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ABSTRACT
Background. Understanding population structure within species provides information
on connections among different populations and how they evolve over time. This
knowledge is important for studies ranging from evolutionary biology to large-
scale variant-trait association studies. Current approaches to determining population
structure include model-based approaches, statistical approaches, and distance-based
ancestry inference approaches.
Methods. In this work, we identify population structure from DNA sequence data
using an alignment-free approach. We use the frequencies of short DNA substrings
from across the genome (k-mers) with principal component analysis (PCA). K-mer
frequencies can be viewed as a summary statistic of a genome and have the advantage of
being easily derived from a genome by counting the number of times a k-mer occurred
in a sequence. In contrast, most population structure work employing PCA uses multi-
locus genotype data (SNPs, microsatellites, or haplotypes). No genetic assumptions
must bemet to generate k-mers, whereas current population structure approaches often
depend on several genetic assumptions and can require careful selection of ancestry
informative markers to identify populations. We compare our k-mer based approach
to population structure estimated using SNPs with both empirical and simulated data.
Results. In this work, we show that PCA is able to determine population structure
just from the frequency of k-mers found in the genome. The application of PCA and
a clustering algorithm to k-mer profiles of genomes provides an easy approach to
detecting the number and composition of populations (clusters) present in the dataset.
Using simulations, we show that results are at least comparable to population structure
estimates using SNPs. When using human genomes from populations identified by
the 1000 Genomes Project, the results are better than population structure estimates
using SNPs from the same samples, and comparable to those found by a model-based
approach using genetic markers from larger numbers of samples.
Conclusions. This study shows that PCA, together with the clustering algorithm, is
able to detect population structure from k-mer frequencies and can separate samples
of admixed and non-admixed origin. Using k-mer frequencies to determine population
structure has the potential to avoid some challenges of existing methods and may even
improve on estimates from small samples.
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INTRODUCTION
Population structure is a complex phenomenon influenced by the combined effects of
various processes such as geographic and demographic barriers. Samples that are located
in close geographic proximity tend to look more genetically similar than those that are
more remote (Bradburd, Ralph & Coop, 2016). When populations are subdivided, they can
evolve as separate lineages experiencing differences in recombination, mutation, genetic
drift, demographic history, and natural selection (Andam et al., 2017). Population structure
is thus typically observed as a systematic difference in allele frequencies among populations
due to non-random mating among individuals. Genetic differences within and among
populations are examined by studies that investigate changes in frequencies of alleles and
genotypes over time (Clark, 2001; Andrews, 2010; Okazaki et al., 2021).

Identification of population structure and gene flow among populations is informative
for genetic ancestry and provides information about both demographic history and
geographic origins (Novembre et al., 2008; Schulman, 2010; Smock & Schwartz, 2020; Mills
& Rahal, 2021). For example, gene flow, or a gene transfer from one population to another,
is indicative of migration processes (Choudhuri, 2014). When individuals of a single
population possess recent ancestry from two or more separate sources, this population
is considered admixed. Admixed populations contain high levels of genetic diversity that
reflect contributions of the intermixture of source populations with different genetic
variants (Boca, Huang & Rosenberg, 2020).

Understanding gene flow among populations informs a diversity of studies of species
(Ellstrand & Rieseberg, 2016). For example, studies in population structure across marine
species have analyzed connectivity among populations, leading to the establishment of
networks of marine protected areas (Pascual, 2019; Shen et al., 2019). Understanding this
connectivity among populations, which entails evaluation of population structure across
taxa, is a key factor for the effective design of these networks and preserving biodiversity
on a large scale. This knowledge is fundamental for ensuring the long-term survival of
ecosystems inhabited by these species (Zhao et al., 2021).

Population structure is also an important confounding variable in genome-wide
association studies ((GWAS) studies that identify genetic variants linked to traits or diseases
by scanning the entire genome) due to the possibility of inaccurate associations between
genotype and the trait of interest in a genetic study (Bayless, Brown & Paige, 2017). The
presence of population structure may cause false positive or negative associations between
genotype and trait due to differences in local ancestry that are not related to disease risk
or trait variance (Hellwege et al., 2017). Thus, identification of population structure, and
controlling for it, removes the confounding factors (Li et al., 2010). This step enables GWAS
to find new genetic associations and improve the detection, treatment, and prevention of
certain diseases (Mulcare et al., 2004; Ingram et al., 2007; Tishkoff et al., 2007; Friedrich et
al., 2012).

Three types of population inference approaches are typically used: model-based,
distance-based, and statistical (sometimes referred to as algorithmic) (Alexander, Novembre
& Lange, 2009). An example of a model-based population inference approach is Structured
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Association, which assigns samples to subpopulation clusters (possibly allowing fractional
cluster membership) using a model-based clustering program such as STRUCTURE
(Pritchard, Stephens & Donnelly, 2000; Rosenberg et al., 2002). However, the applicability of
this approach to large genome-wide data sets is limited by its high computational cost when
allowing fractional cluster membership (Price et al., 2010). Faster model-based approaches,
such as admixture (Alexander, Novembre & Lange, 2009), fastStructure (Raj, Stephens &
Pritchard, 2014), and frappe (Tang et al., 2005) adopt the likelihood model embedded in
STRUCTURE but incorporate relaxation methods for improving computational efficiency.

However, because these approaches are based on genetic assumptions about the
data, including Hardy-Weinberg equilibrium (HWE) within populations and linkage
equilibrium (LE) between loci, violating these assumptions may lead to misleading
results (Pritchard, Stephens & Donnelly, 2000; Tang et al., 2005; Liu & Zhao, 2006). Marker
deviation from equilibrium can also signify a possible sequencing (Glenn, 2011; Mardis,
2013; Goodwin, McPherson & McCombie, 2016; Salk, Schmitt & Loeb, 2018) or genotyping
error and thus such markers should be excluded from further analysis (Alhusain & Hafez,
2018). Incorrect inference of genotypes is known to occur due to low coverage of DNA
sequencing (Lachance, 2016). The assumptions of Hardy-Weinberg proportions, which
must be met for the marker to be included in the analysis, sometimes are not met due to
genotyping errors (Laurie et al., 2010). Markers that do not meet this requirement should
not be included in the analysis (Alhusain & Hafez, 2018).

Thus, marker genotypes of single-nucleotide polymorphisms (SNPs) or microsatellites,
or haplotype frequencies generated from the sequence data, require careful data
preprocessing steps (Alhusain & Hafez, 2018). Additionally, before running these methods,
the number of populations (K) must be set but may not be known in advance. While
model-based approaches are very powerful in population structure identification, they are
thus limited by computational cost, operate on genetic assumptions that must be held, and
are sensitive to sample size (Gao & Starmer, 2008).

Alternative distance-based population inference approaches adopt a pairwise distance
matrix computed among each pair of individuals. Some examples of implemented distance-
based approaches are genetic similarity scorematching (GSM) (Guan et al., 2009), Spectral-
GEM (Lee et al., 2010), and FastPop (Li et al., 2016). GSM and Spectral-GEM require
high computational intensity when the sample size is large. FastPop results in complex
computation and has not been established when inferring genetic ancestry among more
than four populations (Byun et al., 2017).

Statistical approaches, such as principal component analysis (PCA), which is a linear
dimensionality reduction technique, can be applied to genotyped data (individual allele
frequencies, SNPs) to extract linear combinations of individuals that share the greatest
similarities. A graphical overview (scatter plot) of the population structure can be shown
using principal components as axes of variations. PCA is efficient and has been implemented
for ancestry inference in eigenstrat (Rosenberg et al., 2002) and smartpca (Zielezinski et al.,
2017). Statistical approaches are able to handle large-scale genomic datasets and are not
restricted by genetic assumptions (Alhusain & Hafez, 2018).
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PCA has advantages over the model-based approaches in that it is a non-parametric
method (it does not require a predefined number of populations) and does not rely on
modeling assumptions (HWE, LE). PCA is also computationally efficient. Albeit, current
PCA-based approaches, just as model-based approaches, operate on genomic markers,
which require careful identification to be useful for population structure analysis.

Overall, methods for identifying population structure tend to be computationally
demanding. The number of available markers grows as the number of samples included in
the analysis increases, thus reducing the efficiency of computation. Identification of these
genotypes requires rigorous steps, and reducing the number of informative markers is often
desirable for efficient population structure determination (Stevens et al., 2011). Ancestry
informative markers are usually determined as a set of minimum markers needed to
determine the population structure and lower the genotyping cost. Selection of informative
markers using the supervised method relies on self-reported ancestry information from
individuals, while the unsupervised approach applies PCA to determine markers that are
associated with the significant principal components and then score each marker (Paschou
et al., 2007).

In this work, we investigate our ability to determine population structure with PCA
using frequencies of k-mers present in a genome. More specifically, we examine the
ability to differentiate the population structure using samples across five superpopulations
identified by the 1000 Genome Project (The 1000 Genomes Project Consortium et al., 2015).
It is important to note that in this study ‘‘superpopulation’’ refers to a broad categorization
of human populations often used in genetic analyses to represent groups with shared
genetic patterns, typically influenced by geographic proximity and historical migration.
This grouping of genetic diversity into categories often reflects the structure of sampling
strategies rather than discrete boundaries in genetic variation (Rosenberg et al., 2002; Serre
& Paabo, 2004; Altshuler, Donnelly & The International HapMap Consortium, 2005; The
1000 Genomes Project Consortium et al., 2015). Information on the presence and absence
of k-mers has shown promising results in population differentiation whole-genome
sequencing reads from two distinct superpopulations (Rahman et al., 2018). K-mers are
shorter substrings that can be ‘‘overlapped’’ to reconstruct the full sequence and deliver
equivalent genomic information as a whole sequence (Compeau, Pevzner & Tesler, 2011).
K-mers or k-mer profiles of a sequence (k-mer and its frequency in the genome) can be
generated efficiently (Marcais & Kingsford, 2011). Then the structure of the genome can be
investigated directly from the k-mer profiles of the genome. The problem of sequencing
or genotyping errors may be reduced because PCA aggregates the k-mer frequency
information; therefore, extra counts of frequencies that could potentially accrue due
to sequencing errors should not substantially influence the PCA projection. Additionally,
sequencer errors can be identified and removed by filtering out k-mers of frequency one
(singletons), which are generally considered a result of sequencer errors (Shendure & Ji,
2008;Wang et al., 2019), and not to be included in the final PCA computation.

In this study, we examined the ability to determine population structure based on
k-mer frequencies present in a genome, with the goal of formulating a quick and accurate
approach for population structure identification based on data that provides an alternative
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approach and information from typical markers. To compare our approach to existing
methods, we used samples from across human populations from the 1000 Human
Genomes Project (The 1000 Genomes Project Consortium et al., 2015). The structure of
these populations has been established previously and includes both the separation of
the five superpopulations, independent populations within these, and populations with
mixed ancestry. We were able to apply PCA to frequencies of k-mers present in genomes to
accurately separate superpopulations and populations, and identify individuals of mixed
ancestry. Additionally, wewere able to confirm the use of this approach, and its sensitivity to
some evolutionary parameters, using simulations. Using simulated data, we demonstrate
that the results produced by our approach of using k-mer frequencies and PCA with
K-means are comparable to those produced by the widely-used, model-based method,
fastStructure, that operates on SNPs data. We show that our approach is able to identify
populations using sample k-mer frequencies, even in the scenarios where fastStructure
assigns samples from two different populations to a single population due to the presence
of highly admixed samples.

For comparison, we investigated population stratification based on the number of k-mer
matches between pairs of genomes using a popular alignment-free sequence comparison
tool, mash (Ondov et al., 2016). We were able to build accurate population trees using this
approach; however, the results depended on the parameter selection and it was difficult
to identify a priori the k value (k-mer length) and sketch (reduced representation of a
sequence) size needed for accurate results. Thus, the practicality of this approach is limited
compared to our PCAs of k-mer frequencies.

Portions of this textwere previously published as part of a preprint (DOI 10.21203/rs.3.rs-
1689838/v2).

MATERIALS AND METHODS
In order to examine our ability to determine population structure based on k-mer
frequencies present in a genome, we obtained genome sequence data from samples across
human populations. Human population structure has been studied extensively, suggesting
that humans consist of five superpopulations (The 1000 Genomes Project Consortium et al.,
2015) (Africa, America, Europe, South Asia, East Asia). These groups or superpopulations,
which correspond loosely to geographical regions, are not biologically distinct categories but
reflect patterns of genetic similarity influenced by geography and sampling. Furthermore,
the genetic diversity we observe today is shaped by contributions from multiple ancestral
populations rather than discrete, original human groups (Rosenberg et al., 2002; Serre &
Paabo, 2004; Altshuler, Donnelly & The International HapMap Consortium, 2005). Within
each of these superpopulations are multiple populations generally corresponding to
geography. By examining samples whose clustering is well established we are able to
determine how a novel method performs compared to existing approaches. Specifically,
we compare our results to those of the 1000 Genomes Project (The 1000 Genomes Project
Consortium et al., 2015), which provides a ‘‘gold standard’’ for population structure based
on SNPs using the program STRUCTURE. We suggest that if the ability of our novel
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approach compares favorably to known structure in an exemplary dataset, we can consider
how to apply this to other systems.

Our initial comparison was designed to be the set of individuals that should be the
easiest to differentiate: we selected six samples from a single population from each of the
five major superpopulations:
1. Luhya population in Webuye, Kenya (LWK) of African ancestry.
2. Peruvian population in Lima, Peru (PEL) of American ancestry.
3. Toscani population in Italy (TSI) of European ancestry.
4. Indian Telugu population in the UK (ITU) of South Asian ancestry.
5. The Japanese population in Tokyo, Japan (JPT) of East Asian ancestry.
All samples had been sequenced using polymerase chain reaction (PCR)-free high

coverage technology and listed under the ‘‘1000 Genomes 30x on GRCh38’’ data collection
(see Data availability section). Data was accessed as cram files. Each cram file was converted
into a bam file using samtools (version 1.12) (Li et al., 2009). We then used the bcftools
(version 1.12) (Danecek et al., 2021) mpileup command to filter out regions with low-
quality scores, call the variants, and perform pileups. Finally, the fasta files were built using
the bcftools consensus command. While k-mers can be efficiently counted directly from
raw sequencing reads, we chose to count k-mers from whole genome sequences (WGS)
to ensure higher accuracy by eliminating sequencing errors and artifacts common in raw
reads. WGS provide a more complete representation of the genome, reducing redundancy
and enabling more consistent comparisons across samples. Additionally, using WGS
captures the full genomic context, including repetitive regions, which is important because
repetitive regions make up a significant portion of many genomes. Sequencing reads may
fragment or underrepresent these regions due to technical challenges, such as mapping
difficulties or low coverage.

Population structure of human superpopulations from k-mer
frequencies using PCA
For each sample, we computed the frequencies of canonical k-mers (k-mer or its reverse
complement, whichever comes first lexicographically) of length 21 bp. Frequencies were
computed from the fasta file using Jellyfish (Marcais & Kingsford, 2011) (version 2.2.10), a
tool for fast, memory-efficient counting of k-mers in the DNA sequence. When choosing
the length of k-mers we were initially guided by a general rule used by alignment-free
methods for sequence comparisons—shorter k-mers are more likely to be present in a
sequence (e.g., 1-mers); thus they are less informative in analyzing closely related genomes
(Bernard, Chan & Ragan, 2016); however, longer k-mers are more unique to particular
species and are therefore more useful for similarity identification across species (Greenfield
& Röhm, 2013). Moreover, widely used alignment-free sequence comparison tools such
as mash found a k-mer length of 21 to give accurate estimates of sequence similarities
(Ondov et al., 2016). We examined alternate values of k (k-mer frequency length) in our
simulations (see below).

We filtered out singletons (k-mers of frequency one) to account for possible errors
produced by the sequencer (Melsted & Pritchard, 2011). For this purpose, the flag -L 2 is
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used when analyzing the k-mer content of the sequence with Jellyfish. We then sorted
each k-mer frequency profile in alphabetical order and calculated the intersection of
k-mer profiles across all samples. We used the intersection to ensure accurate counts, as
singletons may be sequencing errors and were not counted; thus, including such k-mers
could introduce the uncertainty of assigning counts of either 1 or 0. The resulting output
is a count of each k-mer of size 21 that is found in all samples.

We performed a PCA on vectors of k-mer frequencies of each sample in python (version
3.6.6) using the scikit-learn (sklearn) library (Pedregosa et al., 2011) (version 0.23.2). We
normalized the data (frequencies of k-mers) by scaling all the values to be between 0
and 1 using the StandardScaler function from the scikit-learn (sklearn) library (Fränti &
Sieranoja, 2018). Normalization of the dataset is a necessary step due to PCA calculating a
new projection of the dataset with new axes based on the standard deviation of the variables
(Jolliffe & Cadima, 2016). Variables with different standard deviations (high versus low)
will have different weights for axes calculation. Normalization of data allows for uniform
standard deviation across all variables, thus PCA calculates axes with all variables having
equal weight. We visualized the projection of the two PCs with the most variance using a
scatter plot from the matplotlib package (Hunter, 2007).

To identify populations, we used K-means clustering based on the PCs (Ding & He,
2004; Lee, Abdool & Huang, 2009) using the scikit-learn (sklearn) library (version 0.23.2).
We found the optimal number of principal components that capture the greatest amount
of variance in the data by plotting the explained variances in a scree plot. We used the
explained variance ratio as a metric to evaluate the usefulness of the principal components
and to choose how many components to use in the model (Jombart, Devillard & Balloux,
2010). The explained variance ratio is the percentage of variance that is attributed by
each of the selected components. To avoid overfitting the model we chose the number
of components to include in the model by adding the explained variance ratio of each
component until we reach a total of around 80%, which is considered an adequate amount
of variance to derive informative results (Jolliffe & Cadima, 2016). We used these PCs
to cluster samples into different numbers of groups (k from 1–10). We determined the
optimal number of clusters (K) by using the ‘‘elbow method’’ heuristic approach (Yuan &
Yang, 2019). The sum of the squared distances to the nearest cluster center (aka inertia)
was measured using the K-means model for each k. From the scree plot, we determined the
‘‘elbow point’’, i.e., the point after which the inertia starts decreasing in a linear fashion.
We clustered the dataset by fitting the numbers of PCs with 80% of the variance into the
K-means model with k number of clusters.

Because the PCs with 80% of the variance caused undecidability in the K-means
clustering algorithm, we hypothesized that the dataset contains noise that suppresses the
true biological signal, and only a small fraction of k-mers ‘‘drive’’ (dominate) the data.
From the scree plots of PC variance and K-means inertia plots, we saw that the variance
is spread out, mostly equally, through all the PCs. Commonly, the first three PCs contain
most of the variance of the data (around 80%), however, our dataset shows that the first
three PCs have only a slightly higher variance than the rest of the PCs. Nevertheless, when
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using the first two PCs we saw deterministic results by K-means and they matched the
expected results. Thus, we used the first two PCs throughout this work.

The analysis of the dataset including all five superpopulations showed strong
differentiation of the AFR superpopulation from the rest of the superpopulations. Thus, we
repeated the analysis for four superpopulations excluding AFR, with 24 samples of a single
origin as identified by The 1000 Genomes Project Consortium et al. (2015) (AMR_PEL,
EAS_JPT, EUR_TSI, and SAS_ITU).

Differentiating human populations with k-mer frequencies using PCA
Because we were able to differentiate human superpopulations, we examined whether this
approach could differentiate populations within those superpopulations. We obtained an
additional 12 samples (six per population) of European ancestry and East Asian ancestry
originating from single-origin populations (The 1000 Genomes Project Consortium et al.,
2015):
6. Finnish population in Finland (FIN) of European ancestry.
7. Dai Chinese population in Xishuangbanna, China (CDX) of East Asian ancestry.
Genomes for each individual were obtained as described above. We repeated our

analysis with these six populations from four superpopulations (excluding AFR). These
additional samples allow us to establish how this approach differentiates samples
hierarchically (i.e., whether all six populations are differentiated or whether only the four
superpopulations are supported). Methods such as STRUCTURE often require separate
examination of individual clusters to determine large-scale and fine-scale population
structure separately (O’Neill et al., 2013).

Populations from multiple ancestral origins
To determine whether we could identify populations of more complex origin, we selected
samples from populations that were previously identified as comprising roughly equal
parts fractional membership of two ancestral populations (The 1000 Genomes Project
Consortium et al., 2015) from the same superpopulation (we refer to these as ‘‘multiple-
origin’’ populations). We obtained six samples from the Han Chinese population in
Beijing China of mixed East Asian ancestry (CHB). In our prior analysis the two ancestral
populations within East Asia are represented by JPT and CDX. We obtained an additional
six samples from Utah residents of Northern and Western European ancestry (CEU).
In our prior analysis Northern European ancestry is represented by the FIN population,
while Western European ancestry is represented by TSI. Genomes for each individual
were obtained as described above. We repeated our analysis with these eight populations
from four superpopulations (AMR_PEL, EAS_CDX, EAS_CHB, EAS_JPT, EUR_CEU,
EUR_FIN, EUR_TSI, and SAS_ITU; excluding AFR).

Because we continued to differentiate the four superpopulations, we focused a
subsequent analysis on the single East Asian (EAS) superpopulation with 18 samples (12
single-origin and six multiple-origin; EAS_CDX, EAS_CHB, and EAS_JPT) to determine
our ability to identify population origin as in STRUCTURE (Pritchard, Stephens & Donnelly,
2000). We repeated our PCA analysis on these samples alone. Additionally, we repeated the
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analysis on the single European (EUR) superpopulation with 18 samples (12 single-origin
and six multiple-origin; EUR_CEU, EUR_FIN, EUR_TSI).

Comparison of k-mer/PCA results to SNP/fastSTRUCTURE
To compare our k-mer frequency-based PCA approach, we assessed population
identifiability in the same datasets from the 1000 Genomes Project using SNPs and
fastStructure (Raj, Stephens & Pritchard, 2014, version 1.0). This tool is a computationally
efficient alternative to the STRUCTURE method (Pritchard, Stephens & Donnelly, 2000).
We extracted SNPs for each group of samples using bcftools (version 1.12) to merge the
vcf files generated previously from cram files. Data was then converted to bed format using
PLINK (version 2.00a3.7). fastStructure was run with K values ranging from two to six for
all datasets except in the case where there were eight potential populations. The chooseK
script included in fastStructure was employed to determine the optimal K values. Finally,
the distruct script included in fastStructure was used to create plots for the selected optimal
K value(s).

K-mer frequency approach applied to simulated data
To further investigate the use of k-mer based methods in population structure analyses,
we applied the same approach to simulated data, where the true population structure was
known.We initially simulated three populations using a genome size of 107 bp. Simulations
were performed in SLiM (Haller & Messer, 2017) in the GUI (SliMguiLegacy version 3.7.1)
using a random starting sequence, neutral mutations at a rate of 10−7 and a recombination
rate of 10−8. The initial effective population size of the starting population was set to 500,
and this population was expanded to 1,000 after 2,000 generations. A second population of
180 was added in generation 3,500, and a third population of 180 was added in generation
4,500. Minimal migration was allowed. Six genomes per population were sampled at
generation 7,000. This model was loosely based on the human population model of Gravel
et al. (2011), although with fewer generations due to time and computational limitations,
and no population expansion.

K-mers were counted as above using Jellyfish (Marcais & Kingsford, 2011) (version
2.2.10), a PCA was produced based on the intersection of k-mers across samples, and
K-means clustering was used to identify groupings. Because our initial approach using
k-mers of size 21 produced no k-mers with counts greater than two, and even fewer
k-mers common to all samples, we used k-mers of size 9. K-mer size was chosen by
examining k-mer frequency distributions and selecting a size with a symmetrical
distribution.

The simulationwas repeatedwith genomes sampled at 5,500 generations. This simulation
was then repeated with exponential growth in the second and third populations following
the establishment of the third population (similar to expected population expansion in
humans). Finally, we used the simulation without growth and added a fourth population
that was the product of equal migration from populations 2 and 3. After a single generation,
this population was isolated.

To examine the impact of hybrid-origin populations more precisely, we adapted a SLiM
simulation population structure recipe for adding subpopulations. We started with three
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populations of effective populations sizes of 500, 500, and 200. The smaller population
experienced 10 generations of equal origin from the larger two. After this, migration was
reduced to 0.02% of the smaller population originating from each of the larger populations
in each generation (probabilistically) and each of the larger populations experiencing origin
of 0.02% from the smaller population. Genomes were sampled after 5,500 generations. We
used a k-mer size of 11 for this and subsequent simulations based on k-mer distributions.
Simulations were repeated with migration of 0.2% and 2% to examine the impacts of
higher migration rates on detection of populations.

Comparison of simulated data results using fastSTRUCTURE
For comparison, we examined population differentiation in our simulated datasets using
fastStructure (Raj, Stephens & Pritchard, 2014) (version 1.0) as described earlier. We
extracted the biallelic sites from the simulated whole genome alignments and converted
them to STRUCTURE format using a custom script. We ran fastStructure for K values
of 2–6 and used the chooseK script to select the optimal range of K values. We used the
distruct script to generate plots for the optimal value(s) of K.

Population structure from a number of shared k-mers between
sequence pairs
For comparison with our k-mer frequency-based PCA approach, we examined population
identifiability in our human datasets using mash (Ondov et al., 2016) (version 2.1.1). mash
can be used to build phylogenies for family-level data and shows promise for population
genetic analyses of polyploid sequences (VanWallendael & Alvarez, 2022). The principle
behind mash is that each sequence is converted into a MinHash sketch, a vastly reduced
representation of a sequence, then two sketches are compared by calculating the fraction
of shared k-mers between a pair of sequences (Jaccard index). Finally, the mash distance
is calculated, which estimates the rate of sequence mutation under a simple evolutionary
model. mash has been investigated for basic population genetic analyses of polyploid and
diploid species (VanWallendael & Alvarez, 2022) and showed some promising results in
the population stratification of plants.

For each sample we builtmash sketches using amash sketch command with -m 2 flag to
filter out single k-mers, -k N flag to analyze the k-mer length of N, and -s M flag to build
sketches of size M. We repeated the process for parameters of -k N = 21, 24, 27, 29, 32
and -s M = 1,000, 3,000, 5,000, 7,000, 8,000, 9,000, 10,000, 12,000, 15,000, 18,000, 20,000,
23,000, 25,000, 28,000, 30,000 to compare the results for a different set of parameters.
We calculated pairwise distances between each pair of samples using mash and used the
distances to build a neighbor-joining tree (NJ) for each set of parameters—k-mer length
and sketch size. mash does not assign samples by population thus to verify that grouping
by superpopulation we checked for monophyly of each of the groups in the NJ tree by
superpopulation label. We used the is.monophyletic function in the ape (version 5.0) R
package (Paradis & Schliep, 2019) to check whether each population was monophyletic in
the resulting tree and ggplot2 (Wickham, 2016) (version 3.3.4) to plot the Boolean values
for whether the tree with all the populations contained clades that are all monophyletic.
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RESULTS
Population structure of five human superpopulations shows two
major groups
To differentiate samples from the five human superpopulations identified by the 1000
Genomes Project (The 1000 Genomes Project Consortium et al., 2015) we used principal
component analysis with a K-means clustering algorithm. 80% of the variance was captured
by 21 PCs. The first two PCs contained 14.5% of the variance.

Using 21 PCs, which hold 80% of the variance, caused undecidability in the K-means
clustering algorithm where no obvious inflection (‘‘elbow’’) point was observed (Fig. 1A).
However, using the first two PCs, which hold 14.5% of the variance, showed deterministic
results in K-means clustering (Fig. 1B). Thus, we applied K-means clustering to the first two
PCs throughout this study. The African superpopulation was strongly differentiated from
all other samples along PC1. The ‘‘elbow point’’ of the K-means scree plot (when the change
in the value of inertia is no longer significant) indicated the samples grouped into three
clusters. There was a strong differentiation of samples of African Ancestry (AFR_LWK)
from all other populations on PC1, and differentiation within this population along PC2
(Fig. 2). In contrast, the fastStructure SNP-based approach assigned the individuals to a
single population (Fig. SA1).

Population structure from four human superpopulations shows four
groups
To determine whether we could differentiate the non-African populations we repeated the
PCA analysis excluding AFR_LWK samples. 80% of the variance was captured by 18 PCs.
The first two PCs contained 13% of the variance. Plotting the first two PCs, we observe
four distinct groups corresponding to the four superpopulations (Fig. 3). The elbow point
of the K-means scree plot indicated the samples grouped into four clusters (Fig. SA2).
In contrast, the fastStructure SNP-based approach assigned the individuals to a single
population (Fig. SA3).

Population structure from four human superpopulations including
samples of multiple ancestral origin
To examine the ability of this approach to provide information about samples from
populations identified as having ancestry from multiple populations within a single
superpopulation (as identified by the 1000 Genomes Project), we repeated the PCA
analysis with additional ‘‘multiple-origin’’ samples from EAS and EUR superpopulations.
80% of the variance was captured by 36 PCs. The first two PCs contained 8.4% of the
variance. Plotting the first two PCs, we observe four distinct groups corresponding to the
four superpopulations; individual populations were not clearly differentiated (Fig. 4A). The
‘‘elbow point’’ of the K-means scree plot indicated the samples grouped into four clusters
(Fig. SA4). On the other hand, the fastStructure SNP-based approach selected a K value
between 1–5; however, fastStructure plots assigned individuals either to a single population
(Fig. 4E), or wholly or partly to one of two populations, which did not correspond
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Figure 1 Evaluating cluster determination in superpopulations by K-means based on the number of
PCs. Comparison of (A) Scree plot showing the non-deterministic number of clusters (no ‘‘elbow point’’)
determined by K-means using 21 PCs (80% of the variance) from k-mer frequencies of five superpop-
ulations. (B) Scree plot showing a deterministic number of clusters= 3 (‘‘elbow point’’) determined by
K-means using 2 PCs (14.5% of the variance) from k-mer frequencies of five superpopulations.

Full-size DOI: 10.7717/peerj.18939/fig-1

to expected population differentiation or that identified by our k-mer/PCA approach
(Figs. 4B–4D).

Population structure from three populations of single and multiple
origins
To further examine our ability to understand populations with samples identified as
having multiple origins, we repeated the PCA analysis with our samples from the East
Asian superpopulation. 80% of the variance was captured by 14 PCs. The first two PCs
contained 13% of the variance. Plotting the first two PCs, we observe three distinct groups
corresponding to the three populations CDX, CHB, and JPT (superpopulation EAS), with
the CHB population placed in between CDX and JPT populations (Fig. 5). The ‘‘elbow
point’’ of the K-means scree plot suggested three populations, although it was difficult to
distinguish between three to five, suggesting the samples formed a continuous grouping
(Fig. SA5). When samples were assigned to three populations these corresponded to the
known populations, with one exception. In contrast, the fastStructure SNP-based approach
assigned the individuals to a single population (Fig. SA6).

We also repeated the PCA analysis with samples from the European superpopulation
with samples of both single and multiple origin. 80% of the variance was captured by 14
PCs. The first two PCs contained 13% of the variance. Plotting the first two PCs, the three
populations CEU, FIN, and TSI (superpopulation EUR) appear visually differentiated
along PC 1, with CEU (Northern andWestern ancestry) placed in between FIN (Northern)
and TSI (Western) (Fig. 6). As for the prior analysis, the ‘‘elbow point’’ of the K-means
scree plot suggested three populations, although the angle differentiation was not strong,
suggesting the samples formed weaker groupings than the superpopulations (Fig. SA7).
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Figure 2 PCA of human superpopulations based on k-mers. PCA generated using k-mer frequencies
from a single population from each of five human superpopulations. Samples are colored by population.
K-means algorithm identified three clusters (circled) present in the data: two in Africa (AFR) and one
including all other populations, Americas (AMR), East Asia (EAS), Europe (EUR), and South Asia (SAS).

Full-size DOI: 10.7717/peerj.18939/fig-2

While the visual scatter plot of the PCA appears to suggest differentiation along PC 1 nearly
consistent with the expected population groupings, there is discordance between sample
populations and K-means assignments. This is because K-means clusters individuals into
genetically homogeneous subpopulations by placing each observation to the cluster with the
nearest mean (Fränti & Sieranoja, 2018). On the other hand, the fastStructure SNP-based
approach assigned the individuals into a single population (Fig. SA8).

Accuracy of K-means clustering
The adjusted mutual information (AMI) score for K-means clusters and the expected
clusters from the analysis of the five superpopulations of non-admixed origin was 0.35 but
improved to 1.0 when excluding AFR. The AMI for K-means clusters and the expected
clusters of the four superpopulations including samples of admixed and non-admixed
origin was 1.0. When analyzing individual superpopulations including samples of admixed

Hrytsenko et al. (2025), PeerJ, DOI 10.7717/peerj.18939 13/34

https://peerj.com
https://doi.org/10.7717/peerj.18939/fig-2
http://dx.doi.org/10.7717/peerj.18939#supp-1
http://dx.doi.org/10.7717/peerj.18939


Figure 3 Distinct superpopulation clusters in non-admixed superpopulations. PCA generated using
k-mer frequencies from four superpopulations of non-admixed origin (America (AMR), East Asia (EAS),
Europe (EUR), South Asia (SAS), but excluding Africa (AFR)) using 2PCs. Samples are colored by
population. K-means algorithm identified four clusters present in the data (circled).

Full-size DOI: 10.7717/peerj.18939/fig-3

and non-admixed origin to differentiate populations, the AMI was 0.83 for the populations
in EAS, and 0.43 for the populations in EUR. For the explained variance plots and for the
cumulative explained variance plots see Figs. SA9–SA18.

Memory usage when analyzing population structure with k-mer
frequencies
These analyses (using k-mer length of 21) stored a dictionary data structure with k-mer
content for each sequence. The dictionary of 48 vectors of k-mers and their frequencies
occupied 41Gb of space in a pickled (compressed) format. Reduction of space to 38Gb
was possible by calculating the intersection of k-mers across all vectors. Generating these
data structures required an HPC node with at least 250Gb of RAM for the dictionary
compression step. Additionally, calculating PCA on this dataset required∼239Gb of RAM,
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Figure 4 Identification of distinct clusters on a superpopulation level and a single cluster on a
population level. (A) PCA generated using k-mer frequencies from four superpopulations (America
(AMR), East Asia (EAS), Europe (EUR), South Asia (SAS)) including samples of single origin and
multiple origin in EAS and EUR using 2PCs. Samples are colored by population. K-Means algorithm
identified four clusters present in the data (circled). (B–D) fastStructure assignment of individuals to
two populations with K = 2, 3, 4 respectively determined as optimal K by the chooseK method. (E)
fastStructure assignment of individuals to a single population for K = 5.

Full-size DOI: 10.7717/peerj.18939/fig-4

and took 2 h 36min and 51 s of job wall-clock time on a 36-core HPC node. For simulations
of 10 million base pairs and 18–24 samples, analyses took just a few minutes.

Accuracy of population structure estimates from k-mer frequencies
using simulations
To examine the use of this approach in greater depth we simulated populations and
sampled genomes from each. In our initial simple three-population simulation (Fig. 7),
we clearly identified the three populations using k-mer frequencies with PCA and
K-means clustering. The fastStructure SNP-based approach also assigned the individuals
in the three populations correctly.

Reducing the time interval between the establishment of the third population and
sampling did not affect the results either for our approach (Fig. 8) or from fastStructure.

However, when the second and third populations experienced exponential growth,
they were grouped together in the PCA (separated from population 1 along PC1) and by
K-means clustering, while the oldest population was separated into two groups (along
PC2) (Fig. 9). fastStructure also grouped the second and third populations, although it did
not separate population 1 into two groups.

When these two populations were analyzed without population three, they were
separated by the PCA and K-means clustering (Fig. 10). fastStructure also separated
the populations successfully, but only suggested the two clusters accurately.

For the four populations simulation, where the fourth population originated from
a mix of two others, followed by isolation, all four populations were separate, with
population 1 differentiated along PC1 and the remaining along PC2 (Fig. 11). In contrast,
fastStructure supported either two or three populations, but was unable to differentiate
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Figure 5 Identification of clusters on a population level. PCA generated using k-mer frequencies from
the EAS superpopulation including samples of single and multiple origin (CDX, CHB, and JPT) using
2PCs. Samples are colored by population. K-means algorithm identified three clusters present in the data
(circled) corresponding closely to the expected populations.

Full-size DOI: 10.7717/peerj.18939/fig-5

all four successfully. In the former case, population 1 was separated from all others (i.e.
matching PC1 of the k-mer approach), while in the latter population 1 and 2 were each
separate, while 3 and 4 were grouped together.

In using simulations to examine hybrid-origin and subsequent migration more closely,
isolated populations of hybrid origin were rapidly differentiable from other populations
(Fig. 12) using both approaches.

As migration increased, populations became more difficult to differentiate. Populations
with limited (≤0.2% of parents from each origin population entering the hybrid population
and vice versa) were differentiated, but had some overlap and contained one mis-assigned
individual in the clustering (Fig. 13). The fastStructure approach suggested either three or
four clusters. In the 3-population scenario, the first population was strongly differentiated
(i.e., matching PC1 of the k-mer approach), with the addition of the partial assignment
of an individual from population 3. Five individuals from population 2 were strongly
differentiated with the addition of an individual from population 3. The remaining
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Figure 6 Identification of clusters on a population level in samples of single andmultiple origins.
PCA generated using k-mer frequencies from the EUR superpopulation including samples of single and
multiple origin (CEU, FIN, and TSI) using two PCs. Samples are colored by population. K-means algo-
rithm identified three clusters present in the data (circles). Populations appear to separate along PC 1;
however, K-means clustering differentiates the two single-origin populations (FIN and TSI) but mixes
samples of CEU and TSI, as well as CEU and FIN.

Full-size DOI: 10.7717/peerj.18939/fig-6

individuals frompopulation 3were strongly differentiatedwith the addition of an individual
from population 2 and the partial assignment of the individual to population 1.

When divided into four clusters, two individuals from population 1 formed a cluster,
the four remaining individuals formed a cluster along with partial assignment of a single
individual from population 3. Population 2 formed a cluster combined with one individual
from population 3 (as in the k-mer approach), although one individual was only partially
assigned, and the five remaining individuals from population 3 formed a cluster.

As migration was increased further, populations could not be differentiated (Fig. 14).
While the k-mer approach with K-means identified three clusters, these did not match the
simulated populations. Similarly, fastStructure identified either two or three populations.
In the former scenario, one cluster consisted of two individuals from population 3 and
three from population 2, and 50% assignment of an individual from population 1. In the
latter, cluster 1 consisted of 5 individuals from population 1, 3 from population 2, and 2
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Figure 7 Comparison of population stratification approaches using simulated data. Comparison of
population stratification approaches using three simulated populations loosely based on the human out-
of-Africa population model of Gravel et al. (2011). (A) PCA generated using k-mer frequencies from sam-
ples. Samples are colored by simulated population. K-means algorithm accurately identified three clusters
present in the data (circled) corresponding to the three simulated populations. (B) The same three pop-
ulations accurately identified from SNPs using fastStructure. Samples are colored by the assigned popula-
tion.

Full-size DOI: 10.7717/peerj.18939/fig-7

Figure 8 Comparison of population stratification approaches using simulated data with reduced
time to population establishment. Comparison of population stratification approaches three simulated
populations loosely based on the human out-of-Africa population model of Gravel et al. (2011) as in
Fig. 7; however, with reduced time between the establishment of the third population and sampling
using simulations. (A) PCA generated using k-mer frequencies from samples. Samples are colored by
population. K-means algorithm accurately identified three clusters present in the data (circled). (B) The
same three populations accurately identified from SNPs using fastStructure. Samples are colored by the
assigned population.

Full-size DOI: 10.7717/peerj.18939/fig-8
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Figure 9 Comparison of population stratification approaches using simulated data with exponential
growth of the populations after the establishment. Comparison of population stratification approaches
using three simulated populations loosely based on the human out-of-Africa population model of
Gravel et al. (2011), with exponential growth in populations 2 and 3 following establishment. (A) PCA
generated using k-mer frequencies from samples. Samples are colored by population. K-means algorithm
inaccurately identified three clusters present in the data (circled), with one including populations 2 and 3
combined, and the other separating two groups from population 1. (B) Two populations identified from
SNPs using fastStructure. fastStructure assigned population 2 (pop2) and population 3 (pop3), to the same
population. Samples are colored by the assigned population while simulated populations are identified
along the x axis.

Full-size DOI: 10.7717/peerj.18939/fig-9

from population 3; cluster 2 consisted of 1 from population 1, 2 from population 2, and 2
from population 3; cluster 3 consisted of 1 from population 2 and 2 from population 3.

Population structure from k-mer presence alone
For additional comparison with our PCA approach, we used mash to estimate population
structure from the human samples.Monophyly of the superpopulation groupswas observed
on the unrooted tree for various parameters of k-mer length (k) and sketch size (s) (Figs.
SA19–SA22). Specifically, the trend of accurate grouping by population was observed with
shorter k-mer length and higher sketch size, and conversely lower sketch size and longer
k-mer length produced trees with monophyletic groupings of samples by population
(Fig. 15).

While we saw a general trend of improved accuracy with low k-mer length and higher
sketch size, and conversely longer k-mers and smaller sketch size, we saw exceptions in
the accuracy trend for various parameters. For example, k-mer length 24 and sketch size
3,000 produced accurate results, however, the accuracy dropped with setting k = 24 and
s= 5,000 and 7,000, and the accuracy picked up again when k= 24 and s= 8,000–30,000.
While this test case allowed us to compare results to the ground truth, it is difficult to select
a priori the parameters that produce accurate results.
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Figure 10 Comparison of population stratification approaches using simulated data reflecting the
effect of the exponential growth in populations. Comparison of population stratification approaches
using the simulated samples from the two populations clustered in Fig. 9. Because analysis of all three
populations separated grouped populations 2 and 3 together, these populations were analyzed separately
to determine whether they could be separated from each other when population 1 was excluded. (A) PCA
generated using k-mer frequencies from samples. Samples are colored by population. K-means algorithm
inaccurately identified three clusters present in the data (circled). (B) Two populations accurately
identified from SNPs using fastStructure. Samples are colored by the assigned population.

Full-size DOI: 10.7717/peerj.18939/fig-10

DISCUSSION
In this work, we showed that population structure can be detected from k-mer frequencies
using PCA and K-means clustering. We were able to assign samples to populations in a way
that was comparable to prior work and simulations that used SNPs. PCA with K-means
using k-mer frequencies was able to accurately assign samples to expected populations even
in the scenarios where fastStructure did not differentiate subpopulations due to presence
of high genetic admixture. Application of PCA to vectors of k-mer frequencies reduces
the dimensionality of the data, which makes the dataset manageable for the following
step of applying a clustering algorithm to detect structure in the dataset. We suggest that
k-mer frequencies may be easier to calculate compared to accurate genotypes and allow
the estimation of population structure hierarchically.

Population identification
We hypothesize that our initial observation of two larger clusters in the data from the
five human superpopulations (Africa and all others) reflects the effects of the high
genetic variation and population-specific alleles in the African populations due to
humans originating in Africa, combined with the bottlenecks and subsequent population
expansion of other populations (Campbell & Tishkoff, 2008; Gravel et al., 2011). While
similar substructure was not found by the 1000 Genomes Project when using SNPs,
it is accurate that non-African populations share common ancestry with each other
more recently than they do with African individuals. We observed that simulations
produced similar differentiation in the results from the three-population model with
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Figure 11 Comparison of population stratification approaches using simulated data reflecting the
effect of the mixed origin of a population. Comparison of population stratification approaches using
four simulated populations, where 1–3 are loosely based on the human out-of-Africa population model
of Gravel et al. (2011), and population 4 originated as a mixture of populations 2 and 3. (A) PCA gener-
ated using k-mer frequencies from samples. Samples are colored by population. K-means algorithm iden-
tified either three or four clusters (based on the scree plot) present in the data (circled). (B) fastStructure
identified either two or three clusters from SNPs. (C) In the two-population case, fastStructure assigned
population 2 (pop2), population 3 (pop3), and population 4 (pop4), to the same population. In the three-
population case, fastStructure assigned population 3 (pop3) and population 4 (pop4), to the same popula-
tion. Samples are colored by the assigned population.

Full-size DOI: 10.7717/peerj.18939/fig-11

population expansions, but not in the constant-size model, confirming that an out-
of-Africa model with subsequent population expansion may produce the observations
from the empirical data. Alternatively, Kulohoma (2018) found structure within the LWK
samples corresponding to outlier individuals, who may be from different tribes, which
could also explain differentiation within the African samples.

Excluding the African superpopulation, k-mer-based PCA grouped the samples by their
expected superpopulation, with the majority of variation among superpopulations. This
result was consistent with analyses based on SNPs (The 1000 Genomes Project Consortium
et al., 2015) by the 1000 Genomes Project. PCA analysis of individual superpopulations
similarly differentiates populations as expected in prior work. These results are consistent
with the results from our simulations, in which populations were easily differentiated by
our approach.

For populations identified as having multiple origins using SNPs, k-mer-based PCA
places samples in between the two populations representing the two ancestral populations.
The continuum in the placement of samples of multiple origins likely corresponds to the
fractional membership of samples as determined by the 1000 Human Genomes Project.
Specifically, given two populations, additional samples with origin similar to both are
placed on the coordinates along edges joining the centers of the established populations
(Patterson, Price & Reich, 2006). While it is not surprising that these samples are not
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Figure 12 Comparison of population stratification approaches with simulated data reflecting effect
of hybrid-origin population isolation. Starting with two larger and one smaller population, the smaller
population initially experienced migration from the larger, and this was then reduced. (A) PCA generated
using k-mer frequencies from samples. Samples are colored by population. K-means algorithm accurately
identified three clusters present in the data (circled). (B) Three populations identified from SNPs using
fastStructure. Samples are colored by the assigned population.

Full-size DOI: 10.7717/peerj.18939/fig-12

accurately assigned to a third population, as this same result was found by the 1000
Genomes Project (The 1000 Genomes Project Consortium et al., 2015), three populations
were identified by K-means and the third intermediate population was largely comprised
of the expected mixed samples.

K-mers versus marker genotypes
Importantly, k-mer frequencies can be simpler to count and process when compared
to using marker genotypes (e.g., SNPs). Thus, the k-mer-based approach has particular
potential to be useful for non-model organisms (Russell et al., 2017). Such non-model
organisms do not have established SNP panels or information on allele frequencies
from which population structure can be identified using model-based approaches and
marker genotype data. In organisms without a reference genome (Bendaoud et al., 2022),
a typical way to discover SNPs to analyze variation is through restriction digests and
several computational pipelines (Puritz, Hollenbeck & Gold, 2014). On the other hand,
generation of k-mer profiles from genome sequences, even of non-model organisms, is a
straightforward task where subsequences of length k are counted along the genome and no
markers have to be identified. While sequencing whole genomes can be more costly than
RADseq, whole genome sequencing promotes reuse of data and is becoming more cost
effective. Therefore, the method described in this paper provides a functional alternative
to model-based approaches where genome data lacks information on SNPs and provided
the goal of the analysis is to only identify the population structure present in the dataset. It
may also act as a complementary approach to analyses where larger numbers of individuals
were sequenced for smaller allele panels.
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Figure 13 Comparison of population stratification approaches with simulated data reflecting effect
of increase in population migration. Starting with two larger and one smaller population, the smaller
population initially experienced migration from the larger, and this was then reduced (although to a lesser
degree than Fig. 12). (A) PCA generated using k-mer frequencies. Samples are colored by population.
K-means algorithm identified three clusters present in the data (circled), which corresponded closely,
but not exactly, to expectation based on sampling origin. (B) In the three-population case, fastStructure
mostly assigned populations correctly with one individual assigned incorrectly as in the PCA. (C) In the
four-population case, fastStructure primary assigned individuals correctly, with one exception; additional
population 1 was divided into two clusters. Samples are colored by the assigned population.

Full-size DOI: 10.7717/peerj.18939/fig-13

When analyzing genotype data, a number of preprocessing steps to evaluate data
quality are necessary (Pritchard, Stephens & Donnelly, 2000; Alhusain & Hafez, 2018),
as population structure estimation using genetic markers is susceptible to genotyping
errors (Pompanon et al., 2005). This evaluation includes an assessment of SNP call rates,
minor allele frequencies (MAFs), verification of the HWE assumptions, and relatedness
between individuals. Additionally, the identification of ancestry informative markers,
which constitute a minimal number of markers needed to obtain population structure,
is necessary to ensure the accuracy of the results (Alhusain & Hafez, 2018). In contrast,
k-mer frequencies can be viewed as summary statistics of a genome resulting from SNPs.
While errors in k-mer counts occur due to sequencing or genotyping errors, these can
easily be identified as k-mers of low frequency. The overwhelming majority of k-mers of
frequency 1 are not found in a genome and thus are most likely due to sequencing errors
and therefore can easily be discarded (Melsted & Pritchard, 2011). While in this analysis we
use the available reference genome for alignment to produce a genome for each sample,
k-mer frequencies should not be significantly affected by using a draft genome assembly.

Model-based population analysis methods can also be limited by inadequate sample sizes
and the number of markers analyzed (Lawson, Van Dorp & Falush, 2018). These methods
depend on an estimation of allele frequency that is sensitive to small samples (Gao &
Starmer, 2008; Porras-Hurtado et al., 2013). In contrast, our PCA-based k-mer frequency
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Figure 14 Comparison of population stratification approaches from simulated data reflecting effect
of further increase in population migration. Starting with two larger and one smaller population, the
smaller population initially experienced migration from the larger, and this was then reduced (although
to a lesser degree than Fig. 13). (A) PCA generated using k-mer frequencies from samples. Samples are
colored by population. K-means algorithm identified three clusters present in the data (circled), but at this
level of migration they did not correspond to sampling location. Under two- (B) and three-population (C)
scenarios, admixed populations did not correspond to the original simulations using SNPs and fastStruc-
ture.

Full-size DOI: 10.7717/peerj.18939/fig-14

approach does not depend on allele frequency estimation and thus is not affected by sample
size (Alhusain & Hafez, 2018). We were able to produce accurate results with as few as six
samples per population.

The PCA-based approach also has the advantage of operating without a preset number
of populations and no modeling assumption requirements (Patterson, Price & Reich, 2006;
Lee, Abdool & Huang, 2009). This makes the analysis of population structure using a
non-model-based approach an appealing choice. The application of PCA and K-means
to k-mer profiles of genomes makes it easy to detect a number of populations (clusters)
present in the dataset, which is a major parameter in the model-based method that is
required to be set in advance.

However, it is important to recognize that the k-mer and SNP-based approaches may
deliver different types of information.While amore complex but sophisticatedmethod such
as STRUCTURE describes the population structure by probabilistic assignment to classes,
the PCA combined with K-means, provides a graphical and quantitative representation of
population structure along axes of variation in the dataset. Thus, the goal of the investigation
of population structure should be taken into consideration when deciding which approach
is more applicable for the analysis.
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Figure 15 Heatmap plot showing variation in the ability ofmash to detect monophyly of human
superpopulations. Phylogenies were built from pairwise mash distances for different k-mer length and
sketch size parameters.

Full-size DOI: 10.7717/peerj.18939/fig-15

Consideration of computational efficiency
The PCA-based approach is computationally efficient and can handle genomic marker
data for thousands of individuals (Paschou et al., 2007). PCA also demonstrated efficiency
when applied to k-mer frequencies in our study. However, the k-mer approach has some
limitations. While it is effective for analyzing datasets with a limited number of samples,
the large memory burden associated with k-mer analysis poses a significant challenge
when applied to larger datasets. The memory requirements increase with k-mer length, as
does the computational power needed to calculate distances between sequences based on
k-mer frequencies. Additionally, shorter k-mers tend to be less informative, whereas longer
k-mers offer greater specificity but demand more resources. This creates a tradeoff between
specificity, computational efficiency, and memory requirements. Approaches such as down
sampling (sketching) or compressing the k-mer space may help address these limitations
and improve the feasibility of k-mer analysis for larger datasets.
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Identification of population structure based on the number of shared
k-mers
mash’s identification of all five superpopulations, suggests that mash has an adequate
amount of sensitivity to differentiate samples by superpopulation even with the presence
of samples with greater variation (AFR). However, grouping individuals into populations
based on k-mer presence using mash distances was more difficult than using PCA and
k-mer frequencies. mash produced accurate groupings (samples were placed on the tree
according to the superpopulation) only for particular combinations of k-mer length and
sketch size, and accuracy was not necessarily predictable. We were able to identify the
k-mer length that produced accurate results by checking with the results produced by
the 1000 Genome Project; however, finding the right parameter for k-mer length would
be hard without knowing the correct population structure in advance. Thus, while mash
is a robust tool for identifying genome relationships on a species level (Zielezinski et al.,
2017), on a population level, in comparison to the PCA approach, mash showed less
viable performance for differentiating populations due to its high sensitivity to parameter
selection which is unknown in advance.

Whole genome sequences versus raw sequencing reads
Our study utilized k-mers derived from whole genome sequences (WGS) to enhance
accuracy andminimize the impact of sequencing errors and artifacts.We used this approach
to ensure that k-mersmay be used successfully to determine population structure. However,
an optional approach, especially for non-model organisms without an assembled genome,
may be to use k-mers directly from raw sequencing reads (Rahman et al., 2018). Raw
reads are inherently error-prone while having variation in read coverage that affects k-mer
frequencies; however, it may be possible to address these challenges through filtering
(e.g., removing rare k-mers) and trimming techniques, with tools like mash effectively
mitigating errors and contamination. This direct approach not only avoids the need for a
reference genome, but bypasses the alignment step, potentially streamlining the analysis
and improving computational efficiency. Future work should consider the steps necessary
to match the effectiveness of genome-based k-mer analysis that we observe here while using
read-based k-mer counts.

CONCLUSIONS
In sum, principal component analysis together with K-means clustering appears to
successfully identify population structure based on the k-mer frequencies present in
genomes. This approach is robust in differentiating samples at the superpopulation and
population levels. Notably this approach differentiated samples hierarchically, and PCA
was able to discern the population signal in samples of multiple origins within a single
superpopulation. These results are comparable to model-based approaches that identify
populations using genotypes, and which provide information on fractional membership of
a sample to a population. However, using k-mer frequencies does not depend on genetic
assumptions or the process of marker selection curation. In contrast, the method using
k-mer presence to group samples lacked sensitivity to consistently identify populations.
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With the increasing availability of whole-genome data, we anticipate that the use of k-mer
frequencies combined with PCA and K-means clustering can provide information that
is complementary to marker-based work in population structure investigations. This
genome-wide pattern-based approach provides an initial glimpse at an interesting alternate
source of information that may be further investigated through more complex simulations
and empirical work. While our approach still requires availability of a reference genome,
as many current approaches do, a k-mer-based method using PCA with K-means offers
potential for a simplified procedure for population stratification. It also shows promise for
enhancing the process of population structuring and assignment, even in the presence of
high genetic admixture.
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