Female philopatry as evidence of kin selection in a
solitary mammal (#104879)

First submission

Guidance from your Editor

Please submit by 26 Sep 2024 for the benefit of the authors (and your token reward) .
Structure and Criteria
Please read the 'Structure and Criteria' page for guidance.
Custom checks
Make sure you include the custom checks shown below, in your review.
Raw data check
Review the raw data.
Image check
Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If
uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files 6 Figure file(s)
Download and review all files 1 Other file(s)
from the materials page.

@ Custom checks DNA data checks
Have you checked the authors data deposition statement?

Can you access the deposited data?
Has the data been deposited correctly?
Is the deposition information noted in the manuscript?

Vertebrate animal usage checks
Have you checked the authors ethical approval statement?

Were the experiments necessary and ethical?

Have you checked our animal research policies?



https://peerj.com/submissions/104879/reviews/1755804/materials/
https://peerj.com/submissions/104879/reviews/1755804/materials/#question_23
https://peerj.com/submissions/104879/reviews/1755804/materials/#question_48
https://peerj.com/about/policies-and-procedures/#animal-research

For assistance email peer.review@peerj.com

Structure and 2
Criteria

Structure your review
The review form is divided into 5 sections. Please consider these when composing your review:
1. BASIC REPORTING
2. EXPERIMENTAL DESIGN
3. VALIDITY OF THE FINDINGS
4. General comments
5. Confidential notes to the editor

You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria
Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING EXPERIMENTAL DESIGN
Clear, unambiguous, professional English Original primary research within Scope of
language used throughout. the journal.
Intro & background to show context. Research question well defined, relevant
Literature well referenced & relevant. & meaningful. It is stated how the

Structure conforms to Peer] standards, research fills an identified knowledge gap.

discipline norm, or improved for clarity. Rigorous investigation performed to a
high technical & ethical standard.

Figures are relevant, high quality, well
labelled & described. Methods described with sufficient detail &

Raw data supplied (see Peer] policy). information to replicate.

VALIDITY OF THE FINDINGS

Impact and novelty is not assessed. Conclusions are well stated, linked to
Meaningful replication encouraged where original research question & limited to
rationale & benefit to literature is clearly supporting results.

stated.

All underlying data have been provided;
they are robust, statistically sound, &
controlled.


mailto:peer.review@peerj.com
https://peerj.com/submissions/104879/reviews/1755804/
https://peerj.com/submissions/104879/reviews/1755804/guidance/
https://peerj.com/about/author-instructions/#standard-sections
https://peerj.com/about/policies-and-procedures/#data-materials-sharing
https://peerj.com/about/aims-and-scope/
https://peerj.com/about/aims-and-scope/

Standout
reviewing tips

P

The best reviewers use these techniques
Tip

Support criticisms with
evidence from the text or from
other sources

Give specific suggestions on
how to improve the manuscript

Comment on language and
grammar issues

Organize by importance of the
issues, and number your points

Please provide constructive
criticism, and avoid personal
opinions

Comment on strengths (as well
as weaknesses) of the
manuscript

Example

Smith et al (] of Methodology, 2005, V3, pp 123) have
shown that the analysis you use in Lines 241-250 is not the
most appropriate for this situation. Please explain why you
used this method.

Your introduction needs more detail. | suggest that you
improve the description at lines 57- 86 to provide more
justification for your study (specifically, you should expand
upon the knowledge gap being filled).

The English language should be improved to ensure that an
international audience can clearly understand your text.
Some examples where the language could be improved
include lines 23, 77, 121, 128 - the current phrasing makes
comprehension difficult. | suggest you have a colleague
who is proficient in English and familiar with the subject
matter review your manuscript, or contact a professional
editing service.

1. Your most important issue

2. The next most important item
3.

4. The least important points

I thank you for providing the raw data, however your
supplemental files need more descriptive metadata
identifiers to be useful to future readers. Although your
results are compelling, the data analysis should be
improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set,
compiled over many years of detailed fieldwork. In addition,
the manuscript is clearly written in professional,
unambiguous language. If there is a weakness, it is in the
statistical analysis (as | have noted above) which should be
improved upon before Acceptance.



PeerJ

Female philopatry as evidence of kin selection in a solitary
mammal

Corresp., 1

Alexandra Burnett , Michelle Hein *, Natalie Payne ', Karla L. Vargas "°, Melanie Culver “*, John L Koprowski

1,5

1

School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, United States
2

Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, United States

3
The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State
University, Tempe, AZ, United States

4
U.S. Geological Survey, Arizona Cooperative Fish and Wildlife Research Unit, University of Arizona, Tucson, AZ, United States
5
Haub School of the Environment and Natural Resources, University of Wyoming, Laramie, WY, United States

Corresponding Author: Alexandra Burnett
Email address: aburnett93@arizona.edu

Antipredatory behavior may be shaped by a number of evolutionary and ecological factors,
including kin selection. Ground squirrels exhibit alarm vocalizations in the presence of
predators; however, the degree to which kin selection shapes alarm calling behavior varies
with species ecology and is not fully understood. We studied a solitary ground squirrel
species that exhibits sex-biased calling propensity to determine if kin selection influences
antipredatory behavior in this species.In this study, we used double digest restriction-site
associated DNA sequencing (ddRADseq) to sample the genomes of Ammospermophilus
harrisii to determine the relatedness between individuals and test whether genetic and
geographic distance were correlated. We found that geographic distance had a positive
relationship with genetic distance, and that this relationship was sex-dependent,
suggesting male-biased dispersal. Our results provide supporting evidence that kin
selection affectsantipredatory behavior in this species and may be responsible for higher
calling propensity observed in female squirrels. Our findings add to a growing body of
evidence that current hypotheses used to explain sociality in highly social animals can be
extended to solitary animals.

PeerJLreviewing PDF | (2024:08:104879:0:1:NEW 5 Sep 2024)


Moriz Steiner
Inserted Text
 


PeerJ

This draft manuscript is distributed solely for purposes of scientific peer review. Its content is
deliberative and predecisional, so it must not be disclosed or released by reviewers. Because the
manuscript has not yet been approved for publication by the U.S. Geological Survey (USGS), it
does not represent any official USGS finding or policy.

Female philopatry as evidence of kin selection in a
solitary mammal

Alexandra D. Burnett', Michelle Hein?, Natalie Payne', Karla Vargas'*, Melanie Culver*', John
L. Koprowski"®

' School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA
?Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
*The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and
Medicine and School of Life Sciences, Arizona State University, Tempe, AZ, USA

*U.S. Geological Survey, Arizona Cooperative Fish and Wildlife Research Unit, University of
Arizona, Tucson, AZ, USA

> Haub School of the Environment and Natural Resources, University of Wyoming, Laramie,
WY, USA

Corresponding Author:

Alexandra Burnett'

1064 E Lowell St., Tucson, AZ, 85721, USA
Email address: aburnett93@arizona.edu

Abstract

Antipredatory behavior may be shaped by a number of evolutionary and ecological factors,
including kin selection. Ground squirrels exhibit alarm vocalizations in the presence of predators;
however, the degree to which kin selection shapes alarm calling behavior varies with species
ecology and is not fully understood. We studied a solitary ground squirrel species that exhibits
sex-biased calling propensity to determine if kin selection influences antipredatory behavior in
this species. In this study, we used double digest restriction-site associated DNA sequencing
(ddRADseq) to sample the genomes of Ammospermophilts harrisii to determine the relatedness
between individuals and test whether genetic and geographic distance were correlated. We found
that geographic distance had a positive relationship with genetic distance, and that this
relationship was sex-dependent, suggesting male-biased dispersal. Our results provide supporting
evidence that kin selection affects antipredatory behavior in this species and may be responsible
for higher calling propensity observed in female squirrels. Our findings add to a growing body of
evidence that current hypotheses used to explain social behaviors in highly social animals can be
extended to solitary animals.

Introduction
Alarm signals are a widespread communication system used to mediate predator-prey interactions

(Caro, 2005). Alarm signals may be olfactory (Chivers and Smith, 1998), visual (Blank, 2018;
Woodland et al., 1980), or acoustic (Amorim and Dias, 2019), and some species may use
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electromagnetic alarm signals as well (Scheffel and Kramer, 2006; Dunlap, DiBenedictis &
Banever 2010). The evolution of alarm signals has received much research interest due to their
seemingly altruistic function. Alarm signals can serve multiple functions, sometimes
simultaneously in some species (Zuberbiihler et al., 1999; Zuberbiiler, 2001; Digweed and
Rendall, 2009; Schel et al., 2010). For example, Diana monkeys (Cercopithecus diana) emit
alarm vocalizations that both deter leopards (Zuberbiihler et al., 1999) and warn conspecifics
(Zuberbiihler, 2000).

Ground squirrels of the family Sciuridae emit alarm vocalizations in response to
predators. However, alarm calling behavior and structure can vary substantially across species
and between individuals, providing an excellent model system for understanding how ecological
and evolutionary selection pressures influence antipredatory behavior (Blumstein and Armitage,
1997). Many ground squirrels live in close proximity to their relatives, and kin selection is
thought to be a strong evolutionary driver of alarm vocalizations (Dunford, 1977; Sherman,
1977). Male ground squirrels often disperse away from natal burrows whereas females typically
exhibit philopatry (e.g., Holekamp, 1984; Shriner and Stacey, 1991; Neuhaus, 2006). As a result,
adult males may be unrelated to surrounding conspecifics, so alarm calling would not benefit
adult males via kin selection. Thus, individuals emitting alarm vocalizations may be more likely
to be female in species with male-biased dispersal (Dunford, 1977; Sherman, 1977).

The Harris’s antelope squirrel (Ammospermophilus harrisii) is a solitary species that
emits alarm calls throughout the year, regardless of juvenile presence, indicating that alarm calls
may be directed toward predators as a deterrent (Burnett and Koprowski, 2020). Opportunistic
observations of alarm vocalizations showed a higher proportion of female callers (Burnett and
Koprowski, 2020), suggesting that alarm vocalizations may be subject to kin selection. Although
adult A. harrisii live solitarily in large home ranges, neighboring home ranges overlap (Burnett
and Koprowski, 2024) and individuals were occasionally seen sharing burrows (A. Burnett, 2018,
unpublished data). Further, A. harrisii alarm vocalizations can be high amplitude (personal
observation) and are structured to carry over long distances (Bolles, 1988), potentially benefiting
neighbors if individuals use alarm vocalizations as a warning or if predators are deterred from the
area. However, whether neighboring A. harrisii are related and kin selection influences calling
behavior is unknown, allowing an opportunity to test kin selection theory in a solitary mammal.
To understand whether kin selection could influence calling propensity in A. harrisii, we sampled
the genomes of neighboring individuals to analyze their relatedness and estimate any sex-
dependency. If kin selection influences alarm calling behavior, we expect neighboring squirrels
to be related. Given our observation of more female antelope squirrels alarm calling (Burnett and
Koprowski, 2020), we further expect this relationship to be sex-dependent, showing relatedness
between neighboring females but not males. Conversely, if neighboring individuals are not
related or dispersal is not male-biased, higher call propensity in females may be maintained
primarily through direct fitness or alternative selection pressures (e.g., Blumstein et al., 1997).

Materials & Methods
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Sample Collection and DNA Extraction_

As part of a larger research study conducted in 2017 and 2018, A. harrisii were baited and
captured with Tomahawk live traps (model No. 201, Tomahawk Live Trap, Hazelhurst, WI,
U.S.A.) in the Santa Rita Experimental Range (SRER), located in the Sonoran Desert
approximately 65 kilometers south of Tucson, Arizona (Fig. 1). Traps were checked frequently
(once/hour) and shaded with vegetation and/or shade cloth to prevent heat stress and sun
exposure. Once captured, we used a cloth handling cone (Koprowski 2002) to minimize stress
during handling. We recorded weight, sex, life stage, and reproductive status for each animal
captured collected tissue samples with an ear punch (Fisherbrand Animal Ear Punch, 1mm,
Thermo Fisher Scientific, Waltham, MA, U.S.A). Squirrels were tagged with sterile passive
integrated transponder (PIT) tags (HPT9, 8.4 x 1.4 mm, 0.02-0.04% body weight, Biomark, Inc.,
Boise, ID, U.S.A.) before being released (n = 47 individuals, 51 tissue samples prior to removal
of duplicate individuals). Some adult individuals (>110g) were additionally fitted with a radio
collar for VHF tracking (Wildlife Materials; <5% body weight; see Burnett and Koprowski
2024). We took no more than one tissue sample per ear from squirrels captured more than once.
We received approval from University of Arizona Institutional Animal Care and Use Committee
(16-169) and complied with the Animal Welfare Act for all procedures. We additionally followed
ethical guidelines for trapping and handling small mammals published by the American Society
of Mammalogists (Sikes and Animal Care and Use Committee, 2016). We obtained a scientific
collecting permit from Arizona Game and Fish Department (SP501610). We did not give the
animals anesthesia or analgesia because the effects of these agents are not well-studied in
Harris’s antelope squirrels. Animals were not chemically immobilized due to the nature of the
procedures (i.e., momentary pain). Lack of chemical immobilization also limits time spent
handling, risk of thermoregulatory distress, and additional stress caused by immobilization
procedures (Sikes and Animal Care and Use Committee, 2016). The DNA of the collected tissue
samples was extracted at the University of Arizona Conservation Genetic Laboratory using a
Qiagen DNeasy blood and tissue extraction kit (Qiagen Inc. California, USA). We used a Qubit
fluorometer (Invitrogen™, Thermo Fisher Scientific Inc. Massachusetts, USA) to quantify DNA
products before sequencing.

Figure 1: Sampling locations of Harris’s antelope squirrels (A. harrisii) in the Santa Rita
Experimental Range, AZ. Green dots indicate sampling sites.

Library Preparation and Genomic Sequencing

DNA (1100 ng) from each sample was sent to Floragenex (Oregon, USA) for library preparation
and double-digest restriction site associated DNA sequencing (ddRADseq). Library preparation
was performed using the restriction enzymes Pstl and Msel, with a size selection range of 250-
800 base pairs (bp). The final pooled library was sequenced on an Illumina HiSeq 3000 with
1x100 bp reads.

Bioinformatic pipeline
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We used FASTQC v. 0.11.9 (Andrews 2010) to confirm presence of the enzyme cut sites and
assess read quality. We used the program process_radtags in Stacks v. 2.60 (Catchen et al., 2013)
to demultiplex the pool into individuals based on in-line adapter barcodes, quality filter reads
(with a minimum Phred score of 30), and remove reads with missing RAD enzyme cut sites.
Following the error clean-up, we used Stacks to assemble loci and call single nucleotide
polymorphisms (SNPs).

No reference genomes exist for A. harrisii. Thus, we used the Stacks denovo_map
pipeline with the output from process_radtags to de novo assemble loci with default parameters.
We also applied the --write_random_snp flag to obtain one SNP per locus from the populations
module. We sequentially filtered SNPs using PLINK v. 1.90 (Purcell et al., 2007), removing loci
genotyped in less than 75% of individuals (--geno 0.25) and loci with a minor allele frequency
(MAF) less than 5% (--maf 0.05). We further filtered SNPs to remove individuals with more than
50% missing data at the retained loci (--mind 0.5). No individuals were removed during this
additional filtering step; however, we found that our sample set included duplicates of four
individuals, which were subsequently removed.

Genetic Summary Statistics

With our unduplicated dataset containing one SNP per locus, we reran the populations module to
generate population-level genetic summary statistics (observed and expected heterozygosity; Ho
and Hg, respectively), nucleotide diversity (m, considering variant and invariant sites), and
inbreeding coefficient (Fis). We performed an additional run of populations using a population
map file denoting males and females to compare results between sexes in downstream analyses.
To estimate effective population size, we used the software NeEstimator v. 2.1 (Do et al. 2014)
with the linkage disequilibrium method and a minor allele frequency cutoff of 0.05.

Genetic Structure Analyses

To better understand population structure, we visualized our data with the R package pophelper
(Francis 2017) and ran a Principal Component Analysis (PCA) as well as a Discriminant
Analysis of Principal Components (DAPC) using adegenet (Jombart 2008). We derived DAPC
results based on the K value with the lowest Bayesian Information Criterion (BIC). Additionally,
we used ADMIXTURE (Alexander et al. 2009) to analyze population substructure and to
determine the most likely number of ancestral lineages, identifying the best-supported K value by
the lowest cross validation error.

Relatedness

We used the related package in R (Pew et al., 2015) to estimate dyadic relatedness (the dyadml
estimator) between individuals. After assessing the distribution of relatedness and finding it non-
normal, we used a Kruskal-Wallis test followed by a Dunn post-hoc test with a Bonferroni
correction using FSA (Ogle et al. 2023) to evaluate statistical differences in relatedness between
and within sex.

Isolation by Distance
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We tested whether genetic distance and geographic distance were significantly correlated
(isolation by distance; IBD), by performing a Mantel test (Mantel 1967) with the adegenet
package, using geographic Euclidean distance and the inverse proportion of shared alleles (Dps)
for each sample pair and 9,999 permutations to assess significance. We further ran the test
separately for males (n= 18) and females (n=29) to determine if this relationship differed
between sexes.

Results

Genetic Diversity Estimates

We retained 21,958 SNPs following quality filtering and the removal of four duplicate
individuals (1=47 individuals). Genetic summary statistics indicated an inbreeding coefficient of
0.079 suggesting that a low level of inbreeding might be occurring within this population.
Genetic diversity parameters showed an observed heterozygosity (+SE) of 0.269 + 0.001 and
expected heterozygosity of 0.286 + 0.001. Furthermore, sampled individuals showed nucleotide
diversity (pi) of 0.003 (considering variant and invariant sites). Efféctive population size based on
NeEstimator calculations using a minor allele frequency cutoff of 0.05 was 105.7 (95%
confidence interval 105.5, 105.9).

Population Structure

Our population structure results showed that all squirrels sampled fell under one panmictic
population. Furthermore, PCA and DAPC results grouped samples under one cluster based on the
lowest BIC value (Supplementary Materials Fig. S1 and S2), indicating that all individuals
sampled belong to one population. Admixture results identified K=1 as the best supported
number of clusters, having the lowest cross-validation error (0.55).

Relatedness

Average relatedness (£SE) between individuals was 0.014 + 0.001 based on the dyadic likelihood
estimator (n = 47 individuals). Female-female relatedness (r = 0.021 + 0.003), female-male
relatedness (r = 0.008 + 0.002) and male-male relatedness (r = 0.015 + 0.001) were significantly
different from each other (Kruskal-Wallis test; x*= 181.21, df = 2, p < 2.2e -16). Results of Dunn
post-hoc test showed that male-male relatedness differed from female-male (Dunn post-hoc; Z =
-11.8, p = 1.11e -31) and female-female relatedness (Dunn post-hoc; Z = -13.13, p = 6.6e -39).
Female-female relatedness and female-male relatedness also differed (Dunn post-hoc; Z = -2.42,
p = 0.046).

Isolation by Distance

Genetic distance between squirrels showed a significant relationship with geographic location
(Mantel test; R = 0.18, p = 0.001, n = 47), such that squirrels at closer distances were more
related. When squirrels were separated by sex, correlation between genetic and geographic
distance strengthened and significant patterns remained for females (Mantel test; R = 0.29, p = le
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-4, n = 29; Fig. 2), but not males (Mantel test; R = 0.03, p = 0.39, n = 18) (Supplementary
Materials Fig. S3 and S4).

Figure 2: Isolation by distance of female Harris’s antelope squirrels. Scatterplot showing the
relationship between geographic distance (spatial Euclidean in meters) and genetic distance
(inverse proportion of alleles shared between individuals) of female Harris’s antelope squirrels (n
= 29). Colors represent the relative density of points: red showing higher density, yellow medium
density, and blue lower density. Mantel test showed a significant relationship between geographic
and genetic distance for females (R = 0.29, p < 0.001) but not males (R = 0.03, p = 0.39) .

Discussion

Harris’s antelope squirrels in the SRER showed genetic diversity similar to that of northern and
southern Idaho ground squirrels (Barbosa et al., 2021), reflective of small, isolated and
fragmented populations (Garner et al., 2005). Our population may exhibit similar genetic
diversity due to major physical barriers in all cardinal directions, with cities and major highways
positioned to the north and west of the SRER and the Santa Rita Mountains extending from the
southern boundary of the SRER to the northeastern boundary.

We found that geographic proximity is a significant predictor of relatedness in our
population, particularly relatedness among females, suggesting that kin selection may be
responsible for higher calling propensity in females. Relationships between geographic and
genetic distance vary across ground squirrel species. Speckled ground squirrels (Spermophilus
suslicus) show significant positive correlations between genetic and geographic distances
(Matrosova et al., 2016), whereas northern and southern Idaho ground squirrels (Urocitellus
brunneus and U. endemicus, respectively; Garner et al., 2005), round-tailed ground squirrels
(Xerospermophilus tereticaudus; Munroe and Koprowski, 2014), and California ground squirrels
(Otospermophilus beecheyi; Glover, 2018) do not exhibit positive relationships between genetic
and geographic distances.

The sex-dependent relationship between geographic distance and genetic distance, as well
as the higher relatedness observed between female-female pairs compared to female-male or
male-male pairs provides evidence that A. harrisii exhibits male-biased dispersal, or female
philopatry. Female philopatry is a widespread mammalian trait, particularly in species with
polygynous mating systems (Lawson, Handley and Perrin, 2007; Mabry et al., 2013) like those
found in ground squirrels. Male-biased dispersal is exhibited in a number of other ground squirrel
species (Devillard et al., 2004), including Columbian ground squirrels (Waterman, 1992;
Neuhaus, 2006), rock squirrels (Otospermophilus variegatus; Shriner and Stacey, 1991), and
Belding's ground squirrels (Urocitellus beldingi; Holekamp, 1984). Male-biased dispersal in
ground squirrels may help prevent inbreeding (Holekamp, 1984) or reduce exposure to female
aggression (Neuhaus, 2006).

Our results support kin selection theory, in which solitary females that exhibit overlapping
territories are expected to be related, such that tolerance of neighbors benefits females via indirect
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fitness (Hamilton, 1964; Clutton-Brock and Lukas 2021). Our study area exhibited a uniform
distribution of resources at a low spatial density, and antelope squirrels in our study area maintain
large, overlapping home ranges (Burnett and Koprowski, 2024). Other solitary species similarly
benefit from female philopatry via territory acquisition (Lutermann et al., 2006; Goodrich et al.,
2010; Payne et al., in press) or thermoregulation (Williams et al., 2013). Females in a number of
solitary species, including bobcats (Lynx rufus; Janecka et al., 2007; Payne et al., in press),

Amur tigers (Panthera tigris altaica; Goodrich et al., 2010), and brown bears (Ursus arctos;
Stgen et al., 2005), share home ranges with their daughters, resulting in kin-related spatial
structure that could have important repercussions for indirect fitness and social relationships
(Stgen et al., 2005; de Oliveira et al., 2022).:/Although female philopatry and kinship theory is
useful for understanding the social relationships in some solitary mammals, other solitary species
exhibit adaptive social strategies that are maintained by familiarity with neighbors (Siracusa et
al., 2019) or reciprocity (Elbroch et al., 2017). For example, North American red squirrels
(Tamiasciurus hudsonicus) are highly territorial but exhibit behavioral plasticity, reducing effort
spent defending their territory (i.e., emitting territorial vocalizations) and increasing time spent in
the nest as familiarity with their neighbors increases over time (Siracusa et al., 2019). Pumas
(Puma concolor) cofeed at kill sites with unrelated individuals and maintain social networks via
reciprocity (Elbroch et al., 2017). Thus, a number of ecological factors can select for social
structure to evolve across the spectrum of sociality. Our findings add to a growing body of
evidence that the principles used to explain these social structures in highly social mammals, such
as kinship theory, may also be applicable to solitary mammals.

Our findings highlight the nuanced role that ecological patterns like female philopatry can
play in species behavior. Kin selection resulting from high genetic relatedness between
neighboring females may be partially responsible for sex differences in alarm calling behavior in
A. harrisii (Burnett and Koprowski, 2020). Kin selection may have a strong evolutionary
influence on antipredatory behavior in many ground squirrels, especially those that are highly
social, in which alarm vocalizations likely serve as a warning to surrounding relatives and
provide predator details (Ackers and Slobodchikoff, 1999; Owings 2010). However, A. harrisii is
largely solitary and emits alarm vocalizations at a wide range of amplitudes, including very low
amplitudes that do not travel across the landscape and would be difficult for neighboring squirrels
to detect (personal observation). Additionally, sex bias in calling propensity is nonsignificant
under high-risk contexts (e.g., when confined; Burnett and Koprowski, 2020), and thus predation
pressure may still be primarily responsible for the maintenance of alarm vocalizations in this
species. Although these results show alarm calling behavior in our population of antelope
squirrels is likely subject to kin selection, whether alarm vocalizations serve multiple functions is
still unclear. During our field observations over the course of two years, we did not observe a
clear behavioral response to alarm calls from neighboring antelope squirrels; however, relatives
may benefit from alarm vocalizations if predators leave the immediate area to hunt elsewhere
(Blumstein et al., 1997). Therefore, kin selection does not necessarily inform the function
vocalizations play, and whether vocalization may serve as warnings requires further study. To
definitively identify the function alarm vocalizations play in antelope ground squirrels,
behavioral observations and playback trials are needed to resolve how both conspecifics and
predators respond to alarm vocalizations.

Peer] reviewing PDF | (2024:08:104879:0:1:NEW 5 Sep 2024)


Moriz Steiner
Comment on Text
Delete double full-stop.

Moriz Steiner
Comment on Text
Change the formatting in this paragraph to align with the rest of the manuscript.


PeerJ

300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316

317
318
319
320
321

322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341

Conclusions

Our study aimed to determine whether kin selection is influencing alarm calling behavior in
Harris’s antelope squirrels. We hypothesized that relatedness between squirrels would be
correlated with geographic distance and that females would be more closely related to
neighboring squirrels than males, based on previous findings of greater calling propensity in
female antelope squirrels. We found that genetic distance and geographic distance were
positively correlated for female squirrels but not males, indicating that kin selection may be
responsible for sex differences in calling behavior. Our results also show that dispersal in Harris’s
antelope squirrel is male-biased. Relatedness between neighboring females supports kin selection
theory predicting that solitary females with overlapping home ranges are likely to be related.
Low genetic diversity suggests that our population may be somewhat isolated from other
populations due to topographical barriers. Further investigation into whether this population is
genetically isolated may be warranted. Additional studies on how Harris’s antelope squirrels
respond to alarm vocalizations are also needed to determine the mechanism through which
neighboring ground squirrels may benefit from alarm vocalizations.
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Figure 1

Sampling locations of Harris’s antelope squirrels (A. harrisii) in the Santa Rita
Experimental Range, AZ.

Green dots indicate sampling sites.
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Figure 2

Isolation by distance of female Harris’s antelope squirrels.

Scatterplot showing the relationship between geographic distance (spatial Euclidean in
meters) and genetic distance (inverse proportion of alleles shared between individuals) of
female Harris’ antelope squirrels (n = 29). Colors represent the relative density of points: red
showing higher density, yellow medium density, and blue lower density. Mantel test showed
a significant relationship between geographic and genetic distance for females (R = 0.29, p

< 0.001) but not males (R = 0.03, p = 0.39) .
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