First wild boar density data from araucaria forest in Patagonian Andes (#94486)

First revision

Guidance from your Editor

Please submit by 22 Sep 2024 for the benefit of the authors .

Structure and Criteria

Please read the 'Structure and Criteria' page for guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Raw data check

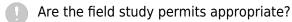
Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files


Download and review all files from the <u>materials page</u>.

- 1 Tracked changes manuscript(s)
- 1 Rebuttal letter(s)
- 4 Figure file(s)
- 2 Table file(s)
- 1 Raw data file(s)

Field study

Have you checked the authors field study permits?

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty is not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

First wild boar density data from araucaria forest in Patagonian Andes

Oscar Skewes Equal first author, 1, Annaluisa Kambas Equal first author, 2, Paula Carolina Gadicke L'Huissier 1, Oliver Keuling Corresp. 2

Corresponding Author: Oliver Keuling Email address: oliver.keuling@tiho-hannover.de

As *Sus scrofa* is an invasive species in South America, it may have a potentially devastating impact on biodiversity. To evaluate the threat to the environment it is necessary to have comparable data, which, in terms of population size, could be the population density. However, there is no such data for the south Andean region. Hence, we monitored wild boar density in an area of the National Park Villarrica, in the Andes of south-central Chile. The study site not only stands out because of its rough climatic conditions, but also through a forest of the endangered *Araucaria araucana* tree, which offers a high food availability through the seed fall in Autumn. The calculated density was lower than the compared European data, and we found strikingly different monthly encounters. Since this is the first density calculation of wild boar in this region and not a low number, it should demonstrate the importance of further monitoring actions, as the population can be a danger to the ecosystem and especially to the already endangered araucaria.

¹ Facultad Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile

² Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Hannover, Germany

1 First wild boar density data from araucaria forest in

2 Patagonian Andes

- Authors: Oscar Skewes^{1*}, Annaluisa Kambas^{2*}, Paula Gadicke¹, Oliver Keuling^{2#}
- 4 *These authors contributed equally to this work
- ¹Facultad Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
- 6 ²Institute for Terrestrial and Aquatic Wildlife Research ITAW, University of Veterinary
- 7 Medicine Hannover, Hannover, Germany
- 8 # Corresponding Author:
- 9 Oliver Keuling
- 10 Institute for Terrestrial and Aquatic Wildlife Research ITAW, University of Veterinary Medicine
- Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
- 12 oliver.keuling@tiho-hannover.de

Abstract

- 15 As Sus scrofa is an invasive species in South America, it may have a potentially devastating
- impact on biodiversity. To evaluate the threat to the environment it is necessary to have
- 17 comparable data, which, in terms of population size, could be the population density. However,
- 18 there is no such data for the south Andean region. Hence, we monitored wild boar density in an
- area of the National Park Villarrica, in the Andes of south-central Chile. The study site not only
- 20 stands out because of its rough climatic conditions, but also through a forest of the endangered
- 21 Araucaria araucana tree, which offers a high food availability through the seed fall in Autumn.
- 22 The calculated density was lower than the compared European data, and we found strikingly
- 23 different monthly encounters. Since this is the first density calculation of wild boar in this region
- and not a low number, it should demonstrate the importance of further monitoring actions, as the
- 25 population can be a danger to the ecosystem and especially to the already endangered araucaria.

26

27

Introduction

- 28 The wild boar can have detrimental effects on biodiversity, agriculture, and livestock (Barios-
- 29 Garcia & Ballari, 2012). They are described as ecosystem engineers, as they can significantly
- 30 impact habitats. This occurs in their native habitats (Croft et al., 2020) as well in non-native
- environments (Risch et al., 2010). Population density plays a crucial role in the extent of their
- 32 impact on biodiversity, agricultural damage, and epidemiological risk (Fulgione & Buglione,
- 33 2022).
- 34 The first introduction of wild boar to South America occurred in 1904 in Argentina with animals
- 35 Europe. They were soon relocated to different parts of the country including the southern
- 36 Andes. A contingent also arrived directly in Chile many years later, and the first population of
- 37 wild boars in Chile likely existed around 1950 and is attributed to the direct import of some
- animals from Germany (Skewes & Jaksic, 2015). The main reason for the release of these
- 39 animals was for hunting, but some individuals also escaped from farms by accident. The
- 40 Argentinian and Chilean populations intermixed and formed the basis of the present wild boar
- 41 population of the southern cone of America (Cuevas et al., 2021). In 2014, the first outbreaks of
- 42 African Swine Fever, affecting wild boar in the European Union, increased public concern (Jori
- et al., 2021). Following, experts of the EU under the ENETWILD Consortium selected a method
- 44 to estimate wild boar density (Enetwild-Consortium et al., 2018). As a result, they adopt the
- 45 procedure based on images captured by camera traps and processed with the Random Encounter
- Model (Rowcliffe et al. 2008, Palencia et al., 2022). Thus, wild boar density values in Europe
- 47 ranged from 0.35 individuals per square kilometer (individuals/km²) to 15.25 individuals/km²
- 48 (Enetwild-Consortium et al., 2022).
- But it is exactly this varying range of density in Europe that shows the impact of different
- environments on the species.
- 51 Therefore, it is necessary to have data about the density of this species, to evaluate and possibly
- 52 take further management actions. However, there is no information on the density of wild boar in

- 53 Chile, even though it extends to important habitat for many threatened and endangered species
- and is also considered one of the 36 Biodiversity Hotspots in the world (Myers et al., 2000).
- 55 Consequently, we studied the population density of wild boar in an *Araucaria araucana* forest.
- Notably, A. araucana is a gondwana long-lived coniferous and endangered species with a small
- 57 range (Premoli et al., 2017). It is not only important for conservation value, but also because the
- seeds are collected by the indigenous groups of Chile and Argentina and also serve as food for
- 59 native birds and rodents (Sanguinetti et al., 2023). The species was classified as endangered by
- 60 the IUCN in 2013, which was mainly caused by fires, years of logging and invasive species.
- 61 Although wild boar is present in these forests for decades (Skewes & Jaksic, 2015), the impact of
- 62 wild boar as depredator of seed may shift from individual trees to stand scale, threatening
- 63 Araucaria Forest regeneration (Sanguinetti & Kitzberger, 2010).
- Hence, we studied the density of the wild boar population over an area of 15 km² and at 1,200
- 65 to 1,400 m as I in the Villarrica National Park. Chilean law forbids hunting in national parks and
- 66 human disturbance by tourists or peasants is negligible. However, the presence of a wild boar
- 67 predator, the puma *Puma concolor* (Skewes et al., 2012) in the area must be considered, as
- 68 predators can have an impact on the daily range just like hunting.
- 69 Considering the multiple impacts of an enlarged wild boar population, investigating the
- 70 population density is important for estimating this danger for humans and nature, especially for
- 71 the endangered A. Araucana. This study aims to provide, for the first time, an estimate of wild
- boar density in A. araucana forests. Based on these results, conservation actions for this
- endangered forest species and wild boar management measures can be proposed in the future.

75

Material and Methods

- 76 Study area
- 77 The study site named "Puesco" is in the Andes of south-central Chile (39° 35' S, 71° 31' W) at
- elevations of 1,200 to 1,400 m as and covers 15 km². It is located on the north side of the Lanín
- volcano in the Villarrica National Park (permission N° 03/2015 CONAF) in the Araucanía
- 80 Region, Chile (Fig.1).

- 82 Figure 1: Map of the study area (created with Free and Open Source QGIS. Geographic
- 83 Information System QGIS. Open-Source-Project of Geospatial Foundation. http://qgis.org)
- There is no hunting, visitors circulate along trails and in autumn the neighboring indigenous
- 85 communities collect Araucaria fruits. According to the climatic station "Ea. Mamuil-Malal"
- 86 (39°64′739" S, 71°26′955" W) at 900 m asl and circa 20 km east, the mean annual precipitation
- is 1,081 mm and the mean annual temperature is 9.3 °C. The coldest month is July with a mean
- of 1.3°C and the warmest is February with 15.5 °C (http://www.aic.gov.ar/sitio/estaciones). In
- the site snow falls from June to September, the snow cover stays for approximately 45 days with
- a maximum height of up to 0.9 m (Author observation).

Figure 2: Pictures of wild boars captured by CTs in the study area

92

- The site is dominated by forests of the long-lived monkey puzzle tree A. araucana mixed with
- 94 lenga beech *Nothofagus pumilio*. The understory is composed of poaces *Festuca gracillima*,
- 95 Alstroemeria aurea, and patches of dense bamboo Chusquea spp. thickets, Gaultheria sp. and
- 96 Nothofagus antarctica shrubs (<5 m height). The A. araucana seed fall starts in March and ends
- 97 in June, but seeds are also available in spring after the thick snow cover melts. As there are no
- other fruit bearing trees in the study area and the other occurring plants are not as remotely
- 99 comparable nutritious, the food availability changes drastically over the year.
- 100 Data capture
- We conducted a camera trap (CT) study from May 2020 to April 2022. It was carried out by the
- deployment of 10 Ltl Acorn® 6210 CT's. The location of the CT's were set randomly on the
- Google Earth® platform with a 1,000 to 1,400 m distance between each CT on the map. At each
- site, an area with 10 m of clear vision in front of the camera lens was selected. CTs were
- attached to a tree (diameter > 20 cm) at 1 m above ground, facing north or south, to prevent the
- sun flare from the sunrise or sunset that results in overexposed photos where animals become
- 107 challenging to identify (Apps & Mc Nutt, 2018). Even though Palencia et al. (2021) suggested
- that the height level should be at shoulder height, which would be 80cm in case of the wild boar,
- we had to attach the cameras at 1m height, as there can be up to 1m snow in winter (author
- observation, compare Fig. 2).
- Despite two CT's being moved from the initial place, maintaining the restrictions already
- described. CTs were programmed to capture three consecutive images, with no delay and with
- 113 normal PIR sensitivity. We did not use bait or attractors at the site. The CT's were maintained
- every 3 to 5 months, depending on the weather conditions.
- This eamera trap study was authorized by the national forestry corporation CONAF in Chile.
- Field permit to conduct the study in the National Park of Villarrica was given by Ministerio de
- 117 Agricultura (Chile), Depto. Areas Silvestres Protegidas Region de la Araucaria. The Bioethics
- commission of the University of Concepcion approved the study. The pictures of people were
- handled following the guidelines of Sharma et al. (2020), which means, that the privacy of
- 120 individuals inadvertently photographed by camera traps was strictly protected. Photos of
- unknown people were securely stored and not disclosed. Suspected researchers in photos were
- consulted on whether to destroy or receive the images. Wildlife images were shared with and
- credited to the relevant agencies overseeing the National Park, ensuring proper use and
- 124 acknowledgment.
- 125 Data processing
- All photographs were screened by the authors to identify those that contained wild boar
- 127 (compare Fig. 2). For the Random Encounter Model (REM) method we followed Palencia et al.
- 128 (2024). The REM (Random Encounter Model) by Palencia et al. (2024) estimates animal

PeerJ

- densities using eamera trap data. It models random encounters between animals and cameras,
- factoring in animal movement and detection probability. Density is calculated using the
- 131 following formula:
- 132 $D = \frac{y}{2vkt}$
- where y is the number of captures, v is the animal's average speed, k is the camera's detection zone, and t is the sampling effort.
- Activity level was estimated after Rowcliffe et al. (2014) using the R package 'activity'
- 136 (Rowcliffe, 2023). The REM density was calculated for all CT's and then averaged for season.
- The activity level between seasons was tested with 1000 Bootstrap replications. To establish the
- angle and radius of detection, we carried out thorough walk tests at our CTs (Cusack et al. 2015).
- Day range, which is the average daily distance traveled by an individual was calculated based on
- speed and activity level (Palencia et al., 2019). The speed of the wild boars was obtained from
- information from CT and processed as described by Rowcliffe et al. (2016). In this method, we
- 142 divided the distance traveled by the duration of the sequence (the difference in time between the
- timestamps on the first and last picture). To the end of the study, we recorded the location of
- every captured wild boar in one single image for each CT. Then, in the field, with the diagram in
- hand, we measured the corresponding locations with tape. Subsequently, the CT images were
- reviewed, and the distance traveled, as well as time were noted for each animal sequence. Those
- sequences in which animals reacted to the CT or in which there was only one image of wild boar
- were considered for encounter rate but not for speed (Rowcliffe et al., 2016). The encounter rate
- is number of (n°) contacts/n° camera traps/days. To analyze differences in monthly encounter
- rates, the Chi-square test for independence was carried out with 95% confidence level. Also, the
- 151 Kruskal-Wallis's test was carried out.
- All the statistical analysis were performed on the Infostat software (Di Renzo, 2020).

154 Results

- The total effort for this study involved 4703 24h-periods/, with 2516 in the cold season and 2187
- in the warm season. We had a total number of wild boar encounters of 370. Our CT had a
- detection angle of 0.741 radians and a detection radius of 8.0 m. From analyzing 280 image
- sequences, we estimated the speed of movements to be 0.43, 0.49, and 0.42 m/s for the two
- 159 years, cold and warm seasons, respectively. The cold season included the months May until
- October, and the warm season was between November and April. We found significant
- differences in speed between the seasons (p value=0.0334, Kruskal-Wallis's test)
- 162 In terms of encounter rates, there are significant differences among months. March and April had
- significantly the highest rates at 0.24 and 0.25, respectively (Chi square, df = 11, p<0.05). The
- lowest encounter rates were in September with no pictures at all during the study and in August

165 166	with only 0.005 (2 pictures) (p<0.05) The overall group size was 2.0 (SE \pm 0.6), with a group size of 1.9 (SE \pm 0.25) in the cold season and 1.9 (\pm 0.80) in the warm season (Fig. 3).
167 168	Figure 3: Monthly encounter rate (encounter (y) / time (t)) of wild boar in Villarrica NP (Chile) from May 2020 until April 2022 (n = 370).
169	
170 171 172	The activity index was determined by analyzing 370 pictures. The overall activity index was calculated to be 0.44 (SE \pm 0.03). Whereas during the cold season, the activity index was 0.44 (SE \pm 0.06), while during the warm season it was 0.39 (SE \pm 0.03) (Table 1).
173	
174	Table 1: Estimated activity index for SE wild boar in study area
175	
176 177 178 179	Using the activity index and estimated animal speed, we were able to determine that the animals had a day range of 16.5 km over two years. Accordingly, throughout the entire study period, the estimated population density was 1.39 individuals/km² (Table 2). In the cold season, the density was 0.52 individuals/km², while in the warm season it was 2.59 individuals/km² (Fig. 4).
180	
181	Table 2: Estimated random encounter model (REM) parameter values for each period.
182	
183	Figure 4: Comparative densities of cold and warm seasons on an individual CT basis
184	
184 185	Discussion
	Discussion While interpreting our results, it is crucial to acknowledge certain limitations. Firstly, the relatively small number of camera traps (CTs) used was due to budget constraints. Surveys range from 1 to 1000 CTs (Burton et al. 2015). Typically, 20 to 30 CTs are commended (Kays et al., 2020). Our small sample size likely caused wide confidence intervals for encounter rates and density, reaching 0.09 (mean 1.55) and 1.82 (mean 0.09), respectively. The variability in CT captures may be due to random placement or the small number of CTs.

PeerJ

199	
200 201 202 203 204 205 206	Second, the detection angle and radius of our camera trap (CT) might have influenced the data collected. The detection angle of 0.741 rad and a detection radius of 8.0 m could have potentially missed some animal movements, leading to an underestimation of the actual movement speed and activity index. However, the CTs used have detection probabilities similar to other models, such as Bushnell, with near 1 detection probability for wild boar (Palencia et al., 2021). Our CTs, still almost covered by snow, continued to capture images, for example, of <i>Lepus europaeus</i> during the harsh winter.
207 208 209 210 211 212	To evaluate the meaning of our results, it is essential to compare our findings with previous studies. Our study's unique contribution is the quantification of population density, which has not been investigated in prior research in this geographical area. Most previous studies have focused on estimating population abundance, but our research provides an added dimension by considering the seasonal variation in movement speed, activity index and therefore density, thereby enriching the understanding of animal behavior in different climatic conditions.
213214215216217	The estimated density of 1.39 individuals/km ² is the first ever camera data-created density for wild boar in South American temperate forests. However, our calculated density is still difficult to evaluate. Compared to the European average density of 7.8 individuals/km ² (Guerrasio et al., 2023), our density may seem rather low. Also considering there is no hunting in the area and the availability of the nutritious seeds of the Araucaria.
218 219 220 221	This low density can presumably not be explained by the later introduction of the species in South America, as the species is highly adaptable and reproductive. The first introduction in this area was 70 years ago (Skewes & Jaksic, 2015), the population could be at a higher level just by reproductive rate. The different environmental factors are surely causing this disruption.
222 223 224 225 226 227 228 229 230 231	When comparing the European data to ours, it must be taken into account that most of the studies have not been conducted in extreme ecosystems, but in ones that are native to the wild boar and in areas of known wild boar abundances. This difference includes the low food availability at the study site, which is caused by the rough environmental conditions at 1400m altitude. We suggested that March and April were the months with the highest densities because of the araucaria seed fall, but the other months did not have that lower densities. Having the effects of invasive species on ecosystems in mind, the density could still be more than the ecosystem's capacity and a great danger to the Araucaria regeneration. We propose a continuing survey of the wild boar population and possibly even management actions, if further population growth is observed.
232 233 234 235 236	To be considered here is the fluctuation between the cold and warm seasons. To further evaluate them, the climatic conditions need to be analyzed. Snow is present from June to September, including July being overall the coldest month with an average of 1.3° C (http://www.aic.gov.ar/sitio/estaciones). The changes in temperature in the cold season not only generate a drastic decrease in edible flora, but also impede movement through up to 90 cm of

- snow. Even though wild boars decrease their activity in winter, the high snow layer hinders them
- 238 from any longer movement in these months. Due to these conditions, the population could be
- 239 migrating between the areas. We observed indirect signs of wild boar migration during the cold
- season in our research area. These findings are consistent with research conducted in Poland, as
- 241 well as in mountainous regions in Italy and Spain (Andrzejewski & Jezierski, 1978; DÁndrea et
- 242 al., 2004; Sarasa & Sarasa, 2013). As a result, it is important to conduct additional studies to
- 243 analyze the extent to which this declining population trend occurs on a spatial scale.
- Although hunting is prohibited in our study area, the presence of puma can have some effect on
- 245 the daily movement, as they hunt the wild boar as well (Skewes et al. 2012).
- We suggest that the reason for April being the month with the highest density is on the one hand,
- 247 that it is the rutting time of wild boar in Chile (Skewes, 1990), which causes a higher mobility of
- animals (Morelle et al., 2015). On the other hand, because in March it is the Araucaria seed fall,
- 249 which leads to higher food availability (Sanguinetti & Kitzberger, 2008). The Araucaria mast
- attracts not only humans, like the indigenous people that collect the seeds, but also animals like
- wild boars and rodents. So, the main component of the 3–4 g weight *Araucaria* seeds is starch
- 252 (about 88.0 g/100 g solids) (Henríquez et al., 2008) followed by protein (about 7.0 g/100 g
- solids). The protein of this seed has a high nutritional quality, like that of soy protein (Conforti &
- Lupano, 2011). Also, the Araucaria seeds as a food item for wild boar have been described
- 255 (Pelliza-Sbriller & Borrelli, 2008).
- In consequence, it can be assumed that the wild boars migrate to the Araucaria Forest for the
- enlarged food availability. In other words, this can be considered a problem for the already
- endangered tree, as the seeds become ungrowable by the chewing of the wild boars. In Europe
- 259 (Jezek et al., 2021), the damaging of seedlings through wild boars has been described, which
- 260 could be possible with the Araucaria seedlings as well. This would imply an even higher damage
- 261 to the already endangered species.
- 262 Considering the limitations to our study, we propose a continuing survey of the wild boar
- 263 population with more CT's and possibly even management actions, if further population growth
- is observed.

271

272

Conclusions

- In conclusion, our study provides <u>nevel</u> insights into <u>animal</u>-movement speed, activity index,
- and population density across different seasons. However, the results should be interpreted with
- 268 caution due to the limitations associated with the detection capabilities of the CT and the
- estimation methods used. Further research with more advanced tracking technologies and larger
- sample sizes would be beneficial to validate and expand upon our findings.

Acknowledgements

- 273 We would like to thank Paula Aravena, Edmundo Schuster and Mario Talbotu for their help
- within our research.

284

285

286

298

299

300

301

References

- Andrzejewski, R., & Jezierski, W. (1978). Management of a wild boar population and its effect on commercial land. *Acta Theriol (Warsz)*, *23*(09), 309-339.
- Barrios-Garcia, M. N. and S. A. Ballari (2012). "Impact of wild boar (Sus scrofa) in its introduced and native range: a review." Biological Invasions 14(11): 2283-2300.
- Conforti, P. A., & Lupano, C. E. (2011). Selected Properties of Araucaria Angustifolia and
 Araucaria Araucana Seed Protein. *International Journal of Food Properties*, 14(1), 84-91. https://doi.org/10.1080/10942910903131431
 - Croft, S., Franzetti, B., Gill, R., & Massei, G. (2020). Too many wild boar? Modelling fertility control and culling to reduce wild boar numbers in isolated populations. *PLoS One*, *15*(9), e0238429. https://doi.org/10.1371/journal.pone.0238429
- Cuevas, M. F., Ballari, S. A., Ojeda, R. A., & Skewes, O. (2021). Wild Boar Invasion in
 Argentina and Chile: Ecology, impacts, and distribution. In F. M. Jaksic & S. A. Castro
 (Eds.), *Biological invasions in the South American anthropocene: Global causes and*local impacts (pp. 203-229). Springer International Publishing.
 https://doi.org/10.1007/978-3-030-56379-0 10
- Cusack, J. J., Swanson, A., Coulson, T., Packer, C., Carbone, C., Dickman, A. J., Kosmala, M.,
 Lintott, C., & Rowcliffe, J. M. (2015). Applying a random encounter model to estimate
 lion density from camera traps in Serengeti National Park, Tanzania. *J Wildl Manage*,
 79(6), 1014-1021. https://doi.org/10.1002/jwmg.902
- DÁndrea, L., Durio, P., Perrone, A., & Pirone, S. (2004). Preliminary data of the wild boar (Sus scrofa) space use in mountain environment. *Ibex J.M.E.*, *3*, 117-121.
 - Di Renzo J.A., C., Balzarini M.G., González I., Tablada M., Robledo C.V. (2020). *InfoStat*. Universidad Nacional de Córdoba. http://www.infostat.com.ar
 - Fulgione, D., & Buglione, M. (2022). The Boar War: Five Hot Factors Unleashing Boar Expansion and Related Emergency. *Land*, 11(6). https://doi.org/10.3390/land11060887
- Enetwild-Consortium, Acevedo, P., Aleksovski, V., Apollonio, M., Berdión, O., Blanco-Aguiar, J. A., del Rio, L., Ertürk, A., Fajdiga, L., Escribano, F., Ferroglio, E., Gruychev, G., Gutiérrez, I., Häberlein, V., Hoxha, B., Kavčić, K., Keuling, O., Martínez-Carrasco, C., Palencia, P., Pereira, P., Plhal, R., Plis, K., Podgórski, T. Ruiz, C., Scandura, M., Santos, J., Sereno, J., Sergeyev, A., Shakun, V., Soriguer, R., Soyumert, A. Sprem, N., Stoyanov, S., Smith, GC, Trajçe, A., Urbani, N., Zanet, S., & Vicente, J (2022). Wild boar density data generated by camera trapping in nineteen European areas. *EFSA Supporting*
- 309 *Publications* 19 (3), 7214E. https://doi.org/https://doi.org/10.2903/sp.efsa.2022.EN-7214.
- Enetwild-Consortium, Guerrasio T, Pelayo Acevedo P, Apollonio M, Arnon A, Barroqueiro C, Belova O, Berdión O, Blanco-Aguiar Ja, Bijl H, Bleier N, Bučko J, Elena Bužan E,
- Carniato D, Carro F, Casaer J, Carvalho J, Csányi S, Lucía Del Rio L, Aliaga Hdv, Ertürk
- A, Escribano F, Duniš L, Fernández-Lopez J, Ferroglio E, Fonseca C, Gačić D,
- Gavashelishvili A, Giannakopoulos A, Gómez-Molina A, Gómez-Peris C, Gruychev G,
- Gutiérrez I, Veith Häberlein V, Hasan Sm, Hillström L, Hoxha B, Iranzo M, Mihael
- Janječić M, Jansen P, Illanas S, Kashyap B, Keuling O, Laguna E, Lefranc H, Licoppe A,
- Liefting Y, Martínez-Carrasco C, Mrđenović D, Nezaj M, Xosé Pardavila X, Palencia P,
- Pereira G, Pereira P, Pinto N, Plhal R, Plis K, Podgórski T, Pokorny B, Preite L, Radonjic
- M, Marcus Rowcliffe M, Ruiz-Rodríguez C, Santos J, Rodríguez O, Scandura M,
- Sebastián M, Sereno J, Šestovic B, Shyti I, Somoza E, Soriguer R, De La Torre Js,

344

345

- Soyumert A, Šprem N, Stoyanov S, Smith Gc, Sulce M, Torres Rt, Trajçe A, Urbaitis G, Urbani N, Uguzashvili T, Vada R, Zanet S, & Vicente J (2023): Wild ungulate density data generated by camera trapping in 37 European areas: first output of the European Observatory of Wildlife (EOW). *EFSA Supporting Publications* 20 (3), 7892E. https://doi.org/https://doi.org/10.2903/sp.efsa.2023.EN-7892.
- Gürtler, R. E., Ballari, S. A., Maranta, A. A., & Cohen, J. E. (2023). Controlling the abundance of invasive exotic wild boar (Sus scrofa) improves palm-tree conservation in north-eastern Argentina. *European Journal of Wildlife Research*, 69(2). https://doi.org/10.1007/s10344-023-01668-0
- Henríquez, C., Escobar, B., Figuerola, F., Chiffelle, I., Speisky, H., & Estévez, A. M. (2008).
 Characterization of piñon seed (Araucaria araucana (Mol) K. Koch) and the isolated
 starch from the seed. *Food Chemistry*, *107*(2), 592-601.
 https://doi.org/10.1016/j.foodchem.2007.08.040
- Jezek, S., Jonak, M., Burget, R., Dvorak, P. & Skotak, M. (2021) "Deep learning-based defect detection of metal parts: evaluating current methods in complex conditions," 13th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), Brno, Czech Republic, 2021, pp. 66-71, doi: 10.1109/ICUMT54235.2021.9631567.
- Jori, F., Massei, G., Licoppe, A., Ruiz-Fons, F., Linden, A., Václavek, P., Chenais, E., & Rosell, C. (2021). 8. Management of wild boar populations in the European Union before and during the ASF crisis. In *Understanding and combatting African Swine Fever* (pp. 197-228). https://doi.org/10.3920/978-90-8686-910-7_8
 - Keuling O, Sange M, Acevedo P, Podgorski T, Smith G, Scandura M, Apollonio M, Ferroglio E., Vicente J & Enetwild-Consortium, (2018): Guidance on estimation of wild boar population abundance and density: methods, challenges, possibilities. EFSA Supporting Publications 15 (7), 1449E. https://doi.org/10.2903/sp.efsa.2018.EN-1449.
- Kmetiuk, L. B., Biondo, L. M., Pedrosa, F., Favero, G. M., & Biondo, A. W. (2023). One Health at gunpoint: Impact of wild boars as exotic species in Brazil A review. *One Health*, *17*, 100577. https://doi.org/10.1016/j.onehlt.2023.100577
- La Sala, L. F., Burgos, J. M., Caruso, N. C., Bagnato, C. E., Ballari, S. A., Guadagnin, D. L.,
 Kindel, A., Etges, M., Merino, M. L., Marcos, A., Skewes, O., Schettino, D., Perez, A.
 M., Condori, E., Tammone, A., Carpinetti, B., & Zalba, S. M. (2023). Wild pigs and their widespread threat to biodiversity conservation in South America. *Journal for Nature Conservation*, 73. https://doi.org/10.1016/j.jnc.2023.126393
- Morelle, K., Podgórski, T., Prévot, C., Keuling, O., Lehaire, F., & Lejeune, P. (2015). Towards
 understanding wild boar *Sus scrofa* movement: a synthetic movement ecology approach.
 Mammal Review, 45(1), 15-29. https://doi.org/10.1111/mam.12028
- Myers, N., Mittermeier, R. A., Mittermeier, C., da Fonseca, G. A., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. *Nature*, *403*, 853-858.
- Palencia, P., Barroso, P., Vicente, J., Hofmeester, T. R., Ferreres, J., Acevedo, P., Rowcliffe, M., & Caravaggi, A. (2022). Random encounter model is a reliable method for estimating population density of multiple species using camera traps. *Remote Sensing in Ecology and Conservation*. https://doi.org/10.1002/rse2.269
- Palencia, P., Vicente, J., Soriguer, R. C., Acevedo, P. (2021): Towards a best-practices guide for camera trapping: assessing differences among camera trap models and settings under field conditions. Journal of Zoology 316 (3), 197-208. https://doi.org/10.1111/jzo.12945.

- Palencia, P., Vicente, J., Barroso, P., Barasona, J. Á., Soriguer, R. C., & Acevedo, P. (2019).

 Estimating day range from camera-trap data: the animals' behaviour as a key parameter.

 Journal of Zoology, 309(3), 182-190. https://doi.org/10.1111/jzo.12710
- Pelliza-Sbriller, A., & Borrelli, L. (2008). Observaciones sobre dieta jabali en Neuquén.. *Presencia*, *52*, 28-30.
- Premoli, A., Quiroga, P., & Gardner, M. (2017). *Araucaria araucana, Monkey Puzzle*. IUCN.
 Retrieved 28/08/2023 from https://dx.doi.org/10.2305/IUCN.UK.2013-1.RLTS.T31355A2805113.en
- Risch, A. C., Wirthner, S., Busse, M. D., Page-Dumroese, D. S., & Schutz, M. (2010). Grubbing by wild boars (Sus scrofa L.) and its impact on hardwood forest soil carbon dioxide emissions in Switzerland. *Oecologia*, 164(3), 773-784. https://doi.org/10.1007/s00442-010-1665-6
- Rowcliffe, J. M. (2023). *Package 'activity'* In (Version 1.3.3) CRAN.
- Rowcliffe JM, Field J, Turvey ST & Carbone C (2008): Estimating animal density using camera traps without the need for individual recognition. Journal of Applied Ecology 45 (4), 1228-1236.
- Rowcliffe, J. M., Jansen, P. A., Kays, R., Kranstauber, B., Carbone, C., & Pettorelli, N. (2016).
 Wildlife speed cameras: measuring animal travel speed and day range using camera traps. *Remote Sensing in Ecology and Conservation*, *2*(2), 84-94.

 https://doi.org/10.1002/rse2.17
- Rowcliffe, J. M., Kays, R., Kranstauber, B., Carbone, C., Jansen, P. A., & Fisher, D. (2014).

 Quantifying levels of animal activity using camera trap data. *Methods in Ecology and Evolution*, *5*(11), 1170-1179. https://doi.org/10.1111/2041-210x.12278
- Sanguinetti, J., Ditgen, R. S., Donoso-Calderón, S. R., Hadad, M. A., Gallo, L., González, M. E.,
 Ibarra, J. T., Ladio, A., Lambertucci, S. A., Marchelli, P., Mundo, I. A., Nuñez, M. A.,
 Pauchard, A., Puchi, P., Relva, M. A., Skewes, O., Shepherd, J. D., Speziale, K., Vélez,
 M. L., Salgado-Salomón, M. E., & Zamorano-Elgueta, C. (2023). Información científica
 clave para la gestión y conservación del ecosistema biocultural del Pewén en Chile y
 Argentina. Bosque (Valdivia), 44(1), 179-190. https://doi.org/10.4067/s0717-92002023000100179
- Sanguinetti, J., & Kitzberger, T. (2008). Patterns and mechanisms of masting in the large-seeded southern hemisphere conifer *Araucaria araucana*. *Austral Ecology*, *33*(1), 78-87. https://doi.org/10.1111/j.1442-9993.2007.01792.x
- Sanguinetti, J., & Kitzberger, T. (2010). Factors controlling seed predation by rodents and nonnative *Sus scrofa* in Araucaria araucana forests: potential effects on seedling establishment. *Biological Invasions*, *12*(3), 689-706. https://doi.org/10.1007/s10530-009-9474-8
- Sarasa, M., & Sarasa, J. A. (2013). Intensive monitoring suggests population oscillations and migration in wild boar *Sus scrofa* in the Pyrenees. *Animal Biodiversity and Conservation*, 36(1), 79-88. https://doi.org/10.32800/abc.2013.36.0079
- Sharma, K., Fiechter, M., George, T., Young, J., Alexander, J.S., Bijoor, A., Suryawanshi, K. & Mishra, C. (2020): Conservation and people: Towards an ethical code of conduct for the use of camera traps in wildlife research. *Ecological Solutions and Evidence 1* (2), e12033. https://doi.org/10.1002/2688-8319.12033

Manuscript to be reviewed

411	Skewes, O. (1990). Status des Wildschweines, Sus scrofa L., in Chile. Dokumentation einer
412	Fremdansiedlung von eiropäischem Wild. Georg-August Universität zu Göttingen,
413	Germany]. Göttingen.
414	Skewes, O., & Jaksic, F. M. (2015). History of the introduction and present distribution of the
415	european wild boar (Sus scrofa) in Chile. Mastozoología Neotropical, 22(1), 113-124.
416	Skewes, O., Moraga, C., Arriagada, P., & Rau, J. (2012). El jabalí europeo (Sus scrofa): Un
417	invasor biológico como presa reciente del puma (<i>Puma concolor</i>) en el sur de Chile.
418	Revista Chilena de Historia Natural, 85, 227-232.
440	
419	

Table 1(on next page)

Activity index of wild boar in NP Villarrica, Chile.

act = activity index Activity package Rowcliffe 2023, Icl 2.5% = lower confidence limit, ucl 97.5% = upper confidence limit

2 Table 1: Activity index of wild boar in NP Villarrica, Chile.

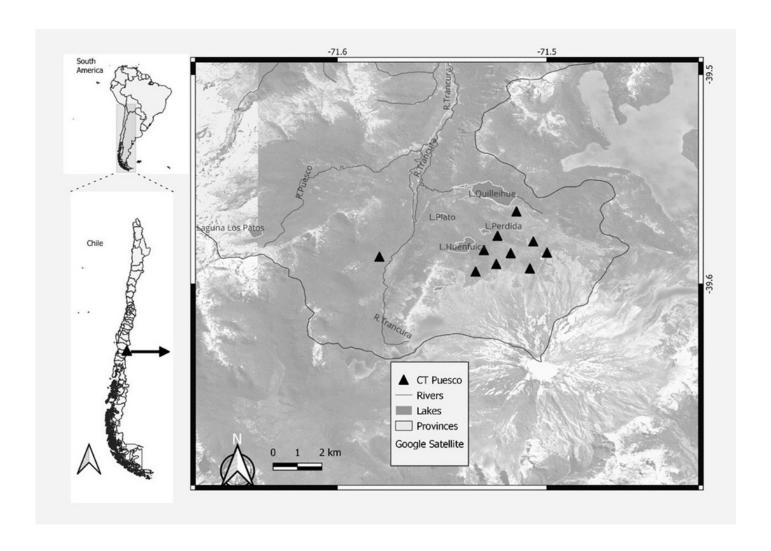
	Entire period	Cold season	Warm season
act	0.441	0.448	0.393
Se	0.040	0.066	0.039
Icl 2.5%	0.363	0.314	0.321
ucl 97.5%	0.523	0.573	0.475

act = activity index Activity package Roweliffe 2023, lcl 2.5% = lower confidence limit, ucl

^{97.5% =} upper confidence limit

Table 2(on next page)

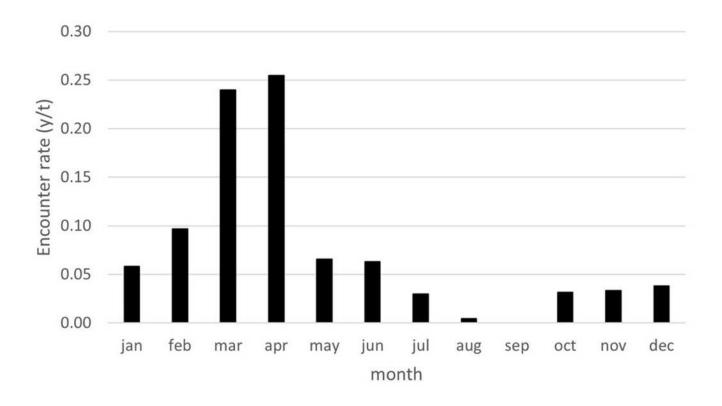
Estimated random encounter model (REM) parameter values for each period.


where y/t is the encounter rate (n° contacts/ n° camera traps*days); v, the average distance travelled by an individual during a day (day range); r, the radius of detection. We present standard error, 95% confidence intervals and coefficient of variation (CV, %) for density.

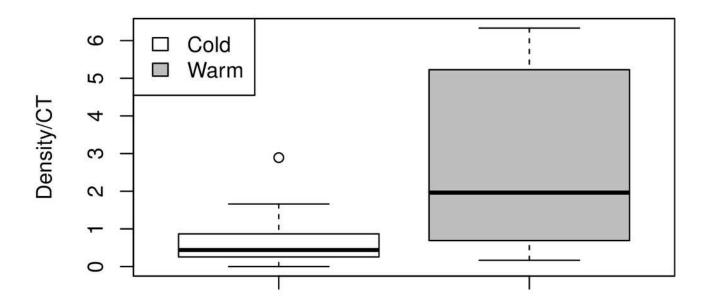
- 1 Table 2: Estimated random encounter model (REM) parameter values for each period.
- where y/t is the encounter rate (n° contacts/ n° camera traps*days); v, the average distance
- 3 travelled by an individual during a day (day range); r, the radius of detection. We present
- 4 standard errors (SE), 95% confidence intervals and coefficient of variation (CV, %) for density.

Season	Entire period	Cold season	Warm season
y/t [ind/CT day]	0.07 (370/4703)	0.035 (88/2516)	0.128 (282/2181)
ν [km/day]	16.5	18.9	14.1
r [km]	0.008	0.008	0.008
Group size (±SE)	2 (0.13)	1.9 (0.36)	1.9 (0.2)
Density [indiv/km2] (±SE)	1.389 (0.402)	0.518 (0.279)	2.590 (0.726)
Range [indiv/km2]	0.39-4.43	0.0-2.89	0.16-6.33
95% Conf. interval	0.82	0.57	1.42
CV [%]	81.9	113.6	86.2

Map of the study area (created with Free and Open Source QGIS. Geographic Informationsystem QGIS. Open-Source-Project of Geospatial Foundation. http://qgis.org)



Pictures of wild boars captured by CTs in the study area



Monthly trapping rate (y/t) of wild boar in Villarrica NP (Chile) from May 2020 until April 2022 (n = 370).

Comparative densities of cold and warm seasons on an individual CT basis

Season