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ABSTRACT

Background: Forecasting the responses of natural populations to environmental
change is a key priority in the management of ecological systems. This is challenging
because the dynamics of multi-species ecological communities are influenced by
many factors. Populations can exhibit complex, nonlinear responses to
environmental change, often over multiple temporal lags. In addition, biotic
interactions, and other sources of multi-species dependence, are major contributors
to patterns of population variation. Theory suggests that near-term ecological
forecasts of population abundances can be improved by modelling these
dependencies, but empirical support for this idea is lacking.

Methods: We test whether models that learn from multiple species, both to estimate
nonlinear environmental effects and temporal interactions, improve ecological
forecasts compared to simpler single species models for a semi-arid rodent
community. Using dynamic generalized additive models, we analyze time series of
monthly captures for nine rodent species over 25 years.

Results: Model comparisons provide strong evidence that multi-species
dependencies improve both hindcast and forecast performance, as models that
captured these effects gave superior predictions than models that ignored them. We
show that changes in abundance for some species can have delayed, nonlinear effects
on others, and that lagged, nonlinear effects of temperature and vegetation greenness
are key drivers of changes in abundance for this system.

Conclusions: Our findings highlight that multivariate models are useful not only to
improve near-term ecological forecasts but also to ask targeted questions about
ecological interactions and drivers of change. This study emphasizes the importance
of jointly modelling species’ shared responses to the environment and their delayed
temporal interactions when teasing apart community dynamics.

Subjects Biodiversity, Computational Biology, Ecology, Statistics, Population Biology
Keywords Biotic interactions, Community dynamics, Ecological forecasting, Generalized additive
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INTRODUCTION

Predicting the impacts of environmental change on ecosystem function and biodiversity is
a global challenge (Clark et al., 2001; Fredston et al., 2023; IPBES, 2019). Explicit
predictions are needed to guide ecological management decisions, inform monitoring
programs, and perform scenario planning (Lindenmayer et al., 2012; Tulloch, Hagger ¢
Greenville, 2020). This has led to a growing emphasis on the importance of near-term
ecological forecasting to encourage greater reliance on ecological time series data, and on
suitable models that can handle the complexities of these data, to generate quantitative
forecasts that can be harnessed to guide management decisions (Dietze et al., 2018;
Karunarathna, Wells & Clark, 2024; Lewis et al., 2023). The applications of ecological
forecasting are broad, including the prediction of soil microbiome compositions (Averill
et al., 2021), carbon cycle dynamics (Dietze et al., 2014) and species’ population dynamics
(Johnson-Bice et al., 2021; Ward et al., 2014; White et al., 2019).

Forecasts for species population dynamics are especially crucial for conservation
planning, stock assessments and other ecological management priorities. However, these
forecasts typically focus on only a single species at a time (Lewis et al., 2022; Quinn, 2003;
Simonis, White ¢ Ernest, 2021) or on aggregate measures such as species richness, biomass
or diversity (Algar et al., 2009; Clark, Kerry & Fraser, 2020; Tonkin et al., 2017). However,
key applications of population dynamics forecasts, including changes in ecosystem
function and biodiversity loss, are rarely single-species issues (Greenville et al., 2016;
Lindenmayer et al., 2012). In addition, because species differ in their niche requirements,
ecosystems containing multiple species of interest may require managers to balance
competing needs not only between human and ecosystem requirements, but also among
different species (e.g., Romariach et al., 2022). Finally, species population dynamics are
known to be related to one another due to both direct interactions between species (e.g.,
competition) and because species respond to shared environmental drivers (Ovaskainen
et al., 2017; Volterra, 1928; Warton et al., 2015). These associations between the dynamics
of different species has resulted in extensive research into multivariate population
dynamics models, where time series of multiple response variables (such as counts of
multiple species or of different age classes for the same species) are jointly modelled
(Bunin, 2017; Ives et al., 2003; Paniw et al., 2023; Ward et al., 2010; Ward, Marshall ¢
Scheuerell, 2022). Leveraging the multi-response associations that these models are capable
of learning could potentially result in more accurate forecasts and better-informed
scenario planning, including approaches to predicting the impacts of species extinctions or
the potential spread of invasive species (Ibdriez et al., 2009).

However, despite the potential advantages of multi-species dynamic models, their
implementation is still rare in ecological applications in general and in population
forecasting specifically. A recent review of 178 near-term ecological forecast applications,
with targets ranging from wildlife population trajectories to fisheries stocks and algal
bloom forecasting, found that only 10 (5.6%) used multivariate models to generate and
evaluate forecasts (Lewis et al., 2022). This finding is in line with an earlier review of
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population dynamics models for informing marine reserve design, which found that only 1
of 34 studies considered multi-species dynamics (Gerber et al., 2003).

The rarity of multi-species population dynamic forecasting is likely due in part to the
higher computational costs and statistical complexity needed to formulate multivariate
population dynamic models that incorporate real world complexities in ecological data
(Karp et al., 2023). Forecasting the abundances of multiple species is particularly difficult,
for several reasons. Many biological and physiological processes influence population
dynamics (Hampton et al., 2013; Quinn, 2003), and species often exhibit complex
responses to external drivers (including non-linear responses and lags; Cdrdenas et al.,
2021; Karunarathna, Wells ¢ Clark, 2024). Moreover, temporal autocorrelation is often
prevalent in abundance time series data (due to population processes; Ives, Abbott ¢
Ziebarth, 2010), which can be difficult to address in ecological models. Finally, because
monitoring wildlife is challenging, data complexities (e.g., irregular sampling intervals,
observation errors, missing samples, and outcomes manifesting as discrete counts with
meaningful lower and/or upper bounds) bring additional challenges into an already
complicated modelling environment (Clark ¢ Wells, 2023). In combination, these issues
often make population time-series data unsuitable for traditional modelling approaches
such as regression or simple time series models. Managers may also have differing needs
for forecasts, ranging from predicting the most accurate near-term population sizes to
exploring potential responses to differing management scenarios (Clark et al., 2001; Lewis
et al., 2023; Lindenmayer et al., 2012; Moustahfid et al., 2021).

One area of ecological modelling that has embraced multi-species approaches is joint
species distribution models (JSDMs), which leverage similarities in species’ spatial patterns
to predict the distributions of multiple species in space and time (Clark et al., 2016;
Norberg et al., 2019; Powell-Romero et al., 2023; Thorson et al., 2016; Tobler et al., 2019).
Many of these models only consider spatial data, but some recent advances have included
time-series structures that can learn multi-species dependencies (Abrego et al., 2021;
Ovaskainen et al., 2017; Ruiz-Moreno, Emslie ¢ Connolly, 2024). While forecasting
multispecies population dynamics remains challenging, these types of models have the
potential to provide valuable insights for forecast applications. Theory and experimental
evidence support the idea that learning from multiple species should improve population
forecasts. For example, a recent experimental study induced changes in the abundance of
competitors, resulting in altered species interactions that impacted the accuracy of
single-species forecasts (Dumandan et al., 2024). Other work has shown that incorporating
information from other species—either by including lagged observations of other species
as predictors in single-species models (Abrego et al., 2021; Daugaard et al., 2022) or by
building temporal JSDMs with multi-species autoregressive terms (Hampton et al., 2013;
Mutshinda, O’Hara & Woiwod, 2009; Ovaskainen et al., 2017; Ruiz-Moreno, Emslie ¢
Connolly, 2024)—improves the accuracy of ecological predictions. But despite these
findings, the broader use of multi-species forecasts as an ecological application remains
unexplored. Validation of multi-species forecasts, and comparisons against forecasts from
simpler single species models, have generally been limited to either in-sample predictive
measures (Ruiz-Moreno, Emslie & Connolly, 2024; Sandal et al., 2022) or one-step ahead
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correlation measures (Abrego et al., 2021; Ovaskainen et al., 2017). We are not aware of any
studies that compare single species vs. multi-species forecasts beyond a single time step.
This is problematic because most forecast applications typically require predicting multiple
time steps into the future to assess near-term management needs or responses to likely
future scenarios (i.e., loss of important species, shifts in important drivers). Moreover,
most multi-species time series models fail to incorporate one or more of the many
important real-world complexities—observation errors, missing values, non-linear
responses to environmental drivers, and latent temporal dynamics—that plague real-world
forecasting applications (Clark ¢» Wells, 2023; Daugaard et al., 2022; Holmes, Ward ¢
Scheuerell, 2014; Royle ¢» Nichols, 2003). This combination of a limited exploration of the
utility of multi-species models for ecological time series applications and the need to
incorporate more complex modeling structures constitutes a major gap in our ability to
tackle realistic forecasting applications.

Here we evaluate whether models that incorporate multi-species relationships can
improve near-term population forecasts using data from a long-term ecological
monitoring study where there is evidence of both direct biotic interactions between species
(Bledsoe & Ernest, 2019; Christensen, Simpson & Ernest, 2019; Ernest ¢ Brown, 2001;
Heske, Brown ¢ Mistry, 1994; Lima et al., 2008) and shared responses to environmental
factors (Christensen, Harris & Ernest, 2018). Using the framework of dynamic generalized
additive models developed by Clark ¢» Wells (2023), we build a series of models that learn
species’ shared environmental responses and temporal dependencies to make inference
about environmental and biotic factors that relate to community dynamics. Our models
highlight how several key challenges can be tackled when modelling the dynamics of
multiple species, including how to estimate environmental effects that change nonlinearly
over increasing lags, how to capture unobserved temporal autocorrelation, and how to
estimate lagged temporal dependencies among species. We then test whether the
incorporation of these biotic dependence structures improves forecasts compared to
simpler single-species models over multiple near-term timescales (up to 12 months) using
penalized in-sample performance criteria and out-of-sample forecast metrics. Finally, we
demonstrate how these models can be used to perform perturbation experiments for
assessing community responses to shifts in key species abundances and to changes in
environmental drivers with shared species responses. Because these multi-species dynamic
models integrate both species interactions and complex environmental dependencies, our
study shows that they can provide a deeper understanding of ecological dynamics while
generating more accurate forecasts and predictions for scenario planning. These models
are broadly applicable to time-series data, providing a versatile tool for conducting
time-series based forecasting to meet the wide-ranging needs of both basic and applied
research. Note that portions of this text were previously published as part of a preprint
(https://doi.org/10.32942/X2TS34).

MATERIALS AND METHODS

We first describe the study system to outline why it is suitable for testing whether
multi-species models lead to better ecological forecasts compared to single-species models.
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Second, we describe our full dynamic model, from which we can make inferences about the
processes that drive community dynamics. Third, we describe how we compare this model
to simpler models in an iterative forecasting exercise to ask whether models that include
multi-species dependencies (a) improve in-sample fits to the observed data and (b) provide
better out-of-sample near-term predictions.

Rodent capture data

Our data come from the Portal Project, a long-term monitoring study of a desert rodent
community (Brown, 1998; Ernest et al., 2020) that has been undergoing active forecasting
since 2016 (White et al., 2019). The Portal Project is based in the Chihuahuan Desert near
Portal, Arizona. The sampling design includes 24 experimental plots (50 m x 50 m), each
containing a grid of 49 baited traps (Brown, 1998; Ernest et al., 2020). The design uses three
experimental treatments. In control plots (N = 10), holes in the fence are large enough to
allow free access for all rodents. Full rodent removal plots (N = 6) have fences with no
holes. Kangaroo rat exclosures (N = 8) have fences with holes to allow passage of all
rodents except kangaroo rats (Dipodomys genus). Investigators close holes during trapping
to ensure all captured rodents are residents. Trapping follows the lunar monthly cycle, but
weather and other disruptions result in missing observations (~5% on average;
Dumandan, Yenni & Ernest, 2023).

The Portal dataset exhibits many of the complexities that confront population
forecasting. These include observation errors due to imperfect detection, missing samples
due to weather or other issues (e.g., global pandemics), and discrete counts of captured
individuals for many species (20 rodent species) that include large numbers of zeros,
multi-species dependencies and upper bounds set by the number of traps (Ernest et al,
2020). Environmental drivers, including temperature and measures of primary production,
exhibit lagged and nonlinear impacts on rodent breeding, activity rates, and population
dynamics (Brown ¢ Ernest, 2002). Moreover, the rodent species at Portal are known to
compete for resources in complex ways, and these biotic interactions are postulated to have
important consequences for variation in population dynamics. In other words, the Portal
Project exhibits many of the complexities that make the ecological forecasting of species
populations particularly difficult, making it an ideal real-world test case for exploring
whether multi-species models can provide better near-term predictions than single species
models.

Open-source software exists to access the Portal Project data (Christensen et al., 2019;
Simonis et al., 2022). We used the portalr R package to extract trapping records from the
Portal data (version 3.134.0; downloaded October 2022; https://doi.org/10.5281/zenodo.
7255488). Our study focused on rodent captures from the long-term control plots for the
period December 1996-August 2022. The data has records for 20 rodent species, but some
are rarely captured. We excluded species if they were observed in <10% of trapping
sessions. We did this to focus inferences on species with the most influence on community
dynamics. Each temporal observation was a vector of total captures on long-term control
plots for the nine remaining species at a given sampling time (Fig. 1).
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Figure 1 Rodent capture data from the Portal Project for the period December 1996 to August 2022.
Counts are total captures across long-term control plots. Blanks are missing values.
Full-size £a] DOT: 10.7717/peerj.18929/fig-1

Covariate measurements

Rodent populations at Portal, and the associated number of captures recorded during
sampling, depend on environmental conditions that reflect resource availability and
seasonal breeding signals. We therefore modelled species’ responses to environmental
variation using the Normalized Difference Vegetation Index (NDVT, representing a signal
of resource availability) and minimum temperature (which strongly reflects variation in
seasonal breeding behaviours; Dumandan et al., 2024) as covariates. Hourly air
temperature (°C) is recorded by an automated weather station on site, which we used to
calculate a daily minimum, while Landsat images are used to calculate NDVI for an area
1,000 m in radius around the geographical centre of the Portal Project site (accessed on a 2-
week basis from the US Geological Service Earth Resources Observation and Science
Center; https://www.usgs.gov/centers/eros). Measurements for both covariates (daily
minimum temperature and bimonthly NDVI) were then converted to monthly averages.
We extracted covariate data from one year before the start of captures (from January 1995)
so we could calculate lagged and moving average versions. See Ernest et al. (2020) for
further details of environmental measurements, including their spatial and temporal
resolutions.

Model description
There were several aspects of the data we needed to consider when designing our model.
Total rodent captures showed both short- and long-term fluctuations (Fig. S1). Captures
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for individual species also undulated over multi-annual cycles and were positively
autocorrelated at lags up to 20 months (Figs. S2 and S3). To test whether multi-species
information improves model performance, we needed to model these dynamics using a
multivariate dependence structure. Second, we needed to leverage community information
to estimate each species’ time-delayed response to variation in vegetation and temperature.
Because species’ responses to environmental change in this system are expected to be
delayed and nonlinear (Brown ¢ Ernest, 2002), we used splines to model these responses.
Rodent captures were modelled as Poisson observations of a latent state model that was
composed of a hierarchical generalized additive model (GAM) component (to capture
shared, nonlinear environmental responses) and a multivariate dynamic vector
autoregressive component to capture multi-species dependence. This State-Space model
was designed to explicitly address several of the key challenges that plague population
dynamics forecasting by leveraging (1) a discrete observation model to appropriately deal
with count-valued time series with many zeros; (2) a latent real-valued state model with a
separate error component to deal with imperfect detection; (3) hierarchical effects and
penalized splines to model species’ nonlinear environmental responses and (4) a vector
autoregression (VAR) component to capture both lagged and contemporaneous
dependencies among species’ estimated latent states. The full description for this model,
which we abbreviate to GAM-VAR, is shown in Fig. 2. The GAM component of the model
consisted of hierarchical NDVTI and minimum temperature effects. The structural forms of
these functions were informed by theory and exploration of covariate time series (shown in
Figs. 54, S5). We used a 12-month moving average of NDVI (NDVIj4;2) because we
expected rodent populations to respond gradually to vegetation change, whereby
productive years (represented as timepoints with relatively high NDVI values) will likely
result in delayed population increases as rodents are able to cache more seeds and make
use of the higher availability of shelter spaces (Brown, 1998; Brown ¢ Ernest, 2002). Our
model assumed linear effects of NDVIy41,, equivalent to a hierarchical slopes model. The
partial pooling properties of this model allowed us to regularize weakly informed slopes
toward a community average. Responses to temperature were estimated using a
hierarchical distributed lag model in which nonlinear effects of minimum temperature
varied smoothly with increasing lag. These effects were constructed as tensor products of
four cubic basis functions for lag and three thin plate basis functions for minimum
temperature. To allow our model to capitalize on multi-species learning, we included a
shared community-level response fglobal(Mintemp, lag) and species-level deviation
1eSPONSES fopeciesfi (Mintemp, lag). The sum of these effects allowed each species to show a
different temperature response from the wider community, but only if there was
information in the data to support such a deviation. We used lags of up to 6 months in the
past because this time window is likely sufficient to capture rodent behavioral and breeding
responses to seasonal temperature change (Karunarathna, Wells & Clark, 2024).

A VAR of order 1 captured lagged multi-species dependence, where A was a
nonsymmetric 9 x 9 matrix of autoregressive coefficients (Fig. 2). Diagonal entries of A
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fori=1,...,9 species
fort=1,...,319 time points
Y9 ~ Poisson(exp(X1.9,))
X9, ~ MVNormal(py.o, + A * (Xyi9¢e—1—H19,6-1),0 * C * 0)
¢ = Bnovii) * NDVIva 121 + fyiopar (1128 temp) + fipecies 1,6 (1ag, temp)

Bnpvr ~ Normal(uypyy, onpyr)

Unpyr ~ Normal(0,1) Random slopes for species’ responses

to NDVI moving average
onpyr ~ InvGamma(2.37,0.73) g averds

=] * b
fglobal Z(ﬂglobal et ) Distributed lag for community

GAM component - Bgiobar ~ MVNormal(0, (X(Sgiopar * Agiobar )™ H response to lagged minimum

Agiobat ~ Normal(30,25) temperature
fsi’“ies i1 = Z(‘BSP“"ES U bsP“ies [i]) N Distributed lags for species’
ﬁspecies [~ MVNormal (0, (Z(Sspecies [i] * )‘species [i]) ) responses to lagged

i Aspecies ~ Normal (30, 25) minimum temperature

Vector autoregression for lagge
A € P(R) for lagged
Multivariate dynamic P ~ Normal(0,0.67) multispecies dependence
component o ~ Beta(10,10)

Temporally correlated process errors

C ~ LK]Jcorr(2)

Figure 2 Model definition and prior definitions for the multivariate GAM-VAR model. Coloured
boxes highlight the five main components of the dynamic latent state model. Here, Y;.9, is a vector of
observed counts of trapped individuals for the nine rodent study species at time point f, which we assume
can be modelled as random draws from a Poisson distribution whose logged mean (X;.o, representing the
latent State model) follows a multivariate Gaussian distribution. The mean of the multivariate latent State
model X is decomposed into penalized effects of NDVI and minimum temperature (y;.o,, making up the
GAM components whose prior distributions are described in the red, blue and purple boxes) and a first
order Vector Autoregression (with a 9 x 9 autoregressive coefficient matrix A, whose prior distribution is
described in the green box). GAM parameters to be estimated include the 3 regression coefficients, the
mean (unpyr) and variance (onpyy) of the hierarchical NDVIy4 1, effects, and the A smoothing penalties.
The covariance matrix of the latent State model X is decomposed into a vector of variance components o
(representing unmodelled process errors) and a correlation matrix C (representing contemporaneous
correlations in process errors), whose prior distributions are described in the grey box. Required data
objects for the model are the observations Y, the covariate design matrix (including columns for the
12-month moving average of observed NDVT and the values of the evaluated distributed lag effects bgiopas
and bypecies [1:07) and the distributed lag penalty matrices Sgopar and Species [1:9)-

Full-size 4l DOI: 10.7717/peer;j.18929/fig-2

described density-dependence, or the effect of a species’ dynamic process (at time t) on its
own lagged values (at t — 1). Off-diagonals represented cross-dependencies that could
provide useful biological insights into interspecific interactions. For example, the entry in
A[2,3] described the effect of species 3’s dynamic state at time t — 1 on the current state
estimate for species 2 (at time t). To encourage stability and prevent forecast variance from
increasing indefinitely, we enforced stationarity following methods described in Heaps
(2023). Briefly, a multistep process was used to map the constrained A matrix to
unconstrained partial autocorrelations P, which allows for meaningful prior elicitation
about the structure of A while enhancing computational efficiency. Process errors were
allowed to be contemporaneously dependent to capture any unmodelled correlations in
species’ latent states. Priors for all model components are shown in Fig. 2 and described in
detail in the accompanying R code.

Clark et al. (2025), PeerdJ, DOI 10.7717/peerj.18929 8/25


http://dx.doi.org/10.7717/peerj.18929/fig-2
http://dx.doi.org/10.7717/peerj.18929
https://peerj.com/

Peer/

Evaluating whether multi-species dependencies improve prediction
performance

We formally tested whether learning from multiple species improved our model’s
predictions using prediction-based model comparisons. To do so, we estimated a series of
benchmark models that acted as natural simplifications of the GAM-VAR by eliminating
multi-species components in a stepwise manner. The first benchmark model used the same
hierarchical GAM linear predictor as the GAM-VAR but replaced the multi-species VAR
(1) dynamics with an AR(1) process. This model (called GAM-AR in subsequent sections)
eliminated the covariances and temporal cross-dependencies among species’ latent states,
allowing us to ask whether the multivariate dynamic component was supported for
improving model fit. Next, we further simplified the GAM-AR by removing the
hierarchical environmental response functions from the linear predictor. This forced the
model to learn environmental responses for each species without using information from
other species in the data (GAM-AR no pooling). The final benchmark, referred to as AR,
also used independent AR(1) states but removed the GAM component entirely. Because
this model only learned from past observations, comparisons against it helped us
understand how covariate responses impacted our models’ predictions and inferences.
Each candidate model was trained on all observations (through August 2022, N = 319
timepoints). Models were then compared using Pareto-smoothed importance sampling
leave-one-out cross-validation (PSIS-LOO), a method that reweights posterior draws to
estimate leave-one-out pointwise prediction accuracy using estimated log predictive
density (ELPD) values (Vehtari, Gelman ¢» Gabry, 2017).

To adequately evaluate competing forecast models, it is also necessary to perform out-
of-sample validation (Clark et al., 2022; Harris, Taylor & White, 2018; Lewis et al., 2022).
This is particularly important because LOO-CV is designed to ask how models would
generalize to new observations within the training window. This metric does not evaluate a
time series model’s ability to forecast, as information from future timepoints is used to
influence predictions for previous time points. To evaluate forecasts in a way that respected
the temporal nature of our forecasting exercise, we used exact leave-future-out
cross-validation in an iterative expanding window framework. Models were re-trained on
the first 273 time points (~22 years), with the subsequent 12 time points (through
November 2019; selected to avoid a large sampling gap due to the COVID-19 pandemic)
used to evaluate forecasts. This allowed us to gauge how models might perform in a
forecast scenario, but it only provided a single comparison. To further scrutinize models,
we retrained models on the first 75, 115, 154, 194, and 233 observations, and evaluated the
subsequent 12 observations in each cross-validation fold. All forecast comparisons used an
evenly weighted combination of two proper multivariate scoring rules. We chose the
variogram score, which penalizes distributions that do not adequately capture correlations
in test observations, and the energy score, which ignores correlations but penalizes
forecasts if they are not well-calibrated (Scheuerer ¢» Hamill, 2015).

Clark et al. (2025), PeerdJ, DOI 10.7717/peerj.18929 9/25


http://dx.doi.org/10.7717/peerj.18929
https://peerj.com/

Peer/

Estimation

We estimated posterior distributions with Hamiltonian Monte Carlo in Stan (Carpenter
et al., 2017; Stan Development Team, 2022), specifically the cmdstanr interface (Gabry ¢
Cesnovar, 2021). Stan’s algorithms provide state-of-the-art diagnostics for probabilistic
models (Betancourt, 2017). For example, Hamiltonian Markov chains diverged when
attempting to estimate minimum temperature deviations for some species in the
GAM-VAR. Our data were not informative enough to learn how, or even if, these species
responded to temperature change in ways that differed from the community response.
Stan’s diagnostics guided us to a model that could be reliably estimated, which included
species’ level distributed lag functions for the four most frequently captured species

(D. ordii, D. merriami, Onychomys torridus and C. penicillatus). Posteriors were processed
in R 4.3.1 (R Core Team, 2023) with the mvgam R package (Clark ¢» Wells, 2023).
Traceplots, rank normalized split-R and effective sample sizes interrogated convergence of
four parallel chains. Each chain was run for 500 warmup and 1,600 sampling iterations. R
code to replicate all analyses and produce figures is included in the Supplemental Materials
and is permanently archived on Zenodo (https://doi.org/10.5281/zenodo.14607006).

RESULTS

Modeling relationships among species improves prediction
performance

Our data included total captures for nine rodent species over 319 time points. All models
showed adequate convergence and posterior exploration, and randomized quantile
residuals showed no obvious evidence of unmodelled temporal or systematic variation
(Figs. S6, S7). However, in-sample performances differed among models, with models that
leveraged multi-species information producing higher ELPD scores compared to simpler
models (Table 1). This was the case for all stepwise comparisons apart from one: although
the GAM-AR, which used partial pooling to learn species’ environmental responses, was
favoured over the simpler GAM-AR no pooling, overlapping ELPD standard errors
suggested there was still large uncertainty about the magnitude of this difference (Table 1).

We also found that forecast performance differed among models, with more complex
multi-species models again tending to score higher for forecast performance than simpler
models. Forecasts from the multi-species GAM-VAR were the most accurate when
considering all validation points in aggregate and for 4/6 cross-validation folds (Fig. 3;
Fig. 58). The GAM-AR and GAM-AR no pooling models gave similar predictions and
effectively tied for second in forecast performance, giving the most accurate forecasts in 2/6
cross-validation folds (Fig. 3). The simplest AR model gave the worst forecasts.

The multi-species GAM-VAR model estimated large, positive autoregressive coefficients
for most species (diagonal entries in Fig. S9). It also relied strongly on information from
multiple species by estimating many non-zero cross-dependence effects (off-diagonal
entries in Fig. 59) and process error correlations (Fig. S10), which provided structure that
the model leveraged to accurately simulate historical dynamics. The model recovered
multiple notable transitions observed in the time-series including a major shift in
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Table 1 In-sample (hindcast) validation metrics for competing models. Approximate Par-
eto-smoothed importance sampling leave-one-out cross-validation (PSIS-LOO) was used to compute the
Estimated Log Predictive Density (ELPD) of competing models. A higher ELPD indicates a model is
expected to generalize better to new data within the training window.

Model ELPD difference SE of ELPD difference
GAM-VAR 0.0 0.0
GAM-AR -15.5 8.3
GAM-AR no pooling -22.1 7.0
AR -74.3 12.6
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Figure 3 Out-of-sample validation (forecast) metrics for competing models. Cross-validation forecast
performances for three of the competing models (we do not show metrics for the GAM-AR no pooling
model as they were not clearly distinguishable from the GAM-AR metrics). Y-axis shows the log of the
weighted variogram score, a scoring rule that penalizes multivariate forecasts if they are not well cali-
brated and do not capture inter-series correlations in observed data (lower scores are preferred). A total
of 12-step ahead predictions were evaluated over a sequence of six evenly spaced origins. Points show
individual forecast scores, with lower scores indicating a better forecast. Lines show Loess smoothed
trend lines. Missing points indicate that sampling did not occur at the time point for that horizon.
Full-size Kal DOI: 10.7717/peerj.18929/fig-3

community composition around the year 2000 following the establishment of Bailey’s
pocket mouse C. baileyi, and a second restructuring that happened following a drought in
2008-09 (Fig. S11). It was these multi-species effects that enabled the GAM-VAR to
produce more accurate forecasts compared to the benchmarks. For example, Ord’s
kangaroo rat (Dipodomys ordii) and silky pocket mouse (Perognathus flavus) had negative
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Figure 4 Hindcast and forecast predictions for two competing rodent species. Posterior latent state
estimates (top panel) and posterior predictions (bottom two panels) from the GAM-VAR model for Ord’s
kangaroo rat (Dipodomys ordii; in red) and silky pocket mouse (Perognathus flavus; in blue) for the
training and testing periods (demarked by the vertical dashed line). State estimates were scaled to unit
variance for comparisons. Ribbon shading shows posterior empirical quantiles (90, 60, 40™ and 20'").
Dark lines show posterior medians. Points show observations.
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cross-dependencies in the GAM-VAR, providing additional information that could be used
to make more precise predictions (Fig. 4). The benchmarks, which ignored this structure,
produced smoother, less synchronous trends and wider uncertainties (Fig. S12). In the
following sections, we use simulations to briefly interpret each of the multi-species effects
that allowed the GAM-VAR to outperform simpler models.

Modeling relationships among species provides unique insights into
community dynamics

Our cross-validation metrics strongly favoured the GAM-VAR and suggested that the
multivariate dynamic component was a particularly important driver of increased
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Figure 5 Expected responses to a simulated pulse in captures of Merriam’s kangaroo rat
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performance. Estimates of process error were larger for the benchmarks than the
GAM-VAR for nearly all species (Fig. S13), suggesting this model used additional
information from multi-species cross-dependencies to produce better predictions. But
interpreting this cross-dependence is difficult because VAR effects provide only a marginal
view into the complex network of conditional associations. We therefore used impulse
response functions (Liitkepohl, 1990) to better understand the model. These functions
involve simulating an ‘impulse’ in captures for one species and then evaluating how
predicted captures for other species changed over the next 6 months (Fig. 5). Following a
simulated impulse of three extra captures for Merriam’s kangaroo rat (D. merriami), the
model expected some initial increases (due to the correlated process errors) followed by
declines in captures for most of the other species (Fig. 5). The shapes of these declines
varied by species. Captures for the two pocket mouse species (C. baileyi and C. penicillatus)
showed more immediate declines, while the two grasshopper mouse species (O. leucogaster
and O. torridus) declined more gradually (Fig. 5). In contrast, the other kangaroo rat
species (D. ordii) was expected to increase following a D. merriami pulse (Fig. 5). Different
effects were expected when changing the focal species (Fig. S14).
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Positive NDVI associations and hierarchical minimum temperature
effects
We found broad support for positive associations with NDVIy4;, (Fig. 6). Conditional
simulations, which asked how rodents might respond if moved from a relatively dry/brown
vegetation state to a relatively moist/green vegetation state, gave higher probability to
increased captures in the moist/green scenario for all species. But uncertainties about this
effect varied among species. Greatest increases were expected for Ord’s kangaroo rat
(D. ordii), Western harvest mouse (R. megalotis) and cactus mouse (Peromyscus eremicus).
The model was less confident about the direction of effect for Northern grasshopper mouse
(O. leucogaster) and for one of the most dominant species in the study, Meriam’s kangaroo
rat (D. merriami). For these species, the model showed a ~70% chance of increasing
abundance in the higher NDVIj41, scenario (Fig. 6). While primary conclusions were
generally similar when using the GAM-AR no pooling model, which did not leverage
multi-species learning, the estimates of these contrasts were much more variable.
Interpreting minimum temperature distributed lag effects also required simulation. We
visualized 1,000 simulated functions for each species using temperatures from the year
1997 (Fig. S15). There was large uncertainty in function shapes for all species except the
desert pocket mouse (C. penicillatus). Captures for this species were expected to increase
from May to October and decrease sharply in winter. For seven of the other eight species,
the model generally expected more captures in spring (March-May) and fewer in late
summer/autumn (July-October). But the shapes of these responses varied. The two
kangaroo rats (D. merriami and D. ordii) had smoother shapes that decreased gradually
from mid-summer to mid-winter. But the model expected D. ordii captures to peak slightly
later (May as opposed to March for D. merriami). The Southern grasshopper mouse
(O. torridus) was the only species that was expected to show higher captures in late
autumn/early winter (Fig. S16). The five species that relied solely on the global distributed
lag minimum temperature function (O. leucogaster, C. baileyi, P. eremicus, P. flavus and
R. megalotis) were expected to show tighter spring peaks (higher captures in April and
May) and autumn troughs (fewer captures in August and September). When simulating
from the GAM-AR no pooling model, the lack of multi-species learning was immediately
obvious. There was not enough information to learn nonlinear distributed lag functions for
these five species, with the model instead estimating flat functions centred on zero for all
five species (Fig. S16).

DISCUSSION

Understanding and predicting change in species abundances requires models that capture
realistic biotic structure and that can address data complexities to produce near-term
ecological forecasts (Hampton et al., 2013; Holmes, Ward ¢ Scheuerell, 2014). Our results
show that incorporating relationships between species to estimate their lagged dependence,
and to learn their potentially non-linear associations with environmental drivers, yields
more accurate in-sample and out-of-sample predictions. In addition to improved
quantitative forecasts, incorporating these multi-species complexities provides deeper
insights into the dynamics of the system that could be important for scenario planning and
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other qualitative forecasting approaches. For example, our dynamic VAR process
uncovered biotic structure representing a cascading network of relationships within the
Portal rodent community. Captures for all species increased with higher NDVI and
responded nonlinearly to temperature change, but the shapes and magnitudes of these
responses differed across species. Our results show that models that describe biological
complexity, both through nonlinear covariate functions and multi-species dependence, are
useful both for generating more accurate near-term forecasts and for asking targeted
questions about drivers of ecological change (Greenville et al., 2016; Ives et al., 2003;
Ovaskainen et al., 2017; Pedersen et al., 2019).

Leveraging relationships between species for ecological forecasting
Interactions and dependencies among multiple species are hypothesized to play pivotal
roles in the assembly of ecological communities and for broader ecosystem functions
(Dobzhansky, 1950; Fecchio et al., 2019; Mayfield ¢ Stouffer, 2017; Mutshinda, O’Hara &
Woiwod, 2009). This study shows why models that target multi-species effects in both their
environmental responses and their biotic dependencies should also be strongly considered
when studying community dynamics. Our approach to constructing hierarchical dynamic
GAMs and evaluating forecasts using multivariate proper scoring rules offers a way to
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quantitatively assess multi-species forecasts and scrutinize their value in real-world
ecological forecasting applications. We also demonstrate how inferences from these
models provide deeper insights into why they may or may not perform better. For
example, the GAM-VAR’s process error estimates were smaller than those from the
benchmarks because it used more information from the data. By learning about the
relationships between species the model could better capture both shared responses to
environmental factors (e.g., a wet year in the desert is good for most species) and direct
temporal effects (e.g., dynamic competition for seeds). These relationships between species
can allow forecasts for less common species to borrow strength from more common
species, yielding better hindcasts and forecasts compared to simpler single-species models.
But like other multivariate autoregressive models (Hannaford et al., 2023; Holmes, Ward ¢
Scheuerell, 2014; Ives et al., 2003) the VAR parameters of the GAM-VAR should not be
interpreted as a species interaction matrix, because these relationships can result from
multiple sources (i.e., shared environmental responses, shared biotic responses and/or
direct interactions). While the parameters are not interpretable as direct interactions, this
approach does make it possible to gain a more detailed understanding of population
dynamics. Conducting simulations from this type of model allows exploring which species
have the strongest cascading effects, what changes might we expect if management
increases or decreases abundance for target species, and how these effects relate to regime
transitions.

Our hierarchical modelling approach also makes it possible to partition variance into
contributions from observation error, environmental responses, and multi-species
dependence to guide future efforts to improve ecological forecasting. In our study,
forecasts were dominated by uncertainty in the dynamic process model, but using a Vector
Autoregressive process allowed us to dissect this uncertainty in meaningful ways (Ives
et al., 2003; Liitkepohl, 1990). Simulated responses to sudden impulses in captures were
often delayed and nonlinear. Despite the restriction to a VAR of lag of 1 month, these
responses resulted in cascading changes that lasted up to 6 months. Our model’s ability to
simulate and dissect community change in this way offers a useful avenue for ecologists to
better understand, and expand on, theoretical predictions from both classical and more
recent empirical studies that have described strong interspecific interactions in ecological
systems (Dumandan et al., 2024; Ebersole, 1977; Mayfield & Stouffer, 2017; Volterra, 1928).

Learning hierarchical nonlinear effects from community data

Our model captured linear, nonlinear, and lagged responses to environmental and climatic
covariates that were informed by data from all species at once. We found positive linear
associations between capture rates and a 12-month moving average of NDVI. This
response was expected because the rodents at Portal depend on plants for food and other
resources (Brown ¢ Ernest, 2002; Ernest et al., 2020) and NDVI measures vegetation
greenness in the landscape. But within this overarching community pattern there were
interesting patterns of variation in these responses among species. The strongest positive
association was shown by Ord’s kangaroo rat (D. ordii), a species that field evidence
suggests consumes and harvests grasses (Kerley, Whitford ¢ Kay, 1997). In contrast,
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Merriam’s kangaroo rat (D. merriami) showed weaker associations with NDVI. This
species has been predicted to increase in relative abundance in the study region with more
severe droughts, in part due to a preference for more open foraging habitat with less
vegetation (Cdrdenas et al., 2021).

Distributed lag functions determine the best combination of lags for environmental
covariates but are not commonly used in ecology (but see Karunarathna, Wells & Clark,
20245 Ogle et al., 2015; Wells et al., 2016). Our study shows how these effects can be learned
hierarchically and provides useful insights into delayed responses to temperature change
for rodent species at Portal. Most species showed higher captures when minimum
temperatures were low 3-4 months prior, suggesting increases begin during mid to late
spring when resources such as seeds become available. But others, such as Merriam’s
kangaroo rat and Southern grasshopper mouse, showed increases during cooler months in
autumn and winter. Asynchronous phenology, where species show different reproductive
timing, is sometimes expected in competitive communities (Carter ¢ Rudolf, 2022).
Analysis of individual reproductive status in different biotic contexts suggests that some
species shift their reproductive timing in the presence of strong competitors in the Portal
system (Dumandan, Yenni ¢ Ernest, 2023). Do these competitive forces play a role in
seasonal capture variation over the long-term? Comparing temperature responses on
control vs. experimental plots would be one interesting way to tackle this question.

Interestingly, despite the relatively large number of observations our data contained for
each species, estimates of environmental responses were still more precise and informative
when using hierarchical models (which use partial pooling) as opposed to a no-pooling
model that only considers species’ effects in isolation. While hierarchical intercepts and
slopes are commonly used in ecological models, there has been less emphasis on
hierarchical nonlinear functions (but see Pedersen et al., 2019). Open access to new
software that makes it easy to construct and estimate these types of functions, such as the
mvgam R package that we used here (Clark & Wells, 2023), should improve their uptake in
ecological forecasting exercises.

But despite the power of hierarchical environmental effects to improve predictions, we
cannot interpret environmental response estimates as directly causal for several reasons.
First, we know NDVI is not a perfect measure of changes in seed production. Second, it is
likely that changes to NDVI and minimum temperature are both related to other
unmeasured environmental drivers that may also influence rodent abundance. Major
storms, the El Nifo Southern Oscillation and other factors that influence moisture levels
can all influence temperature and vegetation change (Sun ¢ Kafatos, 2007). These other
drivers could act as unmeasured confounds, biasing estimates in a causal inference
framework (McElreath, 2020).

Future directions

Two additional steps would be useful to fully assess the value of multi-species models for
ecological forecasting, both in this system and more broadly as an ecological application.
First, a more diverse suite of candidate models could be estimated to determine how
forecasts could be combined into an ensemble to provide the best predictions in situations
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where prediction accuracy is the primary goal (Clark et al., 2022; Powell-Romero et al.,
2023). This could be especially useful for detecting changes in the system. For example,
GAM-VAR gave better forecasts in most cross-validation tests, but its performance was
slightly worse than the simpler GAM-AR when the training window stopped just prior to a
major restructuring of rodent abundances that was taking place in response to a drought.
Second, determining which models are best for true forecasting requires evaluating
forecasts in the presence of uncertainty in future covariate values. In this study we were
hindcasting and therefore used the actual observed environmental measurements for the
period reserved for model evaluation. Fortunately, the system is undergoing active
forecasting involving a suite of simpler models and leveraging actual forecasts for
environmental covariates (Simonis et al., 2022; White et al., 2019). A natural next step for
this work is to compare the performance of the GAM-VAR model to simpler models both
using hindcasting with observed covariates and when making true forecasts relying on
predictions instead of observations for NDVI and minimum temperature.

The Portal Project also provides a unique opportunity to disentangle the combined
influence of shared environmental responses and direct species interactions in driving
observed relationships between species. The site includes a long-term experimental
manipulation where kangaroo rats (Dipodomys species) are excluded from some plots.
Recent work shows that single species forecasting models for C. baileyi do not transfer well
between the control plots and this experimental manipulation, likely due to the different
competitive environment experienced in the absence of the behaviorially dominant
kangaroo rats (Dumandan, Yenni ¢» Ernest, 2023). Multi-species models like the GAM-
VAR have the potential to transfer better in situations where one or more species are
removed from the system by accurately predicting the response of the other species to this
removal. Therefore, a key next step in evaluating the potential strengths of our models is to
determine if they can more effectively transfer to make accurate predictions on the plots
with the experimentally manipulated species composition. More broadly, we hope that the
ability to estimate multi-species dependence and species-level variation in nonlinear
environmental responses result in more accurate forecasts, inspire new questions, and lead
to an improved understanding of the factors that govern ecological community dynamics.
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