing that the decrease in the width of the growth layers was the same in both 

179 periods.  

180 Discussion

181 This study demonstrates that the growth of canine teeth is a good indicator of body 

182 growth of individuals. The results suggest the existence of a density-dependent response in tooth 

183 growth of males SASL of Patagonia, Argentina. GLGs were found to be thinner in individuals 

184 from the harvest period, compared to post-harvest individuals, likely due to higher population 

185 density in sealing time. Additionally, teeth from the harvest period were thinner and shorter than 

186 those from the post-harvest period, indicating changes in somatic growth over time. In turn, the 

187 results also suggest that a lesser amount of dentine (i.e. narrower GLG) was deposited in each 

188 calendar year in individuals from the harvest period compared to post-harvest individuals. 

189 Changes in population abundance have a significant impact on individual growth. These 

190 changes are often related to density-dependent processes that produce physiological or 

191 behavioral changes in individuals of a population (Fowler 1990). Therefore, differences in GLG 

192 width and tooth size between the two time periods are likely related to changes in O. flavescens 

193 population abundance. Before commercial harvesting, the population of northern and central 

194 Patagonia was estimated at 440,000 individuals (Romero et al. 2017). At its height, intraspecific 

195 competition would have been the highest, leading to a lower per capita intake, likely investing 

196 more energy in searching for food, consuming a smaller amount of prey per capita and/or prey 

197 of lower nutritional quality. This results in lesser dentine deposits in GLGs and could be 

198 ultimately reflected in lower somatic growth (Sosa Drouville et al. 2021). On the contrary, when 

199 the population declined, the intraspecific competition was lower, leading to an increase in 

200 dentine deposits thickness and larger somatic growth.

201 Dietary changes caused by density-dependent factors may be reflected in the physical 

202 condition of individuals and their somatic growth (Trites & Bigg 1992; Sosa Drouville et al. 

203 2021). The results obtained are consistent with findings in other studies (Boyd & Roberts 1993; 

204 Etnier 2004; Hanson et al. 2009; Sosa Drouville et al. 2021; Scheffer 1955). For example, the 

205 northern fur seal, Callorhinus ursinus, shows a decrease in body size with increased population 

206 size (Etnier 2004; Scheffer 1955). In the Arctocephalus gazella population from South Georgia 

207 Islands, GLG width decreased with increased population density (Boyd & Roberts 1993). A 
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208 decline in annular tooth growth was observed in male Antarctic fur seal, A. gazella, from South 

209 Georgia as a consequence of rapid population growth (Hanson et al. 2009).

210 In pinnipeds, there are marked intra-specific differences in feeding patterns. Diving skills, 

211 dive duration, dive depth, distance to shore, and swimming speed increase with age and are 

212 acquired progressively throughout their lives (Bekkby & Bjørge 2000; Costa 1991; Chilvers et 

213 al. 2005, 2006; Horning & Trillmich 1997). Hence, an increase in population abundance likely 

214 increases prey consumption near colonies, leading to higher intraspecific competition (Drago et 

215 al. 2010, 2011). Females are particularly affected due to the constrains of raising pups, especially 

216 during the early lactation period when foraging trips are restricted in distance and duration by the 

217 fasting ability of pups (Drago et al. 2010; Riet-Sapriza et al. 2013). Suboptimal maternal 

218 nutrition may result in lower offspring somatic growth and smaller GLG width during lactation. 

219 Pups likely spend their early years feeding in areas surrounding the colony with short foraging 

220 trips. Drago et al. (2011) found that O. flavescens pups grew slower in more abundant colonies 

221 than in smaller ones, and this may be due to lower per capita food availability for females. 

222 Therefore, if food is a limiting factor in the feeding areas near the colony, there may be a 

223 nutritional deficit that could be reflected in tooth growth and GLG composition by poor mineral 

224 deposition. In this study, we found that males of O. flavescens exhibit the same pattern that 

225 would be expected for females that feed near the colonies, even though the males feed further 

226 away (Koen Alonso et al. 2000; Campagna et al. 2001). This could be the result of an onset 

227 effect due to insufficient nutrition during the lactating period, which affects the male's 

228 development throughout its life, higher competition in the feeding grounds despite being further 

229 away, or a combination of both (Sosa Drouville 2023).

230 Differences found in tooth size between the two periods may also be related to the Norm 

231 of reaction of the genotype, producing different phenotypes under a gradient of environmental 

232 conditions such as population abundance, diet, and behavioral changes (Forsman 2015). Genes 

233 that code for tooth growth can have different phenotypic outputs that can be influenced by 

234 environmental conditions. Optimal environmental conditions yield maximum growth values, 

235 while suboptimal conditions result in minimum value (Woltereck 1909). Therefore, we propose 

236 that the difference in tooth size observed in the present work could likely due to the intense 

237 intraspecific competition generated by the high population density during the harvest period, 

238 preventing teeth from reaching their maximum growth potential determined by the genotype of 

239 the species.

240 Tooth structure can also provide powerful and relevant information about individual and 

241 population life history. The upper canines of SASL males are large and robust, with clearly 

242 visible GLGs in the dentine. Pinniped growth patterns reflect species characteristics and 

243 environmental features (McLaren & Smith 1985). Climate patterns can have a great impact on 

244 the somatic growth of individuals and may affect the availability of resources in the environment 

245 (Heredia et al. 2021; Sielfeld et al. 2018; Sprogis et al. 2018). For example, SASL population in 

246 Chile alters their diet during El Niño-Southern Oscillation (ENSO) events, leading to nutritional 

247 stress and affecting somatic growth, survival rates, birth rates, and increased susceptibility to 

248 disease (Sielfeld et al. 2018). Another example in Patagonia, SASL female GLG width was 

249 influenced by the Southern Annular Mode (SAM) climate pattern (Heredia et al. 2021). 

250 Regarding SASL males from Patagonia, there was no alteration in GLGs growth associated with 

251 SAM or ENSO (Heredia et al. 2021).
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252 On the other hand, changes in the diet of a species or changes in prey availability are 

253 often associated with industrial fishing and could generate an impact in the somatic growth 

254 (Crespo et al. 1997; Dans et al. 2003). In the Argentine Sea, fishing activity targeting hake 

255 (Merluccius hubbsi), shrimp (Pleoticus muelleri) and squid (Illex argentinus) increased 

256 considerably since the 1970s (Bertolotti et al. 2001; Bezzi & Dato 1995; Brunetti 1990), leading 

257 to the decline of several stocks due to over-exploitation by the 2000s (Cordo 2004). These 

258 species are the main prey in the diet of SASL (Koen Alonso et al. 2000; Sosa Drouville 2023), 

259 making the fishing industry a crucial factor affecting food availability from the post-harvest 

260 period.

261 This study covers over 100 years of the life history of the northern and central Patagonian 

262 sea lion population, confirming that hard structures like teeth are excellent tools for visualizing 

263 the effects of density-dependence. Teeth degrade slowly, making them ideal for studying long-

264 term changes in individual and population life histories.
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Figure 1
Figure 1: Study area indicating sampling locations of South American sea lions in
northern and central Patagonia, Argentina (ï) and Punta Norte ossuary (·).
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Figure 2
Figure 2: Sagittal section of the upper canine of a South American sea lion male. It is
noted the pulp cavity, dentine, cement and enamel. In the dentine the GLGs are marked
with graphite.
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Figure 3
Figure 3: Scatter plot and linear regression between body length and tooth length of
SASL males during the post-harvest period.
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Figure 4
Figura 4: Arriba: Diagrama de caja de la longitud de los dientes de los machos SASL de
ambos períodos. Abajo: Diagrama de caja del diámetro de los dientes de los machos
SASL de ambos períodos. (ï) Período de cosecha y (ï) Período de poscosecha.

PeerJ reviewing PDF | (2024:11:108774:0:1:NEW 16 Nov 2024)

Manuscript to be reviewed



Figure 5
Figure 5: Relationship between GLGW and the N° GLG in both time periods (with
conûdence interval of 95%). (ï) Harvest and (ï) Post-harvest.
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Table 1(on next page)

Table 1: Summary of the generalized linear mixed models used. The structure for each
model, �AIC and df values are shown.
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1 Table 1: Summary of the generalized linear mixed models used. The structure for each model, 

2 �AIC and df values are shown.

3

models Models �AIC df

M4

Lme (GLGW ~ n°GLG * period, random = ~1|id, 

na.action=na.omit, correlation=corCompSymm (form =~ 1|id/glb 

))

7,5 7

M2  Lme (GLGW ~ n°GLG * period, random = ~1|id, 

correlation=corAR1(form =~ 1| id/glb ))
5,1 7

M3

Lme (GLGW ~ n°GLG * period, random = ~1|id, 

na.action=na.omit, correlation=corCompSymm (form =~ 1|id/glb 

))

7,5 7

M1 Lme (GLGW ~ n°GLG  * period, random = ~  1 | id) 108,4 6

4
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