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ABSTRACT
Background. Surface soil is a vital component of terrestrial ecosystems and is of
great importance for primary productivity. In Zhangjiachong, a small watershed in
Zigui County, central China, human activity and erosion cause extensive surface soil
degradation. It is still unclear as to what extent human activity influences soil fertility
and soil microorganisms in this area.
Methods. Soil samples were collected, during spring and autumn, across a series of land
use types with different levels of human activity. We assessed soil fertility and microbial
communities using 16S rRNA gene sequencing and Biolog ECO-plates.
Results. The results showed that higher levels of human activity were associated with
lower soil fertility and microbial metabolic activity, in addition to higher bacterial
diversity. Moreover, human activity had negative effects on the relative abundances
of Proteobacteria and Acidobacteriota, which were the key drivers of surface soil
fertility. Conversely, stronger human activity was associated with lower abundance of
Actinobacteriota. This study suggested that human activity had a negative influence on
surface soil fertility, and bacterial community composition could be a good predictor
of surface soil fertility.

Subjects Agricultural Science, Microbiology, Plant Science, Soil Science
Keywords Human disturbance, Temporal variation of bacterial community, 16S rRNA gene
sequencing, Biolog ECO-plate

INTRODUCTION
The uppermost layer of soil, also known as the surface soil or topsoil, plays a critical role
in sustaining life on Earth. For example, the topsoil provides ecosystem services relating
to growing crops, raising livestock, as well as regulating of water and climates. The topsoil
also play a key role in nutrient cycling, which sustain diverse plant, animal and microbial
species, and are essential for ecosystem resilience and stability (Anikwe & Ife, 2023; Telo da
Gama, 2023).
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Soil microorganisms, particularly bacteria and fungi, are fundamental to the functioning
of soil ecosystems, e.g., maintaining soil health, fertility, and overall environmental quality
(Xu et al., 2021a; Xu et al., 2021c). For instance, soil microbial activity can suppress plant
pathogens through competition for nutrients and space, as well as by producing antibiotics
that inhibit harmful organisms (Osburn et al., 2023). The microbial activity contributes
to the formation of soil aggregates through the production of polysaccharides and other
binding agents, the improvement of soil structure, the enhancement of water infiltration,
and the increase of the soil’s ability to retain moisture (Saccá et al., 2017). In addition,
soil microbes are pivotal in the recycling of nutrients such as carbon (C), nitrogen (N),
phosphorus (P), sulfur (S) and potassium (K). They decompose organic matter, breaking
it down into simpler compounds that plants can absorb, providing important ecosystem
services (Saccá et al., 2017).

One key example of human activity on ecosystems is land use change. For instance,
agricultural activities converse forests, grasslands and wetland into arable land, leading
to habitat and biodiversity loss (Ros et al., 2004; Wang et al., 2001; Bucała, 2014; Zhang
et al., 2016a). As topsoil erodes or degrades, the nutrient-rich layer that supports plant
growth diminishes. This results in lower agricultural productivity and increased reliance
on chemical fertilizers, which can further degrade soil health over time (Joergensen &
Emmerling, 2006). In addition, trampling decreases vegetation cover, plant species, soil
respiration rate and enzymatic activities (Ros et al., 2004). Land use changes affect soil
nutrients, e.g., transition of forests and shrub lands into croplands significantly decreased
soil organic matter (SOM), total nitrogen (TN), total phosphorus (TP), available nitrogen
(AN), and available phosphorus (AP) contents (Wang et al., 2001). The application of
intercropping in cultivated lands is reported to create differences in microorganisms (He
et al., 2013; Zhao et al., 2014). Human induced changes lead to a decline in microbial
diversity and abundance, disrupting the essential processes of nutrient cycling (Huang et
al., 2020). Previous studies examining the influence of human activity (or land use types)
on soil attributes typically focus on a single (or several) soil fertility properties, e.g., SOC or
available N, P, K (Fusaro et al., 2019; Dror, Yaron & Berkowitz, 2022), making it difficult to
make an overall prediction of soil fertility. Additionally, an integrated concept, ecosystem
multifunctionality, has been proposed to describe the comprehensive traits of an ecosystem
(Hector & Bagchi, 2007; Maestre et al., 2012; Manning et al., 2018; Sanderson et al., 2004).
Exploring the effects of human activity on soil fertility in this integrated way has been
shown to be a powerful tool in recent studies (Delgado-Baquerizo et al., 2017). However,
our current understandings about the influence of human activity on surface soil fertility
and microbial communities are still not clear.

The Three Gorges Reservoir area (111◦34′E, 34◦82′N), located in the upper reaches of
the Yangtze River in China, is one of the most important ecological and agricultural bases
in China. Due to the significant changes of land uses brought about by the Three Gorges
Dam project, this region serves as a representative case for understanding the complex
interactions between soil fertility, soil chemistry, soilmicrobiome, and human interventions
(Meng, Fu & Yang, 2010; Iqbal et al., 2010; Lin et al., 2013; Yin et al., 2024). In this study,
soils from land use with different intensity of human disturbance, namely, sloping crop
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lands (high human disturbance, see experimental design section), flat lands (medium
human disturbance) and secondary forest (low human disturbance) were collected in a
small watershed in the Three Gorges Reservoir area. We intended to explore how surface
soil fertility varies among three types of land use and to identify the key factors mediating
soil fertility in this area. Furthermore, we sampled the soil in spring and autumn to explore
the temporal variation in soil fertility and microbial community. We hypothesized that (i)
soils in areas with intensive human activity would exhibit lower surface soil fertility and
microbial diversity, as human activities may disrupt nutrient accumulation and suppress
microbial species diversity; (ii) soil fertility and microbial community composition would
vary seasonally between spring and autumn; and (iii) microbial taxa with greater stress
tolerance would dominate in high human activity habitats (e.g., sloping lands), while those
favoring nutrient-rich conditions would be more abundant in areas with lower human
activity (e.g., forests).

MATERIALS AND METHODS
Experimental design and soil sampling
The study site was located at Zhangjiachong watershed (110◦57′E, 30◦46′N;133 to 632
m above sea level, 1.62 km2 area) which is part of the Three Gorges Reservoir area and
about 12 km southwest of Three Gorges dam. According to the WorldClim database
(Fick & Hijmans, 2017), annual mean temperature is 10 ◦C and annual precipitation is
1,200 mm in this area. The area is characterized by yellow-brown soils that originate from
the weathering of granite and/or sandstone. According to China’s soil classification system,
these soils are known as Alfisols, while in the United States, they are categorized as both
Alfisols and Ultisols (Wang, Xu & Liu, 1988). On sloping terrains, typical landscape in this
area, the granite-derived soils often have a sandy structure. The predominant land uses in
this region include agricultural land (26.7%), forests (60.6%), orchards for economic crops
(4.6%), grasslands (2.0%), and barren hillsides (4.9%). Soil erosion primarily happens
on sloping croplands and in areas with sparse vegetation, especially hills with slopes over
25◦ (Meng et al., 2024).

Eleven sampling plots were selected according to land use types. The land use types were
characterized by a gradient intensity of human activity (Table 1). We scored the human
activity according to a previous study (Cheng et al., 2022), and whether one type of human
activity existed or not in a given type of land use.We considered sloping lands to be the land
use type influenced mostly by human activity (scored 6, Table 1), as the crop fields with
Brassica campestris and Arachis hypogaeamight be disturbed by agricultural activities, such
as plowing, fertilizing, crop rotation, trampling, weeding, pest and disease controlling and
harvesting. In addition, trampling, weeding, pests and disease controlling and harvesting
were considered to exist in flat lands as well, because orange and tea pickings would occur
there. We treated forests as the land use type with the lowest intensity of human activity,
such as occasional logging.

To avoid sampling bias of plant attributes (as those plants are assumed to affect soil
properties and hence soil microorganisms), a series of plant species were included within
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Table 1 Empirical scoring of the strength of human activity on each land use type.Higher score implicates stronger human activity.

Land use types Human activity types Total score

Plowing Fertilizing Crop rotation Weeding Pest and
disease control

Harvest

Sloping croplands 1 1 1 1 1 1 6
Flat croplands 0 1 0 1 1 1 4
Forests 0 0 0 0 0 1 1

Table 2 Information of land use types, crop, and plant species in each plot.

Plot number Land use type Crops or plants Hedgerows
planteda

1 Sloping croplands Citrus reticulata Yes
2 Sloping croplands Camellia sinensis Yes
3 Sloping croplands Brassica campestris (grown in spring)

Arachis hypogaea (grown in autumn)
Yes

4 Sloping croplands Citrus reticulata No
5 Sloping croplands Camellia sinensis No
6 Sloping croplands Brassica campestris (grown in spring)

Arachis hypogaea (grown in autumn)
No

7 Flat croplands Camellia sinensis –
8 Flat croplands Citrus reticulata –
9 Forests Cinnamomum camphora –
10 Forests Cinnamomum camphora and Camellia sinensis –
11 Forests Fagus longipetiolata –

Notes.
aThe hedgerows are not available in croplands and forests.

each type of land use. The three types of land use were: sloping croplands (sloping lands),
flat croplands (flat lands), and secondary forests (forests). The predominate plants in
sloping lands were orange (Citrus reticulata) and tea trees (Camellia sinensis), and crop
species, e.g., B. campestris (in spring) and A. hypogaea (in autumn). In total, six plots of
sloping land were sampled, among which three were planted with hedgerows to prevent
soil erosion (plot No. 1-6 in Table 2). The major plant species in flat lands included orange
and tea trees, and there were no other trees nor crops. Two sampling plots were set up
from flat land (plot No. 7, 8 in Table 2). We selected three kinds of forests, in which the
constructive species were camphor tree (Cinnamomum camphora), camphor and tea trees,
and Fagus longipetiolata. Three sampling plots were selected, one in each of the forest types
(plot No. 9-11 in Table 2).

Soil samples were collected in spring (April) and autumn (September) 2016. The
five-point sampling method was applied during soil collection (Han et al., 2024). Five soil
cores were collected from each quadrat: one from each of the four corners and one from
the center. These cores were then pooled together to form a composite sample. Due to the
plot size and condition variation, the soil was sampled in three 2 m × 2 m quadrats for
crop lands, and three 5 m × 5 m quadrats for forests. In the meantime, plant richness was

Xu et al. (2025), PeerJ, DOI 10.7717/peerj.18959 4/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.18959


recorded in each quadrat. To avoid high levels of plant residue in the shallow soil layer
and to minimize the effect of soil depth on the microbial community, soil was sampled
at a depth of 5–10 cm instead of the conventional 0–10 cm. In total, 66 soil samples
were collected, with three replicates for each plot at each season. An overview of the plot
information is available in Table 2. Photographs demonstrating the natural condition of
each land use type sampled are in Fig. S1.

Soil properties
Soil samples were air dried, and soil physicochemical parameters were measured as
described previously (Xu et al., 2020; Xu et al., 2021c). Briefly, soil pH was determined
by a pH meter (UB-7, Denver, USA) after 1 min of sonication and shaking for
30 min of soil solution (1:5 weight (soil)/volume (distilled water)). The air-dried
moisture content (MC) was measured gravimetrically. Total N (TN), Total P and
total potassium (TK) was determined by the semimicro-Kjeldahl methods (Bremner,
1996), Mo-Sb colorimetric method (Murphy & Riley, 1962) and flame atomic emission
spectrophotometry, respectively. The available N in the soil was measured by the alkaline
hydrolysis diffusion method (Mulvaney & Khan, 2001); available P by Olsen’s method
(Olsen, Cole & Watanabe, 1954); available potassium (AK) was extracted with a NH4OAc
leaching-flaming luminosity (Zhou, Zhang & Niklas, 2014), and soil organic carbon (SOC)
was measured by the soil organic matter by K2Cr2O7- H2SO4 oxidation method (Nelson &
Sommers, 1996).

Assessment of soil fertility
To construct a soil fertility index, we selected seven key items: the SOC, total and available
N, P, K contents. These screened items consisted of the key nutrient parameters which
indicate the provision of nutrients for plant growth and microbial metabolism. The z-score
approach (averaging the z-score values of the above-mentioned soil fertility parameters)
was used to obtain a quantitative soil fertility index (Maestre et al., 2012). The data related
to these soil environmental traits used in this study are offered in Data S1.

Soil microbial Biolog incubation
The metabolic activity of the microbial community was measured using the Biolog ECO-
plates (Biolog Inc., Hayward, CA, USA) (Garland & Mills, 1991). Soil samples were stored
at 4 ◦C for 24 h prior to measurement. Before analysis, the samples were incubated at 25 ◦C
for 12 h to stimulate microbial metabolic activity. Soil microorganisms were extracted with
an aliquot of 0.5 g of soil sample mixed with 24.5 mL of saline solution (0.85% w/v). Then
the solution was diluted 1000 times and moved into Biolog ECO-plates. The incubation
was conducted in a light-free box (to stimulate the dark environment in soil) at 25 ◦C for
240 h (Manjunath et al., 2018). Average well color development (AWCD) was calculated
to describe metabolic activity of the microbial community (Equation (1)).

AWCD=
∑

(Ci−Ri)/31 (1)

where Ci is the optical density (at 590 nm) of each well with sample, while Ri is the average
optical density of the control wells. Plates with an incubation time of 96 h were chosen for
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further analysis, because this time point represented the logarithmic phase of incubation,
which could be a good proxy for microbial metabolic activity (Fig. S2).

Bacterial 16S rRNA gene sequencing
Soil samples for sequencing analyses were stored at −20 ◦C in a refrigerator until
measurement. Soil metagenomic DNA was extracted using the D5625-01 (Omega,
Norcross, GA, USA) DNA extraction kit according to the manufacturer’s instruction.
To ensure that contamination was avoided, we included negative H2O, no negative
PCR mix and primer controls in the PCR reactions. For each sample, triplicate PCR
reactions were performed. The V3-V4 hypervariable regions of the bacterial 16S rRNA
gene were amplified using a PCR Amplifier (2720, ABI, USA), with the primer set 515F
(5-GTGCCAGCMGCCGCGGTAA-3) and 806R (5-GGACTACVSGGGTATCTAAT-3)
(Caporaso et al., 2011). The PCR reactions were performed in a 25 µLmixture and included
0.25µL of Q5 high-fidelity DNA polymerase (M0491L; NEB, Ipswich,MA, USA), fiveµL of
5× reaction buffer, five µL of 5× GC buffer, five µL of dNTP (10 mM), one µL of forward
primer (10 µM), one µL of reverse primer (10 µM), one µL of DNA template, and 11.25
µL of ddH2O. The thermal program for amplification was 5 min of initial denaturation at
98 ◦C, 10 s at 98 ◦C, 30 s at 50 ◦C, and 30 s at 72 ◦C for 30 cycles before a final extension
of 5 min at 72 ◦C.

The amplicons with about 300 bp size were selected by running 2% agarose gel
electrophoresis in 1.0× TAE buffer and were purified using the AxyPrep DNA Gel
Extraction Kit (AP-GX-250; Axygen). After quantified on a microplate reader (FLX800;
BioTek) with the Quant-iT PicoGreen dsDNA Assay Kit (P7589; Invitrogen, Waltham,
MA, USA), the purified amplicons from one sample were pooled together and normalized
in equimolar amounts.

DNA libraries were constructed with equimolar mixed amplicons (100 ng) according
to the manufacturer’s instruction (Illumina). Finally, target DNA was sequenced on
an Illumina MiSeq platform. The sequencing data is deposited in NCBI database.
The accession number is PRJNA511782. The data also can be accessed via Figshare
(https://doi.org/10.6084/m9.figshare.27367386).

Bioinformatics
Paired-end reads were merged using FLASH software (Magoč & Salzberg, 2011). The
QIIME2 pipeline was then employed for subsequent analyses (Bolyen et al., 2019). Quality
controls were processed using ‘‘quality-filter q-score’’ with default parameters. The
amplicon sequence variants (ASVs) were obtained using the DADA2 denoise algorithm
(Callahan et al., 2016). Using the ‘‘qiime feature-table filter-features’’ command, ASVs
were further filtered with the following criteria: ASVs present less than two times, less
than two soil samples and those from mitochondria and chloroplasts. Using ‘‘qiime
feature-table rarefy’’ command, all samples were rarefied to nine, 860 sequences per
sample, based on the sample with the fewest reads (see details in the Qiime2 scripts in
the Code S1). For taxonomic classification of the 16S rRNA gene, the SILVA ribosomal
RNA gene database (Release 138) was employed (Quast et al., 2012). The original and
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rarefied datasets can be found at Data S2. The scripts and these datasets are also deposited
at Figshare (https://doi.org/10.6084/m9.figshare.27367386).

Statistical analysis
The normality of data distribution was assessed using the ‘shapiro.test’ function in R.
To ensure comparability across different parameters, tests for differences in soil fertility,
microbial metabolic activity, and bacterial diversity were conducted between seasons
(Spring and Autumn) and across three land use types using consistent methods. As the
Shannon diversity index did not meet the normality assumption, the non-parametric
Kruskal-Wallis test was applied, utilizing the ‘kruskal’ function from the agricolae package
v1.3-7 (De Mendiburu, 2023). Using the ‘vegan’ package v2.6.4 (Oksanen et al., 2011),
non-metric multidimensional scaling (NMDS) and permutational multivariate analysis of
variance (PERMANOVA) were used complementary to check the differences in bacterial β
diversity between seasons and land use types. Random forest analysis was used to identify
the biomarkers governing soil fertility, using the ‘randomForest’ package v4.7.1.1 (Liaw
&Wiener, 2002). The significance of each biomarker’s importance with respect to the soil
fertility index was assessed using the ‘rfPermute’ package v2.5.2 (Archer, 2013).

Evaluation of the direct and indirect effects of human activity, plant diversity, pH, and
microorganisms on soil fertility was conducted by partial least squares path modeling
(PLS-PM), using the ‘plspm’package v0.5.1 (Sanchez, 2013). In this model, the biomarkers
(bacterial taxa) identified by random forest modeling were treated as the proxies of
microbial composition, which was set as a latent variable, while the other factors were
manifest variables. These latent variables included two or more manifest variables. The
relative contribution of the manifest variables was estimated by their loadings in the
model. The models were conducted for 999 permutations using bootstraps to obtain
reliable estimates of path coefficients (representing the direction and strength of the linear
relationships between variables and loadings of the indicators). All statistical analyses were
conducted in R 4.3.3 (R Core Development Team, 2010). The R scripts used in this study can
be accessed in the Code S2 or via Figshare (https://doi.org/10.6084/m9.figshare.27367386).

RESULTS
Soil properties of different land use types
All soil samples used in our study showed relatively low pH values (between five and
six) and low organic C contents (from 10 to 20 mg kg−1, Table S1). Soil fertility index,
calculated from total and available N, P, and K, and SOC, was significantly and positively
correlated with soil organic C, total N, available N and available K (Fig. S3). In addition,
SOC, AN and AK showed relatively higher correlation strength (Fig. S3). The soil fertility
index significantly differed among different land use types (KW test: χ2

=11.135, df = 5,
P = 0.049), which was lower on sloping lands compared with other land use types (Fig. 1).
However, the influence of season on soil fertility was not significant regarding each type
of land use (Fig. 1). In addition, when land use was controlled, soil fertility was higher in
orange plots (considering sloping lands only) and Fagus plots (considering forests only)
than in plots with other plant species (Fig. S4).

Xu et al. (2025), PeerJ, DOI 10.7717/peerj.18959 7/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.18959#supp-6
https://doi.org/10.6084/m9.figshare.27367386
http://dx.doi.org/10.7717/peerj.18959#supp-2
https://doi.org/10.6084/m9.figshare.27367386
http://dx.doi.org/10.7717/peerj.18959#supp-2
http://dx.doi.org/10.7717/peerj.18959#supp-2
http://dx.doi.org/10.7717/peerj.18959#supp-2
http://dx.doi.org/10.7717/peerj.18959#supp-2
http://dx.doi.org/10.7717/peerj.18959


−0.5

0.0

0.5

1.0

So
il 

fe
rt

ili
ty

 (z
−s

co
re

)

Flat
 la

nd-

Autumn Fores
t-

Autumn

Sloping la
nd-

Autumn 
Sloping la

nd-

Sprin
g

Fores
t-

Sprin
g

Flat
 la

nd-

Sprin
g

a

ab

ab abc

bc

c

Figure 1 Box plots showing variation of soil fertility index among seasons and land use types.Differ-
ent lowercase letters denote significant differences determined by the Kruskal-Wallis test at a significance
level of P < 0.05.

Full-size DOI: 10.7717/peerj.18959/fig-1

Variation of soil microbial communities
It is important to note that the rarefaction curve of each sample gradually reached a steady
state with a sequencing depth higher than 5,000 sequences per sample (Fig. S5). Thus,
resampling each sample to 9,860 sequences was enough to detect soil bacterial diversity. In
total 29,294 ASVs were obtained; after filtration and resampling, the final dataset includes
12,683 ASVs (Data S2), which can be affiliated to 44 phyla 506 genera (Data S3–Data S4).

The top 10 soil bacterial phyla were Proteobacteria, Acidobacteriota, Actinobacteriota,
Gemmatimonadota, Chloroflexi, Myxococcota, Verrucomicrobiota, Planctomycetota,
Methylomirabilota, and Firmicutes (Fig. 2A). Proteobacteria was with higher amplicon
relative abundances in samples collected in spring than those collected in autumn (paired
Wilcox test:W = 256, P < 0.001); Proteobacteria (KW test: χ2

=11.867, df = 2, P = 0.003)
and Acidobacteriota (KW test: χ2

= 45.134, df = 2, P < 0.001) had higher amplicon relative
abundances in forests than croplands (sloping lands and flat lands). The highest amplicon
relative abundance of Actinobacteriota was observed in sloping croplands (KW test: χ2

=

39.94317, df = 2, P < 0.001, Fig. 2A).
The representative bacterial genera were Subgroup2 of Acidobacteriota,MND1, Acidibac-

ter, Acidothermus, Haliangium, Pseudolabrys, Paraburkholderia, SC.I.84, Rokubacteriales,
and Bradyrhizobium (Fig. 2B). Amplicon relative abundance ofHaliangium (pairedWilcox
test: W = 201.5, P < 0.001) and Rokubacteriales (paired Wilcox test: W = 705, P = 0.040)
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were higher in autumn than spring; while Subgroup2 (KW test: χ2
= 43.854, df = 2,

P < 0.001), Acidibacter (KW test: χ2
= 25.655, df = 2, P < 0.001) and Acidothermus (KW

test: χ2
= 21.769, df = 2, P < 0.001) were with greater dominance in forests than croplands

(sloping lands and flat lands, Fig. 2B).
According to the 16S rRNA gene sequencing data, bacterial diversity was significantly

differed among two seasons and land use types (KW test: χ2
= 51.832, df = 5, P < 0.001).

The bacterial Shannon diversity was significantly higher in spring than autumn, and in
cropland than forests (Fig. 3A). Regarding the same season and land use types, bacterial
Shannon diversity showed minor difference among different plants, which was high in tea
than orange plots in spring samples from sloping land and was lower in the Fagus forest
than other plants in spring (Fig. S6).

Notably, differences in AWCD (which indicates microbial metabolic activity) among
seasons were dependent on specific land use types (KW test: χ2

=13.622, df = 5, P < 0.05),
which was statistically similar between two seasons regarding sloping land and was higher
in spring than autumn regarding flat land and forests (Fig. 3B). Additionally, in spring,
sloping land demonstrated lower AWCD value than flatland and forests. A comparison of
the samples from the same land use type indicated that AWCD was higher in orange plots
(among all sloping land plots) and Camphor trees (among all forest plots) but was lowest
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in Fagus plots (among all the forest plots Fig. S7). In addition, AWCD differed in plots
with or without hedgerows in the sloping lands (Fig. S7A).

According to the NMDS plot and PERMANOVA results, bacterial community
composition was significantly different between autumn and spring and across different
land use types (Fig. 4 and Table 3). This suggested that human-induced changes in land use
significantly altered soil bacterial compositions, regardless of sampling season considered.

Environmental factors influencing soil microbial communities and soil
fertility
The relative abundances of the 16S amplicon sequences related to key bacterial phyla were
regressed against the soil fertility index in our random forest model. Only phyla with
amplicon relative abundances higher than 0.01% were considered. The model accounted
for 23.27% of the variance in soil fertility. Amplicon relative abundance of various phyla,
such as Proteobacteria, Chloroflexi, Verrucomicrobiota and Gemmatinonadota and
Acidobacteriaota were marginal (P < 0.1) or significant (P < 0.05) indicators of soil
fertility in the study area (Fig. 5).

Path analysis demonstrated that bacterial community composition was the dominant
driver of soil fertility. Moreover, microbial metabolic activity was directly and negatively
affected by human activity. The negative effect of human activity on soil fertility was
mitigated by the bacterial community composition (Fig. 6A). While amplicon relative
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provided in Table 3.
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Table 3 Results of permutational multivariate analysis of variance analysis showing differences in
community composition of soil bacteria between different seasons and land use types.

Degree of freedom Sum of squares R2 F-value P-value

Season 1 0.639 0.033 2.342 0.002
Land use 2 1.485 0.077 2.721 0.001
Season:Land use 2 0.778 0.04 1.426 0.023
Residual 60 16.371 0.849
Total 65 19.273 1

abundances of Gemmatimonadota and Choroflexi were negatively correlated with
soil fertility index (Fig. S8), the amplicon relative abundances of Acidobacteriota and
Proteobacteria were the key drivers of soil fertility (Figs. S6B and S8).

DISCUSSION
Land use types and above—ground plant species affect soil
microbial communities
We recognize potential biases introduced during the amplification process that could
affect the accuracy of taxonomic predictions. Nonetheless, we highlight that despite these
limitations, our study provides valuable insights into the impact of micro-habitat factors
on soil prokaryotic taxa. This is supported by numerous prior studies that have successfully
used amplicon sequencing techniques to gather detailed community information on
soil bacteria (Zhang et al., 2016b; Xu et al., 2020; Xu et al., 2021a; Xu et al., 2021b; Xu et al.,
2024). Considering the disadvantages of Biolog ECO-plates and 16S rRNA gene sequencing,
we combined both techniques to explore the soil microbial community. Previous studies
suggested that Biolog ECO plate-based microbial metabolic activity in soils varied with
land use (Rutgers et al., 2016), dominant vegetation (C. camphor, Pinus massoniana, or
Lespedeza bicolor), and root proximity (Tam et al., 2001). This study further demonstrated
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that both microbial metabolic activity and bacterial diversity varied among seasons and
land use types. However, the patterns of microbial metabolic activity and bacterial diversity
with respect to land use type differed (Fig. 2). These differences may be a consequence
of the method used: Biolog ECO-plates and 16S rRNA gene sequencing. Firstly, Biolog
ECO-plates are limited to measuring the microorganisms (e.g., bacteria and fungi) which
could utilize the 31 types of carbon sources, while 16S rRNA gene sequencing identifies
bacteria, regardless of the carbon source used. Secondly, the Biolog ECO-plate incubation
conditions favor fast growing microorganisms. Consequently, ECO-plates can identify
microorganisms present in soil in small quantities or even in spore form, which become
active after obtaining an easy carbon source. These organisms may not be identifiable
using sequencing alone, due to low DNA concentrations in the soil sample. For example,
the sloping croplands harbored a more diverse bacterial community than the forests, but
most of these bacteria were in low amplicon relative abundance and did not survive Biolog
incubation. The higher nutrient content and amplicon relative abundances of core bacterial
taxa (e.g., Acidobacteria and Proteobacteria) in forests, compared to sloping croplands,
may lead to higher microbial metabolic activity and reduced bacterial diversity.

Within this watershed, human activity has led to distinct land use types. With the
same soil type, different land use types showed different soil nutrient availability, bacterial
diversity, and microbial metabolic activity (Figs. 1–4). Such differences were even observed
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Figure 6 Partial least square path modeling (PLS-PM) showing the effects of human activity and bi-
otic and abiotic factors on soil fertility (A) and associations between the major microbial attributes and
soil fertility (B). The human activity in this model is scored according to the numbers of human activity
relating to each land use type (Table 1). Arrows and path coefficients represent the direction and strength
of the linear relationships between variables. Full lines indicate positive effects between blocks, and dotted
lines indicate negative effects. Acid., Acidobacteriota; Bacterial comm., Bacterial community composition;
Bacterial div., Bacterial diversity; Biolog incu. act., Biolog incubation activity; Prot., Proteobacteria; Plant
diversity (the dominant plant species in the sample plot, see details in Table 2).

Full-size DOI: 10.7717/peerj.18959/fig-6

among plots with different plant species. This is not surprising, since soil characteristics
(Dybzinski et al., 2008; Huang et al., 2019) and microbial community are influenced by
plant species (Burns et al., 2015), vegetation types, plant diversity and plant growth stages
(Chen et al., 2013; Lozano et al., 2014; Phazna Devi et al., 2020; Zheng et al., 2021a; Zheng et
al., 2021b; Zhu et al., 2021). In addition, we observed significant differences in soil fertility,
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microbial metabolic activity between soil with or without hedgerows in the sloping lands
(Figs. S3–S5), highlighting the essential role of aboveground plants in controlling soil
fertility and soil microbial communities. Our results suggested that activity and diversity
of soil microorganisms varied among seasons and land use types. This further reflected the
complex connections between land use, soil fertility, plant attributes, and soil microbial
community.

The higher vegetation coverage in forestsmay leavemore plant-derived organicmatter in
soils. Plant litter and root exudates may change the soil environment (Cotrufo et al., 2015).
In addition, the decomposition of fallen oranges may also provide a driving force for higher
soil organic matter. The accumulated organic matter may in turn retain moisture through
the complex metabolic pathways of soil bacteria and therefore sustain higher soil fertility
compared with other sampling plots. Moreover, the organic matter provided by root-
associated processes could offer more substrates for microbial metabolism; consequently,
the microorganisms selected by the Biolog ECO-plates were able to survive, because more
than nine types of the carbon sources in the ECO-plates were consistent with root exudates
(Choi & Dobbs, 1999). Therefore, it is reasonable that both high microbial metabolic
activity and high soil fertility were observed in soils from forests and orange sloping lands.

Human disturbances decrease surface soil fertility and alter soil
microbial communities
Soil microbial communities are sensitive to disturbances (Shade et al., 2012). Sloping
croplands underwent the greatest level of human activity, such as ploughing, rotation,
fertilizing, and trampling. Disturbances in sloping croplands and crop rotation could
introduce new microbial species into the soil and decrease the abundance of previously
existing ones. Consequently, the number of microbial species in sloping croplands
increased, while having an insignificant impact on soil function due to low abundance.
Although previous studies have suggested that rare taxa can exhibit unique metabolic
activities (Bickel & Or, 2021; Campbell et al., 2011) and are involved in particular metabolic
functions, dominant species play a greater role in ecosystem functioning than subdominant
and rare species (Treplin, Pennings & Zimmer, 2013; Xu et al., 2021b; Xu et al., 2021c). The
flat croplands were agricultural lands that experienced trampling when oranges and tea
were harvested, and the intensity of this type of disturbance was lower than that in sloping
croplands. The forests should have the lowest level of disturbance caused by human
activity. Thus, the introduction of non-native bacterial species would be lower in forest
soils compared to flat croplands. Hence, soils in sloping croplands harbored more diverse
bacterial species than flat croplands and forests, where the core amplicons were in higher
relative abundances. These findings indicated that with a growing intensity of disturbance,
soil microbial diversity and community composition might vary significantly.

The random forest and path modeling results showed that human activity had negative
effects on soil fertility, and such negative effects were mitigated by the bacterial community
composition. Similarly, the bacterial community composition was found to mitigate
global change impacts (nitrogen addition, altered rainfall frequency) on ecosystem
multifunctionality in a biocrust system (Liu et al., 2017). In addition, the results of path
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modeling signified that among all the factors we studied here, microbial community
composition was the key factor mediating soil fertility. Analogously, the microbial
community composition is also suggested to be the dominant factor controlling soil
respiration rates in a cultivated land (Liu et al., 2018). Our study further indicated that
the amplicon relative abundances of the core bacterial taxa (i.e., Proteobacteria and
Acidobacteriota) were important factors driving soil fertility, and these two phyla were
more abundant in soils with higher fertility. Acidobacteriota are positively correlated with
soil organic carbon (Vasileiadis et al., 2013). These taxa are well-known copiotrophs that
thrive in nutrient-rich soil conditions (Yao et al., 2014; Yao et al., 2017; Xu et al., 2020). In
addition, Proteobacteria are predicted to be copiotrophs (Goldfarb et al., 2011; Tong et al.,
2021), which growquickly and increase soil fertility through plant root-associatedmetabolic
processes (Oh et al., 2012). The high amplicon relative abundance of Acidobacteria and
Proteobacteria, along with their importance in mediating soil fertility, further supported
the notions that abundant taxa are active and important in mediating biogeochemical
cycling (Cottrell & Kirchman, 2003; Treplin, Pennings & Zimmer, 2013; Xu et al., 2021b; Xu
et al., 2021c).

CONCLUSION
Soil fertility is a good indicator of soil quality. Higher soil fertility may indicate a stronger
ability of soil to support plant growth and microbial metabolism. This study demonstrated
that surface soil fertility was lower in areas with higher levels of human activity and that
microbial community composition was the key determinant of soil fertility under such
conditions, giving new insights into the effects of human activity on soil attributes in this
area. Contrary to bacterial diversity, soil fertility and microbial metabolic activity were
higher in forests, which experienced lower human activity than other land use types. We
also observed significant differences in the soil bacterial community composition at the
temporal and land use scales. Higher levels of human activity decrease the amplicon relative
abundances of Acidobacteriota and Proteobacteria, which were further identified to be the
dominant taxa driving soil fertility. Further studies of community assembly processes and
the potential interactions between bacterial species in our study area will provide significant
insights into the microbial mechanisms maintaining soil fertility under different levels of
human activity in the Three Gorges Reservoir area.
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