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Aim. Effective management strategies for conserving biodiversity and mitigating the
impacts of Global Change rely on access to comprehensive and up-to-date biodiversity
data. However, manual search, retrieval, evaluation, and integration of this information
into databases presents a significant challenge to keep pace with the rapid influx of large
amounts of data, hindering its utility in contemporary decision-making processes. The
automation of these tasks through advanced algorithms holds immense potential to
revolutionize biodiversity monitoring. Innovation. In this study, we investigate the
potential for automating the retrieval and evaluation of biodiversity data from Dryad and
Zenodo repositories. We employ automated algorithms to identify potentially relevant
datasets and perform a manual assessment to gauge the feasibility of automatically
ranking their relevance. We have designed an evaluation system based on various criteria.
Additionally, we compare our results with those obtained from a scientific literature source,
using data from Semantic Scholar for reference. Our evaluation centers on the database
utilized by a national biodiversity monitoring system in Quebec, Canada. Main
conclusions. The algorithms retrieved 90 (56%) relevant datasets for our database,
showing the value of automated dataset search in repositories. Additionally, we find that
scientific publication sources offer broader temporal coverage and can serve as conduits
guiding researchers toward other valuable data sources. However, our manual evaluation
highlights a significant challenge to distinguish datasets by their relevance—scarcity and
non-uniform distribution of metadata, especially pertaining to spatial and temporal
extents. We present an evaluative framework based on predefined criteria that can be
adopted by automated algorithms for streamlined prioritization, and we make our
manually evaluated data publicly available, serving as a benchmark for improving
classification techniques. Finally, our study advocates for the implementation of metadata
standards tailored for automated retrieval systems by repositories and sources of scientific
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literature. This, coupled with the rapid evolution of classification algorithms, holds
transformative potential to advance in biodiversity monitoring and decisively steering the
course of well-informed decision-making processes.
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Abstract

Aim. Effective management strategies for conserving biodiversity and mitigating the impacts of
Global Change rely on access to comprehensive and up-to-date biodiversity data. However,
manual search, retrieval, evaluation, and integration of this information into databases presents a
significant challenge to keep pace with the rapid influx of large amounts of data, hindering its
utility in contemporary decision-making processes. The automation of these tasks through

advanced algorithms holds immense potential to revolutionize biodiversity monitoring.

Innovation. In this study, we investigate the potential for automating the retrieval and evaluation
of biodiversity data from Dryad and Zenodo repositories. We employ automated algorithms to
identify potentially relevant datasets and perform a manual assessment to gauge the feasibility of
automatically ranking their relevance. We have designed an evaluation system based on various
criteria. Additionally, we compare our results with those obtained from a scientific literature
source, using data from Semantic Scholar for reference. Our evaluation centers on the database

utilized by a national biodiversity monitoring system in Quebec, Canada.

Main conclusions. The algorithms retrieved 90 (56%) relevant datasets for our database,
showing the value of automated dataset search in repositories. Additionally, we find that
scientific publication sources offer broader temporal coverage and can serve as conduits guiding
researchers toward other valuable data sources. However, our manual evaluation highlights a
significant challenge to distinguish datasets by their relevance—scarcity and non-uniform
distribution of metadata, especially pertaining to spatial and temporal extents. We present an
evaluative framework based on predefined criteria that can be adopted by automated algorithms
for streamlined prioritization, and we make our manually evaluated data publicly available,
serving as a benchmark for improving classification techniques. Finally, our study advocates for
the implementation of metadata standards tailored for automated retrieval systems by
repositories and sources of scientific literature. This, coupled with the rapid evolution of
classification algorithms, holds transformative potential to advance in biodiversity monitoring

and decisively steering the course of well-informed decision-making processes.
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Introduction

Biodiversity is undergoing rapid and unprecedented transformation @ en by the relentless

forces of anthropogenic Global Change (Parmesan & Yohe, 2003; Millennium Ecosys
Assessment, 2005; Newbold et al., 2015; IPBES, 2019; Pysek et al., 2020). These cha E] ose a

= T

direct threat to the delicate balance of ecosystems and therefore multitude of species that inhabit
them, including humans. Recognizing the urgency of the situation, the recent fifteenth meeting of
the Conference of the Parties (COP 15) witnessed a landmark moment with the adoption of the
Kunming-Montreal Global Biodiversity Framework (GBF) (CBD, 2023). This ambitious
framework has set forth action-oriented global targets aimed at urgently bending the curve of

biodiversity loss by 2050 (Leadley et al., 2022).

Target 21 of the CBD 2023 underscores the critical importance of providing decision makers,
practitioners, and the public with access to comprehensive data, information, and knowledge.
This necessity arises because the pursuit of these conservation objectives, data from various
ecological disciplines and origins must be seamlessly integrated, spanning an extensive spectrum
of spatiotemporal scales (Kelling et al., 2009; Wieczorek et al., 2012; Hampton et al., 2013;
Heberling et al., 2021). Achieving this goal relies on two fundamental pillars. Firstly, a robust
global framework must be established to systematically collect, standardize, harmonize, and
provide timely data on the ever-changing landscape of biodiversity. The Group on Earth
Observations Biodiversity Observation Network (GEO BON) has played a pivotal role in this
regard by developing the concept of Essential Biodiversity Variables (EBVs) (Pereira et al.,
2013). These EBVs now serve as the cornerstone of monitoring programs worldwide, facilitating
the quantification of biodiversity changes across diverse ecosystems (Vihervaara et al., 2017;

Schmeller et al., 2018; Jetz et al., 2019).

Secondly, to effectively track and address the challenges posed by biodiversity change, the
development of comprehensive global databases and sophisticated bioinformatic systems
becomes essential (Collen & Nicholson, 2014). These databases and tools are tasked with the
colossal mission of collecting, cataloging, integrating, and meticulously analyzing vast volumes

of datasets derived from disparate sources. However, despite remarkable strides in the
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establishment of global macro-ecological databases [e.g. genetic and phylogenetic data
(GenBank), species interactions (GloBI, www.globalbioticinteractions.org), traits (TRY Plant
Trait Database, www.try-db.org), or abundance (BioTime - Dornelas et al., 2018)] and
georeferenced information infrastructures that use them to monitor biodiversity [e.g., Group on
Earth Observations—Biodiversity Observation Network (GEO-BON) initiative, www.geobon.org;
Global Biodiversity Information Facility, www.gbif.org], significant impediments persists. It is
still difficult to find historical and contemporary biodiversity data, particularly for less-studied
taxa and less-explored regions (Jetz et al., 2012; Conde et al., 2019). The available data, though
valuable, falls short of providing a comprehensive overview of the state and dynamics of
biodiversity on a global scale. This limitation poses a significant impediment to the advancement
of our understanding of biodiversity and, consequently, its conservation (Hortal et al., 2015).

=

A major impediment for achieving comprehensive databases is the ever-increasing volume of

data published annually (Hendriks & Duarte, 2008; Stork & Astrin, 2014). Managing and staying
current with this expanding wealth of information becomes increasingly challenging. This is
largely because the labor-intensive nature of locating and evaluating the pertinence of data
within scientific publications for integration into global databases remains a predominantly
manual process (Guralnick & Hill, 2009; Wen et al., 2017). The task is further exacerbated by
the rapid acceleration in research output, rendering it increasingly impractical to maintain real-

time coverage.

In addressing the pressing issue of data scarcity in biodiversity studies, the development of
automated systems capable of identifying relevant datasets from diverse sources may well mark
a pivotal turning point. These systems bridge text-mining techniques with the interdisciplinary
field of Natural Language Processing (NLP) in computer science, integrating methodologies
from linguistics, computer science, statistics, and artificial intelligence. Toolsets commonly
employ frequency analysis, rule-based algorithms, or artificial intelligence methods (Farrell et

al., 2024, preprint).

While automatic content analysis is still in its incipient stages for ecological studies (Nunez-Mir

et al., 2016), it has already demonstrated success in streamlining literature reviews (Heberling et
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al., 2019; McCallen et al., 2019), retrieving fossil data (Kopperud et al., 2019), monitoring data

for endangered species (Kulkarni & Minin, 2021), and detecting species co-occurrences and

interactions (Farrell et al., 2022, preprint) E] nford et al., 2020 showcased the effectiveness of

such approaches in identifying relevant articles for specific databases. Their research highlights
the capability of algorithms, trained using data from two distinct databases, to analyze a
collection of articles. Impressively, these algorithms can discern between relevant and irrelevant
articles for these databases with an accuracy rate exceeding 90%, all based solely on the content
of titles and abstracts. Recently, prompt-based approaches leveraging Large Language Models
such as GPT have demonstrated promising effectiveness in extracting biodiversity data, offering

further advancements in automated systems for biodiversity research (Castro et al., preprint).

While these findings mark significant progress, further refinements are essential to realize truly
effective automatic retrieval systems. Firstly, an automated system should extend beyond merely
distinguishing between relevant and non-relevant publications; it should also have the capacity to
assign varying degrees of relevance based on metadata, hence aiding in prioritizing the most
pertinent studies and expediting their integration into databases. Secondly, relying solely on
information from titles and abstracts may lead to either over- or underestimating a publication's
relevance. If a combination of different features determines the degree of relevance of a
publication for a database, it may be necessary to search for these in different sections (article
text, tables, supplementary materials, dataset files...). Lastly, it is worth noting that an increasing
number of scientific journals now mandate authors to make their data publicly available without
restrictions in online repositories upon publication. This shift means that retrieving data could be

significantly streamlined by searching these repositories, where data is readily accessible (Fig.

1.

Here, we use automated retrieval of datasets from both Dryad and Zenodo repositories and

embark on a comprehensive manual evaluation with the primary objective of assessing the

potential for automated classification into various relevance tiers. E] e same time, we introduce

a versatile classification framework engineered to enable algorithms to allocate relevance levels
based on features extracted from the publication text. This adaptable system considers global-

level attributes of biodiversity data, facilitating its seamless integration with a diverse range of
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databases. Furthermore, it remains flexible enough to readily accommodate additional
parameters customized to suit specific database contexts. Importantly, this classification system
not only addresses current challenges but also serves as a foundational baseline for next-
generation algorithms, providing a framework for iterative improvements and refinements in
automated literature classification. As the assignment of relevance levels necessitates a thorough
analysis of the features, algorithms must be adept at identifying these features. Consequently, our
investigation delves into the distribution of this metadata across various publication locations,
including the title, abstract, repository text, article, and dataset. This exploration holds significant
implications for the design of effective search algorithms. Furthermore, we extend our
investigation to encompass datasets sourced from articles available through the Semantic Scholar
platform and illuminate the strengths and limitations of data derived from articles when
compared to repository-sourced data. Finally, we discuss significant challenges and promising
opportunities that lie on the horizon in the quest for reliable and efficient automated systems for

biodiversity data regardless of the technological sophistication of future algorithms.

Case study - biodiversity monitoring in Quebec

Canada, as the second-largest country, possesses an extensive array of species and ecosystems,
all significantly impacted by human activities. With over 841 species at risk, including 371
classified as Endangered (COSEWIC, 2022), it is concerning that 59% of these species are
experiencing population declines (WWF Canada, 2020), and that crucial habitats such as
wetlands, which cover 14% of the territory and represent 25% of the world's reserves, suffered
significant loss (Environment Canada, 2009). Canada's vast geographical expanse, coupled with
its diverse ecoregions and extensive wilderness areas, underscores the urgency of developing
prioritization strategies for conserving critical habitats and species. Such strategies are
imperative for Canada to align with international biodiversity commitments outlined in the

Kunming-Montreal Global Biodiversity Framework (CBD, 2023).
The province of Quebec has recently introduced a dedicated national geographic information

system aimed at biodiversity monitoring, known as Biodiversité¢ Québec. Our study is tailored to

evaluate the integration of relevant data into this information system, which is designed to play a
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pivotal role in influencing decision-making processes. Additionally, by situating our research

within this dataset, we can showcase the design of specific criteria that are not only globally

applicable but also regionally relevant, addressing the unique circumstances at regional scale. In

the context of Quebec, and more broadly in Canada, biodiversity records are particularly affected

by spatial bias, correlated to the South-North human population density gradient. Thus, tundra-

type ecosystems and northern territories are very poorly documented and

data from these regions

should have higher priority. This information system leverages the ATLA E]

ta infrastructure to

integrate and provide access to biodiversity data for the Province of Quebec. It standardizes

various data types (abundances, occurrences, surveys, population time-series, and taxonomy) for

integration into monitoring and modeling workflows. Data is sourced from open science

repositories (e.g., GBIF, eBird, iNaturalist, Living Planet Database) and direct partnerships with

local and national organizations. The infrastructure is undergoing active expansion, currently

aggregating over 53 million occurrences, covering over 23 thousand species from 616 data

sources.

Methods

Corpus retrieval

We retrieved data from Dryad and Zenodo repositories according to two criteria: (1) used in the

ecology/biodiversity domain and (2) have an API, allowing their automatic retrieval. Because

Zenodo now hosts a preservation copy of Dryad datasets

both repositories from one single API. We built function

1t o

=

ables the retrieval of datasets from

interact with a corresponding API,

iterating through search queries to determine if all keywords within a query are found within the

repository page, including the title, abstract, and metadata. Subsequently, specific information is

extracted from each record, such as title and keywords, and stored in a structured format. The

queries, executed in December 2022, were formulated using Boolean "and" operators between

keywords (Fig. 2). Additionally, the search utilized a Zenodo filter for publications of resource

type “dataset”.
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Dataset annotation

=

We followed pre-established annotation guidelines for each dataset—-se guidelines

encompassed all variables of interest and criteria for assigning feature categories (Table 1; refer
to the explanations below, and consult the complete annotated dataset in the Supplementary

Materials).

Dataset relevance

Datasets were categorized as "High," "Medium," "Low," or "Negligible" in terms of relevance.
Our classification system was founded on different criteria, which we divided into two groups.
The first group, termed Main Classifiers, are thought to capture universally key features of

biodiversity data. These encompass data type, temporal and spatial extent, and data size. This

categorization was informed by the literature on Essential Biodiversity Variables (EBV E] | the

significance of temporal and spatial dimensions. For example, temporal duration was categorized
as follows: <3 years as Low, 3 to 10 years as Moderate, and >10 years as High (as detailed in
Table S1). "High" relevance datasets typically featured extensive data sizes, highly relevant data
types (e.g., abundance), and substantial spatial or temporal scales. "Moderate" relevance datasets
exhibited either large data sizes or highly relevant data types, combined with low to moderate
temporal and spatial extents or vice versa, or displayed moderate characteristics across all main
classifiers. "Low" relevance datasets were characterized by moderate data sizes and very short
temporal and spatial scales or vice versa, or held low ratings across all main classifiers.
"Negligible" datasets contained no valuable information generally for biodiversity nor for the

ATLAS database (Table 1).

The second group encompassed Modulators# E] ures that, while not as critical as Main

Classifiers, also inform about the importance of the data. These can include aspects at a more
regional scale, such as a first record for a given taxa in a region, or data from undersampled
areas. In the context of Quebec biodiversity monitoring strategies, data from northern regions is
prioritized as these are largely unstudied areas, and therefore a modulator that we introduce is the

sampling bias north-south Quebec. This illustrates that modulators can accommodate needs of
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specific databases. Modulators influence the evaluation of datasets by slightly altering the
relevance category assigned based on Main Classifiers. Modulators had the capacity to shift the
category by one level, for instance, a dataset assigned "Low" relevance that contains data from

northern regions of Quebec could change to "Moderate" (Table 2).

Dataset features

We manually identified dataset features essential for evaluating data type categories,
spatiotemporal extent, taxon numbers and identities, and other specific attributes (Table 1). Data
type categories were assigned following the EBV data type classification. Notably, we marked

instances when data were time series, as these held unique significance.

Features could be found in either the abstract or additional text within the repository page
(referred to as repository text), the source publication text (i.e., the article), or within the dataset
itself. We made these distinctions because the location could influence the feasibility of
automated retrieval. To achieve this, we conducted manual searches for features and recorded
their locations. It is important to note that features might occasionally be intertwined with
content unrelated to the data, a situation particularly prevalent in references to EBV data
categories or synonyms (see Table S2). For instance, the term "abundance" might appear in texts
referring to species abundances or unrelated non-biological content. Therefore, we assessed the
location of features referring to EBV data categories by quantifying their frequency in titles or

abstracts using the "str_detect" function from the "stringr" R package.

Geospatial data within the datasets were presented in various forms, ranging from highly detailed
to less detailed. We classified this information into the following categories, ranked from more to
less detailed: sample, site, or range coordinates, species distribution models (SDMs; thereafter
“distribution”), geographic features (e.g., Mont Mégantic), administrative units, maps, and site

IDs (where sampling sites were identified, but precise locations were known only to the authors).

Extension to scientific articles
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We expanded our dataset retrieval beyond repositories to include articles sourced from Semantic
Scholar, covering the period from 1980 to 2022. To ensure a manageable analysis, we limited the
retrieved publications to a maximum of 50 positives (top 50 found publications). Due to potential
API request limitations, some queries retrieved more publications than others, with an average of
23 publications per query. Subsequently, we assessed the relevance of the datasets and
publication years in the same manner as with repositories, facilitating comparisons between these
two sources. Our approach generates a random sampling among queries resulting in uneven
numbers, like those retrieved from repositories. This is optimal for our objectives as we are
interested in comparing temporal depth and the location of information, while broadly assessing
their performance for relevance. For a more stringent comparison, standardizing the sampling

numbers among queries and conducting statistical tests for comparisons would be necessary.

Scientific articles may not necessarily reference a repository for presenting their data, especially
older articles. Instead, data may be embedded in tables within the article text or included in the
appendix. Recognizing the prevalence of datasets presented in this manner is vital for devising
future strategies for automated retrieval. Consequently, we noted the location of each dataset

within retrieved articles.

Moreover, articles may not always present their own data but may use data from other sources,
necessitating reference. This additional information can be invaluable for identifying other
sources of relevant datasets. To gauge the extent to which we retrieved articles that referred to
pertinent datasets, we noted instances where articles used data from other dataset sources,

particularly those of high relevance.

Evaluation

Queries

We analyzed the performance of each query by noting the amount of retrieved, not found, and

not accessible datasets and their relevance categories. We computed an F-score for each query

calculating a precision and recall metric as follows:
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Precision - Recall

F =2-
Saare Precision + Recall

where:

True Positive pEEall True Positive
Precision = — — ecall = — _
True Positive + False positive True Positive + True negative

Positive refers to those datasets assigned a high or moderate relevance, and negative to low or

negligible relevance.

Features and accessibility

Our assessment encompassed both the content and accessibility of datasets. To gauge the
spatiotemporal extent and the representation of Essential Biodiversity Variable (EBV) categories
within the datasets, we conducted feature frequency analyses. In terms of spatial extent, we
quantified the frequencies of datasets falling within the low (< 5,000 km?), moderate (5,000-
15,000 km?), and high (>15,000 km?) spatial range categories. For datasets containing both
temporal and spatial information, we conducted visual inspections to discern the alignment

between dataset duration, spatial range, and their assigned relevance categories.

In parallel, we assessed the accessibility of features, a crucial factor for automated retrieval. To
this end, we tallied the occurrences of feature locations within the datasets, distinguishing
between repository text, articles, and dataset contents, for dataset type, temporal, spatial, and
taxon features. Additionally, we cataloged the frequency of occurrences for each geospatial

information category to gain insights into the level of detail provided in this regard.

Semantic scholar - repositories comparison

We conducted a comprehensive comparison between Semantic Scholar and the repositories,
examining various aspects. This entailed evaluating the relevance, number, and accessibility of

datasets obtained from both sources. To delve deeper into the temporal dimension, we quantified

the frequencies of publication years for the datasets.
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Results

Datasets annotation evaluation

Out of the initial 161 datasets retrieved through our queries, 55 were subsequently excluded for
various reasons: 37 due to incorrect locations, 5 categorized as laboratory studies, and 13 for
miscellaneous reasons. Notably, many datasets with incorrect locations resulted from the

matching of the keyword "Quebec" with the affiliations of the authors.

The classification based on relevance yielded 90 relevant datasets categorized as either highly,
moderately, or low, which we will refer to as “relevant datasets”: 20 datasets (18%) categorized
as highly relevant, 33 (31%) as moderately relevant, 37 (35%) as having low relevance, and 16

(15%) as negligible in relevance.

Queries

The most simple query, “species”, is the one showing the highest performance (Fcore = 0.33),
followed by “population + species” (Fscore = 0.23) and “sites + species” (Fscore = 0.17).
“Occurrence + species” was the query with the highest precision (0.44) (Fig. 2). The mean

overlap between queries was 11% (Fig. S1).

Features

Among the relevant datasets, presence-only data emerged as the most common EBV data
category, encompassing 30 publications (29%), followed by genetic data with 27 (26%) and
abundance with 26 (25%). In contrast, data from species distribution models (SDMs), referred to
as "distribution" data, was the least common, featured in only 3 publications (3%) (Fig. 3C). The

temporal ranges of these datasets span from the 1930s to the present, although the majority fall
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within the last two decades (Fig. 34). Outliers include Favret et al., 2020, offering data on
Odonata specimens from various entomological collections dating back to 1875, and
Schumacher et al., 2022, providing pollen records for butternut spanning from 20,000 years ago
to the present. On average, the temporal duration was 11.1 years, ranging from less than 1 year to
50 years (Fig. 3B). Short-term studies, less than 1 year in duration, constituted the most common
category, accounting for 12% of the datasets. A total of 12 datasets (13%) contained time series
data (Fig. 34). Spatial extents varied widely, ranging from 0.2 to 24.706.834 km?, with a mean of
1,388,738 km?: 26 datasets (29%) covered less than 5,000 km?, 9 (10%) fell between 5,000 and
15,000 km?, and 30 (34%) exceeded 15,000 km? (Fig. 3BD).

The datasets cover a diverse array of taxa, spanning 13 distinct classes (not counting those within
zooplankton). Among these, 68 (76%) datasets were associated with one to ten species, with
mammals (21), fish (13), birds (11), and angiosperms (10) being the most frequently represented.
In contrast, 30 (34%) datasets pertained to communities comprising 10 to 180 species, with an
average of 49 species per dataset. Notably, datasets of this nature were more prevalent for plants

(12 datasets) and insects (7 datasets) (Fig. 3E).

Features accessibility

Within the 90 relevant datasets, at least one comprehensive metadata (features) belonging to
Main Classifiers were automatically accessible for 88 of them (98%), typically within the
repository page's abstract or additional text. These encompassed explicit mentions of temporal
range in 25 publications (27%), temporal duration in 14 publications (15%), and spatial range in
7 publications (8%) (Fig. 44). For species-level studies (involving 1 to 10 species), species
names were consistently present in the title or abstract. Additionally, dataset types or synonyms

were included in the title for 24 of them (27%) and in the abstract for 80 (89%).

Only one publication contained all these features together in the repository text. Furthermore, a
total of 5 (6%) did not explicitly report the temporal range, 31 (34%) the spatial range, and 62
(69%) the data duration in any location (repository text, source article, appendix, or dataset) (Fig.

44).
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Geospatial information, essential for biodiversity monitoring, was unavailable within the
repository text in 68 publications (76%), and no location data, including the dataset, was
provided for 33 (37%) of them (Fig. 4B). Site IDs were given in the dataset of 24 (27%)
publications, but in most cases, it required consulting a map in the article, with no specific

coordinates, to interpret them.

Semantic scholar

Our queries yielded 254 datasets from Semantic Scholar without overlap, of which 60 were
excluded due to incorrect locations (33) and miscellaneous reasons (27). Classification by
relevance resulted in 3 (2%) high, 25 (13%) moderate, and 41 low (21%), and 11 (6%) negligible
relevant datasets, alongside 28 (15%) inaccessible datasets and 85 (44%) publications without
datasets (Fig. 54). A comparison of publication years between Dryad and Zenodo versus
Semantic Scholar revealed that retrieving from repositories yielded datasets published from 2010
onwards, while retrieving from Semantic Scholar included older datasets dating back to 1981

(Fig. 5B).

Furthermore, while one highly relevant dataset, the Neotoma Paleoecology Database

(www.neotomadb.org), was referenced in publications extracted from repositories, we identified

a total of 6 highly relevant datasets referenced in articles retrieved from Semantic Scholar. These
datasets originated from sources such as the Canadian National Forest Inventory, the Canadian

Wildlife Service, and the Québec Ministry of Environment and Wildlife.

Discussion

Our findings underscore the significant value of automatin E] etrieval of biodiversity data

from repositories, which can substantially augment the volume of pertinent information within
databases. We have introduced a classification system, designed to serve as a logical framework
for automated algorithms, expediting the evaluation process by categorizing data based on its

relevance. This system draws upon globally applicable biodiversity classifiers, making it
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adaptable to various data types, while also allowing for the incorporation of dataset-specific
nuances. We publish our high quality-annotated dataset alongside this paper, with the aim of

providing a benchmark for new classifiers.

Assigning relevance categories, whether through our system or alternative approaches,
necessitates a meticulous analysis of features (i.e. metadata) within the publication text. Our
study highlights that this task poses a considerable challenge for automated processes, often
stemming from the absence or scarcity of these features and their sparsity across different
sections of the publication (repository page, dataset, article, supplementary materials). This
challenge is particularly pronounced in the case of spatio-temporal features, which are pivotal for
guiding relevance assessments. Furthermore, our study demonstrates that repositories present a
valuable source of readily accessible, publicly available data, surpassing scientific articles in
terms of speed and efficiency for data retrieval. However, we also emphasize the significance of
designing automated processes for data extraction from articles. These offer substantial temporal
depth of publications, and serve as gateways that can guide researchers to other pertinent and

valuable data sources.

By employing simple search queries consisting of one to three words, we achieved the retrieval
of a substantial number of pertinent datasets, a notable percentage of which fell within the highly
relevant category. Remarkably, a high percentage of datasets contained genetic data, an area
where greater collection efforts have been advocated (Hoban et al., 2021; Hoban et al., 2022).
Moreover, following presence-only data, abundance data was the most frequently encountered,
being information that can aid in constructing time-series and elucidating population trends.
These are promising findings for the repositories' potential as pivotal resources for automating
the retrieval of biodiversity data. Notably, the growing trend among scientific journals to
mandate the deposition of data used in publications into online repositories reflects a progressive
move toward fostering openness in science. Consequently, repositories are anticipated to witness

exponential growth, encompassing an ever-expanding volume of published data.

We have devised a comprehensive classification system aimed at assigning relevance categories

to datasets, grounded in a set of criteria. We advocate for the adoption of similar schemes by
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automated dataset detection algorithms to aid in prioritizing datasets and maintaining pace with
the relentless surge in published data. A critical aspect of our system involves the distinction
between criteria as either Main Classifiers or Modulators: the former encompass fundamental,
overarching aspects pertinent to biodiversity data on a global scale, while the latter encompass
secondary criteria that retain significance, potentially at regional scales. This distinction has
enabled us to underscore the vital importance of data concerning plants and animals in boreal
(e.g. Laitet al., 2013; Thiffault et al., 2016; Martin et al., 2022) and arctic ecosystems (e.g.
Leblond et al., 2017; Lamarre et al., 2018; Chagnon et al., 2021), which face heightened
vulnerability and remain underexplored in Quebec, along with the inclusion of new species

(Anderson et al., 2016).

Nevertheless, it is worth noting that the development of a universally accepted and standardized
classification system for dataset relevance could itself be a substantial undertaking, warranting
collaborative efforts from a multitude of experts. Such a system, once established, could serve as
a common benchmark for dataset retrieval projects and should be periodically revisited and
incorporated into the Essential Biodiversity Variables framework to ensure its enduring

relevance and utility.

Our assessment, however, has revealed a significant challenge in accessing the metadata
essential for automated algorithms to assign categories of relevance to publications. This
challenge stems from the absence and dispersion of critical features throughout various sections
of the publication, making it particularly problematic for detecting Main Classifiers related to
temporal and spatial extents. In the majority of datasets we examined, these details were either
entirely missing or exclusively located within the article text, neglecting inclusion in the abstract
or repository page. Search algorithms should then be engineered to thoroughly scan all parts of a

publication, encompassing the dataset itself, to capture these essential features.

This underscores the urgency of developing general and standardized frameworks within
publication guidelines to supply the requisite metadata for automatic detection and extraction of
information. Presently, various global frameworks and initiatives, such as the FAIR Data

Principles, GBIF guidelines and standards, and Biodiversity Data Journal recommendations,
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advocate for accompanying data with comprehensive metadata, encompassing methodological
details, temporal scope, geographic coverage, and more. However, the manner in which this
information is presented poorly reflects information needs and is the biggest obstacle in

retrieving relevant biodiversity data (Jones et al., 2019; Loffler et al., 2021).

For the establishment of an automated framework for biodiversity data retrieval, it becomes
imperative to take an additional stride. Contemporary formats of online publications should
incorporate structures that facilitate access for automated algorithms to evaluate data relevance
based on standardized global criteria. This can be achieved by incorporating dedicated sections
within publications, both in online repositories and articles, where authors are required to
provide a predefined set of metadata, including the Main Classifiers. Implementing such
straightforward updates would effectively alleviate the primary challenges we encountered

regarding the identification of features necessary for assessing data relevance.

Our findings highlight that repositories like Dryad and Zenodo, as well as scientific literature
search engines such as Semantic Scholar, offer distinct advantages and disadvantages when it
comes to automated data retrieval. Sources of scientific literature may exhibit a relatively high
percentage of publications that lack data or render it inaccessible as it was observed for Semantic
Scholar, which can potentially pose challenges when retrieving datasets and assessing their
relevance. Conversely, repositories offer readily accessible datasets and prove to be highly
efficient sources for data retrieval. However, repositories may exhibit a limited temporal depth of
datasets, typically spanning only the past decade, given their contemporary nature. In contrast,
sources of scientific literature have the potential to provide a more extensive historical dataset
archive. Moreover, articles may make reference to and cite other data sources, such as the six
distinct highly relevant databases we found referenced in retrieved articles, thereby facilitating
the identification of unknown relevant datasets. These substantial differences underscore the
importance of conducting data retrieval from both types of sources to ensure a comprehensive

approach.

In the realm of automated algorithm development, manual evaluations, such as the one

conducted in this study (publicly available; see Data Availability Statement), will remain
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invaluable. They serve both as training data for automated algorithms to learn identifying
relevant datasets, and as a crucial benchmark that enables the assessment of automated processes
by drawing comparisons with the results from manual evaluations. Furthermore, it's imperative
to acknowledge the need for specialized strategies when dealing with diverse data sources. For
instance, one we did not assess here are the increasingly digitized collections of museums, which
might require specific automated search and evaluation approaches. An exciting avenue for
future research lies in these sources, which harbor invaluable historical data often absent from
contemporary global information systems or databases (Graham et al., 2004; Guralnick et al.,

2007; Page et al., 2015; Wen et al., 2015).

While the development of literature classification algorithms is advancing vertiginously,
especially with Al systems (see Google Gemini, www.deepmind.google), it is imperative to
recognize that the challenges surrounding information structure and metadata organization within
scientific literature persist regardless of technological evolution. The effectiveness of automated
systems relies not only on the sophistication of algorithms but also on the clarity and consistency
of metadata standards, the accessibility of data repositories, and the interoperability of databases.
Our work not only identifies significant challenges for forthcoming automated algorithms tasked
with dataset retrieval for biodiversity but also underscores the relatively surmountable nature of
these challenges. These foundational issues transcend the current state of Al technology and are
central to ensuring the long-term viability and utility of automated systems for biodiversity data
retrieval. As such, efforts to address these structural challenges as well as standardized schemes
for prioritization such as the one we proposed, must remain a priority alongside advancements in
Al capabilities. To move forward effectively, prioritizing the establishment of global frameworks
and guidelines that streamline the workflow for automated data retrieval systems is essential.
Simultaneously, raising awareness among scientists about the importance of publishing data in
formats conducive to automatic retrieval and evaluation holds great promise. These initiatives
carry the transformative potential to reshape our data acquisition capabilities profoundly, greatly
bolstering our capacity for biodiversity monitoring and informed decision-making, with far-

reaching positive ecological implications.
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Figure 1

Sources and availability of datasets relevant for biodiversity.
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Figure 2

Queries performance retrieving relevant datasets from repositories (Dryad and Zenodo)

(A) Number of publications and counts of relevant categories per query. Colors indicate

relevance categories: H (High), M (Moderate), L (Low), and X (Negligible). (B) F scores E]

precision, and recall metrics for each query. All queries also account for the word “Quebec”.
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Figure 3

Features of retrieved datasets from repositories Dryad and Zenodo and results of the
relevance evaluation.

(A) Temporal duration and ranges. Red range bars indicate datasets with time series data.
The first dataset extends to 1875. Not showing outlier dataset from 20.000 ya to the present.
(B) Duration, spatial rage, and relevance category. (C) Publication counts by EBV data types.
(D) Spatial range counts in the low, medium, and high range categories, respectively. (E)
Publication counts by taxa and relevance categories: the left panel shows species-level
studies, which contain data for 1 to 10 species, whereas the right panel shows community-
level studies with data for more than 10 species. Letters H, M, and L correspond to High,

Moderate, and Low dataset relevance categories, respectively.
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Figure 4

Location of features (i.e. metadata) in the publication spaces.

(A) Spatiotemporal features and (B) geospatial features.
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Figure 5

Comparison between Semantic Scholar and repositories (Dryad and Zenodo).

(A) Relevance and accessibility of datasets. (B) Temporal depth of retrieved publications.
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Table 1l(on next page)

Manually evaluated features from retrieved datasets.
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Feature Type Example

EBYV data type categorical abundance

Geospatial information continuous sample coordinates

Spatial range continuous 100.000 km2

Temporal range string from 1999 to 2008

Temporal duration continuous 9 years

Taxons string black-legged tick
Ministeére des Ressources

Referred dataset source string naturelles et des Foréts

Dataset location categorical repository

Dataset type location categorical abstract

Geospatial information

location categorical article text

Spatial range location categorical abstract

Temporal range location categorical dataset

Temporal duration location  categorical article text
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Table 2(on next page)

Evaluation criteria used to assign the relevance category to the datasets.

First, the main classifiers determine whether the dataset relevance is “High”, “Medium”,
“Low”, or “Negligible” (“Relevance by Main Classifiers” column), and then Modulators can
increase or decrease the relevance category by one (e.g. “Low” to “Medium” but not “Low”
to “High”). The “Organization level” modulator takes into account whether the data is about
individuals, populations, or species; the “Bias North-South” modulator is evaluated by
establishing an arbitrary latitudinal threshold to separate northern from southern areas of
Québec, with northern areas having higher relevance. In the example below, data on an
endangered species may have relevance “Moderate” according to the main classifiers but its

conservation status and priority location would increase it to “High”.
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Main Classifiers Modulators
Data type Datasize Spatial Temporal Relevance by Organization Conservation New regional Bias North- Relevance
range range Main Classifiers level status species South Quebec
Presence  Moderate Moderate Low Moderate individual EN FALSE North High
only
1
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