Evaluating the feasibility of automating dataset retrieval for biodiversity monitoring (#101416)

First submission

Guidance from your Editor

Please submit by 28 Jun 2024 for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for guidance.

Author notes

Have you read the author notes on the guidance page?

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the <u>materials page</u>.

6 Figure file(s)

2 Table file(s)

2 Other file(s)

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty is not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Evaluating the feasibility of automating dataset retrieval for biodiversity monitoring

Alexandre Fuster-Calvo Corresp., 1, Sarah Valentin 2, William C. Tamayo 1, Dominique Gravel 1

Corresponding Author: Alexandre Fuster-Calvo Email address: alexfuster7@gmail.com

Aim. Effective management strategies for conserving biodiversity and mitigating the impacts of Global Change rely on access to comprehensive and up-to-date biodiversity data. However, manual search, retrieval, evaluation, and integration of this information into databases presents a significant challenge to keep pace with the rapid influx of large amounts of data, hindering its utility in contemporary decision-making processes. The automation of these tasks through advanced algorithms holds immense potential to revolutionize biodiversity monitoring. **Innovation.** In this study, we investigate the potential for automating the retrieval and evaluation of biodiversity data from Dryad and Zenodo repositories. We employ automated algorithms to identify potentially relevant datasets and perform a manual assessment to gauge the feasibility of automatically ranking their relevance. We have designed an evaluation system based on various criteria. Additionally, we compare our results with those obtained from a scientific literature source, using data from Semantic Scholar for reference. Our evaluation centers on the database utilized by a national biodiversity monitoring system in Quebec, Canada. Main **conclusions.** The algorithms retrieved 90 (56%) relevant datasets for our database, showing the value of automated dataset search in repositories. Additionally, we find that scientific publication sources offer broader temporal coverage and can serve as conduits guiding researchers toward other valuable data sources. However, our manual evaluation highlights a significant challenge to distinguish datasets by their relevance—scarcity and non-uniform distribution of metadata, especially pertaining to spatial and temporal extents. We present an evaluative framework based on predefined criteria that can be adopted by automated algorithms for streamlined prioritization, and we make our manually evaluated data publicly available, serving as a benchmark for improving classification techniques. Finally, our study advocates for the implementation of metadata standards tailored for automated retrieval systems by repositories and sources of scientific

¹ Biology department, University of Sherbrooke, Sherbrooke, Quebec, Canada

² Joint Research Unit Land, Remote Sensing and Spatial Information (UMR TETIS), French Agricultural Research Centre for International Development (CIRAD), Montpellier, France

literature. This, coupled with the rapid evolution of classification algorithms, holds transformative potential to advance in biodiversity monitoring and decisively steering the course of well-informed decision-making processes.

1 Evaluating the feasibility of automating dataset retrieval for biodiversity

2 monitoring

3 Alexandre Fuster-Calvo¹, Sarah Valentin², William C. Tamayo¹, Dominique Gravel¹

4 5

- 6 ¹ Département de biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
- 7 ² Joint Research Unit Land, Remote Sensing and Spatial Information (UMR TETIS), French
- 8 Agricultural Research Centre for International Development (CIRAD), Montpellier, France

9

- 10 Corresponding Author:
- 11 Alexandre Fuster-Calvo¹
- 12 C/ Dona Amalia 44, Alcoi, Alicante, 03801, Spain
- 13 Email address: alexfuster7@gmail.com

14

15	Abstract
16	
17	Aim. Effective management strategies for conserving biodiversity and mitigating the impacts of
18	Global Change rely on access to comprehensive and up-to-date biodiversity data. However,
19	manual search, retrieval, evaluation, and integration of this information into databases presents a
20	significant challenge to keep pace with the rapid influx of large amounts of data, hindering its
21	utility in contemporary decision-making processes. The automation of these tasks through
22	advanced algorithms holds immense potential to revolutionize biodiversity monitoring.
23	Innovation. In this study, we investigate the potential for automating the retrieval and evaluation
24	of biodiversity data from Dryad and Zenodo repositories. We employ automated algorithms to
25	identify potentially relevant datasets and perform a manual assessment to gauge the feasibility of
26	automatically ranking their relevance. We have designed an evaluation system based on various
27	criteria. Additionally, we compare our results with those obtained from a scientific literature
28	source, using data from Semantic Scholar for reference. Our evaluation centers on the database
29	utilized by a national biodiversity monitoring system in Quebec, Canada.
30	Main conclusions. The algorithms retrieved 90 (56%) relevant datasets for our database,
31	showing the value of automated dataset search in repositories. Additionally, we find that
32	scientific publication sources offer broader temporal coverage and can serve as conduits guiding
33	researchers toward other valuable data sources. However, our manual evaluation highlights a
34	significant challenge to distinguish datasets by their relevance—scarcity and non-uniform
35	distribution of metadata, especially pertaining to spatial and temporal extents. We present an
36	evaluative framework based on predefined criteria that can be adopted by automated algorithms
37	for streamlined prioritization, and we make our manually evaluated data publicly available,
38	serving as a benchmark for improving classification techniques. Finally, our study advocates for
39	the implementation of metadata standards tailored for automated retrieval systems by
40	repositories and sources of scientific literature. This, coupled with the rapid evolution of
41	classification algorithms, holds transformative potential to advance in biodiversity monitoring
42	and decisively steering the course of well-informed decision-making processes.
43	

Introduction

15	
1 6	Biodiversity is undergoing rapid and unprecedented transformation en by the relentless
17	forces of anthropogenic Global Change (Parmesan & Yohe, 2003; Millennium Ecosystem
1 8	Assessment, 2005; Newbold et al., 2015; IPBES, 2019; Pyšek et al., 2020). These char ose a
19	direct threat to the delicate balance of ecosystems and therefore multitude of species that inhabit
50	them, including humans. Recognizing the urgency of the situation, the recent fifteenth meeting of
51	the Conference of the Parties (COP 15) witnessed a landmark moment with the adoption of the
52	Kunming-Montreal Global Biodiversity Framework (GBF) (CBD, 2023). This ambitious
53	framework has set forth action-oriented global targets aimed at urgently bending the curve of
54	biodiversity loss by 2050 (Leadley et al., 2022).
55	
56	Target 21 of the CBD 2023 underscores the critical importance of providing decision makers,
57	practitioners, and the public with access to comprehensive data, information, and knowledge.
58	This necessity arises because the pursuit of these conservation objectives, data from various
59	ecological disciplines and origins must be seamlessly integrated, spanning an extensive spectrum
60	of spatiotemporal scales (Kelling et al., 2009; Wieczorek et al., 2012; Hampton et al., 2013;
31	Heberling et al., 2021). Achieving this goal relies on two fundamental pillars. Firstly, a robust
62	global framework must be established to systematically collect, standardize, harmonize, and
3	provide timely data on the ever-changing landscape of biodiversity. The Group on Earth
64	Observations Biodiversity Observation Network (GEO BON) has played a pivotal role in this
35	regard by developing the concept of Essential Biodiversity Variables (EBVs) (Pereira et al.,
66	2013). These EBVs now serve as the cornerstone of monitoring programs worldwide, facilitating
37	the quantification of biodiversity changes across diverse ecosystems (Vihervaara et al., 2017;
86	Schmeller et al., 2018; Jetz et al., 2019).
69	
70	Secondly, to effectively track and address the challenges posed by biodiversity change, the
71	development of comprehensive global databases and sophisticated bioinformatic systems
72	becomes essential (Collen & Nicholson, 2014). These databases and tools are tasked with the
73	colossal mission of collecting, cataloging, integrating, and meticulously analyzing vast volumes
74	of datasets derived from disparate sources. However, despite remarkable strides in the

75	establishment of global macro-ecological databases [e.g. genetic and phylogenetic data
76	(GenBank), species interactions (GloBI, www.globalbioticinteractions.org), traits (TRY Plant
77	Trait Database, www.try-db.org), or abundance (BioTime - Dornelas et al., 2018)] and
78	georeferenced information infrastructures that use them to monitor biodiversity [e.g., Group on
79	Earth Observations-Biodiversity Observation Network (GEO-BON) initiative, www.geobon.org;
80	Global Biodiversity Information Facility, www.gbif.org], significant impediments persists. It is
81	still difficult to find historical and contemporary biodiversity data, particularly for less-studied
82	taxa and less-explored regions (Jetz et al., 2012; Conde et al., 2019). The available data, though
83	valuable, falls short of providing a comprehensive overview of the state and dynamics of
84	biodiversity on a global scale. This limitation poses a significant impediment to the advancement
85	of our understanding of biodiversity and, consequently, its conservation (Hortal et al., 2015).
86	
87	A major impediment for achieving comprehensive databases is the ever-increasing volume of
88	data published annually (Hendriks & Duarte, 2008; Stork & Astrin, 2014). Managing and staying
89	current with this expanding wealth of information becomes increasingly challenging. This is
90	largely because the labor-intensive nature of locating and evaluating the pertinence of data
91	within scientific publications for integration into global databases remains a predominantly
92	manual process (Guralnick & Hill, 2009; Wen et al., 2017). The task is further exacerbated by
93	the rapid acceleration in research output, rendering it increasingly impractical to maintain real-
94	time coverage.
95	
96	In addressing the pressing issue of data scarcity in biodiversity studies, the development of
97	automated systems capable of identifying relevant datasets from diverse sources may well mark
98	a pivotal turning point. These systems bridge text-mining techniques with the interdisciplinary
99	field of Natural Language Processing (NLP) in computer science, integrating methodologies
100	from linguistics, computer science, statistics, and artificial intelligence. Toolsets commonly
101	employ frequency analysis, rule-based algorithms, or artificial intelligence methods (Farrell et
102	al., 2024, preprint).
103	
104	While automatic content analysis is still in its incipient stages for ecological studies (Nunez-Mir
105	et al., 2016), it has already demonstrated success in streamlining literature reviews (Heberling et

106	al., 2019; McCallen et al., 2019), retrieving fossil data (Kopperud et al., 2019), monitoring data
107	for endangered species (Kulkarni & Minin, 2021), and detecting species co-occurrences and
108	interactions (Farrell et al., 2022, preprint) inford et al., 2020 showcased the effectiveness of
109	such approaches in identifying relevant articles for specific databases. Their research highlights
110	the capability of algorithms, trained using data from two distinct databases, to analyze a
111	collection of articles. Impressively, these algorithms can discern between relevant and irrelevant
112	articles for these databases with an accuracy rate exceeding 90%, all based solely on the content
113	of titles and abstracts. Recently, prompt-based approaches leveraging Large Language Models
114	such as GPT have demonstrated promising effectiveness in extracting biodiversity data, offering
115	further advancements in automated systems for biodiversity research (Castro et al., preprint).
116	
117	While these findings mark significant progress, further refinements are essential to realize truly
118	effective automatic retrieval systems. Firstly, an automated system should extend beyond merely
119	distinguishing between relevant and non-relevant publications; it should also have the capacity to
120	assign varying degrees of relevance based on metadata, hence aiding in prioritizing the most
121	pertinent studies and expediting their integration into databases. Secondly, relying solely on
122	information from titles and abstracts may lead to either over- or underestimating a publication's
123	relevance. If a combination of different features determines the degree of relevance of a
124	publication for a database, it may be necessary to search for these in different sections (article
125	text, tables, supplementary materials, dataset files). Lastly, it is worth noting that an increasing
126	number of scientific journals now mandate authors to make their data publicly available without
127	restrictions in online repositories upon publication. This shift means that retrieving data could be
128	significantly streamlined by searching these repositories, where data is readily accessible (Fig.
129	1).
130	
131	Here, we use automated retrieval of datasets from both Dryad and Zenodo repositories and
132	embark on a comprehensive manual evaluation with the primary objective of assessing the
133	potential for automated classification into various relevance tiers.
134	a versatile classification framework engineered to enable algorithms to allocate relevance levels
135	based on features extracted from the publication text. This adaptable system considers global-
136	level attributes of biodiversity data, facilitating its seamless integration with a diverse range of

databases. Furthermore, it remains flexible enough to readily accommodate additional parameters customized to suit specific database contexts. Importantly, this classification system not only addresses current challenges but also serves as a foundational baseline for next-generation algorithms, providing a framework for iterative improvements and refinements in automated literature classification. As the assignment of relevance levels necessitates a thorough analysis of the features, algorithms must be adept at identifying these features. Consequently, our investigation delves into the distribution of this metadata across various publication locations, including the title, abstract, repository text, article, and dataset. This exploration holds significant implications for the design of effective search algorithms. Furthermore, we extend our investigation to encompass datasets sourced from articles available through the Semantic Scholar platform and illuminate the strengths and limitations of data derived from articles when compared to repository-sourced data. Finally, we discuss significant challenges and promising opportunities that lie on the horizon in the quest for reliable and efficient automated systems for biodiversity data regardless of the technological sophistication of future algorithms.

Case study - biodiversity monitoring in Quebec

Canada, as the second-largest country, possesses an extensive array of species and ecosystems, all significantly impacted by human activities. With over 841 species at risk, including 371 classified as Endangered (COSEWIC, 2022), it is concerning that 59% of these species are experiencing population declines (WWF Canada, 2020), and that crucial habitats such as wetlands, which cover 14% of the territory and represent 25% of the world's reserves, suffered significant loss (Environment Canada, 2009). Canada's vast geographical expanse, coupled with its diverse ecoregions and extensive wilderness areas, underscores the urgency of developing prioritization strategies for conserving critical habitats and species. Such strategies are imperative for Canada to align with international biodiversity commitments outlined in the Kunming-Montreal Global Biodiversity Framework (CBD, 2023).

The province of Quebec has recently introduced a dedicated national geographic information system aimed at biodiversity monitoring, known as Biodiversité Québec. Our study is tailored to evaluate the integration of relevant data into this information system, which is designed to play a

pivotal role in influencing decision-making processes. Additionally, by situating our research within this dataset, we can showcase the design of specific criteria that are not only globally applicable but also regionally relevant, addressing the unique circumstances at regional scale. In the context of Quebec, and more broadly in Canada, biodiversity records are particularly affected by spatial bias, correlated to the South-North human population density gradient. Thus, tundratype ecosystems and northern territories are very poorly documented and data from these regions should have higher priority. This information system leverages the ATLA a infrastructure to integrate and provide access to biodiversity data for the Province of Quebec. It standardizes various data types (abundances, occurrences, surveys, population time-series, and taxonomy) for integration into monitoring and modeling workflows. Data is sourced from open science repositories (e.g., GBIF, eBird, iNaturalist, Living Planet Database) and direct partnerships with local and national organizations. The infrastructure is undergoing active expansion, currently aggregating over 53 million occurrences, covering over 23 thousand species from 616 data sources.

Methods

185 Corpus retrieval

We retrieved data from Dryad and Zenodo repositories according to two criteria: (1) used in the ecology/biodiversity domain and (2) have an API, allowing their automatic retrieval. Because Zenodo now hosts a preservation copy of Dryad datasets it anables the retrieval of datasets from both repositories from one single API. We built function interact with a corresponding API, iterating through search queries to determine if all keywords within a query are found within the repository page, including the title, abstract, and metadata. Subsequently, specific information is extracted from each record, such as title and keywords, and stored in a structured format. The queries, executed in December 2022, were formulated using Boolean "and" operators between keywords (Fig. 2). Additionally, the search utilized a Zenodo filter for publications of resource type "dataset".

98	Dataset annotation
99	
200	We followed pre-established annotation guidelines for each datasetse guidelines
201	encompassed all variables of interest and criteria for assigning feature categories (Table 1; refer
202	to the explanations below, and consult the complete annotated dataset in the Supplementary
203	Materials).
204	
205	Dataset relevance
206	
207	Datasets were categorized as "High," "Medium," "Low," or "Negligible" in terms of relevance.
208	Our classification system was founded on different criteria, which we divided into two groups.
209	The first group, termed Main Classifiers, are thought to capture universally key features of
210	biodiversity data. These encompass data type, temporal and spatial extent, and data size. This
211	categorization was informed by the literature on Essential Biodiversity Variables (EBV
212	significance of temporal and spatial dimensions. For example, temporal duration was categorized
213	as follows: <3 years as Low, 3 to 10 years as Moderate, and >10 years as High (as detailed in
214	Table S1). "High" relevance datasets typically featured extensive data sizes, highly relevant data
215	types (e.g., abundance), and substantial spatial or temporal scales. "Moderate" relevance datasets
216	exhibited either large data sizes or highly relevant data types, combined with low to moderate
217	temporal and spatial extents or vice versa, or displayed moderate characteristics across all main
218	classifiers. "Low" relevance datasets were characterized by moderate data sizes and very short
219	temporal and spatial scales or vice versa, or held low ratings across all main classifiers.
220	"Negligible" datasets contained no valuable information generally for biodiversity nor for the
221	ATLAS database (Table 1).
222	
223	The second group encompassed Modulators- ures that, while not as critical as Main
224	Classifiers, also inform about the importance of the data. These can include aspects at a more
225	regional scale, such as a first record for a given taxa in a region, or data from undersampled
226	areas. In the context of Quebec biodiversity monitoring strategies, data from northern regions is
227	prioritized as these are largely unstudied areas, and therefore a modulator that we introduce is the
228	sampling bias north-south Quebec. This illustrates that modulators can accommodate needs of

229	specific databases. Modulators influence the evaluation of datasets by slightly altering the
230	relevance category assigned based on Main Classifiers. Modulators had the capacity to shift the
231	category by one level, for instance, a dataset assigned "Low" relevance that contains data from
232	northern regions of Quebec could change to "Moderate" (Table 2).
233	
234	Dataset features
235	
236	We manually identified dataset features essential for evaluating data type categories,
237	spatiotemporal extent, taxon numbers and identities, and other specific attributes (Table 1). Data
238	type categories were assigned following the EBV data type classification. Notably, we marked
239	instances when data were time series, as these held unique significance.
240	
241	Features could be found in either the abstract or additional text within the repository page
242	(referred to as repository text), the source publication text (i.e., the article), or within the dataset
243	itself. We made these distinctions because the location could influence the feasibility of
244	automated retrieval. To achieve this, we conducted manual searches for features and recorded
245	their locations. It is important to note that features might occasionally be intertwined with
246	content unrelated to the data, a situation particularly prevalent in references to EBV data
247	categories or synonyms (see Table S2). For instance, the term "abundance" might appear in texts
248	referring to species abundances or unrelated non-biological content. Therefore, we assessed the
249	location of features referring to EBV data categories by quantifying their frequency in titles or
250	abstracts using the "str_detect" function from the "stringr" R package.
251	
252	Geospatial data within the datasets were presented in various forms, ranging from highly detailed
253	to less detailed. We classified this information into the following categories, ranked from more to
254	less detailed: sample, site, or range coordinates, species distribution models (SDMs; thereafter
255	"distribution"), geographic features (e.g., Mont Mégantic), administrative units, maps, and site
256	IDs (where sampling sites were identified, but precise locations were known only to the authors).
257	
258	Extension to scientific articles
259	

260	We expanded our dataset retrieval beyond repositories to include articles sourced from Semantic
261	Scholar, covering the period from 1980 to 2022. To ensure a manageable analysis, we limited the
262	retrieved publications to a maximum of 50 positives (top 50 found publications). Due to potential
263	API request limitations, some queries retrieved more publications than others, with an average of
264	23 publications per query. Subsequently, we assessed the relevance of the datasets and
265	publication years in the same manner as with repositories, facilitating comparisons between these
266	two sources. Our approach generates a random sampling among queries resulting in uneven
267	numbers, like those retrieved from repositories. This is optimal for our objectives as we are
268	interested in comparing temporal depth and the location of information, while broadly assessing
269	their performance for relevance. For a more stringent comparison, standardizing the sampling
270	numbers among queries and conducting statistical tests for comparisons would be necessary.
271	
272	Scientific articles may not necessarily reference a repository for presenting their data, especially
273	older articles. Instead, data may be embedded in tables within the article text or included in the
274	appendix. Recognizing the prevalence of datasets presented in this manner is vital for devising
275	future strategies for automated retrieval. Consequently, we noted the location of each dataset
276	within retrieved articles.
277	
278	Moreover, articles may not always present their own data but may use data from other sources,
279	necessitating reference. This additional information can be invaluable for identifying other
280	sources of relevant datasets. To gauge the extent to which we retrieved articles that referred to
281	pertinent datasets, we noted instances where articles used data from other dataset sources,
282	particularly those of high relevance.
283	
284	Evaluation
285	
286	Queries
287	
288	We analyzed the performance of each query by noting the amount of retrieved, not found, and
289	not accessible datasets and their relevance categories. We computed an F-score for each query
290	calculating a precision and recall metric as follows:

291	$F \ score = 2 \cdot \frac{Precision \cdot Recall}{Precision + Recall}$
292	where:
293	$Precision = rac{True\ Positive}{True\ Positive + False\ positive}$ $Recall = rac{True\ Positive}{True\ Positive + True\ negative}$
294	Positive refers to those datasets assigned a high or moderate relevance, and negative to low or
295	negligible relevance.
296	
297	Features and accessibility
298	
299	Our assessment encompassed both the content and accessibility of datasets. To gauge the
300	spatiotemporal extent and the representation of Essential Biodiversity Variable (EBV) categories
301	within the datasets, we conducted feature frequency analyses. In terms of spatial extent, we
302	quantified the frequencies of datasets falling within the low (< 5,000 km²), moderate (5,000-
303	15,000 km²), and high (>15,000 km²) spatial range categories. For datasets containing both
304	temporal and spatial information, we conducted visual inspections to discern the alignment
305	between dataset duration, spatial range, and their assigned relevance categories.
306	
307	In parallel, we assessed the accessibility of features, a crucial factor for automated retrieval. To
308	this end, we tallied the occurrences of feature locations within the datasets, distinguishing
309	between repository text, articles, and dataset contents, for dataset type, temporal, spatial, and
310	taxon features. Additionally, we cataloged the frequency of occurrences for each geospatial
311	information category to gain insights into the level of detail provided in this regard.
242	

Semantic scholar - repositories comparison

We conducted a comprehensive comparison between Semantic Scholar and the repositories, examining various aspects. This entailed evaluating the relevance, number, and accessibility of datasets obtained from both sources. To delve deeper into the temporal dimension, we quantified the frequencies of publication years for the datasets.

319	
320	Results
321	
322	Datasets annotation evaluation
323	Datasets annotation evaluation
324	Out of the initial 161 datasets retrieved through our queries, 55 were subsequently excluded for
325	various reasons: 37 due to incorrect locations, 5 categorized as laboratory studies, and 13 for
326	miscellaneous reasons. Notably, many datasets with incorrect locations resulted from the
327	matching of the keyword "Quebec" with the affiliations of the authors.
328	
329	The classification based on relevance yielded 90 relevant datasets categorized as either highly,
330	moderately, or low, which we will refer to as "relevant datasets": 20 datasets (18%) categorized
331	as highly relevant, 33 (31%) as moderately relevant, 37 (35%) as having low relevance, and 16
332	(15%) as negligible in relevance.
333	
334	Queries
335	
336	The most simple query, "species", is the one showing the highest performance (Fcore = 0.33),
337	followed by "population + species" (Fscore = 0.23) and "sites + species" (Fscore = 0.17).
338	"Occurrence + species" was the query with the highest precision (0.44) (Fig. 2). The mean
339	overlap between queries was 11% (Fig. S1).
340	
341	Features
342	
343	Among the relevant datasets, presence-only data emerged as the most common EBV data
344	category, encompassing 30 publications (29%), followed by genetic data with 27 (26%) and
345	abundance with 26 (25%). In contrast, data from species distribution models (SDMs), referred to
346	as "distribution" data, was the least common, featured in only 3 publications (3%) (Fig. 3C). The
347	temporal ranges of these datasets span from the 1930s to the present, although the majority fall

348	within the last two decades (Fig. 3A). Outliers include Favret et al., 2020, offering data on
349	Odonata specimens from various entomological collections dating back to 1875, and
350	Schumacher et al., 2022, providing pollen records for butternut spanning from 20,000 years ago
351	to the present. On average, the temporal duration was 11.1 years, ranging from less than 1 year to
352	50 years (Fig. 3B). Short-term studies, less than 1 year in duration, constituted the most common
353	category, accounting for 12% of the datasets. A total of 12 datasets (13%) contained time series
354	data (Fig. 3A). Spatial extents varied widely, ranging from 0.2 to 24.706.834 km², with a mean of
355	$1,\!388,\!738~km^2\!\!:26~datasets$ (29%) covered less than $5,\!000~km^2,9$ (10%) fell between $5,\!000~and$
356	15,000 km², and 30 (34%) exceeded 15,000 km² (Fig. 3BD).
357	
358	The datasets cover a diverse array of taxa, spanning 13 distinct classes (not counting those within
359	zooplankton). Among these, 68 (76%) datasets were associated with one to ten species, with
360	$mammals\ (21),\ fish\ (13),\ birds\ (11),\ and\ angiosperms\ (10)\ being\ the\ most\ frequently\ represented.$
361	In contrast, 30 (34%) datasets pertained to communities comprising 10 to 180 species, with an
362	average of 49 species per dataset. Notably, datasets of this nature were more prevalent for plants
363	(12 datasets) and insects (7 datasets) (Fig. 3E).
364	
365	Features accessibility
366	
367	Within the 90 relevant datasets, at least one comprehensive metadata (features) belonging to
368	Main Classifiers were automatically accessible for 88 of them (98%), typically within the
369	repository page's abstract or additional text. These encompassed explicit mentions of temporal
370	range in 25 publications (27%), temporal duration in 14 publications (15%), and spatial range in
371	7 publications (8%) (Fig. 4A). For species-level studies (involving 1 to 10 species), species
372	names were consistently present in the title or abstract. Additionally, dataset types or synonyms
373	were included in the title for 24 of them (27%) and in the abstract for 80 (89%).
374	
375	Only one publication contained all these features together in the repository text. Furthermore, a
376	total of 5 (6%) did not explicitly report the temporal range, 31 (34%) the spatial range, and 62
377	(69%) the data duration in any location (repository text, source article, appendix, or dataset) (Fig.
378	4A).

379	
380	Geospatial information, essential for biodiversity monitoring, was unavailable within the
381	repository text in 68 publications (76%), and no location data, including the dataset, was
382	provided for 33 (37%) of them (Fig. 4B). Site IDs were given in the dataset of 24 (27%)
383	publications, but in most cases, it required consulting a map in the article, with no specific
384	coordinates, to interpret them.
385	
386	Semantic scholar
387	
388	Our queries yielded 254 datasets from Semantic Scholar without overlap, of which 60 were
389	excluded due to incorrect locations (33) and miscellaneous reasons (27). Classification by
390	relevance resulted in 3 (2%) high, 25 (13%) moderate, and 41 low (21%), and 11 (6%) negligible
391	relevant datasets, alongside 28 (15%) inaccessible datasets and 85 (44%) publications without
392	datasets (Fig. 5A). A comparison of publication years between Dryad and Zenodo versus
393	Semantic Scholar revealed that retrieving from repositories yielded datasets published from 2010
394	onwards, while retrieving from Semantic Scholar included older datasets dating back to 1981
395	(Fig. 5 <i>B</i>).
396	
397	Furthermore, while one highly relevant dataset, the Neotoma Paleoecology Database
398	(www.neotomadb.org), was referenced in publications extracted from repositories, we identified
399	a total of 6 highly relevant datasets referenced in articles retrieved from Semantic Scholar. These
400	datasets originated from sources such as the Canadian National Forest Inventory, the Canadian
401	Wildlife Service, and the Québec Ministry of Environment and Wildlife.
400	Discussion
402	Discussion
403	
404	Our findings underscore the significant value of automating etrieval of biodiversity data
405	from repositories, which can substantially augment the volume of pertinent information within
406	databases. We have introduced a classification system, designed to serve as a logical framework
407	for automated algorithms, expediting the evaluation process by categorizing data based on its
408	relevance. This system draws upon globally applicable biodiversity classifiers, making it

409	adaptable to various data types, while also allowing for the incorporation of dataset-specific
410	nuances. We publish our high quality-annotated dataset alongside this paper, with the aim of
411	providing a benchmark for new classifiers.
412	
413	Assigning relevance categories, whether through our system or alternative approaches,
414	necessitates a meticulous analysis of features (i.e. metadata) within the publication text. Our
415	study highlights that this task poses a considerable challenge for automated processes, often
416	stemming from the absence or scarcity of these features and their sparsity across different
417	sections of the publication (repository page, dataset, article, supplementary materials). This
418	challenge is particularly pronounced in the case of spatio-temporal features, which are pivotal for
419	guiding relevance assessments. Furthermore, our study demonstrates that repositories present a
420	valuable source of readily accessible, publicly available data, surpassing scientific articles in
421	terms of speed and efficiency for data retrieval. However, we also emphasize the significance of
422	designing automated processes for data extraction from articles. These offer substantial temporal
423	depth of publications, and serve as gateways that can guide researchers to other pertinent and
424	valuable data sources.
425	
426	By employing simple search queries consisting of one to three words, we achieved the retrieval
427	of a substantial number of pertinent datasets, a notable percentage of which fell within the highly
428	relevant category. Remarkably, a high percentage of datasets contained genetic data, an area
429	where greater collection efforts have been advocated (Hoban et al., 2021; Hoban et al., 2022).
430	Moreover, following presence-only data, abundance data was the most frequently encountered,
431	being information that can aid in constructing time-series and elucidating population trends.
432	These are promising findings for the repositories' potential as pivotal resources for automating
433	the retrieval of biodiversity data. Notably, the growing trend among scientific journals to
434	mandate the deposition of data used in publications into online repositories reflects a progressive
435	move toward fostering openness in science. Consequently, repositories are anticipated to witness
436	exponential growth, encompassing an ever-expanding volume of published data.
437	
438	We have devised a comprehensive classification system aimed at assigning relevance categories
439	to datasets, grounded in a set of criteria. We advocate for the adoption of similar schemes by

440	automated dataset detection algorithms to aid in prioritizing datasets and maintaining pace with					
441	the relentless surge in published data. A critical aspect of our system involves the distinction					
442	between criteria as either Main Classifiers or Modulators: the former encompass fundamental,					
443	overarching aspects pertinent to biodiversity data on a global scale, while the latter encompass					
444	secondary criteria that retain significance, potentially at regional scales. This distinction has					
445	enabled us to underscore the vital importance of data concerning plants and animals in boreal					
446	(e.g. Lait et al., 2013; Thiffault et al., 2016; Martin et al., 2022) and arctic ecosystems (e.g.					
447	Leblond et al., 2017; Lamarre et al., 2018; Chagnon et al., 2021), which face heightened					
448	vulnerability and remain underexplored in Quebec, along with the inclusion of new species					
449	(Anderson et al., 2016).					
450						
451	Nevertheless, it is worth noting that the development of a universally accepted and standardized					
452	classification system for dataset relevance could itself be a substantial undertaking, warranting					
453	collaborative efforts from a multitude of experts. Such a system, once established, could serve as					
454	a common benchmark for dataset retrieval projects and should be periodically revisited and					
455	incorporated into the Essential Biodiversity Variables framework to ensure its enduring					
456	relevance and utility.					
457						
458	Our assessment, however, has revealed a significant challenge in accessing the metadata					
459	essential for automated algorithms to assign categories of relevance to publications. This					
460	challenge stems from the absence and dispersion of critical features throughout various sections					
461	of the publication, making it particularly problematic for detecting Main Classifiers related to					
462	temporal and spatial extents. In the majority of datasets we examined, these details were either					
463	entirely missing or exclusively located within the article text, neglecting inclusion in the abstract					
464	or repository page. Search algorithms should then be engineered to thoroughly scan all parts of a					
465	publication, encompassing the dataset itself, to capture these essential features.					
466						
467	This underscores the urgency of developing general and standardized frameworks within					
468	publication guidelines to supply the requisite metadata for automatic detection and extraction of					
469	information. Presently, various global frameworks and initiatives, such as the FAIR Data					
470	Principles, GBIF guidelines and standards, and Biodiversity Data Journal recommendations,					

471	advocate for accompanying data with comprehensive metadata, encompassing methodological					
472	details, temporal scope, geographic coverage, and more. However, the manner in which this					
473	information is presented poorly reflects information needs and is the biggest obstacle in					
474	retrieving relevant biodiversity data (Jones et al., 2019; Löffler et al., 2021).					
475						
476	For the establishment of an automated framework for biodiversity data retrieval, it becomes					
477	imperative to take an additional stride. Contemporary formats of online publications should					
478	incorporate structures that facilitate access for automated algorithms to evaluate data relevance					
479	based on standardized global criteria. This can be achieved by incorporating dedicated sections					
480	within publications, both in online repositories and articles, where authors are required to					
481	provide a predefined set of metadata, including the Main Classifiers. Implementing such					
482	straightforward updates would effectively alleviate the primary challenges we encountered					
483	regarding the identification of features necessary for assessing data relevance.					
484						
485	Our findings highlight that repositories like Dryad and Zenodo, as well as scientific literature					
486	search engines such as Semantic Scholar, offer distinct advantages and disadvantages when it					
487	comes to automated data retrieval. Sources of scientific literature may exhibit a relatively high					
488	percentage of publications that lack data or render it inaccessible as it was observed for Semantic					
489	Scholar, which can potentially pose challenges when retrieving datasets and assessing their					
490	relevance. Conversely, repositories offer readily accessible datasets and prove to be highly					
491	efficient sources for data retrieval. However, repositories may exhibit a limited temporal depth of					
492	datasets, typically spanning only the past decade, given their contemporary nature. In contrast,					
493	sources of scientific literature have the potential to provide a more extensive historical dataset					
494	archive. Moreover, articles may make reference to and cite other data sources, such as the six					
495	distinct highly relevant databases we found referenced in retrieved articles, thereby facilitating					
496	the identification of unknown relevant datasets. These substantial differences underscore the					
497	importance of conducting data retrieval from both types of sources to ensure a comprehensive					
498	approach.					
499						
500	In the realm of automated algorithm development, manual evaluations, such as the one					
501	conducted in this study (publicly available; see Data Availability Statement), will remain					

invaluable. They serve both as training data for automated algorithms to learn identifying
relevant datasets, and as a crucial benchmark that enables the assessment of automated processes
by drawing comparisons with the results from manual evaluations. Furthermore, it's imperative
to acknowledge the need for specialized strategies when dealing with diverse data sources. For
instance, one we did not assess here are the increasingly digitized collections of museums, which
might require specific automated search and evaluation approaches. An exciting avenue for
future research lies in these sources, which harbor invaluable historical data often absent from
contemporary global information systems or databases (Graham et al., 2004; Guralnick et al.,
2007; Page et al., 2015; Wen et al., 2015).
While the development of literature classification algorithms is advancing vertiginously,
especially with AI systems (see Google Gemini, www.deepmind.google), it is imperative to
recognize that the challenges surrounding information structure and metadata organization within
scientific literature persist regardless of technological evolution. The effectiveness of automated
systems relies not only on the sophistication of algorithms but also on the clarity and consistency
of metadata standards, the accessibility of data repositories, and the interoperability of databases.
Our work not only identifies significant challenges for forthcoming automated algorithms tasked
with dataset retrieval for biodiversity but also underscores the relatively surmountable nature of
these challenges. These foundational issues transcend the current state of AI technology and are
central to ensuring the long-term viability and utility of automated systems for biodiversity data
retrieval. As such, efforts to address these structural challenges as well as standardized schemes
for prioritization such as the one we proposed, must remain a priority alongside advancements in
AI capabilities. To move forward effectively, prioritizing the establishment of global frameworks
and guidelines that streamline the workflow for automated data retrieval systems is essential.
Simultaneously, raising awareness among scientists about the importance of publishing data in
formats conducive to automatic retrieval and evaluation holds great promise. These initiatives
carry the transformative potential to reshape our data acquisition capabilities profoundly, greatly
bolstering our capacity for biodiversity monitoring and informed decision-making, with far-

Acknowledgments

reaching positive ecological implications.

533							
534	We thank Vincent Beauregard for his feedback on the algorithms and the ATLAS database.						
535							
536	References						
537	Anderson, Frances; Lendemer, James C. (2016). Data from: Aspicilia bicensis (Megasporaceae),						
538	a new sterile, pustulose lichen from eastern Canada [Dataset]. Dryad.						
539	https://doi.org/10.16/0007-2745-119.1.008						
540	Castro, A., Pinto, J., Reino, L., Pipek, P., & Capinha, C. (2024). Large language models						
541	overcome the challenges of unstructured text data in ecology. bioRxiv, 2024-01.						
542	Chagnon, Catherine; Simard, Martin; Boudreau, Stéphane (2021). Patterns and determinants of						
543	lichen abundance and diversity across a subarctic to arctic latitudinal gradient [Dataset]. Dryad.						
544	https://doi.org/10.5061/dryad.9w0vt4bg8						
545	Collen, B., & Nicholson, E. (2014). Taking the measure of change. Science, 346(6206), 166–						
546	167. http://dx.doi.org/10.1126/science.1255772						
547	Conde, D. A., Staerk, J., Colchero, F., da Silva, R., Schöley, J., Baden, H. M., & Vaupel, J. W.						
548	(2019). Data gaps and opportunities for comparative and conservation biology. Proceedings of						
549	the National Academy of Sciences, 116(19), 9658-9664.						
550	http://dx.doi.org/10.1073/pnas.1816367116						
551	Convention on Biological Diversity (CBD). Kunming-Montreal Global Biodiversity Framework;						
552	United Nations Environment Programme: Montreal, QC, Canada, 2023.						
553	Cornford, R., Deinet, S., De Palma, A., Hill, S. L., McRae, L., Pettit, B., & Freeman, R.						
554	(2021). Fast, scalable, and automated identification of articles for biodiversity and						
555	macroecological datasets. Global Ecology and Biogeography, 30(1), 339-347.						
556	http://dx.doi.org/10.1111/geb.13219						

- 557 Dornelas, M., Antao, L. H., Moyes, F., Bates, A. E., Magurran, A. E., Adam, D., ... & Murphy,
- 558 G. (2018). BioTIME: A database of biodiversity time series for the Anthropocene. Global
- *Ecology and Biogeography*, 27(7), 760-786. http://dx.doi.org/10.1111/geb.12729
- 560 Environment Canada (2009). Canada's 4th National Report to the United Nations Convention on
- 561 Biological Diversity.
- Farrell, M. J., Brierley, L., Willoughby, A., Yates, A., & Mideo, N. (2022). Past and future uses
- of text mining in ecology and evolution. *Proceedings of the Royal Society B*, 289(1975),
- 564 20212721. http://dx.doi.org/10.1098/rspb.2021.2721
- Farrell, M. J., Le Guillarme, N., Brierley, L., Hunter, B., Scheepens, D., Willoughby, A., ... &
- Mideo, N. (2024). The changing landscape of text mining-a review of approaches for ecology
- and evolution. *EcoEvorxiv*. https://doi.org/10.32942/X2VG87
- Global Biodiversity Information Facility (GBIF). https://www.gbif.org
- Graham, C.H., Ferrier, S., Huettman, F., Moritz, C. and Peterson, A.T. (2004). New
- 570 developments in museum-based informatics and applications in biodiversity analysis. *Trends*
- 571 *Ecol. Evol.*, 19, 497–503. http://dx.doi.org/10.1016/j.tree.2004.07.006
- 572 Guralnick, R. P., Hill, A. W., & Lane, M. (2007). Towards a collaborative, global infrastructure
- for biodiversity assessment. Ecology letters, 10(8), 663-672. http://dx.doi.org/10.1111/j.1461-
- 574 0248.2007.01063.x
- 575 Guralnick, R., & Hill, A. (2009). Biodiversity informatics: automated approaches for
- documenting global biodiversity patterns and processes. *Bioinformatics*, 25(4), 421-428.
- 577 http://dx.doi.org/10.1093/bioinformatics/btn659
- Hampton, S. E., Strasser, C. A., Tewksbury, J. J., Gram, W. K., Budden, A. E., Batcheller, A. L.,
- 579 ... & Porter, J. H. (2013). Big data and the future of ecology. Frontiers in Ecology and the
- 580 Environment, 11(3), 156-162. http://dx.doi.org/10.1890/120103

- Heberling, J. M., Prather, L. A., & Tonsor, S. J. (2019). The changing uses of herbarium data in
- an era of global change: an overview using automated content analysis. *BioScience*, 69(10), 812-
- 583 822. http://dx.doi.org/10.1093/biosci/biz094
- Heberling, J. M., Miller, J. T., Noesgaard, D., Weingart, S. B., & Schigel, D. (2021). Data
- 585 integration enables global biodiversity synthesis. *Proceedings of the National Academy of*
- 586 Sciences, 118(6), e2018093118. http://dx.doi.org/10.1073/pnas.2018093118
- Hendriks, I. E., & Duarte, C. M. (2008). Allocation of effort and imbalances in biodiversity
- research. Journal of Experimental Marine Biology and Ecology, 360(1), 15-20.
- 589 http://dx.doi.org/10.1016/j.jembe.2008.03.004
- Hoban, S., Bruford, M. W., Funk, W. C., Galbusera, P., Griffith, M. P., Grueber, C. E., ... &
- Vernesi, C. (2021). Global commitments to conserving and monitoring genetic diversity are now
- necessary and feasible. *Bioscience*, 71(9), 964-976. http://dx.doi.org/10.1093/biosci/biab054
- Hoban, S., Archer, F. I., Bertola, L. D., Bragg, J. G., Breed, M. F., Bruford, M. W., ... & Hunter,
- M. E. (2022). Global genetic diversity status and trends: towards a suite of Essential Biodiversity
- 595 Variables (EBVs) for genetic composition. *Biological Reviews*, 97(4), 1511-1538.
- 596 http://dx.doi.org/10.1111/brv.12852
- 597 Hortal, J., de Bello, F., Diniz-Filho, J. A. F., Lewinsohn, T. M., Lobo, J. M., & Ladle, R. J.
- 598 (2015). Seven shortfalls that beset large-scale knowledge of biodiversity. *Annual Review of*
- 599 Ecology, Evolution, and Systematics, 46, 523-549. http://dx.doi.org/10.1146/annurev-ecolsys-
- 600 112414-054400
- 601 IPBES. (2019). Global assessment report on biodiversity and ecosystem services of the
- Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (ed. by E. S.
- Brondizio, J. Settele, S. Díaz and H. T. Ngo). IPBES secretariat, Bonn.
- Jetz, W., McPherson, J. M., & Guralnick, R. P. (2012). Integrating biodiversity distribution
- knowledge: toward a global map of life. Trends in ecology & evolution, 27(3), 151-159.
- 606 http://dx.doi.org/10.1016/j.tree.2011.09.007

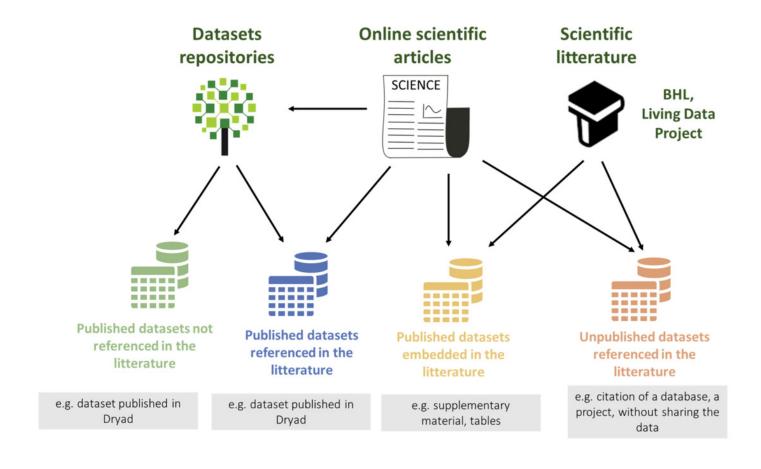
- 607 Jetz, W., McGeoch, M. A., Guralnick, R., Ferrier, S., Beck, J., Costello, M. J., ... & Turak, E.
- 608 (2019). Essential biodiversity variables for mapping and monitoring species populations. *Nature*
- 609 ecology & evolution, 3(4), 539-551. http://dx.doi.org/10.1038/s41559-019-0826-1
- Jones, M. B., O'Brien, M., Mecum, B., Boettiger, C., Schildhauer, M., Maier, M., ... & Chong, S.
- 611 (2019). Ecological metadata language version 2.2. 0. KNB Data Repository.
- 612 doi:10.5063/F11834T2
- Kelling S, Hochachka WM, Fink D, Riedewald M, Caruana R, Ballard G, et al. Data-intensive
- 614 Science. A New Paradigm for Biodiversity Studies. *BioScience*. 2009; 59: 613–620.
- 615 http://dx.doi.org/10.1525/bio.2009.59.7.12
- 616 Kopperud, B. T., Lidgard, S., & Liow, L. H. (2019). Text-mined fossil biodiversity dynamics
- 617 using machine learning. *Proceedings of the Royal Society B*, 286(1901), 20190022.
- 618 <u>http://dx.doi.org/10.1098/rspb.2019.0022</u>
- Kulkarni, R., & Di Minin, E. (2021). Automated retrieval of information on threatened species
- from online sources using machine learning. Methods in Ecology and Evolution, 12(7), 1226-
- 621 1239. http://dx.doi.org/10.1111/2041-210X.13608
- 622 Lait, Linda A.; Burg, Theresa M. (2013). Data from: When east meets west: population structure
- of a high-latitude resident species, the boreal chickadee (*Poecile hudsonicus*) [Dataset]. *Dryad*.
- 624 https://doi.org/10.5061/dryad.82hs7
- 625 Lamarre, Jean-François et al. (2018). Data from: Predator-mediated negative effects of
- overabundant snow geese on arctic-nesting shorebirds [Dataset]. *Dryad*.
- 627 https://doi.org/10.5061/dryad.796t8
- 628 Leadley, P., Gonzalez, A., Obura, D., Krug, C. B., Londoño-Murcia, M. C., Millette, K. L., ... &
- 629 Xu, J. (2022). Achieving global biodiversity goals by 2050 requires urgent and integrated
- 630 actions. One Earth, 5(6), 597-603. http://dx.doi.org/10.1016/j.oneear.2022.05.009
- 631 Leblond, Mathieu; St-Laurent, Martin-Hugues; Côté, Steeve D. (2017). Data from: Caribou,
- water, and ice fine-scale movements of a migratory arctic ungulate in the context of climate
- change [Dataset]. Dryad. https://doi.org/10.5061/dryad.4k275

- Löffler, F., Wesp, V., König-Ries, B., & Klan, F. (2021). Dataset search in biodiversity research:
- Do metadata in data repositories reflect scholarly information needs?. *PloS one*, 16(3),
- 636 e0246099. http://dx.doi.org/10.1371/journal.pone.0246099
- 637 Maiorano, L., Montemaggiori, A., Ficetola, G. F., O'connor, L., & Thuiller, W. (2020).
- 638 TETRA-EU 1.0: a species-level trophic metaweb of European tetrapods. Global Ecology and
- 639 *Biogeography*, 29(9), 1452-1457. http://dx.doi.org/10.1111/geb.13138
- 640 Martin, M., Leduc, A., Fenton, N. J., Montoro Girona, M., Bergeron, Y., & Valeria, O. (2022).
- 641 Irregular forest structures originating after fire: An opportunity to promote alternatives to
- even-aged management in boreal forests. *Journal of Applied Ecology*, 59(7), 1792-1803.
- 643 http://dx.doi.org/10.1111/1365-2664.14186
- McCallen, E., Knott, J., Nunez-Mir, G., Taylor, B., Jo, I., & Fei, S. (2019). Trends in ecology:
- shifts in ecological research themes over the past four decades. Frontiers in Ecology and the
- 646 Environment, 17(2), 109-116. http://dx.doi.org/10.1002/fee.1993
- 647 Millenium Ecosystem Assessment Ecosystems and Human Well-being. World Resources
- 648 Insitute, 2005
- Nunez-Mir, G. C., Iannone III, B. V., Pijanowski, B. C., Kong, N., & Fei, S. (2016). Automated
- 650 content analysis: addressing the big literature challenge in ecology and evolution. *Methods in*
- 651 *Ecology and Evolution*, 7(11), 1262-1272. http://dx.doi.org/10.1111/2041-210X.12602
- 652 Newbold, T., Hudson, L. N., Hill, S. L., Contu, S., Lysenko, I., Senior, R. A., ... & Purvis, A.
- 653 (2015). Global effects of land use on local terrestrial biodiversity. *Nature*, 520(7545), 45-50.
- 654 http://dx.doi.org/10.1038/nature14324
- National Center for Biotechnology Information (NCBI). https://www.ncbi.nlm.nih.gov/
- Ocean Biodiversity Information System (OBIS). https://obis.org/
- Page, L. M., MacFadden, B. J., Fortes, J. A., Soltis, P. S., & Riccardi, G. (2015). Digitization of
- 658 biodiversity collections reveals biggest data on biodiversity. *BioScience*, 65(9), 841-842.
- 659 http://dx.doi.org/10.1093/biosci/biv104

- Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts
- across natural systems. *Nature*, 421(6918), 37-42. http://dx.doi.org/10.1038/nature01286
- Pereira, H. M., Ferrier, S., Walters, M., Geller, G. N., Jongman, R. H., Scholes, R. J., ... &
- Wegmann, M. (2013). Essential biodiversity variables. *Science*, 339(6117), 277-278.
- 664 http://dx.doi.org/10.1126/science.1229931
- Pyšek, P., Hulme, P. E., Simberloff, D., Bacher, S., Blackburn, T. M., Carlton, J. T., ... &
- Richardson, D. M. (2020). Scientists' warning on invasive alien species. *Biological Reviews*,
- 95(6), 1511-1534. http://dx.doi.org/10.1111/brv.12627
- 668 Schmeller, D. S., Weatherdon, L. V., Loyau, A., Bondeau, A., Brotons, L., Brummitt, N., ... &
- Regan, E. C. (2018). A suite of essential biodiversity variables for detecting critical biodiversity
- 670 change. *Biological Reviews*, 93(1), 55-71. http://dx.doi.org/10.1111/brv.12332
- 671 Stork, H., & Astrin, J. J. (2014). Trends in biodiversity research—a bibliometric assessment.
- 672 *Open Journal of Ecology*, 4(07), 354. http://dx.doi.org/10.4236/oje.2014.47033
- 673 Thiffault, Nelson; Grondin, Pierre; Noël, Jean; Poirier, Véronique (2016). Data from: Ecological
- 674 gradients driving the distribution of four Ericaceae in boreal Quebec, Canada [Dataset]. *Dryad*.
- 675 https://doi.org/10.5061/dryad.4767v
- Vihervaara, P., Auvinen, A. P., Mononen, L., Törmä, M., Ahlroth, P., Anttila, S., ... & Virkkala,
- R. (2017). How essential biodiversity variables and remote sensing can help national biodiversity
- 678 monitoring. Global Ecology and Conservation, 10, 43-59.
- 679 http://dx.doi.org/10.1016/j.gecco.2017.01.007
- 680 Wen, J., Ickert-Bond, S. M., Appelhans, M. S., Dorr, L. J., & Funk, V. A. (2015).
- 681 Collections-based systematics: Opportunities and outlook for 2050. Journal of Systematics and
- 682 Evolution, 53(6), 477-488. http://dx.doi.org/10.1111/jse.12181
- 683 Wen, J., Harris, A. J., Ickert-Bond, S. M., Dikow, R., Wurdack, K., & Zimmer, E. A. (2017).
- Developing integrative systematics in the informatics and genomic era, and calling for a global

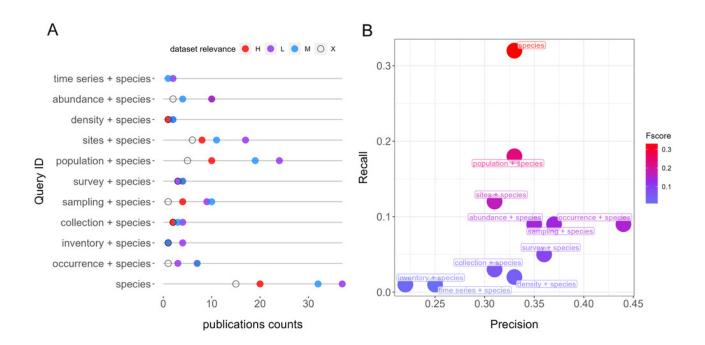
685	Biodiversity Cyberbank. Journal of Systematics and Evolution, 55(4), 308-321.					
686	http://dx.doi.org/10.1111/jse.12270					
687	Wieczorek, J., Bloom, D., Guralnick, R., Blum, S., Döring, M., Giovanni, R., & Vieglais, D.					
688	(2012). Darwin Core: an evolving community-developed biodiversity data standard. PloS one,					
689	7(1), e29715. http://dx.doi.org/10.1371/journal.pone.0029715					
690	WWF-Canada. 2020. Living Planet Report Canada: Wildlife At Risk. Currie J. Snider J. Giles F.					
691	World Wildlife Fund Canada. Toronto, Canada. DOI: 10.13140/RG.2.2.16556.49280					
692						
693	Data Accessibility Statement					
694	All the data and code is available on both Zenodo (https://doi.org/10.5281/zenodo.11288378)					
695	and Github (https://github.com/Alex-Fuster/automated_datset_retrieval.git).					
696						
697						
698						
699						
700						
701						
702						

Sources and availability of datasets relevant for biodiversity.



Queries performance retrieving relevant datasets from repositories (Dryad and Zenodo)

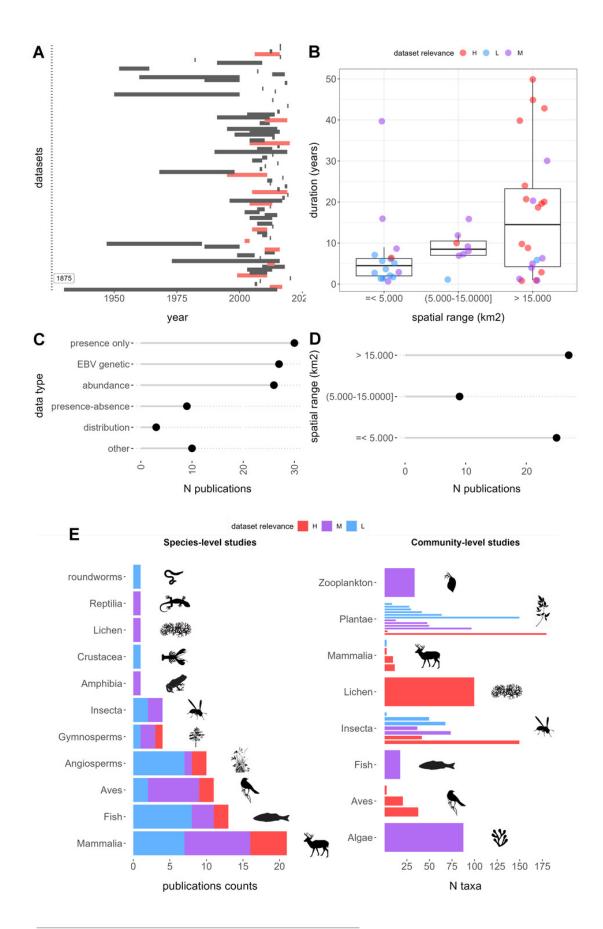
(A) Number of publications and counts of relevant categories per query. Colors indicate relevance categories: H (High), M (Moderate), L (Low), and X (Negligible). (B) F scores precision, and recall metrics for each query. All queries also account for the word "Quebec".



Features of retrieved datasets from repositories Dryad and Zenodo and results of the relevance evaluation.

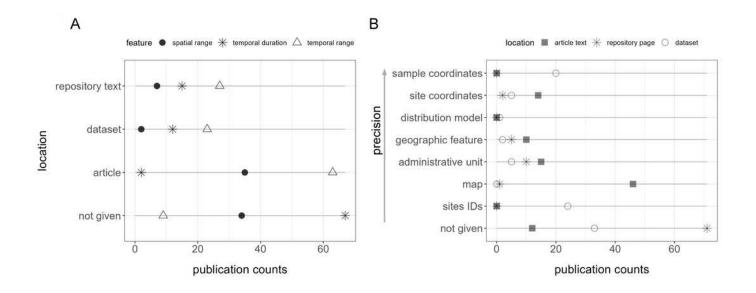
- (A) Temporal duration and ranges. Red range bars indicate datasets with time series data.

 The first dataset extends to 1875. Not showing outlier dataset from 20.000 ya to the present.
- (B) Duration, spatial rage, and relevance category. (C) Publication counts by EBV data types.
- (D) Spatial range counts in the low, medium, and high range categories, respectively. (E) Publication counts by taxa and relevance categories: the left panel shows species-level studies, which contain data for 1 to 10 species, whereas the right panel shows community-level studies with data for more than 10 species. Letters H, M, and L correspond to High, Moderate, and Low dataset relevance categories, respectively.



Location of features (i.e. metadata) in the publication spaces.

(A) Spatiotemporal features and (B) geospatial features.



Comparison between Semantic Scholar and repositories (Dryad and Zenodo).

(A) Relevance and accessibility of datasets. (B) Temporal depth of retrieved publications.

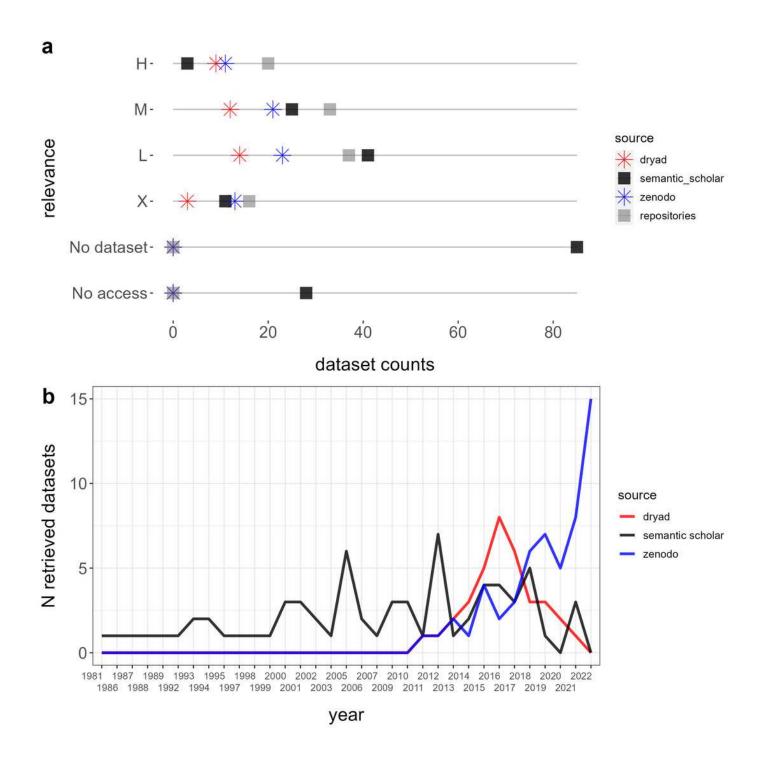


Table 1(on next page)

Manually evaluated features from retrieved datasets.

1	Feature	Type	Example		
	EBV data type	categorical	abundance		
	Geospatial information	continuous	sample coordinates		
	Spatial range	continuous	100.000 km2		
	Temporal range	string	from 1999 to 2008		
	Temporal duration	continuous	9 years		
	Taxons	string	black-legged tick		
			Ministère des Ressources		
	Referred dataset source	string	naturelles et des Forêts		
	Dataset location	categorical	repository		
	Dataset type location	categorical	abstract		
	Geospatial information				
	location	categorical	article text		
	Spatial range location	categorical	abstract		
	Temporal range location	categorical	dataset		
	Temporal duration location	categorical	article text		

Table 2(on next page)

Evaluation criteria used to assign the relevance category to the datasets.

First, the main classifiers determine whether the dataset relevance is "High", "Medium", "Low", or "Negligible" ("Relevance by Main Classifiers" column), and then Modulators can increase or decrease the relevance category by one (e.g. "Low" to "Medium" but not "Low" to "High"). The "Organization level" modulator takes into account whether the data is about individuals, populations, or species; the "Bias North-South" modulator is evaluated by establishing an arbitrary latitudinal threshold to separate northern from southern areas of Québec, with northern areas having higher relevance. In the example below, data on an endangered species may have relevance "Moderate" according to the main classifiers but its conservation status and priority location would increase it to "High".

Main Classifiers			Modulators						
Data type	Data size	Spatial	Temporal	Relevance by	Organization	Conservation	New regional	Bias North-	Relevance
		range	range	Main Classifiers	level	status	species	South Quebec	
Presence only	Moderate	Moderate	Low	Moderate	individual	EN	FALSE	North	High