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ABSTRACT
COVID-19 vaccination is the most effective strategy for preventing severe disease
and death. Inactivated vaccines are the most accessible type of COVID-19 vaccines in
developing countries. Several studies, including work from our group, have
demonstrated that the third dose (booster vaccination) of inactivated COVID-19
vaccine induces robust humoral and cellular immune responses. The present study
aimed to examine miRNA expression profile in participants who received a
homologous third dose of the CoronaVac vaccine. Samples of peripheral blood
mononuclear cells (PBMCs) were collected from healthcare volunteers both before
and 1–2 weeks after the booster dose. miRNA microarray analysis in a discovery
cohort of six volunteers identified 67 miRNAs with differential expression.
Subsequently, the expression of six miRNAs related to immune responses was
examined in a validation cohort of 31 participants via qRT-PCR. Our results
validated the differential expression of miR-25-5p, miR-34c-3p, and miR-206 post-
booster, with a significant correlation to the receptor binding domain (RBD)-specific
antibody. Bioinformatic analysis suggested that miR-25-5p, miR-34c-3p, and miR-
206 may target multiple pathways involved in immune regulation and inflammation.
Therefore, our study highlights miR-25-5p, miR-34c-3p, and miR-206 in PBMCs as
promising biomarkers for assessing the immune response induced by the booster
dose of the CoronaVac vaccine.
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INTRODUCTION
There are two main categories of vaccines for severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2). The first category comprises antigens from viral particles or
subunits, such as inactivated virus and protein subunit platforms. The second category
uses genetic materials embedded in a specific nucleotide sequence to synthesize SARS-
CoV-2 antigens, such as mRNA and adenoviral vector platforms (Heinz, 2021). Inactivated
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viral vaccines have a good track record for safety and efficacy in the prevention of
influenza, rabies, and polio (Hajj Hussein et al., 2015). Vaccines in this class are generated
by killing the pathogen through physical or chemical procedures. Inactivated vaccines are
unable to replicate in vaccinated individuals, but still provoke a protective immune
response against future disease (Chauhan et al., 2021). Inactivated COVID-19 vaccines,
including Covaxin (India), Covilo (China), and CoronaVac (China) are highly effective in
preventing severe illness with milder side effects (Dadras et al., 2022).

microRNAs (miRNAs) are a class of non-coding single-stranded 18–25 nucleotide
RNAs, which regulate up to 60% of protein encoding genes in mammalian cells
post-transcriptionally (Friedman et al., 2009). miRNA genes are often found in introns of
protein-encoding genes and in intergenic regions. Expression of miRNAs can be
coregulated by their host genes and their own promoters (Olena & Patton, 2010). miRNAs
bind with target mRNAs and regulate gene expression via translational repression and
mRNA decay (Bartel, 2018). There are approximately 2,300 true human mature miRNAs
with tissue and cell specific expression (Alles et al., 2019). An individual miRNA is believed
to target various genes, and one functional gene can be regulated by multiple miRNAs (Xu
et al., 2020).

A number of studies have reported that miRNAs modulate immune response after
vaccination. In humans vaccinated with the rVSVΔG-ZEBOV-GP Ebola vaccine, the
blood miRNA profile at early time points post-vaccination was correlated with the
ZEBOV-specific IgG response at 1 month and 1 year. An eight-miRNA signature was
linked to immune-related mRNA targets and pathways (Vianello et al., 2023).Nakaya et al.
(2015) documented that the interferon response was regulated by miR-424 after influenza
vaccination. Miyashita et al. (2019) showed that miR-451a expression in serum
extracellular vesicles (EVs) was inversely associated with the number of local symptoms
after seasonal flu vaccination. Haralambieva et al. (2018) demonstrated that differential
miRNA expression in B cells was correlated with neutralizing antibody titers after measles
vaccination. Fukuyama et al. (2015) found that nasal nanogel-based pneumococcal vaccine
induced the expression of miR-181a and miR-326 in serum and tissue of respiratory tract
as well as humoral and cellular immune responses in macaques. Xiong et al. (2013)
documented that serum miR-155 levels were associated with non-responsiveness to
hepatitis B vaccine.

A number of studies have reported that miRNAs modulate immune response during
COVID-19 infection. Sabbatinelli et al. (2021) found that lower serum levels of miR-146a
were associated with a lack of clinical response to tocilizumab, an anti-IL-6 receptor
antibody, in COVID-19 patients. Morales et al. (2022) reported that levels of miR-223-3p
in mouse lungs were upregulated during the SARS-CoV-2 infection. The expression of
NLRP3 inflammasome was significantly elevated after inhibition of miRNA-223-3p,
suggesting its role in restraining excessive inflammatory response. Soltani-Zangbar et al.
(2023) documented that SARS-CoV-2 infection promoted the expression of miR-155,
which disrupted the equilibrium of Th17/Treg by modulating SOCS1 levels. In lung biopsy
samples of patients died of COVID-19, the levels of miR-26a-5p, miR-29b-3p and miR-
34a-5p were significantly diminished compared to those of heathy controls. The
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expression of miR-26a-5p was significantly correlated with proinflammatory IL-6 and
ICAM-1, highlighting its role in mediating the immune response. Additionally, miR-29b-
3p had a strong association with the anti-inflammatory cytokines IL-4 and IL-8 (Centa
et al., 2021). In COVID-19 patients, plasma levels of miR-146a, miR-155, and miR-221
were upregulated compared to the healthy controls. Specifically, miR-146a showed a
positive correction with absolute neutrophil count, while miR-221 displayed a positive
correlation with ferritin. Both neutrophil count and ferritin are crucial markers of the
immune response. Pathway analysis revealed that miR-146a, miR-155, and miR-221 were
significantly associated with both innate and adaptive immune responses (Gaytan-Pacheco
et al., 2022).

The significance of miRNAs in shaping immune responses after COVID-19
vaccination, particularly with inactivated vaccines, remains poorly understood. In a study
of cancer patients who received the mRNA COVID-19 booster vaccine, the levels of miR-
7-5p, miR-15b-5p, miR-24-3p, and miR-223-3p in plasma extracellular vesicles increased
significantly 6 months post-vaccination. These miRNAs were also positively correlated
with anti-spike antibody levels, highlighting their role in regulating antiviral responses and
cytokine production (Almeida et al., 2024). In pregnant women received three doses of
mRNA COVID-19 vaccine, seven plasma miRNAs including miR-1972, miR-191-5p,
miR-423-5p; miR-16-5p, miR-486-5p, miR-21-5p, and miR-451a exhibited different
expression compared to unvaccinated pregnant women (Lin et al., 2022). It has been
postulated that miRNAs may play a crucial role in myocarditis, arising from the
heightened immune response elicited by mRNA COVID-19 vaccines (AbdelMassih et al.,
2022). miR-92a-2-5p expression from circulating EVs before vaccination was negatively
associated with adverse reactions after mRNA vaccine for COVID-19, while miR-148a
expression was correlated with antibody production (Miyashita et al., 2022). In this study,
blood samples were obtained from volunteers before and after a homologous booster
(third) dose of the inactivated vaccine CoronaVac. Differential expression of miRNAs in
peripheral blood mononuclear cells (PBMCs) was examined viamicroarray and qRT-PCR.

MATERIALS AND METHODS
Human study subjects
There were six and 31 volunteers in the discovery and validation cohorts, respectively. This
prospective observational study was conducted during the government-launched COVID-
19 vaccination campaign in 2021. Thirty-seven health care workers from Children’s
Hospital of Zhejiang University School of Medicine were enrolled into the study. Each of
the participant had received two doses of CoronaVac with an interval of 28 days between
February 23, 2021 and May 28, 2021. Subjects who had previously tested positive for
SARS-CoV-2 were excluded from the study. The study protocol has received the ethics
committee approval from the Children’s Hospital of Zhejiang University School of
Medicine (EC/IRB approval number: 2021029). Our study was in compliance with the
recommendations detailed in the Declaration of Helsinki for biomedical research. Enrolled
subjects provided written informed consent and received a third homogeneous dose of
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CoronaVac at least 6 months after the second dose between November 16, 2021 and
January 18, 2022. Peripheral blood samples were obtained from the subjects before and 1–2
weeks after the booster vaccination.

Isolation of PBMCs
Peripheral blood samples (15–20 ml) were transferred into heparin tubes and processed
within 4 h of collection. The blood was mixed thoroughly with an equal volume of
phosphate-buffered saline (PBS). The diluted samples were then carefully placed on top of
Lymphocyte Separation Medium (TBD, Tianjin, China) and centrifuged at 500 g for
25 min at 20 �C to form the PBMC layer. PBMCs were aspirated from the centrifugation
tubes using sterile glass pipettes, diluted with 4× volume of PBS, and harvested by
centrifugation at 250 g for 10 min. Cell pellets were resuspended with fetal bovine serum
(FBS; Biological Industries, Kibbutz Beit-Haemek, Israel) supplemented with 10% DMSO
(Sigma-Aldrich, Burlington, MA, USA). Then, cells (1.5–3.0 × 107) were frozen in a
stepwise manner by holding for 20 min at 4 �C, 1 h at −20 �C and overnight at −80 �C
before moving into liquid nitrogen until usage.

Microarray analysis
PBMCs samples from the discovery cohort (six each before and after vaccination) were
thawed on ice, followed by centrifugation at 250 g for 5 min. Then, total RNA was isolated
from PBMC pellets with TRIzol (Thermo Fisher, Watham, MA, USA) and purified using
the RNeasy Mini Kit (QIAGEN, Dusseldorf, Germany). The resulting RNA was assayed
for quality and quantity by examining absorbance at 260 and 280 nm. miRNA labeling and
hybridization were performed using a miRNA Complete Labeling and Hyb Kit (Agilent,
Santa Clara, CA, USA). In brief, 500 ng of total RNA was labeled with cyanine 3 and
hybridized to the SurePrint human G3miRNAMicroarray chip. After washing and drying,
microarray images were captured using an Agilent Microarray Scanner. Array images were
analyzed using Agilent Feature Extraction Software (v11.0.1.1). Agilent GeneSpring GX
v12.1 software was employed for quantile normalization and data processing. To identify
differentially expressed miRNA candidates, we defined two types of p-values: nominal
p-value and adjusted p-value (false discovery rate approach). An adjusted p-value of <0.1,
along with a fold-change of >1.5, was classified as differentially expressed. A heatmap
analysis was conducted on the significantly upregulated and downregulated miRNAs,
utilizing the SRplot web server (https://www.bioinformatics.com.cn/srplot).

Real-time quantitative reverse transcriptase polymerase chain
reaction (qRT-PCR)
Frozen PBMCs samples from the validation cohort (31 each before and after vaccination)
were thawed on ice, followed by centrifugation at 250 g for 5 min. Then, total RNA was
isolated from PBMC pellets with TRIzol (Thermo Fisher, Watham, MA, USA), treated
with DNase I, and purified using the RNeasy Mini Kit (QIAGEN, Dusseldorf, Germany).
The quality and quantity of total RNA was assayed by examining absorbance at 260 and
280 nm using Nanodrop 2000 spectrophotometer (Thermo Fisher, Waltham, MA, USA).
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The miRNA was reversely transcribed into cDNA using Mix-X miRNA First-Strand
Synthesis kit (Takara Bio, Kusatsu, Japan) from 1 µg total RNA and 0.5 µl 100 nM primer
using a T100 Thermo Cycler (Bio-Rad, Hercules, CA, USA) under condition of 1 h at
37 �C and 5 min at 85 �C. Samples were assayed in duplicate with both no-template
controls and no-reverse transcriptase controls. Quantitative real-time PCR step was
carried out with TB Green Premix Ex Taq II (Tli RNase H Plus) kit (Takara Bio, Shiga,
Japan). The reaction was conducted under cycling condition of 10 s at 95 �C, and 40 cycles
of 5 s at 95 �C and 20 s at 60 �C using LightCycler 480 Instrument II (Roche, Basel,
Switzerland). To minimize inter-sample variability, all samples were processed
simultaneously by a single individual, ensuring a consistent procedure and timing at each
step to achieve uniform RNA quality and integrity. In addition, all samples for the same
miRNA were analyzed in the same PCR run to ensure consistent amplification efficiency.
Levels of all miRNAs were analyzed using LightCycler 480 software and normalized with
U6 snRNA provided in the Mix-X miRNA First-Strand Synthesis kit. Relative miRNA
expression were calculated using the ΔΔCt method (Davoodian et al., 2014). Primers for
miR-25-5p, miR-299-5p, miR-129-5p, miR-206, miR-34c-3p, miR-494-3p were acquired
from Genecopoeia (Rockville, MD, USA). The sequence for human snRNA U6 was 5′
TCGTGAAGCGTTCCATATTTTTAA3′ (Takara Bio, Kusatsu, Japan).

Measurement of receptor binding domain (RBD)-specific IgG in plasma
ELISA plates (42592; Corning, Corning, NY, USA) were coated overnight at 4 �C with
1 mg/ml of RBD protein (Z03483; Genscript, Piscataway, NJ, USA) in 0.05 M
carbonate-bicarbonate buffer, pH 9.4 and incubated with blocking buffer (CNB0011;
Thermo Fisher, Waltham, MA, USA) for 1 h. After discarding the solution and rinsing
with washing buffer (CNB0011; Thermo Fisher, Waltham, MA, USA) 3 times, diluted
plasma was added to each well. After 3 times washing, a rabbit anti-human IgG-HRP
antibody (ab6759; Abcam, Cambridge, UK) was added to the plate for 1 h. Plates were
subsequently developed with 3,3′,5,5′-tetramethylbenzidine (TMB) substrate for 25 min.
Then, hydrochloric acid (2 M) was added to stop the reaction. Optical density (OD) at 450
nm was measured via a microplate reader (SpectraMAX 190; Molecular Device, San Jose,
CA, USA).

Statistical analysis
Statistical analysis was performed using GraphPad Prism 8.0.2 software. Mann–Whitney
test was used to compare miRNA expression before and after booster dose. Data were
presented as median and interquartile range (IQR). Correlations were examined by the
Spearman’s correlation coefficient. The p-value < 0.05 was regarded as statistically
significant.

Bioinformatic analysis
Computationally predicted gene targets were acquired using miRDB and TargetScan
databases. TargetScan combines thermodynamic modeling of miRNA-mRNA interactions
with comparative sequence analysis, facilitating the accurate prediction of conserved
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miRNA targets across diverse species (Wang, 2008). In contrast, miRDB focuses on mature
miRNAs-the key players in miRNA functionality, offering both target prediction and
functional annotation (Wang, 2008). The integration of miRDB and TargetScan allows the
enhanced performance of target analysis and reduces the likelihood of identifying false
target genes (Oliveira et al., 2017). To explore the signal pathways regulated by these target
genes, KEGG pathway enrichment analysis (https://www.kegg.jp) was performed using
KOBAS version 3.0 software. Pathways with nominal p-value < 0.01 and adjusted
p-value < 0.05 were deemed as statistically significant (Fisher’s exact test). Experimentally
validated miRNA-gene interactions were retrieved from DIANA-TarBase v.8.

RESULTS
Study subject characteristics
The characteristics of volunteers for the present study are displayed in Table 1. The
discovery cohort enrolled six healthcare workers. Concurrently, 31 healthcare workers
were enrolled into the validation cohort. The interval between the second and third
homogeneous doses of CoronaVac was at least 6 months. The booster dose had only mild
local and systemic adverse events.

Levels of miR-25-5p, miR-34c-3p, and miR-206 are altered after the
booster dose
In the discovery cohort, a miRNA microarray of PBMCs obtained before and 1–2 weeks
after the booster dose identified a sum of 1,791 miRNAs. The nominal and normalized
array data was deposited in the Gene Expression Omnibus repository, with accession
number GSE249050. Thirty of the uncovered miRNAs were upregulated by more than 1.5-
fold (nominal p-value < 0.05), whereas 37 miRNAs had greater than 1.5 fold
downregulation (Fig. 1A). Figure 1B showed the differential expression of miRNAs as a
Volcano plot. After adjustment of the p-values, 26 miRNAs were classified as significantly
upregulated (adjusted p-value < 0.1), while 36 miRNAs remained significantly
downregulated (File S1).

We choose to focus on six miRNAs including miR-25-5p (nominal p-value = 0.029,
adjusted p-value = 0.068), miR-34c-3p (nominal p-value = 0.031, adjusted p-value = 0.051),
miR-129-5p (nominal p-value = 0.046, adjusted p-value = 0.049), miR-494-3p (nominal p-
value = 0.021, adjusted p-value = 0.071), miR-299-5p (nominal p-value= 0.038, adjusted p-
value= 0.048), and miR-206 (nominal p-value = 0.031, adjusted p-value = 0.048). The six

Table 1 Demographic and characteristics of vaccinees.

Validation cohort Discovery cohort p-value

Vaccinees (n) 31 6

Age, years (IQR) 31 (28, 34) 31 (30.5, 43.5) >0.05

Male/female (n) 10/21 2/4 >0.05

Duration of post-vaccination, day (IQR) 12 (11, 13) 12 (10.5, 13) >0.05

Qiu et al. (2025), PeerJ, DOI 10.7717/peerj.18856 6/22

https://www.kegg.jp
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE249050
http://dx.doi.org/10.7717/peerj.18856/supp-1
http://dx.doi.org/10.7717/peerj.18856
https://peerj.com/


Upregulated DownregulatedA

B

Before After Before After

Figure 1 miRNA profile of PBMCs in the discovery cohort before and after the booster dose of CoronaVac. (A) A miRNA microarray was
performed on PBMCs from six volunteers before and 1–2 weeks after the booster dose. There were 30 upregulated miRNAs and 37 downregulated
miRNAs (greater than 1.5 fold, nominal p < 0.05). (B) The volcano plot illustrates the identification of differentially expressed miRNAs. Red dots
represent miRNAs with a nominal p-value < 0.05 and a fold change > 1.5, while green dots indicate miRNAs with a nominal p-value < 0.05 and a fold
change < −1.5. Black dots show 1,724 unaltered miRNAs. Full-size DOI: 10.7717/peerj.18856/fig-1
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selected miRNAs are known to play significant roles in immune responses (Wu et al.,
2021c; Tambyah et al., 2013; Song et al., 2015; Biswas et al., 2019; Xu et al., 2017; Akula,
Bolin & Cook, 2022). In contrast, the roles of the other miRNAs in regulating immune
responses remain uncertain, as they have not been as extensively studied or significantly
associated with immune mechanisms in the current literature. Subsequently, PBMCs from
the validation cohort of 31 healthcare workers were examined to determine the levels of the
six immune response-related miRNAs. Levels of miR-25-5p (adjusted p-value = 0.032)
were significantly elevated after the booster dose as determined by qRT-PCR, while miR-
34c-3p (adjusted p-value = 0.016) and miR-206 (adjusted p-value = 0.003) were
significantly downregulated, with age and sex accounted for as covariates. However, there
was no significant change in the expression of miR-129-5p (adjusted p-value = 0.520),
miR-494-3p (adjusted p-value = 0.826), and miR-299-5p (adjusted p-value = 0.098) (Fig. 2)
(File S1).

miR-25-5p, miR-34c-3p, and miR-206 expression after booster dose is
correlated with the production of RBD-specific IgG
Levels of RBD-specific IgG in plasma as reflected by OD450 values were significantly
increased at 1–2 weeks after the booster dose (Fig. 3A). Spearman’s correlation analysis
was performed between the levels of miR-25-5p, miR-34c-3p, and miR-206 and the
OD450 values of RBD-specific IgG. The analysis showed that expression of miR-25-5p

Figure 2 Altered expression of miR-25-5p, miR-34c-3p, and miR-206 after the booster dose of CoronaVac in the validation cohort. qRT-PCR
was performed on PBMCs from 31 volunteers for the expression of six immune response-related miRNAs with differential expression. n = 31. The
plot shows a median (lines within boxes), interquartile range (bounds of boxes), and error bars (upper and lower ranges). *p < 0.05.

Full-size DOI: 10.7717/peerj.18856/fig-2
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(r = 0.444, p = 0.012) after booster dose was positively correlated with the production of
anti-RBD IgG, while miR-34c-3p (r = −0.463, p = 0.009) and miR-206 (r = −0.507,
p = 0.04) were negatively associated with anti-RBD IgG (Fig. 3B). Conversely, miR-129-5p,
miR-299-5p, and miR-494-3p were not correlated with the levels of anti-RBD IgG (data
not shown). Collectively, these results suggest that miR-25-5p, miR-34c-3p, and miR-206
are associated with CoronaVac-induced immune responses.

miR-25-5p, miR-34c-3p, and miR-206 regulate immune responses via
multiple pathways
Forty-five overlapping target genes of upregulated miR-25-5p were identified using the
online tools miRDB and TargetScan. In the meantime, 334 genes were recognized as target
genes for downregulated miR-34c-3p, while 127 genes were perceived as target genes for

A

B

Figure 3

r = 0.444
p = 0.012

r = -0.463
p = 0.009

r = -0.507
p = 0.04

Figure 3 Correlation between expression of miRNAs and levels of anti-RBD IgG. (A) Levels of anti-RBD IgG were determined via ELISA and
represented by OD450 value. Each dot represents a subject. The plot shows a median (lines within boxes), interquartile range (bounds of boxes), and
error bars (upper and lower ranges). ****p < 0.001. (B) The curve was plotted by the relative expression of miR-25-5p, miR-34c-3p, and miR-206
after booster dose to their respective OD450 value of anti-RBD IgG. OD, Optical density. Full-size DOI: 10.7717/peerj.18856/fig-3
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down-regulated miR-206. To explore the potential consequences of the interactions
between the three miRNAs and their predicted target genes, KEGG pathway enrichment
analysis was performed by importing the predicted target genes. Overall, 13 non-cancer
pathways were predicted to be significantly modulated by miR-25-5p, miR-34c-3p, and
miR-206 (nominal p-value < 0.01, adjusted p-value < 0.05) (Fig. 4) (Table 2). These
pathways include Endocytosis (viral entry and innate immune responses to viral infection),
Hippo signaling pathway (innate and adaptive immunity), MAPK signaling pathway
(inflammation, immune cell differentiation, and immune cell proliferation), human
papillomavirus infection (innate, humoral, and cellular immunity), and Tight junction
(effector and target of immune regulation).

miR-25-5p, miR-34c-3p, and miR-206 are associated with target genes
for immune response
To further ascertain the relevance of miR-25-5p, miR-34c-3p, and miR-206 with immune
response, we reviewed the overlapping target genes retrieved from TargetScan and miRDB.
miR-25-5p, miR-34c-3p, and miR-206 were linked to 28 mRNAs in pathways highly
relevant to immune functions. The majority of the interactions between miRNA and
mRNAs was predicted, with two experimentally validated (Fig. 5). Among the 28 target
mRNAs, six genes are linked to human papillomavirus infection, while three genes play a
role in endocytosis. Ten genes belong to the MAPK pathway, while seven other genes are
associated with the Hippo signaling pathway. In addition, two target genes (AMOT and
PRKCE) modulate the function of tight junction, while two other genes (CDC42 and
PRKACB) participate in both human papillomavirus infection and tight junction (File S1).
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Figure 4 KEGG pathways significantly enriched in target genes of miR-25-5p, miR-34c-3p, and miR-
206. KEGG pathway analysis was conducted for miR-25-5p, miR-34c-3p, and miR-206. There were 13
over-represented biological pathways for mRNA targets of the three miRNAs. Data shown are the
negative log p-value (nominal) of the Fisher’s exact test. Full-size DOI: 10.7717/peerj.18856/fig-4
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DISCUSSION
miRNAs have been recognized as important biomarkers of immune response to
vaccination (Visacri et al., 2021). However, the effects of COVID-19 vaccination on mRNA
profiles in immune cells are poorly documented. The present study examined miRNA
profile in PBMCs after a homologous booster dose with inactivated SARS-CoV-2 vaccine.
Our results showed that there was differential expression of miR-25-5p, miR-34c-3p, and
miR-206 after the booster dose. miR-25-5p, miR-34c-3p, and miR-206 were correlated
with the production of anti-RBD IgG. These miRNAs may target multiple pathways
involving the immune response.

miRNAs control gene expression at the post-transcriptional level and are key regulators
in the innate and adaptive immune response. miRNAs have been demonstrated as
biomarkers for lymphocyte activation and infectious diseases (Correia et al., 2017; de
Candia et al., 2014). Circulating miRNAs have been widely explored as biomarkers for
infectious diseases and immune responses. However, they are not generated directly from
cytokine-producing immune cells. Many cell types including neutrophils, PBMCs,
platelets, and endothelial cells are able to generate circulating miRNAs (Pan et al., 2014;
Mittelbrunn et al., 2011). PBMC miRNA expression profile after the booster dose of
CoronaVac was examined in the present study. Several previous studies have documented
the differential expression of vaccine-induced miRNAs in PBMCs. Sailo et al. (2019)
reported that miR-22-5p and miR-27b-5p were differentially expressed in PBMCs after
vaccination for classical swine fever. miR-146a, miR-326, and miR-155 were
downregulated in PBMCs of BCG-vaccinated subjects (Corral-Fernandez et al., 2016). In
sheep inoculated with vaccine for Peste Des Petits Ruminants Virus, miR-150,
miR-370-3p, and miR-411b-3p were differentially expressed in PBMCs (Yang et al., 2019).
In lambs that received vaccine adjuvant of aluminum hydroxide, six miRNAs were

Table 2 KEGG pathways for target genes of miR-25-5p, miR-34c-3p, and miR-206.

miRNA Pathway p-value Adjusted p-value

miR-34c-3p Cellular senescence 1.46E−05 3.26E−03

miR-34c-3p Hippo signaling pathway 7.42E−05 8.31E−03

miR-34c-3p Dopaminergic synapse 1.77E−04 1.08E−02

miR-34c-3p Apelin signaling pathway 2.30E−04 1.08E−02

miR-34c-3p Signaling pathways regulating pluripotency of stem cells 2.61E−04 1.08E−02

miR-34c-3p MAPK signaling pathway 2.90E−04 1.08E−02

miR-34c-3p Long-term potentiation 3.61E−04 1.15E−02

miR-34c-3p Renin secretion 4.10E−04 1.15E−02

miR-34c-3p Cushing syndrome 2.51E−03 2.81E−02

miR-206 Thyroid hormone signaling pathway 6.97E−04 2.84E−02

miR-206 Human papillomavirus infection 8.04E−04 2.84E−02

miR-206 Tight junction 2.50E−03 4.49E−02

miR-25-5p Endocytosis 2.87E−03 1.55E−02
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differentially expressed in PBMCs (Varela-Martinez et al., 2018). The present study may
provide new insights into the mechanisms of inactivated SARS-CoV-2 vaccine.

miR-25-5p, miR-34c-3p, and miR-206 have been reported as potential markers for
COVID-19 and regulators of the immune response. Arisan et al. (2022) discovered that
miR-34c-3p expression was downregulated in Vero cells infected with SARS-CoV-2.
Following treatment of anti-miR-1307, a critical miRNA in SARS-CoV-2 infection, the
expression of miR-34c-3p was significantly downregulated (Arisan et al., 2022). miR-34c-
3p was among the most significant differentially expressed circulating miRNAs in COVID-
19 patients requiring mechanical ventilation compared with patients without mechanical
ventilation requirement (Garcia-Giralt et al., 2022). In circulating EVs, miR-206 was

miRNA

Human papillomavirus infection Endocytosis MAPK signaling
pathway

Tight junction

Predict target genes

Hippo signaling pathway

Experimentally validated genes

Figure 5 Target gene network for miR-25-5p, miR-34c-3p, and miR-206 with relevance to immune response. Solid and dashed arrows show
experimentally validated and predicted targets, respectively. Full-size DOI: 10.7717/peerj.18856/fig-5
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upregulated in COVID-19 patients with acute respiratory distress syndromes vs with
pneumonia (Meidert et al., 2021). In the early stage of SARS-CoV-2 infection of Vero cells,
miR-206 was significantly downregulated (Liu et al., 2022a). Upregulation of miR-206 and
miR-205-5p upon hospital admission was shown in critical COVID-19 compared with
non-critical survivors, suggesting an association between miR-206 and disease severity
(Vaz et al., 2023). miR-25-5p was identified as one of the miRNAs that could potentially
interact with the genome of SARS-CoV-2 (Milenkovic et al., 2021). It has been reported
that natural infection of COVID-19 and vaccination both produce a similar immune
response (Samanovic et al., 2022). Therefore, miR-25-5p, miR-34c-3p, and miR-206 may
have the potential to be used as biomarkers for both COVID-19 infection and vaccination.

In the present study, miR-25-5p, miR-34c-3p, and miR-206 were associated with 28
target genes involved in immune response. One of the predicted target genes for miR-25-
5p is PIP5K1C (Fig. 5) which plays a role in the regulation of endocytosis pathway (Roy
et al., 2023). Inhibition of PIP5K1C blocked ACE2-mediated endocytosis of SARS-CoV-2
virus into host cells (Seo et al., 2024). In addition, integrin induced PIP5K1C polarization
and subsequent neutrophil infiltration (Xu et al., 2010). One of our predicted targets of
miR-34c-3p is MAP3k2 in the MAPK pathway, which was involved in T-cell receptor
signaling to activate JNK and elevate IL-2 expression (Su et al., 2001). The second potential
target of miR-34c-3p is PPP3CB (calcineurin A beta), a player in MAPK pathway. In mice
with PPP3CB knockout, there was a defect in T cell development and function (Bueno
et al., 2002). In addition, PPM1A, also part of the MAPK pathway, is a prospective target of
miR-34c-3p. PPM1A balanced antiviral signal transduction via dephosphorylating STING
and TBK1, two regulators for type I interferon production (Li et al., 2015). Furthermore,
SMAD2 is a potential target of miR-34c-3p and a mediator of TGF-β signaling. SMAD2
was shown to crosstalk with Hippo signaling pathway (Ghomlaghi et al., 2024). Garcia
et al. (2022) reported that Hippo pathway activation had antiviral function in SARS-CoV-2
infection. NOTCH3, a component in the human papillomavirus pathway, is our predicted
target gene for miR-206. SARS-CoV-2 infection was revealed to activate a variant of
NOTCH3, causing the development of cerebral autosomal dominant arteriopathy with
subcortical infarcts and leukoencephalopathy (CADASIL) (Krol et al., 2023). CDC42, also
a player in human papillomavirus pathway, is a potential target of miR-206. Equine
herpesvirus type 1 activated CDC42 which stabilized tubulin and enhanced the
intracellular transport of virus and spread to adjacent cells (Kolyvushko et al., 2020). In a
study of a group of healthcare workers who received two doses of CoronaVac, Chen et al.
(2023) found that MAPK1, CDC42, PPP2AC, EP300, YWHAZ, and NRAS were correlated
with the vaccine response. Among them, CDC42 is identified as a potential target gene of
miR-206 in our prediction, while PPP2CA and YWHAZ closely resemble our predicted
miR-34c-3p targets, PPP3CB and YWHAG, respectively.

The present study suggests that miR-25-5p, miR-34c-3p, and miR-206 in PBMCs are
potential biomarker candidates for humoral response after the third dose of CoronaVac.
Expression of miR-25-5p, miR-34c-3p, and miR-206 has also been associated with
immune response in non-COVID-19 studies. Wu et al. (2021c) reported that Peg-IFN-a
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treatment enhanced miR-25-5p levels in circulating EVs of patients with hepatitis B virus,
resulting in inhibition of virus replication and transcription.Wang et al. (2022) found that
miR-25-5p alleviated lipopolysaccharide (LPS)-elicited inflammatory response,
production of reactive oxygen species, and brain damage via targeting TXNIP. Lu et al.
(2016) revealed that miR-25-5p elevated M2 macrophages via inhibiting multiple genes in
NF-κB and MAPK signaling pathways. Haidar et al. (2023) showed that there was
differential expression of miR-34c-3p in T. annulata-infected leukocytes. Peng et al. (2016)
revealed that miR-34c-3p from throat swab had the highest diagnostic value for influenza
infection.Wright et al. (2021) found that mycobacterial infection enhanced the expression
of miR-206, which inhibited neutrophil recruitment to the infected site. Lastly, Liu et al.
(2022b) reported that miR-206 induced M1 polarization of Huffer cells and hepatic
recruitment of CD8+ T cells.

Both miRNAs and RBD-specific antibody may serve as valuable biomarkers for
assessing the immune response following COVID-19 vaccination. One advantage of
miRNA biomarkers is their potential for early detection, making them useful as initial
indicators of immune response. However, a significant drawback is their lack of specificity
in responding to various stimuli such as infections and vaccinations. For instance, miR-155
has been shown to regulate immune responses in both sepsis and COVID-19
(Papadopoulos, Papadopoulou & Aw, 2023), while changes in miR-146 may reflect a more
generalized immune activation through the NF-κB pathway (Testa et al., 2017). In
contrast, RBD-specific antibody targets the receptor-binding domain of the virus, which
mediates viral entry into host cells (Miyashita et al., 2022). This specificity allows
RBD-specific antibody to provide a more accurate assessment of the body’s immune
response to the virus. Therefore, RBD-specific antibody may represent a stronger and
more clinically relevant marker than altered miRNA profile alone. Nevertheless, the
combination of both miRNAs and RBD-specific antibody provides a comprehensive
perspective on vaccine efficacy and overall immunity.

The present study demonstrated that expression of miR-25-5p, miR-34c-3p, and miR-
206 in PBMCs is correlated with the production of RBD-specific IgG, which has been
associated with neutralizing activity and virus control (Wu et al., 2021a). Additionally,
during the acute phase of COVID-19 infection, levels of plasma miR-497-5p also exhibited
a correlation with the RBD-specific IgG (Wu et al., 2021b). However, the correlation does
not imply causation, nor does it confirm that changes in the miRNAs levels directly affect
antibody production. Firstly, multiple miRNAs can regulate overlapping immune
pathways, making it hard to pinpoint the specific roles of each miRNA in the immune
response. This overlap may lead to spurious correlations, potentially obscuring genuine
relationships and the roles of miRNAs in regulating the humoral response. Secondly,
validation experiments are essential to identify the target genes and downstream pathways
that mediate the observed alterations in RBD-specific antibody.

The present study has several limitations. First, while we observed the potential of miR-
25-5p, miR-34c-3p, and miR-206 as biomarkers of CoronaVac-induced immunity, we may
not assert that these findings are universally applicable due to the low statistical power
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stemming from our small sample size. This constraint may have also impeded our ability
to detect genuine alterations in the miRNA profile. Consequently, the miRNA biomarker
data related to the CoronaVac-induced immune response should be regarded as
preliminary and warrants further validation with larger cohorts. Second, the time point for
examining miRNA expression was performed at 1–2 weeks after booster dose. The
durability of altered miRNA expression profile warrants further investigation. Third, this
study is limited to in silico prediction of target genes and future experiments are needed to
validate these target genes.

CONCLUSIONS
The present study suggests the potential role of miR-25-5p, miR-34c-3p, and miR-206 as
biomarkers for CoronaVac-induced immune response. Future research should focus on
larger-scale studies with longer-term follow-up to validate the preliminary findings and
identify pathways that mediate the immune response.
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