

The effect of perioperative probiotics and synbiotics on postoperative infections in patients undergoing major liver surgery: a meta-analysis of randomized controlled trials

Haopeng Wu^{1,2,*}, Zhihui Guan^{1,3,*}, Kai Zhang¹, Lingmin Zhou^{1,3}, Lanxin Cao¹, Xiongneng Mou², Wei Cui¹, Baoping Tian¹ and Gensheng Zhang^{1,4}

¹ Department of Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China

² Department of Emergency Medicine, the First People's Hospital of Taizhou, Taizhou, China

³ The First People's Hospital of Taizhou, Department of Critical Care Medicine, Taizhou, China

⁴ Key Laboratory of Multiple Organ Failure (Zhejiang University), Ministry of Education, Hangzhou, China

* These authors contributed equally to this work.

ABSTRACT

Objective. To evaluate the effect of perioperative probiotics or synbiotics on the incidence of postoperative infections following major liver surgery.

Design. Meta-analysis

Data sources. PubMed, Embase, Scopus, and the Cochrane Library for relevant English-language studies published up to February 21st, 2024.

Eligibility criteria. Randomized controlled trials evaluating perioperative probiotics or synbiotics for preventing postoperative infections in patients undergoing major liver surgery.

Data extraction and synthesis. Outcomes included postoperative infection incidence, antibiotic therapy duration, length of stay in intensive care unit (ICU) and hospital. A random-effect model was adopted for the meta-analysis. The quality of included studies was evaluated using the Cochrane risk of bias tool.

Results. Ten studies involving 588 patients were included. Pooled analyses revealed that perioperative probiotics or synbiotics significantly reduced postoperative infection incidence (RR 0.36, 95% CI [0.24–0.54], $P < 0.0001$, $I^2 = 6\%$) and antibiotic therapy duration (MD -2.82 , 95% CI $[-3.13 \text{ to } -2.51]$, $P < 0.001$, $I^2 = 0\%$). No significant differences were observed in length of stay in ICU (MD -0.25 , 95% CI $[-0.84 \text{ to } 0.34]$, $P = 0.41$, $I^2 = 64\%$) or length of stay in hospital (MD -1.25 , 95% CI $[-2.74 \text{ to } 0.25]$, $P = 0.10$, $I^2 = 56\%$).

Conclusions. This meta-analysis suggests that perioperative administration of probiotics or synbiotics may reduce the incidence of postoperative infections and duration of antibiotic therapy. Their use as adjunctive therapy during the perioperative period could be considered for patients undergoing major liver surgery.

Submitted 31 July 2024
Accepted 26 December 2024
Published 17 February 2025

Corresponding authors
Baoping Tian, tianbp@zju.edu.cn
Gensheng Zhang, genshengzhang@zju.edu.cn

Academic editor
Yoshinori Marunaka

Additional Information and
Declarations can be found on
page 13

DOI 10.7717/peerj.18874

© Copyright
2025 Wu et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Subjects Nutrition, Surgery and Surgical Specialties

Keywords Probiotics, Prebiotics, Postoperative infections, Liver surgery, Meta-analysis

INTRODUCTION

Surgical intervention, particularly liver resection and transplantation, remains the cornerstone of curative treatment for hepatocellular carcinoma (HCC) (Clift *et al.*, 2023; Vitale *et al.*, 2017; Vogel *et al.*, 2022). For suitable candidates, surgical intervention offers the highest probability of complete remission for both primary and secondary cancers (Hyun *et al.*, 2018; Roayaie *et al.*, 2015; Zarrinpar & Busutil, 2013). Recent years have witnessed an increase in liver resection and transplantation procedures for HCC (Bruix, Gores & Mazzaferro, 2014), accompanied by marked improvements in patient outcomes (Llovet *et al.*, 2023; Mazzaferro *et al.*, 2020; Mokdad, Singal & Yopp, 2016; Zarrinpar & Busutil, 2013). However, despite advances in medical and surgical techniques, postoperative complications including intestinal barrier damage, bacterial translocation, hepatic injury, and endotoxin translocation remain frequent (Kong *et al.*, 2021; Wang *et al.*, 2014). Post-surgical oxidative stress leads to varying degrees of intestinal mucosal barrier damage, and this tissue invasion beyond the sterile intestinal tract increases susceptibility to postoperative infections (Stavrou, Giamarellos-Bourboulis & Kotzampassi, 2015). These infectious complications, including respiratory, intra-abdominal, and wound infections, represent independent risk factors for postoperative mortality in liver resection or transplantation patients (Murtha-Lemekhova *et al.*, 2022).

Probiotics and synbiotics have emerged as potential protective agents against postoperative infections (Swanson *et al.*, 2020). Preoperative antibiotic administration combined with surgical trauma disrupts gut microbiome balance and compromises intestinal epithelial barrier function, leading to bacterial translocation to mesenteric lymph nodes (Nastos *et al.*, 2016). Probiotics and synbiotics may help maintain intestinal barrier homeostasis by inhibiting bacterial translocation and enhancing both mucosal immune and non-immune mechanisms through competitive antagonism with potential pathogens (Gunduz *et al.*, 2018; Zhang *et al.*, 2013). Studies have demonstrated their efficacy in reducing pulmonary, urogenital, and alimentary infections through pathogenic microorganism suppression (Petrariu *et al.*, 2023).

Multiple studies suggest that probiotics and synbiotics may reduce postoperative infection rates across various surgical procedures including colorectal surgery (Araújo *et al.*, 2023; Veziant *et al.*, 2022), gastrointestinal surgery (Yang *et al.*, 2017), liver surgery (Gan *et al.*, 2019; Ma *et al.*, 2021; Sawas *et al.*, 2015; Xiang *et al.*, 2021), and abdominal surgery (Kasatpibal *et al.*, 2017; Matzaras *et al.*, 2023). However, current guidelines from the European Association for the Study of the Liver (EASL) and the American Association for the Study of Liver Disease (AASLD) do not recommend incorporating probiotics and synbiotics into HCC treatment protocols (European Association for the Study of the Liver, 2018; Heimbach *et al.*, 2018). Furthermore, randomized controlled trials (RCTs) assessing the effectiveness of probiotics and synbiotics in reducing post-liver surgery complications have produced conflicting results, possibly due to methodological variations and diverse outcome measures. While serious adverse effects such as bacteremia and fungemia are rare in patients with mild disease, these complications may pose greater risks for immunocompromised HCC patients (Beyoğlu & Idle, 2022; Rau *et al.*, 2024).

Therefore, a careful assessment of both benefits and risks is essential before recommending perioperative probiotic and synbiotic use. This updated meta-analysis aims to evaluate the impact of perioperative probiotics and synbiotics on postoperative infection rates following major liver surgery.

METHODS

This meta-analysis was conducted in accordance with the updated PRISMA statement ([Page et al., 2021](#)), with the PRISMA checklist available in [Supplemental Information 1](#). The study protocol was prospectively registered on the Open Science Framework (<https://osf.io/kvgvu>). A systematic literature search was conducted in PubMed, Embase, Scopus, and the Cochrane Library for English-language published through February 21st, 2024. Two authors performed the search using database-specific algorithms that included terms such as “probiotics”, “prebiotics”, “synbiotics”, “hepatectomy”, “liver transplantation”, and “randomized”. The complete search strategy is detailed in [Supplemental Information 2](#).

Eligibility criteria

Studies were eligible if they met the following criteria:

- (1) Population: Patients undergoing major liver surgeries, including liver resections, and liver transplantations;
- (2) Intervention: Probiotics, prebiotic, or synbiotics. The probiotic was defined as a preparation containing live microorganisms. When administered in sufficient amounts in a host compartment, such as the gastrointestinal tract, it provides health benefits ([Schrezenmeir & De Vrese, 2001](#)). Prebiotic was a nondigestible food ingredient that beneficially affects the host by selectively stimulating the growth and/or activity of one or a limited number of bacteria in the colon ([Gibson et al., 2017](#)). The synbiotics was defined as a product that contains both probiotics and prebiotics;
- (3) Comparison: Placebo or no intervention;
- (4) Outcomes: Primary outcome of interest was the incidence of postoperative infections. Secondary outcomes were duration of antibiotic therapy, length of intensive care unit (ICU) stay, and length of hospital stay.
- (5) Type of study: Randomized trials.

Data extraction and quality assessment

Two authors (H.W., K.Z.) independently screened studies against the inclusion criteria, first reviewing titles and abstracts, then evaluating full texts of potentially eligible studies. Any discrepancies were resolved through adjudication by a third reviewer (Z.G.). Two authors (H.W., K.Z.) independently extracted data including first author, publication year, study period, population characteristics, intervention and control methods, intervention period, and infection definitions. Study quality was independently assessed by two authors (H.W., K.Z.) using the Cochrane risk of bias tool ([Higgins et al., 2011](#)), with disagreements resolved by a third reviewer (L.Z.).

Statistical synthesis and analysis

Pooled relative ratios (RR) and corresponding 95% confidence interval (CI) were computed for dichotomous outcomes, while mean difference (MD) and their 95% CI were computed for continuous outcomes. Study heterogeneity was assessed using Higgins inconsistency (I^2) statistics ([Higgins et al., 2003](#)). Due to anticipated clinical heterogeneity among the included trials, a random-effect model was employed for result pooling. Publication bias was assessed using both funnel plot analysis and Egger's regression test ([Egger et al., 1997](#)).

Predefined subgroup analyses stratified results by surgery type (liver resection *versus* liver transplantation) and timing of intervention (preoperative *versus* postoperative *versus* perioperative). Sensitivity analyses were conducted by excluding each study to assess the influence of individual studies. Statistical analyses and bias risk assessment were performed using Review Manager Version 5.3 and "meta" package in R software (version 4.3.1).

Patient and public involvement

None.

RESULTS

Study identification and characteristics

The literature search identified 538 articles, of which 210 were duplicates. After screening titles and abstracts, 288 studies were excluded. Following full-text assessment, 30 additional studies were excluded ([Supplemental Information 3](#)), leaving 10 studies for final analysis ([Eguchi et al., 2011](#); [Grat et al., 2017](#); [Kanazawa et al., 2005](#); [Mallick et al., 2022](#); [Rayes et al., 2012](#); [Rayes et al., 2002](#); [Rayes et al., 2005](#); [Roussel et al., 2022](#); [Sugawara et al., 2006](#); [Usami et al., 2011](#)) ([Fig. 1](#)).

The characteristics of the included studies are outlined in [Table 1](#). A total of 588 patients were analyzed: 293 receiving probiotics or synbiotics, and 295 received placebo during the respective study periods. The number of patients ranged from 19 to 100 across studies. Two studies used probiotics alone ([Grat et al., 2017](#); [Roussel et al., 2022](#)), whereas eight used synbiotics ([Eguchi et al., 2011](#); [Kanazawa et al., 2005](#); [Mallick et al., 2022](#); [Rayes et al., 2012](#); [Rayes et al., 2002](#); [Rayes et al., 2005](#); [Sugawara et al., 2006](#); [Usami et al., 2011](#)). Twelve different probiotic species were used, with *Lactobacillus casei* being the most common ([Supplemental Information 4](#)). Five studies examined liver resection patients ([Kanazawa et al., 2005](#); [Mallick et al., 2022](#); [Rayes et al., 2012](#); [Sugawara et al., 2006](#); [Usami et al., 2011](#)), and five examined liver transplantation patients ([Eguchi et al., 2011](#); [Grat et al., 2017](#); [Rayes et al., 2002](#); [Rayes et al., 2005](#); [Roussel et al., 2022](#)). The timing and duration of interventions varied among included studies: three studies ([Grat et al., 2017](#); [Roussel et al., 2022](#); [Sugawara et al., 2006](#)) administered probiotics or synbiotics preoperatively (14 days before surgery), three studies ([Kanazawa et al., 2005](#); [Rayes et al., 2002](#); [Rayes et al., 2005](#)) postoperatively (12 to 14 days after surgery), and four studies ([Eguchi et al., 2011](#); [Mallick et al., 2022](#); [Rayes et al., 2012](#); [Usami et al., 2011](#)) perioperatively.

For trials reporting outcomes as median and interquartile range, we applied [Wan et al. \(2014\)](#) methodology to derive means and standard deviations.

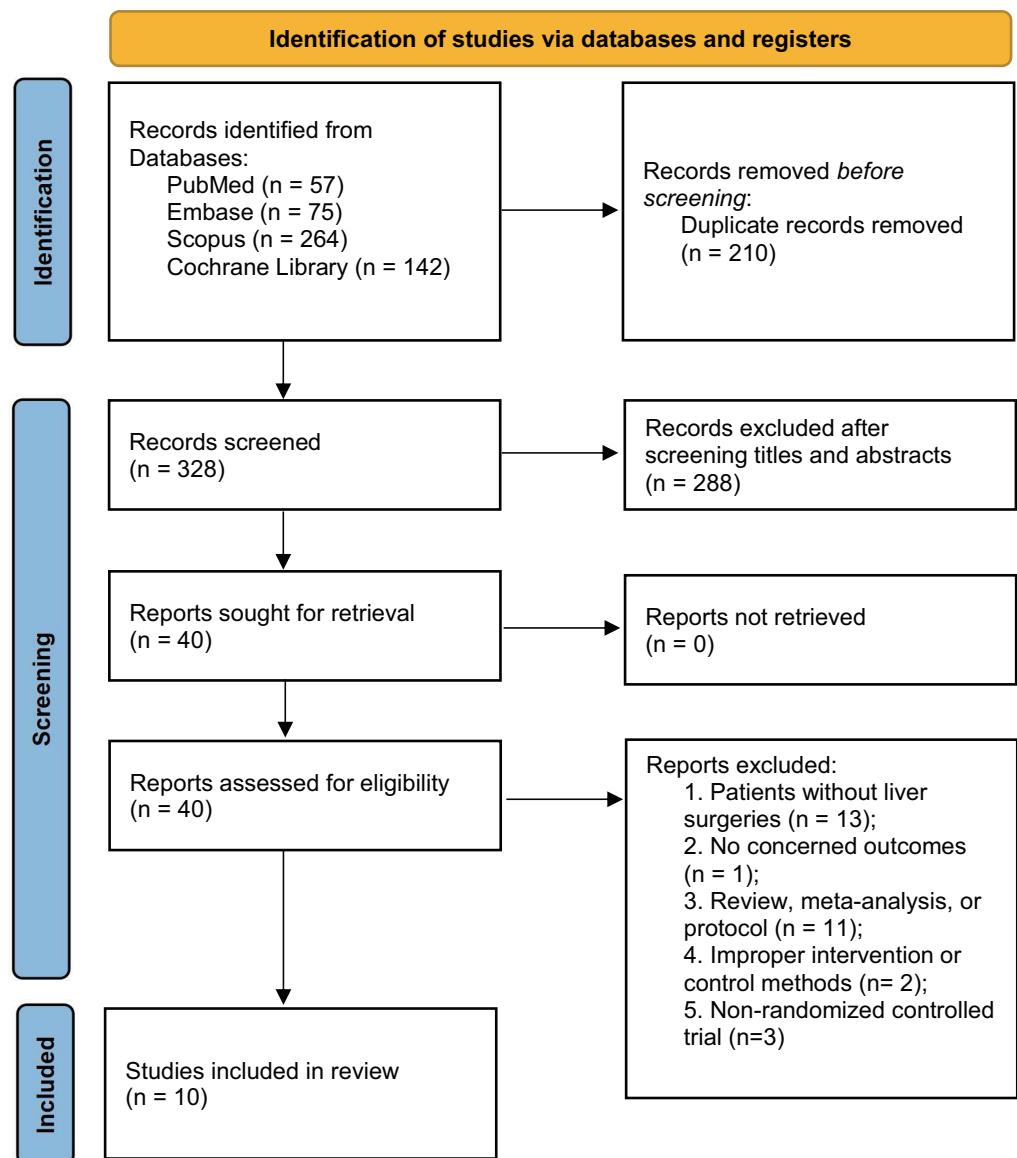


Figure 1 PRISMA 2020 flow diagram for the meta-analysis.

Full-size DOI: 10.7717/peerj.18874/fig-1

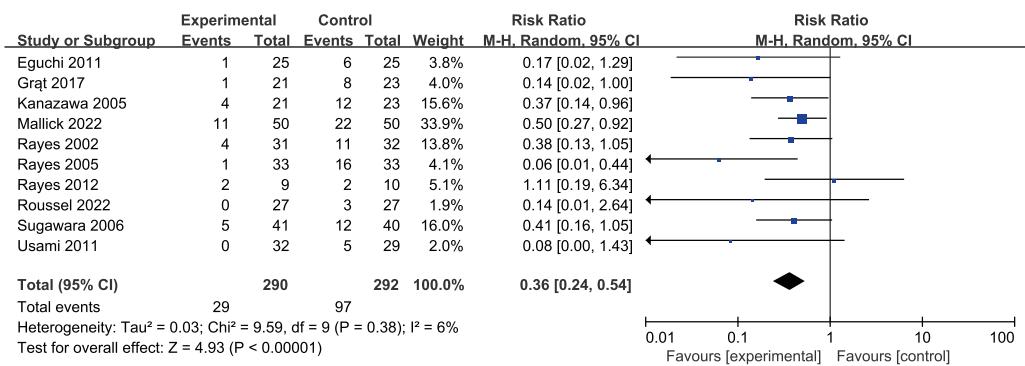
Quality assessment

The Cochrane risk of bias assessment (Fig. 2) identified four studies with high risk due to inadequate blinding and allocation concealment. Eight studies inadequately reported randomization methods and/or allocation concealment. Five trials showed unclear risk regarding outcome assessment blinding.

Publication bias was assessed by using Egger's test and the funnel plot. Egger's test revealed potential publication bias for antibiotic therapy duration ([Supplemental Information 4](#), Egger's test: $P < 0.05$). Trim-and-fill analysis continued to show reduced antibiotic therapy duration (MD -2.81 , 95% CI $[-3.11 \text{ to } -2.50]$, $P < 0.001$, $I^2 = 0\%$). No

Table 1 Characteristics of included studies.

Study	Study period	Sample size	Population	Intervention and control methods	Intervention period	Definition of infection
Rayes <i>et al.</i> , 2002	Oct 1997 to Oct 1999	31/32	Adult patients undergoing orthotopic liver transplantation	Intervention: <i>L. plantarum</i> 299, oat fiber; Control: placebo	Postoperative day 1 to 12	Body temperature, chest X-rays and ultrasound sonography of the abdomen, bacterial cultures
Kanazawa <i>et al.</i> , 2005	Jul 2000 to Dec 2002	21/23	Patients with biliary cancer, scheduled for combined liver and extrahepatic bile duct resection	Intervention: <i>Bifidobacterium breve</i> , <i>Lactobacillus casei</i> , galactooligosaccharides; Control: no placebo	Postoperative day 1 to 14	Wound infection, intra-abdominal abscess, pneumonia, bacteremia
Rayes <i>et al.</i> , 2005	NR	33/33	Adult patients scheduled for liver transplantation	Intervention: <i>Pediococcus pentosaceus</i> 5-33:3 (dep. no. LMG P-20608), <i>Leuconostoc mesenteroides</i> 77:1 (dep. no. LMG P-20607), <i>Lactobacillus paracasei</i> ssp. <i>paracasei</i> F19 (dep. no. LMG P-17806) and <i>L. plantarum</i> 2362 (dep. no. LMG P-20606), beta-glucan, inulin, pectin and resistant starch; Control: placebo	Postoperative day 1 to 14	Fever, elevation of C-reactive protein, specific clinical symptoms of infection and a positive bacterial culture
Sugawara <i>et al.</i> , 2006	May 2003 to Apr 2005	41/40	Patients with biliary cancer, scheduled to undergo combined liver and extrahepatic bile duct resection	Intervention: <i>Lactobacillus casei</i> strain Shirota, <i>Bifidobacterium breve</i> strain Yakult, galactooligosaccharides; Control: no placebo	Preoperative day 14 to the day before operation	Wound infection, intra-abdominal abscess, pneumonia, bacteremia
Eguchi <i>et al.</i> , 2011	Jun 2005 to Jun 2009	25/25	Adult patients undergoing living-donor liver transplantation	Intervention: <i>Lactobacillus casei</i> strain Shirota, <i>Bifidobacterium breve</i> strain Yakult, galactooligosaccharides; Control: no placebo	Preoperative day 2 to postoperative day 14	Body temperature, specific clinical symptoms of infection and a positive bacterial culture
Usami <i>et al.</i> , 2011	Feb 2005 to Mar 2008	32/29	Adult patients undergoing hepatic surgery	Intervention: <i>Lactobacillus casei</i> strain Shirota, <i>Bifidobacterium breve</i> strain Yakult, galactooligosaccharides; Control: no placebo	Preoperative day 14 to postoperative day 11	Wound infection, intra-abdominal abscess, pneumonia, bacteremia
Rayes <i>et al.</i> , 2012	Apr 2007 to Dec 2008	9/10	Adult patients scheduled for right or extended right hemi-hepatectomy	Intervention: <i>Pediococcus pentosaceus</i> 5-33:3 (LMG P-20608), <i>Leuconostoc mesenteroides</i> 77:1 (LMG P-20607), <i>Lactobacillus paracasei</i> ssp. <i>paracasei</i> F19 (LMG P-17806) and <i>Lactobacillus plantarum</i> 2362 (LMG P-20606), beta-glucan, inulin, pectin and resistant starch; Control: placebo	Preoperative day 1 to postoperative day 10	Fever, elevation of C-reactive protein, specific clinical symptoms of infection and a positive bacterial culture
Grat <i>et al.</i> , 2017	Nov 2012 to Nov 2015	24/26	Adult patients with cirrhotic, scheduled for liver transplantation	Intervention: <i>Lactococcus lactis</i> PB411, <i>Lactobacillus casei</i> PB121, <i>Lactobacillus acidophilus</i> PB111, and <i>Bifidobacterium bifidum</i> PB211; Control: placebo	Preoperative day 14 to the day before operation	According to the Centers for Disease Control and Prevention criteria
Roussel <i>et al.</i> , 2022	Dec 2013 to May 2018	27/27	Patients with resectable hepatocellular carcinoma scheduled to undergo liver resection	Intervention: <i>Bifidobacterium lactis</i> LA 303, <i>Lactobacillus acidophilus</i> LA 201, <i>Lactobacillus plantarum</i> LA 301, <i>Lactobacillus salivarius</i> LA 302, <i>Bifidobacterium lactis</i> LA 304; Control: placebo	Preoperative day 14 to the day before operation	NR
Mallick <i>et al.</i> , 2022	Aug 2016 to Nov 2017	50/50	All patients over 18 years of age undergoing living donor liver transplant for chronic liver disease	Intervention: <i>Lactobacillus acidophilus</i> , <i>Bifidobacterium longum</i> , <i>Bifidobacterium bifidum</i> , <i>Bifidobacterium lactis</i> and Fructooligosaccharide Inulin; Control: placebo	Preoperative day 2 to postoperative day 14	Temperature, C-reactive protein, procalcitonin, unexplained hemodynamic instability, high or low white blood cell count, bacterial culture


Notes.

CAM-ICU, Confusion Assessment Method for the Intensive Care Unit; ICDSC, Intensive Care Delirium Screening Checklist; DSM-IV, Diagnostic and Statistical Manual of Mental Disorders, 4th edition; ICU, Intensive Care Unit.

	Random sequence generation (selection bias)	Allocation concealment (selection bias)	Blinding of participants and personnel (performance bias)	Blinding of outcome assessment (detection bias)	Incomplete outcome data (attrition bias)	Selective reporting (reporting bias)	Other bias
Eguchi 2011	?	?	-	?	+	+	+
Grat 2017	?	?	+	+	+	+	+
Kanazawa 2005	?	?	-	?	+	+	+
Mallick 2022	+	+	+	+	+	+	+
Rayes 2002	?	+	?	?	+	+	+
Rayes 2005	?	+	+	+	+	+	+
Rayes 2012	?	+	+	+	+	+	+
Roussel 2022	?	+	+	+	+	+	+
Sugawara 2006	?	?	-	?	+	+	?
Usami 2011	+	+	-	?	+	+	+

Figure 2 Assessment of quality by the Cochrane risk of bias tool. Note. Eguchi *et al.*, 2011; Grat *et al.*, 2017; Kanazawa *et al.*, 2005; Mallick *et al.*, 2022; Rayes *et al.*, 2002; Rayes *et al.*, 2005; Rayes *et al.*, 2012; Roussel *et al.*, 2022; Sugawara *et al.*, 2006; Usami *et al.*, 2011.

Full-size DOI: 10.7717/peerj.18874/fig-2

Figure 3 Forest plot showing the association between probiotics and/or prebiotics and postoperative infections. Note. Eguchi *et al.*, 2011; Grat *et al.*, 2017; Kanazawa *et al.*, 2005; Mallick *et al.*, 2022; Rayes *et al.*, 2002; Rayes *et al.*, 2005; Rayes *et al.*, 2012; Roussel *et al.*, 2022; Sugawara *et al.*, 2006; Usami *et al.*, 2011.

Full-size DOI: 10.7717/peerj.18874/fig-3

significant risk of publication bias was detected for other outcomes (Egger's test, $P > 0.05$; [Supplemental Information 4](#)).

Primary outcome

Postoperative infection rates were 10.3% in the intervention group *versus* 33.2% in controls. Probiotics or synbiotics use significantly reduced infection rates (RR 0.36, 95% CI [0.24–0.54], $P < 0.0001$, $I^2 = 6\%$, [Fig. 3, Table 2](#)).

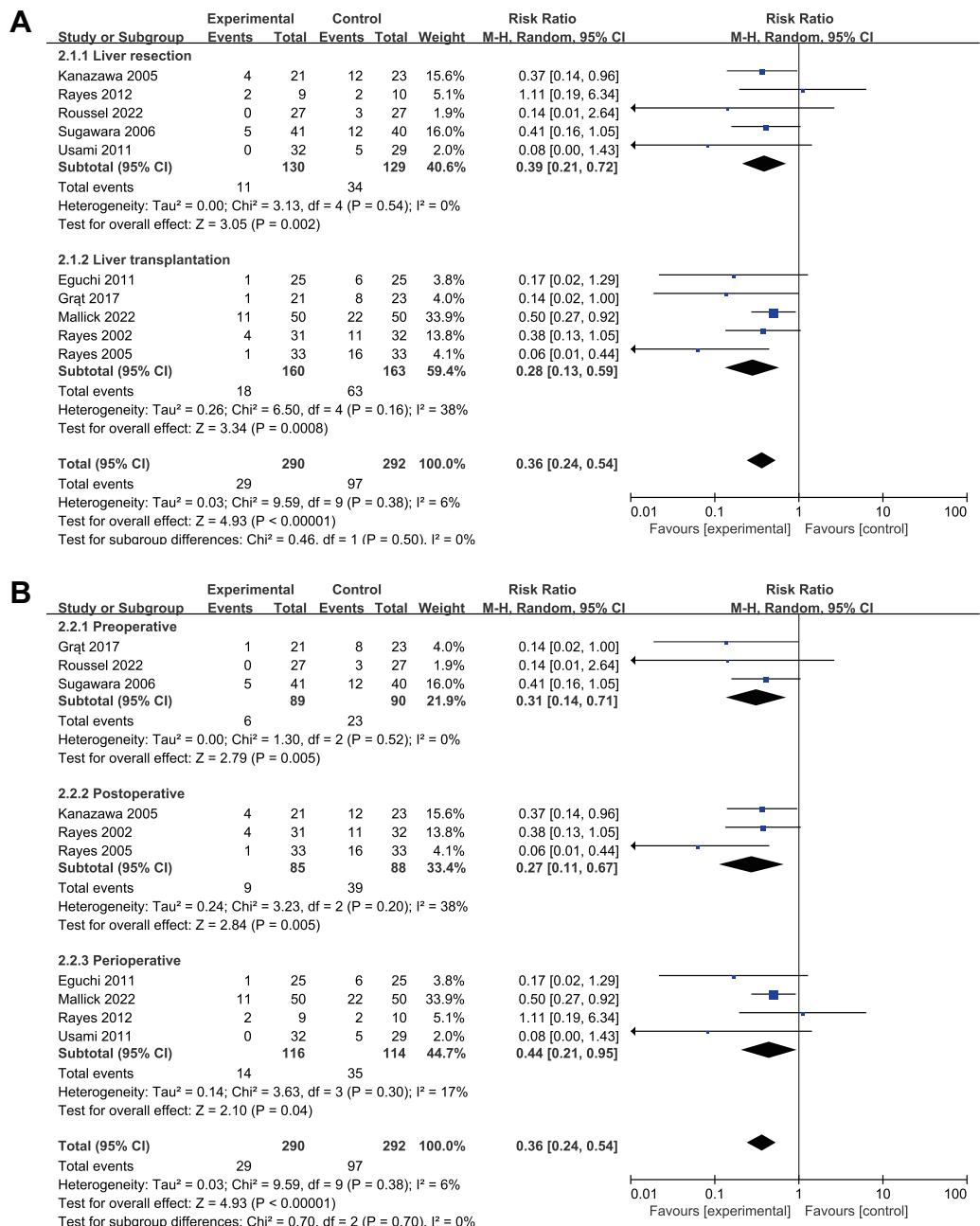
Subgroup analyses by surgery type showed reduced infection rates for both liver resection (RR 0.39, 95% CI [0.21–0.72], $P = 0.002$, $I^2 = 23\%$, [Fig. 4A, Table 2](#)) and transplantation (RR 0.28, 95% CI [0.13–0.59], $P = 0.0008$, $I^2 = 38\%$, [Fig. 4A, Table 2](#)). All intervention timings showed significant benefits: preoperative (RR 0.31, 95% CI [0.14–0.71], $P = 0.005$, $I^2 = 0\%$, [Fig. 4B, Table 2](#)), postoperative (RR 0.27, 95% CI [0.11–0.67], $P = 0.005$, $I^2 = 38\%$, [Fig. 4B, Table 2](#)), perioperative (RR 0.44, 95% CI [0.21–0.95], $P = 0.04$, $I^2 = 17\%$, [Fig. 4B, Table 2](#)). Post-hoc subgroup analysis indicated that both probiotics and synbiotics were associated with a significant reduction in the postoperative infection rates (Probiotics: RR 0.14, 95% CI [0.03–0.72], $P = 0.02$, $I^2 = 0\%$; Synbiotics: RR 0.38, 95% CI [0.25–0.59] $P < 0.0001$, $I^2 = 12\%$, [Supplemental Information 4, Table 2](#)).

Sensitivity analysis revealed no significant difference in the postoperative infections rate, indicating robustness ([Supplemental Information 4](#)).

Secondary outcomes

Five trials reported antibiotic therapy duration, showing significant reduction with intervention (MD -2.82 , 95% CI $[-3.13 \text{ to } -2.51]$, $P < 0.001$, $I^2 = 0\%$, [Fig. 5A, Table 2](#)). Seven trials reported length of stay in ICU and eight reported length of stay in hospital, showing no significant differences for length of stay in ICU (MD -0.25 , 95% CI $[-0.84 \text{ to } 0.34]$, $P = 0.41$, $I^2 = 64\%$, [Fig. 5B](#)), or in hospital (MD -1.25 , 95% CI $[-2.74 \text{ to } 0.25]$, $P = 0.10$, $I^2 = 56\%$, [Fig. 5C](#)). Subgroup analyses showed the same outcome as the original meta-analysis ([Supplemental Information 4, Table 2](#)). Sensitivity analyses confirmed the robustness of our results ([Supplemental Information 4](#)).

Table 2 Outcomes of this meta-analysis.


Outcome	N	Result
Postoperative infections	10	RR 0.36, 95% CI [0.24–0.54], $P < 0.0001$, $I^2 = 6\%$
Liver resection	5	RR 0.39, 95% CI [0.21–0.72], $P = 0.002$, $I^2 = 23\%$
Liver transplantation	5	RR 0.28, 95% CI [0.13–0.59], $P = 0.0008$, $I^2 = 38\%$
Preoperative	3	RR 0.31, 95% CI [0.14–0.71], $P = 0.005$, $I^2 = 0\%$
Postoperative	3	RR 0.27, 95% CI [0.11–0.67], $P = 0.005$, $I^2 = 38\%$
Perioperative	4	RR 0.44, 95% CI [0.21–0.95], $P = 0.04$, $I^2 = 17\%$
Probiotics	2	RR 0.14, 95% CI [0.03–0.72], $P = 0.02$, $I^2 = 0\%$
Synbiotics	8	RR 0.38, 95% CI [0.25–0.59] $P < 0.0001$, $I^2 = 12\%$
Duration of antibiotic therapy	5	MD -2.82 , 95% CI $[-3.13 \text{ to } -2.51]$, $P < 0.001$, $I^2 = 0\%$
Liver resection	2	MD -4.16 , 95% CI $[-7.34 \text{ to } -0.98]$, $P = 0.01$, $I^2 = 0\%$
Liver transplantation	3	MD -2.81 , 95% CI $[-3.12 \text{ to } -2.50]$, $P < 0.00001$, $I^2 = 0\%$
Preoperative	2	MD -3.93 , 95% CI $[-7.09 \text{ to } -0.78]$, $P = 0.01$, $I^2 = 0\%$
Postoperative	3	MD -2.81 , 95% CI $[-3.12 \text{ to } -2.50]$, $P < 0.00001$, $I^2 = 0\%$
Probiotics	1	MD -4.33 , 95% CI $[-10.61 \text{ to } -1.95]$, $P = 0.18$,
Synbiotics	4	MD -2.82 , 95% CI $[-3.12 \text{ to } -2.51]$, $P < 0.00001$, $I^2 = 0\%$
Length of ICU stay	7	MD -0.25 , 95% CI $[-0.84 \text{ to } -0.34]$, $P = 0.41$, $I^2 = 64\%$
Liver resection	2	MD 0.05 , 95% CI $[-0.29 \text{ to } -0.39]$, $P = 0.77$, $I^2 = 0\%$
Liver transplantation	5	MD -0.25 , 95% CI $[-0.84 \text{ to } -0.34]$, $P = 0.41$, $I^2 = 64\%$
Preoperative	1	MD -0.25 , 95% CI $[-0.84 \text{ to } -0.34]$, $P = 0.41$, $I^2 = 64\%$
Postoperative	3	MD -0.74 , 95% CI $[-2.02 \text{ to } -0.53]$, $P = 0.25$, $I^2 = 82\%$
Perioperative	3	MD 0.09 , 95% CI $[-0.38 \text{ to } -0.55]$, $P = 0.72$, $I^2 = 0\%$
Probiotics	1	MD 0.33 , 95% CI $[-0.40 \text{ to } -1.06]$, $P = 0.38$
Synbiotics	6	MD -0.41 , 95% CI $[-1.11 \text{ to } -0.29]$, $P = 0.25$, $I^2 = 66\%$
Length of hospital stay	8	MD -1.25 , 95% CI $[-2.74 \text{ to } -0.25]$, $P = 0.10$, $I^2 = 56\%$
Liver resection	3	MD -5.85 , 95% CI $[-11.98 \text{ to } -0.28]$, $P = 0.06$, $I^2 = 71\%$
Liver transplantation	5	MD -0.44 , 95% CI $[-1.32 \text{ to } -0.44]$, $P = 0.33$, $I^2 = 7\%$
Preoperative	2	MD -4.89 , 95% CI $[-12.82 \text{ to } -3.04]$, $P = 0.23$, $I^2 = 73\%$
Postoperative	3	MD -0.72 , 95% CI $[-2.20 \text{ to } -0.77]$, $P = 0.35$, $I^2 = 54\%$
Perioperative	3	MD -0.41 , 95% CI $[-3.79 \text{ to } -2.98]$, $P = 0.81$, $I^2 = 53\%$
Probiotics	1	MD -1.00 , 95% CI $[-6.40 \text{ to } -4.40]$, $P = 0.72$
Synbiotics	7	MD -1.30 , 95% CI $[-2.92 \text{ to } -0.32]$, $P = 0.12$, $I^2 = 62\%$

Notes.

N, number of studies; ICU, intensive care unit; OR, odds ratio; MD, mean difference; CI, confidence interval.

DISCUSSION

Liver surgery remains a complex procedure with substantial risks, carrying mortality and major postoperative complications rates of 3.8% and 15.8%, respectively ([The LiverGroup.org Collaborative, 2023](#)). This meta-analysis of 10 RCTs demonstrates that perioperative probiotics or synbiotics administration significantly reduces postoperative infection rates by more than 60% and shortens antibiotic therapy duration. These benefits

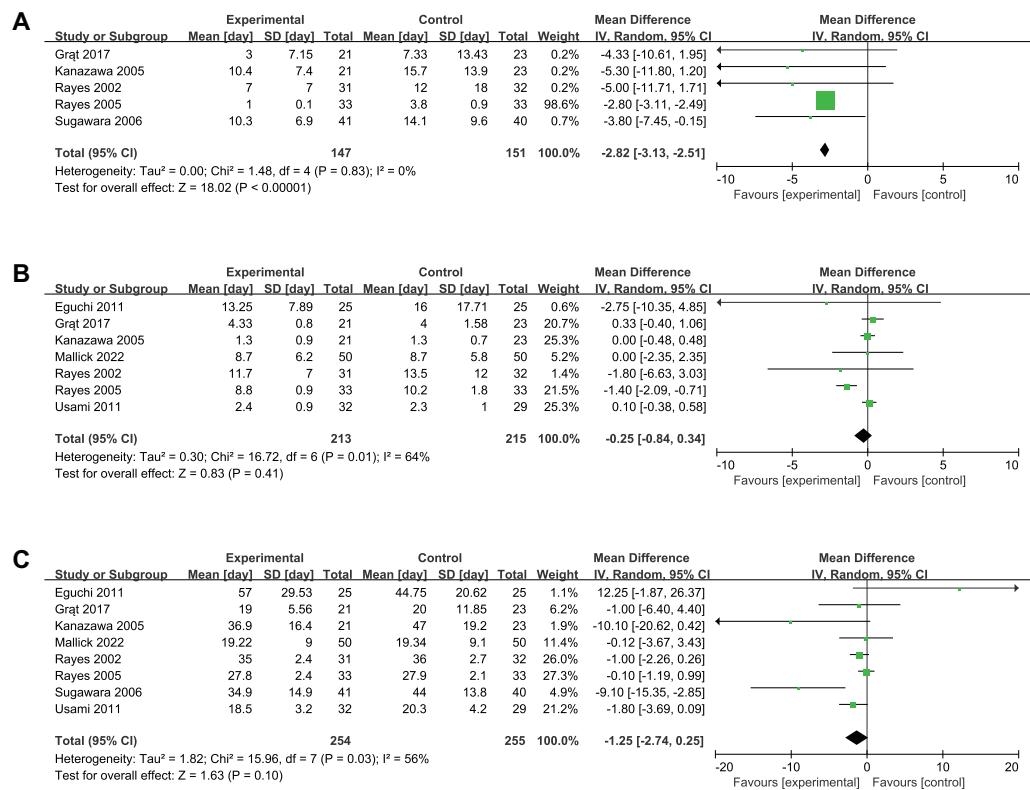


Figure 4 Forest plot showing the subgroup analysis of postoperative infections, (A) liver resection versus liver transplantation; (B) preoperative versus postoperative versus perioperative. Note. Eguchi et al., 2011; Grat et al., 2017; Kanazawa et al., 2005; Mallick et al., 2022; Rayes et al., 2002; Rayes et al., 2005; Rayes et al., 2012; Roussel et al., 2022; Sugawara et al., 2006; Usami et al., 2011.

Full-size DOI: 10.7717/peerj.18874/fig-4

were observed across both liver resection and transplantation procedures, although no significant effects were found on ICU or hospital length of stay.

The observed reduction in infections aligns with established mechanisms whereby probiotics and synbiotics inhibit bacterial translocation, enhance host immunity, and

Figure 5 Forest plot showing the association between probiotics and/or prebiotics and (A) length of antibiotic therapy, (B) length of ICU stay, (C) length of hospital stay. Note. Eguchi et al., 2011; Grat et al., 2017; Kanazawa et al., 2005; Mallick et al., 2022; Rayes et al., 2002; Rayes et al., 2005; Roussel et al., 2022; Sugawara et al., 2006; Usami et al., 2011.

Full-size DOI: 10.7717/peerj.18874/fig-5

promote beneficial bacterial growth (Anderson et al., 2004; Jeppsson, Mangell & Thorlacius, 2011; Morowitz et al., 2011). In a comprehensive network meta-analysis by Kasatpibal et al. (2017), the results demonstrate that synbiotic therapy was the most effective intervention for reducing surgical site infections, sepsis, pneumonia, antibiotic usage, and hospital stay. Similarly, Chowdhury et al. (2020) analyzed 34 RCTs of elective abdominal surgery patients, finding reduced postoperative infection risk with probiotic or synbiotic use. Our analysis, the largest to date focusing specifically on liver surgery patients, corroborates these findings and previous systematic reviews (Gan et al., 2019; Ma et al., 2021; Sawas et al., 2015).

The optimal probiotic formulation remains unclear due to substantial variation in species and combinations across studies. While most trials utilized lactobacilli alone or in combination, seven studies incorporated bifidobacteria species (Eguchi et al., 2011; Grat et al., 2017; Kanazawa et al., 2005; Mallick et al., 2022; Roussel et al., 2022; Sugawara et al., 2006; Usami et al., 2011), and four (Eguchi et al., 2011; Kanazawa et al., 2005; Sugawara et al., 2006; Usami et al., 2011) included galacto-oligosaccharides to enhance bifidobacteria growth. While our findings demonstrate overall efficacy, they apply specifically to the

strains studied in individual trials. Future research should focus on identifying optimal probiotic strains and combinations for maximal clinical benefit.

The discordance between reduced infection rates and unchanged length of stay merits discussion. This pattern parallels findings by *Zhao et al. (2021)*, who reported reduced ventilator-associated pneumonia without corresponding reductions in mechanical ventilation duration or ICU stay. Length of stay is influenced by multiple factors beyond infection control, including host immunity, underlying conditions, illness severity, and perioperative management quality (*Roussel & Beloeil, 2019*). The observed reduction in infection rates and antibiotic usage suggests potential benefits in limiting antimicrobial resistance, though this hypothesis requires validation in larger cohorts.

STRENGTHS AND LIMITATIONS

Our study has several strengths. First, we implemented a comprehensive approach to study selection, employing rigorous inclusion criteria and robust statistical analysis methods. Second, by focusing on major liver surgery, we minimized within-study and between-study variability and heterogeneity. Our investigation provides current evidence on the efficacy of probiotics and synbiotics therapy in patients undergoing liver surgery. Furthermore, acknowledging clinical diversity among patients, we performed subgroup analyses stratified by surgery type, demonstrating potential benefits of probiotics and synbiotics therapy in liver resection and transplantation procedures. These findings provide valuable insights for perioperative management in this population.

Nevertheless, several limitations warrant discussion. First, all included trials had small sample sizes (<100 patients per arm), potentially introducing small study effect bias (*Zhang, Xu & Ni, 2013*). The conversion of continuous variables from median and interquartile range to mean and standard deviation in some studies may have affected our results' precision. Second, three included studies (*Rayes et al., 2012; Rayes et al., 2002; Rayes et al., 2005*) were conducted by the same research group (Rayes et al.), although each involved distinct patient populations without overlap. Third, probiotic preparations have not been standardized in terms of their preparation methods, timing and duration of treatment. probiotic preparations lacked standardization in terms of preparation methods, timing, and treatment duration. Variations in surgery types and illness severity among studies may have influenced outcomes. Additionally, the included studies primarily report short-term outcomes, limiting our ability to draw conclusions about long-term intervention effects. Future research should incorporate extended follow-up periods to provide a more comprehensive understanding of treatment outcomes.

CONCLUSION

The findings demonstrate that perioperative administration of probiotics or synbiotics may reduce the postoperative infection rates and shorten antibiotic therapy duration in patients undergoing liver resections or transplantations. Healthcare providers may consider probiotics and synbiotics as adjunctive therapy to prevent postoperative infections among patients received liver surgeries. However, given the limited available evidence, larger RCTs

are needed to validate these findings and evaluate the long-term effects of probiotics and synbiotics in perioperative liver surgery management.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This work was supported by grants from the National Natural Science Foundation of China (No. 82100012, Kai Zhang), the Medical and Health Research Program of Zhejiang Province (No. 2022498722, Kai Zhang), and Special Research Funding Project of Hospital Pharmacy of Zhejiang Pharmaceutical Association (No. 2022ZYY19, GS Zhang). There was no additional external funding received for this study. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures

The following grant information was disclosed by the authors:

The National Natural Science Foundation of China: No. 82100012.

The Medical and Health Research Program of Zhejiang Province: No. 2022498722.

Special Research Funding Project of Hospital Pharmacy of Zhejiang Pharmaceutical Association: No. 2022ZYY19.

Competing Interests

The authors declare there are no competing interests.

Author Contributions

- Haopeng Wu conceived and designed the experiments, performed the experiments, analyzed the data, authored or reviewed drafts of the article, and approved the final draft.
- Zhihui Guan conceived and designed the experiments, performed the experiments, analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the article, and approved the final draft.
- Kai Zhang conceived and designed the experiments, performed the experiments, analyzed the data, authored or reviewed drafts of the article, and approved the final draft.
- Lingmin Zhou performed the experiments, authored or reviewed drafts of the article, and approved the final draft.
- Lanxin Cao analyzed the data, prepared figures and/or tables, and approved the final draft.
- Xiongneng Mou performed the experiments, prepared figures and/or tables, authored or reviewed drafts of the article, and approved the final draft.
- Wei Cui conceived and designed the experiments, prepared figures and/or tables, authored or reviewed drafts of the article, and approved the final draft.
- Baoping Tian conceived and designed the experiments, authored or reviewed drafts of the article, and approved the final draft.
- Gensheng Zhang conceived and designed the experiments, prepared figures and/or tables, and approved the final draft.

Data Availability

The following information was supplied regarding data availability:

This is a systematic review/meta-analysis.

Supplemental Information

Supplemental information for this article can be found online at <http://dx.doi.org/10.7717/peerj.18874#supplemental-information>.

REFERENCES

Anderson AD, McNaught CE, Jain PK, MacFie J. 2004. Randomised clinical trial of synbiotic therapy in elective surgical patients. *Gut* **53**:241–245
DOI [10.1136/gut.2003.024620](https://doi.org/10.1136/gut.2003.024620).

Araújo MM, Montalvão Sousa TM, Teixeira PDC, Figueiredo A, Botelho PB. 2023. The effect of probiotics on postsurgical complications in patients with colorectal cancer: a systematic review and meta-analysis. *Nutrition Reviews* **81**:493–510
DOI [10.1093/nutrit/nuac069](https://doi.org/10.1093/nutrit/nuac069).

Beyoğlu D, Idle JR. 2022. The gut microbiota—a vehicle for the prevention and treatment of hepatocellular carcinoma. *Biochemical Pharmacology* **204**:115225
DOI [10.1016/j.bcp.2022.115225](https://doi.org/10.1016/j.bcp.2022.115225).

Bruix J, Gores GJ, Mazzaferro V. 2014. Hepatocellular carcinoma: clinical frontiers and perspectives. *Gut* **63**:844–855 DOI [10.1136/gutjnl-2013-306627](https://doi.org/10.1136/gutjnl-2013-306627).

Chowdhury AH, Adiamah A, Kushairi A, Varadhan KK, Krznaric Z, Kulkarni AD, Neal KR, Lobo DN. 2020. Perioperative probiotics or synbiotics in adults undergoing elective abdominal surgery: a systematic review and meta-analysis of randomized controlled trials. *Annals of Surgery* **271**:1036–1047
DOI [10.1097/SLA.0000000000003581](https://doi.org/10.1097/SLA.0000000000003581).

Clift AK, Hagness M, Lehmann K, Rosen CB, Adam R, Mazzaferro V, Frilling A. 2023. Transplantation for metastatic liver disease. *Journal of Hepatology* **78**:1137–1146
DOI [10.1016/j.jhep.2023.03.029](https://doi.org/10.1016/j.jhep.2023.03.029).

Egger M, Davey Smith G, Schneider M, Minder C. 1997. Bias in meta-analysis detected by a simple, graphical test. *BMJ* **315**:629–634 DOI [10.1136/bmj.315.7109.629](https://doi.org/10.1136/bmj.315.7109.629).

Eguchi S, Takatsuki M, Hidaka M, Soyama A, Ichikawa T, Kanematsu T. 2011. Perioperative synbiotic treatment to prevent infectious complications in patients after elective living donor liver transplantation: a prospective randomized study. *American Journal of Surgery* **201**:498–502 DOI [10.1016/j.amjsurg.2010.02.013](https://doi.org/10.1016/j.amjsurg.2010.02.013).

European Association for the Study of the Liver. 2018. EASL Clinical Practice Guidelines: management of hepatocellular carcinoma. *Journal of Hepatology* **69**:182–236
DOI [10.1016/j.jhep.2018.03.019](https://doi.org/10.1016/j.jhep.2018.03.019).

Gan Y, Su S, Li B, Fang C. 2019. Efficacy of probiotics and prebiotics in prevention of infectious complications following hepatic resections: systematic review and meta-analysis. *Journal of Gastrointestinal and Liver Diseases* **28**:205–211
DOI [10.15403/jgld-182](https://doi.org/10.15403/jgld-182).

Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, Scott K, Stanton C, Swanson KS, Cani PD, Verbeke K, Reid G. 2017. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. *Nature Reviews Gastroenterology & Hepatology* 14:491–502 DOI [10.1038/nrgastro.2017.75](https://doi.org/10.1038/nrgastro.2017.75).

Grat M, Wronka KM, Lewandowski Z, Grat K, Krasnodebski M, Stypulkowski J, Holowko W, Masior L, Kosinska I, Wasilewicz M, Raszeja-Wyszomirska J, Rejowski S, Bik E, Patkowski W, Krawczyk M. 2017. Effects of continuous use of probiotics before liver transplantation: a randomized, double-blind, placebo-controlled trial. *Clinical Nutrition* 36:1530–1539 DOI [10.1016/j.clnu.2017.04.021](https://doi.org/10.1016/j.clnu.2017.04.021).

Gunduz M, Murakami D, Gunduz I, Tamagawa S, Hiraoka M, Sugita G, Hotomi M. 2018. Recurrent bacterial translocation from gut and sepsis in head and neck cancer patients and its prevention by probiotics. *Medical Hypotheses* 120:124–127 DOI [10.1016/j.mehy.2018.08.020](https://doi.org/10.1016/j.mehy.2018.08.020).

Heimbach JK, Kulik LM, Finn RS, Sirlin CB, Abecassis MM, Roberts LR, Zhu AX, Murad MH, Marrero JA. 2018. AASLD guidelines for the treatment of hepatocellular carcinoma. *Hepatology* 67:358–380 DOI [10.1002/hep.29086](https://doi.org/10.1002/hep.29086).

Higgins JP, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, Savovic J, Schulz KF, Weeks L, Sterne JA, Cochrane Collaboration. 2011. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. *BMJ* 343:d5928 DOI [10.1136/bmj.d5928](https://doi.org/10.1136/bmj.d5928).

Higgins JP, Thompson SG, Deeks JJ, Altman DG. 2003. Measuring inconsistency in meta-analyses. *BMJ* 327:557–560 DOI [10.1136/bmj.327.7414.557](https://doi.org/10.1136/bmj.327.7414.557).

Hyun MH, Lee YS, Kim JH, Lee CU, Jung YK, Seo YS, Yim HJ, Yeon JE, Byun KS. 2018. Hepatic resection compared to chemoembolization in intermediate- to advanced-stage hepatocellular carcinoma: a meta-analysis of high-quality studies. *Hepatology* 68:977–993 DOI [10.1002/hep.29883](https://doi.org/10.1002/hep.29883).

Jeppsson B, Mangell P, Thorlacius H. 2011. Use of probiotics as prophylaxis for postoperative infections. *Nutrients* 3:604–612 DOI [10.3390/nu3050604](https://doi.org/10.3390/nu3050604).

Kanazawa H, Nagino M, Kamiya S, Komatsu S, Mayumi T, Takagi K, Asahara T, Nomoto K, Tanaka R, Nimura Y. 2005. Synbiotics reduce postoperative infectious complications: a randomized controlled trial in biliary cancer patients undergoing hepatectomy. *Langenbeck's Archives of Surgery* 390:104–113 DOI [10.1007/s00423-004-0536-1](https://doi.org/10.1007/s00423-004-0536-1).

Kasatpibal N, Whitney JD, Saokaew S, Kengkla K, Heitkemper MM, Apisarnthanarak A. 2017. Effectiveness of probiotic, prebiotic, and synbiotic therapies in reducing postoperative complications: a systematic review and network meta-analysis. *Clinical Infectious Diseases* 64:S153–S160 DOI [10.1093/cid/cix114](https://doi.org/10.1093/cid/cix114).

Kong J, Li G, Chai J, Yu G, Liu Y, Liu J. 2021. Impact of postoperative complications on long-term survival after resection of hepatocellular carcinoma: a systematic review and meta-analysis. *Annals of Surgical Oncology* 28:8221–8233 DOI [10.1245/s10434-021-10317-2](https://doi.org/10.1245/s10434-021-10317-2).

Llovet JM, Willoughby CE, Singal AG, Greten TF, Heikenwälder M, El-Serag HB, Finn RS, Friedman SL. 2023. Nonalcoholic steatohepatitis-related hepatocellular carcinoma: pathogenesis and treatment. *Nature Reviews Gastroenterology & Hepatology* 20:487–503 DOI 10.1038/s41575-023-00754-7.

Ma M, Wang X, Li J, Jiang W. 2021. Efficacy and safety of probiotics and prebiotics in liver transplantation: a systematic review and meta-analysis. *Nutrition in Clinical Practice* 36:808–819 DOI 10.1002/ncp.10650.

Mallick S, Kathirvel M, Nair K, Durairaj MS, Varghese CT, Sivasankara Pillai Thankamony Amma B, Balakrishnan D, Gopalakrishnan U, Othiyil Vayoth S, Sudhindran S. 2022. A randomized, double-blinded, placebo-controlled trial analyzing the effect of synbiotics on infectious complications following living donor liver transplant-PREPRO trial. *Journal of Hepato-Biliary-Pancreatic Sciences* 29:1264–1273 DOI 10.1002/jhbp.1182.

Matzaras R, Anagnostou N, Nikopoulou A, Tsiakas I, Christaki E. 2023. The role of probiotics in inflammation associated with major surgery: a narrative review. *Nutrients* 15(6):1331 DOI 10.3390/nu15061331.

Mazzaferro V, Gorgen A, Roayaie S, Droz Dit Busset M, Sapisochin G. 2020. Liver resection and transplantation for intrahepatic cholangiocarcinoma. *Journal of Hepatology* 72:364–377 DOI 10.1016/j.jhep.2019.11.020.

Mokdad AA, Singal AG, Yopp AC. 2016. JAMA PATIENT PAGE. Treatment of liver cancer. *Jama* 315:100 DOI 10.1001/jama.2015.15431.

Morowitz MJ, Babrowski T, Carlisle EM, Olivas A, Romanowski KS, Seal JB, Liu DC, Alverdy JC. 2011. The human microbiome and surgical disease. *Annals of Surgery* 253:1094–1101 DOI 10.1097/SLA.0b013e31821175d7.

Murtha-Lemekhova A, Fuchs J, Teroerde M, Chiriac U, Klotz R, Hornuss D, Larmann J, Weigand MA, Hoffmann K. 2022. Routine postoperative antibiotic prophylaxis offers no benefit after Hepatectomy—a systematic review and meta-analysis. *Antibiotics* 11(5):649 DOI 10.3390/antibiotics11050649.

Nastos C, Kalimeris K, Papoutsidakis N, Deftereos G, Pafiti A, Kalogeropoulou E, Zerva L, Nomikos T, Papalois A, Kostopanagiotou G, Smyrniotis V, Arkadopoulos N. 2016. Bioartificial liver attenuates intestinal mucosa injury and gut barrier dysfunction after major hepatectomy: study in a porcine model. *Surgery* 159:1501–1510 DOI 10.1016/j.surg.2015.12.018.

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hrob-jartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D. 2021. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *BMJ* 372:n71 DOI 10.1136/bmj.n71.

Petrariu OA, Barbu IC, Niculescu AG, Constantin M, Grigore GA, Cristian RE, Mihaescu G, Vrancianu CO. 2023. Role of probiotics in managing various human diseases, from oral pathology to cancer and gastrointestinal diseases. *Frontiers in Microbiology* 14:1296447 DOI 10.3389/fmicb.2023.1296447.

Rau S, Gregg A, Yaceczko S, Limketkai B. 2024. Prebiotics and probiotics for gastrointestinal disorders. *Nutrients* **16**(6):778 DOI [10.3390/nu16060778](https://doi.org/10.3390/nu16060778).

Rayes N, Pilarski T, Stockmann M, Bengmark S, Neuhaus P, Seehofer D. 2012. Effect of pre- and probiotics on liver regeneration after resection: a randomised, double-blind pilot study. *Beneficial Microbes* **3**:237–244 DOI [10.3920/BM2012.0006](https://doi.org/10.3920/BM2012.0006).

Rayes N, Seehofer D, Hansen S, Boucsein K, Müller AR, Serke S, Bengmark S, Neuhaus P. 2002. Early enteral supply of lactobacillus and fiber versus selective bowel decontamination: a controlled trial in liver transplant recipients. *Transplantation* **74**:123–127 DOI [10.1097/00007890-200207150-00021](https://doi.org/10.1097/00007890-200207150-00021).

Rayes N, Seehofer D, Theruvath T, Schiller RA, Langrehr JM, Jonas S, Bengmark S, Neuhaus P. 2005. Supply of pre- and probiotics reduces bacterial infection rates after liver transplantation—a randomized, double-blind trial. *American Journal of Transplantation* **5**:125–130 DOI [10.1111/j.1600-6143.2004.00649.x](https://doi.org/10.1111/j.1600-6143.2004.00649.x).

Roayaie S, Jibara G, Tabrizian P, Park JW, Yang J, Yan L, Schwartz M, Han G, Izzo F, Chen M, Blanc JF, Johnson P, Kudo M, Roberts LR, Sherman M. 2015. The role of hepatic resection in the treatment of hepatocellular cancer. *Hepatology* **62**:440–451 DOI [10.1002/hep.27745](https://doi.org/10.1002/hep.27745).

Roussel E, Brasse-Lagnel C, Tuech JJ, Montialoux H, Papet E, Tortajada P, Bekri S, Schwarz L. 2022. Influence of probiotics administration before liver resection in patients with liver disease: a randomized controlled trial. *World Journal of Surgery* **46**:656–665 DOI [10.1007/s00268-021-06388-7](https://doi.org/10.1007/s00268-021-06388-7).

Rouxel P, Beloeil H. 2019. Enhanced recovery after hepatectomy: a systematic review. *Anaesthesia Critical Care & Pain Medicine* **38**:29–34 DOI [10.1016/j.accpm.2018.05.003](https://doi.org/10.1016/j.accpm.2018.05.003).

Sawas T, Halabi SA, Hernaez R, Carey WD, Cho WK. 2015. Patients receiving prebiotics and probiotics before liver transplantation develop fewer infections than controls: a systematic review and meta-analysis. *Clinical Gastroenterology and Hepatology* **13**:1567–1574 DOI [10.1016/j.cgh.2015.05.027](https://doi.org/10.1016/j.cgh.2015.05.027).

Schrezenmeir J, De Vrese M. 2001. Probiotics, prebiotics, and synbiotics—approaching a definition. *American Journal of Clinical Nutrition* **73**:361s–364s DOI [10.1093/ajcn/73.2.361s](https://doi.org/10.1093/ajcn/73.2.361s).

Stavrou G, Gimarellos-Bourboulis EJ, Kotzampassi K. 2015. The role of probiotics in the prevention of severe infections following abdominal surgery. *International Journal of Antimicrobial Agents* **46 Suppl 1**:S2–S4 DOI [10.1016/j.ijantimicag.2015.10.003](https://doi.org/10.1016/j.ijantimicag.2015.10.003).

Sugawara G, Nagino M, Nishio H, Ebata T, Takagi K, Asahara T, Nomoto K, Nimura Y. 2006. Perioperative synbiotic treatment to prevent postoperative infectious complications in biliary cancer surgery: a randomized controlled trial. *Annals of Surgery* **244**:706–714 DOI [10.1097/01.sla.0000219039.20924.88](https://doi.org/10.1097/01.sla.0000219039.20924.88).

Swanson KS, Gibson GR, Hutkins R, Reimer RA, Reid G, Verbeke K, Scott KP, Holscher HD, Azad MB, Delzenne NM, Sanders ME. 2020. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. *Nature Reviews Gastroenterology & Hepatology* **17**:687–701 DOI [10.1038/s41575-020-0344-2](https://doi.org/10.1038/s41575-020-0344-2).

The LiverGroup.org Collaborative. 2023. Outcomes of elective liver surgery worldwide: a global, prospective, multicenter, cross-sectional study. *International Journal of Surgery* **109**:3954–3966
DOI [10.1097/jjs.0000000000000711](https://doi.org/10.1097/jjs.0000000000000711).

Usami M, Miyoshi M, Kanbara Y, Aoyama M, Sakaki H, Shuno K, Hirata K, Takahashi M, Ueno K, Tabata S, Asahara T, Nomoto K. 2011. Effects of perioperative symbiotic treatment on infectious complications, intestinal integrity, and fecal flora and organic acids in hepatic surgery with or without cirrhosis. *Journal of Parenteral and Enteral Nutrition* **35**:317–328 DOI [10.1177/0148607110379813](https://doi.org/10.1177/0148607110379813).

Veziant J, Bonnet M, Occean BV, Dziri C, Pereira B, Slim K. 2022. Probiotics/Synbiotics to reduce infectious complications after colorectal surgery: a systematic review and meta-analysis of randomised controlled trials. *Nutrients* **14**(15):3066 DOI [10.3390/nu14153066](https://doi.org/10.3390/nu14153066).

Vitale A, Peck-Radosavljevic M, Giannini EG, Vibert E, Sieghart W, Van Poucke S, Pawlik TM. 2017. Personalized treatment of patients with very early hepatocellular carcinoma. *Journal of Hepatology* **66**:412–423 DOI [10.1016/j.jhep.2016.09.012](https://doi.org/10.1016/j.jhep.2016.09.012).

Vogel A, Meyer T, Sapisochin G, Salem R, Saborowski A. 2022. Hepatocellular carcinoma. *Lancet* **400**:1345–1362 DOI [10.1016/s0140-6736\(22\)01200-4](https://doi.org/10.1016/s0140-6736(22)01200-4).

Wan X, Wang W, Liu J, Tong T. 2014. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. *BMC Medical Research Methodology* **14**:135 DOI [10.1186/1471-2288-14-135](https://doi.org/10.1186/1471-2288-14-135).

Wang X, Li J, Riaz DR, Shi G, Liu C, Dai Y. 2014. Outcomes of liver transplantation for nonalcoholic steatohepatitis: a systematic review and meta-analysis. *Clinical Gastroenterology and Hepatology* **12**:394–402 DOI [10.1016/j.cgh.2013.09.023](https://doi.org/10.1016/j.cgh.2013.09.023).

Xiang Y, Zhang S, Cui Z, Yang Y. 2021. Exploring the effect of microecological agents on postoperative immune function in patients undergoing liver cancer surgery: a systematic review and meta-analysis. *Annals of Palliative Medicine* **10**:11615–11627 DOI [10.21037/apm-21-2669](https://doi.org/10.21037/apm-21-2669).

Yang Z, Wu Q, Liu Y, Fan D. 2017. Effect of perioperative probiotics and synbiotics on postoperative infections after gastrointestinal surgery: a systematic review with meta-analysis. *Journal of Parenteral and Enteral Nutrition* **41**:1051–1062 DOI [10.1177/0148607116629670](https://doi.org/10.1177/0148607116629670).

Zarrinpar A, Busuttil RW. 2013. Liver transplantation: past, present and future. *Nature Reviews Gastroenterology & Hepatology* **10**:434–440 DOI [10.1038/nrgastro.2013.88](https://doi.org/10.1038/nrgastro.2013.88).

Zhang Y, Chen J, Wu J, Chalson H, Merigan L, Mitchell A. 2013. Probiotic use in preventing postoperative infection in liver transplant patients. *Hepatobiliary Surgery and Nutrition* **2**:142–147 DOI [10.3978/j.issn.2304-3881.2013.06.05](https://doi.org/10.3978/j.issn.2304-3881.2013.06.05).

Zhang Z, Xu X, Ni H. 2013. Small studies may overestimate the effect sizes in critical care meta-analyses: a meta-epidemiological study. *Critical Care* **17**(1):R2 DOI [10.1186/cc11919](https://doi.org/10.1186/cc11919).

Zhao J, Li LQ, Chen CY, Zhang GS, Cui W, Tian BP. 2021. Do probiotics help prevent ventilator-associated pneumonia in critically ill patients? A systematic review with meta-analysis. *ERJ Open Research* **7**(1):00302-2020 DOI [10.1183/23120541.00302-2020](https://doi.org/10.1183/23120541.00302-2020).