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Antipredatory behavior may be shaped by a number of evolutionary and ecological factors,
including kin selection. Ground squirrels exhibit alarm vocalizations in the presence of
predators; however, the degree to which kin selection shapes alarm calling behavior varies
with species ecology and is not fully understood. We studied a solitary ground squirrel
species that exhibits sex-biased calling propensity to determine if kin selection inûuences
antipredatory behavior in this species.In this study, we used double digest restriction-site
associated DNA sequencing (ddRADseq) to sample the genomes of Ammospermophilus
harrisii to determine the relatedness between individuals and test whether genetic and
geographic distance were correlated. We found that geographic distance had a positive
relationship with genetic distance, and that this relationship was sex-dependent,
suggesting male-biased dispersal. Our results provide supporting evidence that kin
selection aûectsantipredatory behavior in this species and may be responsible for higher
calling propensity observed in female squirrels. Our ûndings add to a growing body of
evidence that current hypotheses used to explain sociality in highly social animals can be
extended to solitary animals.
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Abstract
Antipredatory behavior may be shaped by a number of evolutionary and ecological factors, 

including kin selection. Ground squirrels exhibit alarm vocalizations in the presence of predators;

however, the degree to which kin selection shapes alarm calling behavior varies with species 

ecology and is not fully understood. We studied a solitary ground squirrel species that exhibits 

sex-biased calling propensity to determine if kin selection influences antipredatory behavior in 

this species. In this study, we used double digest restriction-site associated DNA sequencing 

(ddRADseq) to sample the genomes of Ammospermophilus harrisii to determine the relatedness 

between individuals and test whether genetic and geographic distance were correlated. We found 

that geographic distance had a positive relationship with genetic distance, and that this 

relationship was sex-dependent, suggesting male-biased dispersal. Our results provide supporting

evidence that kin selection affects antipredatory behavior in this species and may be responsible 

for higher calling propensity observed in female squirrels. Our findings add to a growing body of 

evidence that current hypotheses used to explain social behaviors in highly social animals can be 

extended to solitary animals.

Introduction
Alarm signals are a widespread communication system used to mediate predator-prey interactions

(Caro, 2005). Alarm signals may be olfactory (Chivers and Smith, 1998), visual (Blank, 2018; 

Woodland et al., 1980), or acoustic (Amorim and Dias, 2019), and some species may use 
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electromagnetic alarm signals as well (Scheffel and Kramer, 2006; Dunlap, DiBenedictis & 

Banever 2010). The evolution of alarm signals has received much research interest due to their 

seemingly altruistic function. Alarm signals can serve multiple functions, sometimes 

simultaneously in some species (Zuberbühler et al., 1999; Zuberbüler, 2001; Digweed and 

Rendall, 2009; Schel et al., 2010). For example, Diana monkeys (Cercopithecus diana) emit 

alarm vocalizations that both deter leopards (Zuberbühler et al., 1999) and warn conspecifics 

(Zuberbühler, 2000).

Ground squirrels of the family Sciuridae emit alarm vocalizations in response to 

predators. However, alarm calling behavior and structure can vary substantially across species 

and between individuals, providing an excellent model system for understanding how ecological 

and evolutionary selection pressures influence antipredatory behavior (Blumstein and Armitage, 

1997). Many ground squirrels live in close proximity to their relatives, and kin selection is 

thought to be a strong evolutionary driver of alarm vocalizations (Dunford, 1977; Sherman, 

1977). Male ground squirrels often disperse away from natal burrows whereas females typically 

exhibit philopatry (e.g., Holekamp, 1984; Shriner and Stacey, 1991; Neuhaus, 2006). As a result, 

adult males may be unrelated to surrounding conspecifics, so alarm calling would not benefit 

adult males via kin selection. Thus, individuals emitting alarm vocalizations may be more likely 

to be female in species with male-biased dispersal (Dunford, 1977; Sherman, 1977). 

The Harris9s antelope squirrel (Ammospermophilus harrisii) is a solitary species that 

emits alarm calls throughout the year, regardless of juvenile presence, indicating that alarm calls 

may be directed toward predators as a deterrent (Burnett and Koprowski, 2020). Opportunistic 

observations of alarm vocalizations showed a higher proportion of female callers (Burnett and 

Koprowski, 2020), suggesting that alarm vocalizations may be subject to kin selection. Although 

adult A. harrisii live solitarily in large home ranges, neighboring home ranges overlap (Burnett 

and Koprowski, 2024) and individuals were occasionally seen sharing burrows (A. Burnett, 2018,

unpublished data). Further, A. harrisii alarm vocalizations can be high amplitude (personal 

observation) and are structured to carry over long distances (Bolles, 1988), potentially benefiting 

neighbors if individuals use alarm vocalizations as a warning or if predators are deterred from the

area. However, whether neighboring A. harrisii are related and kin selection influences calling 

behavior is unknown, allowing an opportunity to test kin selection theory in a solitary mammal. 

To understand whether kin selection could influence calling propensity in A. harrisii, we sampled

the genomes of neighboring individuals to analyze their relatedness and estimate any sex-

dependency. If kin selection influences alarm calling behavior, we expect neighboring squirrels 

to be related. Given our observation of more female antelope squirrels alarm calling (Burnett and 

Koprowski, 2020), we further expect this relationship to be sex-dependent, showing relatedness 

between neighboring females but not males. Conversely, if neighboring individuals are not 

related or dispersal is not male-biased, higher call propensity in females may be maintained 

primarily through direct fitness or alternative selection pressures (e.g., Blumstein et al., 1997). 
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Sample Collection and DNA Extraction 

As part of a larger research study conducted in 2017 and 2018, A. harrisii were baited and 

captured with Tomahawk live traps (model No. 201, Tomahawk Live Trap, Hazelhurst, WI, 

U.S.A.) in the Santa Rita Experimental Range (SRER), located in the Sonoran Desert 

approximately 65 kilometers south of Tucson, Arizona (Fig. 1). Traps were checked frequently 

(once/hour) and shaded with vegetation and/or shade cloth to prevent heat stress and sun 

exposure. Once captured, we used a cloth handling cone (Koprowski 2002) to minimize stress 

during handling. We recorded weight, sex, life stage, and reproductive status for each animal 

captured collected tissue samples with an ear punch (Fisherbrand Animal Ear Punch, 1mm, 

Thermo Fisher Scientific, Waltham, MA, U.S.A). Squirrels were tagged with sterile passive 

integrated transponder (PIT) tags (HPT9, 8.4 x 1.4 mm, 0.02-0.04% body weight, Biomark, Inc., 

Boise, ID, U.S.A.) before being released (n = 47 individuals, 51 tissue samples prior to removal 

of duplicate individuals). Some adult individuals (>110g) were additionally fitted with a radio 

collar for VHF tracking (Wildlife Materials; <5% body weight; see Burnett and Koprowski 

2024). We took no more than one tissue sample per ear from squirrels captured more than once. 

We received approval from University of Arizona Institutional Animal Care and Use Committee 

(16-169) and complied with the Animal Welfare Act for all procedures. We additionally followed

ethical guidelines for trapping and handling small mammals published by the American Society 

of Mammalogists (Sikes and Animal Care and Use Committee, 2016). We obtained a scientific 

collecting permit from Arizona Game and Fish Department (SP501610). We did not give the 

animals anesthesia or analgesia because the effects of these agents are not well-studied in 

Harris9s antelope squirrels. Animals were not chemically immobilized due to the nature of the 

procedures (i.e., momentary pain). Lack of chemical immobilization also limits time spent 

handling, risk of thermoregulatory distress, and additional stress caused by immobilization 

procedures (Sikes and Animal Care and Use Committee, 2016). The DNA of the collected tissue 

samples was extracted at the University of Arizona Conservation Genetic Laboratory using a 

Qiagen DNeasy blood and tissue extraction kit (Qiagen Inc. California, USA). We used a Qubit 

fluorometer (Invitrogen#, Thermo Fisher Scientific Inc. Massachusetts, USA) to quantify DNA 

products before sequencing. 

Figure 1: Sampling locations of Harris9s antelope squirrels (A. harrisii) in the Santa Rita 

Experimental Range, AZ. Green dots indicate sampling sites.

Library Preparation and Genomic Sequencing

DNA (1100 ng) from each sample was sent to Floragenex (Oregon, USA) for library preparation 

and double-digest restriction site associated DNA sequencing (ddRADseq). Library preparation 

was performed using the restriction enzymes PstI and Msel, with a size selection range of 250-

800 base pairs (bp). The final pooled library was sequenced on an Illumina HiSeq 3000 with 

1x100 bp reads.

Bioinformatic pipeline
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We used FASTQC v. 0.11.9 (Andrews 2010) to confirm presence of the enzyme cut sites and 

assess read quality. We used the program process_radtags in Stacks v. 2.60 (Catchen et al., 2013)

to demultiplex the pool into individuals based on in-line adapter barcodes, quality filter reads 

(with a minimum Phred score of 30), and remove reads with missing RAD enzyme cut sites. 

Following the error clean-up, we used Stacks to assemble loci and call single nucleotide 

polymorphisms (SNPs). 

No reference genomes exist for A. harrisii. Thus, we used the Stacks denovo_map 

pipeline with the output from  process_radtags to de novo assemble loci with default parameters. 

We also applied the --write_random_snp flag to obtain one SNP per locus from the populations 

module. We sequentially filtered SNPs using PLINK v. 1.90 (Purcell et al., 2007), removing loci 

genotyped in less than 75% of individuals (--geno 0.25) and loci with a minor allele frequency 

(MAF) less than 5% (--maf 0.05). We further filtered SNPs to remove individuals with more than

50% missing data at the retained loci (--mind 0.5). No individuals were removed during this 

additional filtering step; however, we found that our sample set included duplicates of four 

individuals, which were subsequently removed. 

Genetic Summary Statistics

With our unduplicated dataset containing one SNP per locus, we reran the populations module to 

generate population-level genetic summary statistics (observed and expected heterozygosity; HO 

and HE, respectively), nucleotide diversity (Ã, considering variant and invariant sites), and 

inbreeding coefficient (FIS). We performed an additional run of populations using a population 

map file denoting males and females to compare results between sexes in downstream analyses. 

To estimate effective population size, we used the software NeEstimator v. 2.1 (Do et al. 2014) 

with the linkage disequilibrium method and a minor allele frequency cutoff of 0.05. 

Genetic Structure Analyses

To better understand population structure, we visualized our data with the R package pophelper 

(Francis 2017) and ran a Principal Component Analysis (PCA) as well as a Discriminant 

Analysis of Principal Components (DAPC) using adegenet (Jombart 2008). We derived DAPC 

results based on the K value with the lowest Bayesian Information Criterion (BIC). Additionally, 

we used ADMIXTURE (Alexander et al. 2009) to analyze population substructure and to 

determine the most likely number of ancestral lineages, identifying the best-supported K value by

the lowest cross validation error.

Relatedness

We used the related package in R (Pew et al., 2015) to estimate dyadic relatedness (the dyadml 

estimator) between individuals. After assessing the distribution of relatedness and finding it non-

normal, we used a Kruskal-Wallis test followed by a Dunn post-hoc test with a Bonferroni 

correction using FSA (Ogle et al. 2023) to evaluate statistical differences in relatedness between 

and within sex. 

Isolation by Distance
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We  tested whether genetic distance and geographic distance were significantly correlated 

(isolation by distance; IBD), by performing a Mantel test (Mantel 1967) with the adegenet 

package, using geographic Euclidean distance and the inverse proportion of shared alleles (DPS) 

for each sample pair and 9,999 permutations to assess significance. We further ran the test 

separately for males (n= 18) and females (n=29) to determine if  this relationship differed 

between sexes.

Results
Genetic Diversity Estimates 

We retained 21,958 SNPs following quality filtering and the removal of four duplicate 

individuals (n=47 individuals). Genetic summary statistics indicated an inbreeding coefficient of 

0.079 suggesting that a low level of inbreeding might be occurring within this population. 

Genetic diversity parameters showed an observed heterozygosity (±SE) of 0.269 ± 0.001 and 

expected heterozygosity of 0.286 ± 0.001. Furthermore, sampled individuals showed nucleotide 

diversity (pi) of 0.003 (considering variant and invariant sites). Effective population size based on

NeEstimator calculations using a minor allele frequency cutoff of 0.05 was 105.7 (95% 

confidence interval 105.5, 105.9).

Population Structure

Our population structure results showed that all squirrels sampled fell under one panmictic 

population. Furthermore, PCA and DAPC results grouped samples under one cluster based on the

lowest BIC value (Supplementary Materials Fig. S1 and S2), indicating that all individuals 

sampled belong to one population. Admixture results identified K=1 as the best supported 

number of clusters, having the lowest cross-validation error (0.55). 

Relatedness

Average relatedness (±SE) between individuals was 0.014 ± 0.001 based on the dyadic likelihood

estimator (n = 47 individuals). Female-female relatedness (r = 0.021 ± 0.003), female-male 

relatedness (r = 0.008 ± 0.002) and male-male relatedness (r = 0.015 ± 0.001) were significantly 

different from each other (Kruskal-Wallis test; ó2 = 181.21, df = 2, p < 2.2e -16). Results of Dunn

post-hoc test showed that male-male relatedness differed from female-male (Dunn post-hoc; Z = 

-11.8, p = 1.11e -31) and female-female relatedness (Dunn post-hoc; Z = -13.13, p = 6.6e -39). 

Female-female relatedness and female-male relatedness also differed (Dunn post-hoc; Z = -2.42, 

p = 0.046). 

Isolation by Distance

Genetic distance between squirrels showed a significant relationship with geographic location 

(Mantel test; R = 0.18, p = 0.001, n = 47), such that squirrels at closer distances were more 

related. When squirrels were separated by sex, correlation between genetic and geographic 

distance strengthened and significant patterns remained for females (Mantel test; R = 0.29, p = 1e
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-4, n = 29; Fig. 2), but not males (Mantel test; R = 0.03, p = 0.39, n = 18) (Supplementary 

Materials Fig. S3 and S4).

Figure 2: Isolation by distance of female Harris9s antelope squirrels. Scatterplot showing the 

relationship between geographic distance (spatial Euclidean in meters) and genetic distance 

(inverse proportion of alleles shared between individuals) of female Harris9s antelope squirrels (n

= 29). Colors represent the relative density of points: red showing higher density, yellow medium

density, and blue lower density. Mantel test showed a significant relationship between geographic

and genetic distance for females (R = 0.29, p < 0.001) but not males (R = 0.03, p = 0.39) .

Discussion

Harris9s antelope squirrels in the SRER showed genetic diversity similar to that of northern and 

southern Idaho ground squirrels (Barbosa et al., 2021), reflective of small, isolated and 

fragmented populations (Garner et al., 2005). Our population may exhibit similar genetic 

diversity due to major physical barriers in all cardinal directions, with cities and major highways 

positioned to the north and west of the SRER and the Santa Rita Mountains extending from the 

southern boundary of the SRER to the northeastern boundary. 

We found that geographic proximity is a significant predictor of relatedness in our 

population, particularly relatedness among females, suggesting that kin selection may be 

responsible for higher calling propensity in females. Relationships between geographic and 

genetic distance vary across ground squirrel species. Speckled ground squirrels (Spermophilus 

suslicus) show significant positive correlations between genetic and geographic distances 

(Matrosova et al., 2016), whereas northern and southern Idaho ground squirrels (Urocitellus 

brunneus and U. endemicus, respectively; Garner et al., 2005), round-tailed ground squirrels 

(Xerospermophilus tereticaudus; Munroe and Koprowski, 2014), and California ground squirrels 

(Otospermophilus beecheyi; Glover, 2018) do not exhibit positive relationships between genetic 

and geographic distances.

The sex-dependent relationship between geographic distance and genetic distance, as well

as the higher relatedness observed between female-female pairs compared to female-male or 

male-male pairs provides evidence that A. harrisii exhibits male-biased dispersal, or female 

philopatry. Female philopatry is a widespread mammalian trait, particularly in species with 

polygynous mating systems (Lawson, Handley and Perrin, 2007; Mabry et al., 2013) like those 

found in ground squirrels. Male-biased dispersal is exhibited in a number of other ground squirrel

species (Devillard et al., 2004), including Columbian ground squirrels (Waterman, 1992; 

Neuhaus, 2006), rock squirrels (Otospermophilus variegatus; Shriner and Stacey, 1991), and 

Belding's ground squirrels (Urocitellus beldingi; Holekamp, 1984). Male-biased dispersal in 

ground squirrels may help prevent inbreeding (Holekamp, 1984) or reduce exposure to female 

aggression (Neuhaus, 2006). 

Our results support kin selection theory, in which solitary females that exhibit overlapping

territories are expected to be related, such that tolerance of neighbors benefits females via indirect
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fitness (Hamilton, 1964; Clutton-Brock and Lukas 2021). Our study area exhibited a uniform 

distribution of resources at a low spatial density, and antelope squirrels in our study area maintain

large, overlapping home ranges (Burnett and Koprowski, 2024). Other solitary species similarly 

benefit from female philopatry via territory acquisition (Lutermann et al., 2006; Goodrich et al., 

2010; Payne et al., in press) or thermoregulation (Williams et al., 2013). Females in a number of 

solitary species, including bobcats (Lynx rufus; Jane
ka et al., 2007; Payne et al., in press),  

Amur tigers (Panthera tigris altaica; Goodrich et al., 2010), and brown bears (Ursus arctos; 

Støen et al., 2005), share home ranges with their daughters, resulting in kin-related spatial 

structure that could have important repercussions for indirect fitness and social relationships 

(Støen et al., 2005; de Oliveira et al., 2022).. Although female philopatry and kinship theory is 

useful for understanding the social relationships in some solitary mammals, other solitary species 

exhibit adaptive social strategies that are maintained by familiarity with neighbors (Siracusa et 

al., 2019) or reciprocity (Elbroch et al., 2017). For example, North American red squirrels 

(Tamiasciurus hudsonicus) are highly territorial but exhibit behavioral plasticity, reducing effort 

spent defending their territory (i.e., emitting territorial vocalizations) and increasing time spent in

the nest as familiarity with their neighbors increases over time (Siracusa et al., 2019). Pumas 

(Puma concolor) cofeed at kill sites with unrelated individuals and maintain social networks via 

reciprocity (Elbroch et al., 2017). Thus, a number of ecological factors can select for social 

structure to evolve across the spectrum of sociality. Our findings add to a growing body of 

evidence that the principles used to explain these social structures in highly social mammals, such

as kinship theory, may also be applicable to solitary mammals.

Our findings highlight the nuanced role that ecological patterns like female philopatry can

play in species behavior. Kin selection resulting from high genetic relatedness between 

neighboring females may be partially responsible for sex differences in alarm calling behavior in 

A. harrisii (Burnett and Koprowski, 2020). Kin selection may have a strong evolutionary 

influence on antipredatory behavior in many ground squirrels, especially those that are highly 

social, in which alarm vocalizations likely serve as a warning to surrounding relatives and 

provide predator details (Ackers and Slobodchikoff, 1999; Owings 2010). However, A. harrisii is

largely solitary and emits alarm vocalizations at a wide range of amplitudes, including very low 

amplitudes that do not travel across the landscape and would be difficult for neighboring squirrels

to detect (personal observation). Additionally, sex bias in calling propensity is nonsignificant 

under high-risk contexts (e.g., when confined; Burnett and Koprowski, 2020), and thus predation 

pressure may still be primarily responsible for the maintenance of alarm vocalizations in this 

species. Although these results show alarm calling behavior in our population of antelope 

squirrels is likely subject to kin selection, whether alarm vocalizations serve multiple functions is 

still unclear. During our field observations over the course of two years, we did not observe a 

clear behavioral response to alarm calls from neighboring antelope squirrels; however, relatives 

may benefit from alarm vocalizations if predators leave the immediate area to hunt elsewhere 

(Blumstein et al., 1997). Therefore, kin selection does not necessarily inform the function 

vocalizations play, and whether vocalization may serve as warnings requires further study. To 

definitively identify the function alarm vocalizations play in antelope ground squirrels, 

behavioral observations and playback trials are needed to resolve how both conspecifics and 

predators respond to alarm vocalizations.
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Conclusions
Our study aimed to determine whether kin selection is influencing alarm calling behavior in 

Harris9s antelope squirrels. We hypothesized that relatedness between squirrels would be 

correlated with geographic distance and that females would be more closely related to 

neighboring squirrels than males, based on previous findings of greater calling propensity in 

female antelope squirrels. We found that genetic distance and geographic distance were 

positively correlated for female squirrels but not males, indicating that kin selection may be 

responsible for sex differences in calling behavior. Our results also show that dispersal in Harris9s

antelope squirrel is male-biased. Relatedness between neighboring females supports kin selection

theory predicting that solitary females with overlapping home ranges are likely to be related.  

Low genetic diversity suggests that our population may be somewhat isolated from other 

populations due to topographical barriers. Further investigation into whether this population is 

genetically isolated may be warranted. Additional studies on how Harris9s antelope squirrels 

respond to alarm vocalizations are also needed to determine the mechanism through which 

neighboring ground squirrels may benefit from alarm vocalizations.
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Figure 1
Sampling locations of Harris9s antelope squirrels (A. harrisii) in the Santa Rita
Experimental Range, AZ.

Green dots indicate sampling sites.
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Figure 2
Isolation by distance of female Harris9s antelope squirrels.

Scatterplot showing the relationship between geographic distance (spatial Euclidean in
meters) and genetic distance (inverse proportion of alleles shared between individuals) of
female Harris9 antelope squirrels (n = 29). Colors represent the relative density of points: red
showing higher density, yellow medium density, and blue lower density. Mantel test showed
a signiûcant relationship between geographic and genetic distance for females (R = 0.29, p
< 0.001) but not males (R = 0.03, p = 0.39) .

PeerJ reviewing PDF | (2024:08:104879:0:1:NEW 5 Sep 2024)

Manuscript to be reviewed



PeerJ reviewing PDF | (2024:08:104879:0:1:NEW 5 Sep 2024)

Manuscript to be reviewed




