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Aim. Eûective management strategies for conserving biodiversity and mitigating the
impacts of Global Change rely on access to comprehensive and up-to-date biodiversity
data. However, manual search, retrieval, evaluation, and integration of this information
into databases presents a signiûcant challenge to keep pace with the rapid inûux of large
amounts of data, hindering its utility in contemporary decision-making processes. The
automation of these tasks through advanced algorithms holds immense potential to
revolutionize biodiversity monitoring. Innovation. In this study, we investigate the
potential for automating the retrieval and evaluation of biodiversity data from Dryad and
Zenodo repositories. We employ automated algorithms to identify potentially relevant
datasets and perform a manual assessment to gauge the feasibility of automatically
ranking their relevance. We have designed an evaluation system based on various criteria.
Additionally, we compare our results with those obtained from a scientiûc literature source,
using data from Semantic Scholar for reference. Our evaluation centers on the database
utilized by a national biodiversity monitoring system in Quebec, Canada. Main
conclusions. The algorithms retrieved 90 (56%) relevant datasets for our database,
showing the value of automated dataset search in repositories. Additionally, we ûnd that
scientiûc publication sources oûer broader temporal coverage and can serve as conduits
guiding researchers toward other valuable data sources. However, our manual evaluation
highlights a signiûcant challenge to distinguish datasets by their relevance4scarcity and
non-uniform distribution of metadata, especially pertaining to spatial and temporal
extents. We present an evaluative framework based on predeûned criteria that can be
adopted by automated algorithms for streamlined prioritization, and we make our
manually evaluated data publicly available, serving as a benchmark for improving
classiûcation techniques. Finally, our study advocates for the implementation of metadata
standards tailored for automated retrieval systems by repositories and sources of scientiûc
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literature. This, coupled with the rapid evolution of classiûcation algorithms, holds
transformative potential to advance in biodiversity monitoring and decisively steering the
course of well-informed decision-making processes.

PeerJ reviewing PDF | (2024:05:101416:0:0:CHECK 31 May 2024)

Manuscript to be reviewed



1 Evaluating the feasibility of automating dataset retrieval for biodiversity 

2 monitoring

3 Alexandre Fuster-Calvo1, Sarah Valentin2 , William C. Tamayo1, Dominique Gravel1

4

5

6 1 Département de biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada

7 2 Joint Research Unit Land, Remote Sensing and Spatial Information (UMR TETIS), French 

8 Agricultural Research Centre for International Development (CIRAD), Montpellier, France

9

10 Corresponding Author:

11 Alexandre Fuster-Calvo1

12 C/ Dona Amalia 44, Alcoi, Alicante, 03801, Spain

13 Email address: alexfuster7@gmail.com

14

PeerJ reviewing PDF | (2024:05:101416:0:0:CHECK 31 May 2024)

Manuscript to be reviewed

mailto:alexfuster7@gmail.com


15 Abstract

16

17 Aim. Effective management strategies for conserving biodiversity and mitigating the impacts of 

18 Global Change rely on access to comprehensive and up-to-date biodiversity data. However, 

19 manual search, retrieval, evaluation, and integration of this information into databases presents a 

20 significant challenge to keep pace with the rapid influx of large amounts of data, hindering its 

21 utility in contemporary decision-making processes. The automation of these tasks through 

22 advanced algorithms holds immense potential to revolutionize biodiversity monitoring. 

23 Innovation. In this study, we investigate the potential for automating the retrieval and evaluation 

24 of biodiversity data from Dryad and Zenodo repositories. We employ automated algorithms to 

25 identify potentially relevant datasets and perform a manual assessment to gauge the feasibility of 

26 automatically ranking their relevance. We have designed an evaluation system based on various 

27 criteria. Additionally, we compare our results with those obtained from a scientific literature 

28 source, using data from Semantic Scholar for reference. Our evaluation centers on the database 

29 utilized by a national biodiversity monitoring system in Quebec, Canada. 

30 Main conclusions. The algorithms retrieved 90 (56%) relevant datasets for our database, 

31 showing the value of automated dataset search in repositories. Additionally, we find that 

32 scientific publication sources offer broader temporal coverage and can serve as conduits guiding 

33 researchers toward other valuable data sources. However, our manual evaluation highlights a 

34 significant challenge to distinguish datasets by their relevance�scarcity and non-uniform 

35 distribution of metadata, especially pertaining to spatial and temporal extents. We present an 

36 evaluative framework based on predefined criteria that can be adopted by automated algorithms 

37 for streamlined prioritization, and we make our manually evaluated data publicly available, 

38 serving as a benchmark for improving classification techniques. Finally, our study advocates for 

39 the implementation of metadata standards tailored for automated retrieval systems by 

40 repositories and sources of scientific literature. This, coupled with the rapid evolution of 

41 classification algorithms, holds transformative potential to advance in biodiversity monitoring 

42 and decisively steering the course of well-informed decision-making processes.

43
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44 Introduction

45

46 Biodiversity is undergoing rapid and unprecedented transformations driven by the relentless 

47 forces of anthropogenic Global Change (Parmesan & Yohe, 2003; Millennium Ecosystem 

48 Assessment, 2005; Newbold et al., 2015; IPBES, 2019; Py�ek et al., 2020). These changes pose a 

49 direct threat to the delicate balance of ecosystems and therefore multitude of species that inhabit 

50 them, including humans. Recognizing the urgency of the situation, the recent fifteenth meeting of 

51 the Conference of the Parties (COP 15) witnessed a landmark moment with the adoption of the 

52 Kunming-Montreal Global Biodiversity Framework (GBF) (CBD, 2023). This ambitious 

53 framework has set forth action-oriented global targets aimed at urgently bending the curve of 

54 biodiversity loss by 2050 (Leadley et al., 2022).

55

56 Target 21 of the CBD 2023 underscores the critical importance of providing decision makers, 

57 practitioners, and the public with access to comprehensive data, information, and knowledge. 

58 This necessity arises because the pursuit of these conservation objectives, data from various 

59 ecological disciplines and origins must be seamlessly integrated, spanning an extensive spectrum 

60 of spatiotemporal scales (Kelling et al., 2009; Wieczorek et al., 2012; Hampton et al., 2013; 

61 Heberling et al., 2021). Achieving this goal relies on two fundamental pillars. Firstly, a robust 

62 global framework must be established to systematically collect, standardize, harmonize, and 

63 provide timely data on the ever-changing landscape of biodiversity. The Group on Earth 

64 Observations Biodiversity Observation Network (GEO BON) has played a pivotal role in this 

65 regard by developing the concept of Essential Biodiversity Variables (EBVs) (Pereira et al., 

66 2013). These EBVs now serve as the cornerstone of monitoring programs worldwide, facilitating 

67 the quantification of biodiversity changes across diverse ecosystems (Vihervaara et al., 2017; 

68 Schmeller et al., 2018; Jetz et al., 2019).

69

70 Secondly, to effectively track and address the challenges posed by biodiversity change, the 

71 development of comprehensive global databases and sophisticated bioinformatic systems 

72 becomes essential (Collen & Nicholson, 2014). These databases and tools are tasked with the 

73 colossal mission of collecting, cataloging, integrating, and meticulously analyzing vast volumes 

74 of datasets derived from disparate sources. However, despite remarkable strides in the 
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75 establishment of global macro-ecological databases  [e.g. genetic and phylogenetic data 

76 (GenBank), species interactions (GloBI, www.globalbioticinteractions.org), traits (TRY Plant 

77 Trait Database, www.try-db.org), or abundance (BioTime - Dornelas et al., 2018)] and 

78 georeferenced information infrastructures that use them to monitor biodiversity [e.g., Group on 

79 Earth Observations�Biodiversity Observation Network (GEO-BON) initiative, www.geobon.org; 

80 Global Biodiversity Information Facility, www.gbif.org], significant impediments persists. It is 

81 still difficult to find historical and contemporary biodiversity data, particularly for less-studied 

82 taxa and less-explored regions (Jetz et al., 2012; Conde et al., 2019). The available data, though 

83 valuable, falls short of providing a comprehensive overview of the state and dynamics of 

84 biodiversity on a global scale. This limitation poses a significant impediment to the advancement 

85 of our understanding of biodiversity and, consequently, its conservation (Hortal et al., 2015).

86

87 A major impediment for achieving comprehensive databases is the ever-increasing volume of 

88 data published annually (Hendriks & Duarte, 2008; Stork & Astrin, 2014). Managing and staying 

89 current with this expanding wealth of information becomes increasingly challenging. This is 

90 largely because the labor-intensive nature of locating and evaluating the pertinence of data 

91 within scientific publications for integration into global databases remains a predominantly 

92 manual process (Guralnick & Hill, 2009; Wen et al., 2017). The task is further exacerbated by 

93 the rapid acceleration in research output, rendering it increasingly impractical to maintain real-

94 time coverage.

95

96 In addressing the pressing issue of data scarcity in biodiversity studies, the development of 

97 automated systems capable of identifying relevant datasets from diverse sources may well mark 

98 a pivotal turning point. These systems bridge text-mining techniques with the interdisciplinary 

99 field of Natural Language Processing (NLP) in computer science, integrating methodologies 

100 from linguistics, computer science, statistics, and artificial intelligence. Toolsets commonly 

101 employ frequency analysis, rule-based algorithms, or artificial intelligence methods (Farrell et 

102 al., 2024, preprint). 

103

104 While automatic content analysis is still in its incipient stages for ecological studies (Nunez-Mir 

105 et al., 2016), it has already demonstrated success in streamlining literature reviews (Heberling et 
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106 al., 2019; McCallen et al., 2019), retrieving fossil data (Kopperud et al., 2019), monitoring data 

107 for endangered species (Kulkarni & Minin, 2021), and detecting species co-occurrences and 

108 interactions (Farrell et al., 2022, preprint). Cornford et al., 2020 showcased the effectiveness of 

109 such approaches in identifying relevant articles for specific databases. Their research highlights 

110 the capability of algorithms, trained using data from two distinct databases, to analyze a 

111 collection of articles. Impressively, these algorithms can discern between relevant and irrelevant 

112 articles for these databases with an accuracy rate exceeding 90%, all based solely on the content 

113 of titles and abstracts. Recently, prompt-based approaches leveraging Large Language Models 

114 such as GPT have demonstrated promising effectiveness in extracting biodiversity data, offering 

115 further advancements in automated systems for biodiversity research (Castro et al., preprint).

116

117 While these findings mark significant progress, further refinements are essential to realize truly 

118 effective automatic retrieval systems. Firstly, an automated system should extend beyond merely 

119 distinguishing between relevant and non-relevant publications; it should also have the capacity to 

120 assign varying degrees of relevance based on metadata, hence aiding in prioritizing the most 

121 pertinent studies and expediting their integration into databases. Secondly, relying solely on 

122 information from titles and abstracts may lead to either over- or underestimating a publication's 

123 relevance. If a combination of different features determines the degree of relevance of a 

124 publication for a database, it may be necessary to search for these in different sections (article 

125 text, tables, supplementary materials, dataset files�). Lastly, it is worth noting that an increasing 

126 number of scientific journals now mandate authors to make their data publicly available without 

127 restrictions in online repositories upon publication. This shift means that retrieving data could be 

128 significantly streamlined by searching these repositories, where data is readily accessible (Fig. 

129 1).

130

131 Here, we use automated retrieval of datasets from both Dryad and Zenodo repositories and 

132 embark on a comprehensive manual evaluation with the primary objective of assessing the 

133 potential for automated classification into various relevance tiers. At the same time, we introduce 

134 a versatile classification framework engineered to enable algorithms to allocate relevance levels 

135 based on features extracted from the publication text. This adaptable system considers global-

136 level attributes of biodiversity data, facilitating its seamless integration with a diverse range of 
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137 databases. Furthermore, it remains flexible enough to readily accommodate additional 

138 parameters customized to suit specific database contexts. Importantly, this classification system 

139 not only addresses current challenges but also serves as a foundational baseline for next-

140 generation algorithms, providing a framework for iterative improvements and refinements in 

141 automated literature classification. As the assignment of relevance levels necessitates a thorough 

142 analysis of the features, algorithms must be adept at identifying these features. Consequently, our 

143 investigation delves into the distribution of this metadata across various publication locations, 

144 including the title, abstract, repository text, article, and dataset. This exploration holds significant 

145 implications for the design of effective search algorithms. Furthermore, we extend our 

146 investigation to encompass datasets sourced from articles available through the Semantic Scholar 

147 platform and illuminate the strengths and limitations of data derived from articles when 

148 compared to repository-sourced data. Finally, we discuss significant challenges and promising 

149 opportunities that lie on the horizon in the quest for reliable and efficient automated systems for 

150 biodiversity data regardless of the technological sophistication of future algorithms. 

151

152 Case study - biodiversity monitoring in Quebec

153

154 Canada, as the second-largest country, possesses an extensive array of species and ecosystems, 

155 all significantly impacted by human activities. With over 841 species at risk, including 371 

156 classified as Endangered (COSEWIC, 2022), it is concerning that 59% of these species are 

157 experiencing population declines (WWF Canada, 2020), and that crucial habitats such as 

158 wetlands, which cover 14% of the territory and represent 25% of the world's reserves, suffered 

159 significant loss (Environment Canada, 2009). Canada's vast geographical expanse, coupled with 

160 its diverse ecoregions and extensive wilderness areas, underscores the urgency of developing 

161 prioritization strategies for conserving critical habitats and species. Such strategies are 

162 imperative for Canada to align with international biodiversity commitments outlined in the 

163 Kunming-Montreal Global Biodiversity Framework (CBD, 2023).

164

165 The province of Quebec has recently introduced a dedicated national geographic information 

166 system aimed at biodiversity monitoring, known as Biodiversité Québec. Our study is tailored to 

167 evaluate the integration of relevant data into this information system, which is designed to play a 
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168 pivotal role in influencing decision-making processes. Additionally, by situating our research 

169 within this dataset, we can showcase the design of specific criteria that are not only globally 

170 applicable but also regionally relevant, addressing the unique circumstances at regional scale. In 

171 the context of Quebec, and more broadly in Canada, biodiversity records are particularly affected 

172 by spatial bias, correlated to the South-North human population density gradient. Thus, tundra-

173 type ecosystems and northern territories are very poorly documented and data from these regions 

174 should have higher priority. This information system leverages the ATLAS data infrastructure to 

175 integrate and provide access to biodiversity data for the Province of Quebec. It standardizes 

176 various data types (abundances, occurrences, surveys, population time-series, and taxonomy) for 

177 integration into monitoring and modeling workflows. Data is sourced from open science 

178 repositories (e.g., GBIF, eBird, iNaturalist, Living Planet Database) and direct partnerships with 

179 local and national organizations. The infrastructure is undergoing active expansion, currently 

180 aggregating over 53 million occurrences, covering over 23 thousand species from 616 data 

181 sources.

182

183 Methods

184

185 Corpus retrieval

186

187 We retrieved data from Dryad and Zenodo repositories according to two criteria: (1) used in the 

188 ecology/biodiversity domain and (2) have an API, allowing their automatic retrieval. Because 

189 Zenodo now hosts a preservation copy of Dryad datasets, it enables the retrieval of datasets from 

190 both repositories from one single API. We built functions that interact with a corresponding API, 

191 iterating through search queries to determine if all keywords within a query are found within the 

192 repository page, including the title, abstract, and metadata. Subsequently, specific information is 

193 extracted from each record, such as title and keywords, and stored in a structured format. The 

194 queries, executed in December 2022, were formulated using Boolean "and" operators between 

195 keywords (Fig. 2). Additionally, the search utilized a Zenodo filter for publications of resource 

196 type �dataset�.

197
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198 Dataset annotation

199

200 We followed pre-established annotation guidelines for each dataset. These guidelines 

201 encompassed all variables of interest and criteria for assigning feature categories (Table 1; refer 

202 to the explanations below, and consult the complete annotated dataset in the Supplementary 

203 Materials).

204

205 Dataset relevance

206

207 Datasets were categorized as "High," "Medium," "Low," or "Negligible" in terms of relevance. 

208 Our classification system was founded on different criteria, which we divided into two groups. 

209 The first group, termed Main Classifiers, are thought to capture universally key features of 

210 biodiversity data. These encompass data type, temporal and spatial extent, and data size. This 

211 categorization was informed by the literature on Essential Biodiversity Variables (EBVs) and the 

212 significance of temporal and spatial dimensions. For example, temporal duration was categorized 

213 as follows: <3 years as Low, 3 to 10 years as Moderate, and >10 years as High (as detailed in 

214 Table S1). "High" relevance datasets typically featured extensive data sizes, highly relevant data 

215 types (e.g., abundance), and substantial spatial or temporal scales. "Moderate" relevance datasets 

216 exhibited either large data sizes or highly relevant data types, combined with low to moderate 

217 temporal and spatial extents or vice versa, or displayed moderate characteristics across all main 

218 classifiers. "Low" relevance datasets were characterized by moderate data sizes and very short 

219 temporal and spatial scales or vice versa, or held low ratings across all main classifiers. 

220 "Negligible" datasets contained no valuable information generally for biodiversity nor for the 

221 ATLAS database (Table 1).

222

223 The second group encompassed Modulators�features that, while not as critical as Main 

224 Classifiers, also inform about the importance of the data. These can include aspects at a more 

225 regional scale, such as a first record for a given taxa in a region, or data from undersampled 

226 areas. In the context of Quebec biodiversity monitoring strategies, data from northern regions is 

227 prioritized as these are largely unstudied areas, and therefore a modulator that we introduce is the 

228 sampling bias north-south Quebec. This illustrates that modulators can accommodate needs of 
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229 specific databases. Modulators influence the evaluation of datasets by slightly altering the 

230 relevance category assigned based on Main Classifiers. Modulators had the capacity to shift the 

231 category by one level, for instance, a dataset assigned "Low" relevance that contains data from 

232 northern regions of Quebec could change to "Moderate" (Table 2).

233

234 Dataset features

235

236 We manually identified dataset features essential for evaluating data type categories, 

237 spatiotemporal extent, taxon numbers and identities, and other specific attributes (Table 1). Data 

238 type categories were assigned following the EBV data type classification. Notably, we marked 

239 instances when data were time series, as these held unique significance.

240

241 Features could be found in either the abstract or additional text within the repository page 

242 (referred to as repository text), the source publication text (i.e., the article), or within the dataset 

243 itself. We made these distinctions because the location could influence the feasibility of 

244 automated retrieval. To achieve this, we conducted manual searches for features and recorded 

245 their locations. It is important to note that features might occasionally be intertwined with 

246 content unrelated to the data, a situation particularly prevalent in references to EBV data 

247 categories or synonyms (see Table S2). For instance, the term "abundance" might appear in texts 

248 referring to species abundances or unrelated non-biological content. Therefore, we assessed the 

249 location of features referring to EBV data categories by quantifying their frequency in titles or 

250 abstracts using the "str_detect" function from the "stringr" R package.

251

252 Geospatial data within the datasets were presented in various forms, ranging from highly detailed 

253 to less detailed. We classified this information into the following categories, ranked from more to 

254 less detailed: sample, site, or range coordinates, species distribution models (SDMs; thereafter 

255 �distribution�), geographic features (e.g., Mont Mégantic), administrative units, maps, and site 

256 IDs (where sampling sites were identified, but precise locations were known only to the authors).

257

258 Extension to scientific articles

259
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260 We expanded our dataset retrieval beyond repositories to include articles sourced from Semantic 

261 Scholar, covering the period from 1980 to 2022. To ensure a manageable analysis, we limited the 

262 retrieved publications to a maximum of 50 positives (top 50 found publications). Due to potential 

263 API request limitations, some queries retrieved more publications than others, with an average of 

264 23 publications per query. Subsequently, we assessed the relevance of the datasets and 

265 publication years in the same manner as with repositories, facilitating comparisons between these 

266 two sources. Our approach generates a random sampling among queries resulting in uneven 

267 numbers, like those retrieved from repositories. This is optimal for our objectives as we are 

268 interested in comparing temporal depth and the location of information, while broadly assessing 

269 their performance for relevance. For a more stringent comparison, standardizing the sampling 

270 numbers among queries and conducting statistical tests for comparisons would be necessary.

271

272 Scientific articles may not necessarily reference a repository for presenting their data, especially 

273 older articles. Instead, data may be embedded in tables within the article text or included in the 

274 appendix. Recognizing the prevalence of datasets presented in this manner is vital for devising 

275 future strategies for automated retrieval. Consequently, we noted the location of each dataset 

276 within retrieved articles. 

277

278 Moreover, articles may not always present their own data but may use data from other sources, 

279 necessitating reference. This additional information can be invaluable for identifying other 

280 sources of relevant datasets. To gauge the extent to which we retrieved articles that referred to 

281 pertinent datasets, we noted instances where articles used data from other dataset sources, 

282 particularly those of high relevance.

283

284 Evaluation

285

286 Queries

287

288 We analyzed the performance of each query by noting the amount of retrieved, not found, and 

289 not accessible datasets and their relevance categories. We computed an F-score for each query 

290 calculating a precision and recall metric as follows:
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291

292 where:

293      

294 Positive refers to those datasets assigned a high or moderate relevance, and negative to low or 

295 negligible relevance.

296

297 Features and accessibility

298

299 Our assessment encompassed both the content and accessibility of datasets. To gauge the 

300 spatiotemporal extent and the representation of Essential Biodiversity Variable (EBV) categories 

301 within the datasets, we conducted feature frequency analyses. In terms of spatial extent, we 

302 quantified the frequencies of datasets falling within the low (< 5,000 km²), moderate (5,000-

303 15,000 km²), and high (>15,000 km²) spatial range categories. For datasets containing both 

304 temporal and spatial information, we conducted visual inspections to discern the alignment 

305 between dataset duration, spatial range, and their assigned relevance categories.

306

307 In parallel, we assessed the accessibility of features, a crucial factor for automated retrieval. To 

308 this end, we tallied the occurrences of feature locations within the datasets, distinguishing 

309 between repository text, articles, and dataset contents, for dataset type, temporal, spatial, and 

310 taxon features. Additionally, we cataloged the frequency of occurrences for each geospatial 

311 information category to gain insights into the level of detail provided in this regard.

312

313 Semantic scholar - repositories comparison

314

315 We conducted a comprehensive comparison between Semantic Scholar and the repositories, 

316 examining various aspects. This entailed evaluating the relevance, number, and accessibility of 

317 datasets obtained from both sources. To delve deeper into the temporal dimension, we quantified 

318 the frequencies of publication years for the datasets. 
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319

320 Results

321

322 Datasets annotation evaluation

323

324 Out of the initial 161 datasets retrieved through our queries, 55 were subsequently excluded for 

325 various reasons: 37 due to incorrect locations, 5 categorized as laboratory studies, and 13 for 

326 miscellaneous reasons. Notably, many datasets with incorrect locations resulted from the 

327 matching of the keyword "Quebec" with the affiliations of the authors.

328

329 The classification based on relevance yielded 90 relevant datasets categorized as either highly, 

330 moderately, or low, which we will refer to as �relevant datasets�: 20 datasets (18%) categorized 

331 as highly relevant, 33 (31%) as moderately relevant, 37 (35%) as having low relevance, and 16 

332 (15%) as negligible in relevance.

333

334 Queries

335

336 The most simple query, �species�, is the one showing the highest performance (Fcore = 0.33), 

337 followed by �population + species� (Fscore = 0.23) and �sites + species� (Fscore = 0.17). 

338 �Occurrence + species� was the query with the highest precision (0.44) (Fig. 2). The mean 

339 overlap between queries was 11% (Fig. S1).

340

341 Features

342

343 Among the relevant datasets, presence-only data emerged as the most common EBV data 

344 category, encompassing 30 publications (29%), followed by genetic data with 27 (26%) and 

345 abundance with 26 (25%). In contrast, data from species distribution models (SDMs), referred to 

346 as "distribution" data, was the least common, featured in only 3 publications (3%) (Fig. 3C). The 

347 temporal ranges of these datasets span from the 1930s to the present, although the majority fall 
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348 within the last two decades (Fig. 3A). Outliers include Favret et al., 2020, offering data on 

349 Odonata specimens from various entomological collections dating back to 1875, and 

350 Schumacher et al., 2022, providing pollen records for butternut spanning from 20,000 years ago 

351 to the present. On average, the temporal duration was 11.1 years, ranging from less than 1 year to 

352 50 years (Fig. 3B). Short-term studies, less than 1 year in duration, constituted the most common 

353 category, accounting for 12% of the datasets. A total of 12 datasets (13%) contained time series 

354 data (Fig. 3A). Spatial extents varied widely, ranging from 0.2 to 24.706.834 km², with a mean of 

355 1,388,738 km²: 26 datasets (29%) covered less than 5,000 km², 9 (10%) fell between 5,000 and 

356 15,000 km², and 30 (34%) exceeded 15,000 km² (Fig. 3BD).

357

358 The datasets cover a diverse array of taxa, spanning 13 distinct classes (not counting those within 

359 zooplankton). Among these, 68 (76%) datasets were associated with one to ten species, with 

360 mammals (21), fish (13), birds (11), and angiosperms (10) being the most frequently represented. 

361 In contrast, 30 (34%) datasets pertained to communities comprising 10 to 180 species, with an 

362 average of 49 species per dataset. Notably, datasets of this nature were more prevalent for plants 

363 (12 datasets) and insects (7 datasets) (Fig. 3E).

364

365 Features accessibility

366

367 Within the 90 relevant datasets, at least one comprehensive metadata (features) belonging to 

368 Main Classifiers were automatically accessible for 88 of them (98%), typically within the 

369 repository page's abstract or additional text. These encompassed explicit mentions of temporal 

370 range in 25 publications (27%), temporal duration in 14 publications (15%), and spatial range in 

371 7 publications (8%) (Fig. 4A). For species-level studies (involving 1 to 10 species), species 

372 names were consistently present in the title or abstract. Additionally, dataset types or synonyms 

373 were included in the title for 24 of them (27%) and in the abstract for 80 (89%).

374

375 Only one publication contained all these features together in the repository text. Furthermore, a 

376 total of 5 (6%) did not explicitly report the temporal range, 31 (34%) the spatial range, and 62 

377 (69%) the data duration in any location (repository text, source article, appendix, or dataset) (Fig. 

378 4A). 
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379

380 Geospatial information, essential for biodiversity monitoring, was unavailable within the 

381 repository text in 68 publications (76%), and no location data, including the dataset, was 

382 provided for 33 (37%) of them (Fig. 4B). Site IDs were given in the dataset of 24 (27%) 

383 publications, but in most cases, it required consulting a map in the article, with no specific 

384 coordinates, to interpret them.

385

386 Semantic scholar

387

388 Our queries yielded 254 datasets from Semantic Scholar without overlap, of which 60 were 

389 excluded due to incorrect locations (33) and miscellaneous reasons (27). Classification by 

390 relevance resulted in 3 (2%) high, 25 (13%) moderate, and 41 low (21%), and 11 (6%) negligible 

391 relevant datasets, alongside 28 (15%) inaccessible datasets and 85 (44%) publications without 

392 datasets (Fig. 5A). A comparison of publication years between Dryad and Zenodo versus 

393 Semantic Scholar revealed that retrieving from repositories yielded datasets published from 2010 

394 onwards, while retrieving from Semantic Scholar included older datasets dating back to 1981 

395 (Fig. 5B).

396

397 Furthermore, while one highly relevant dataset, the Neotoma Paleoecology Database 

398 (www.neotomadb.org), was referenced in publications extracted from repositories, we identified 

399 a total of 6 highly relevant datasets referenced in articles retrieved from Semantic Scholar. These 

400 datasets originated from sources such as the Canadian National Forest Inventory, the Canadian 

401 Wildlife Service, and the Québec Ministry of Environment and Wildlife.

402 Discussion

403

404 Our findings underscore the significant value of automating the retrieval of biodiversity data 

405 from repositories, which can substantially augment the volume of pertinent information within 

406 databases. We have introduced a classification system, designed to serve as a logical framework 

407 for automated algorithms, expediting the evaluation process by categorizing data based on its 

408 relevance. This system draws upon globally applicable biodiversity classifiers, making it 
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409 adaptable to various data types, while also allowing for the incorporation of dataset-specific 

410 nuances. We publish our high quality-annotated dataset alongside this paper, with the aim of 

411 providing a benchmark for new classifiers.

412

413 Assigning relevance categories, whether through our system or alternative approaches, 

414 necessitates a meticulous analysis of features (i.e. metadata) within the publication text. Our 

415 study highlights that this task poses a considerable challenge for automated processes, often 

416 stemming from the absence or scarcity of these features and their sparsity across different 

417 sections of the publication (repository page, dataset, article, supplementary materials). This 

418 challenge is particularly pronounced in the case of spatio-temporal features, which are pivotal for 

419 guiding relevance assessments. Furthermore, our study demonstrates that repositories present a 

420 valuable source of readily accessible, publicly available data, surpassing scientific articles in 

421 terms of speed and efficiency for data retrieval. However, we also emphasize the significance of 

422 designing automated processes for data extraction from articles. These offer substantial temporal 

423 depth of publications, and serve as gateways that can guide researchers to other pertinent and 

424 valuable data sources.

425

426 By employing simple search queries consisting of one to three words, we achieved the retrieval 

427 of a substantial number of pertinent datasets, a notable percentage of which fell within the highly 

428 relevant category. Remarkably, a high percentage of datasets contained genetic data, an area 

429 where greater collection efforts have been advocated (Hoban et al., 2021; Hoban et al., 2022). 

430 Moreover, following presence-only data, abundance data was the most frequently encountered, 

431 being information that can aid in constructing time-series and elucidating population trends. 

432 These are promising findings for the repositories' potential as pivotal resources for automating 

433 the retrieval of biodiversity data. Notably, the growing trend among scientific journals to 

434 mandate the deposition of data used in publications into online repositories reflects a progressive 

435 move toward fostering openness in science. Consequently, repositories are anticipated to witness 

436 exponential growth, encompassing an ever-expanding volume of published data. 

437  

438 We have devised a comprehensive classification system aimed at assigning relevance categories 

439 to datasets, grounded in a set of criteria. We advocate for the adoption of similar schemes by 

PeerJ reviewing PDF | (2024:05:101416:0:0:CHECK 31 May 2024)

Manuscript to be reviewed



440 automated dataset detection algorithms to aid in prioritizing datasets and maintaining pace with 

441 the relentless surge in published data. A critical aspect of our system involves the distinction 

442 between criteria as either Main Classifiers or Modulators: the former encompass fundamental, 

443 overarching aspects pertinent to biodiversity data on a global scale, while the latter encompass 

444 secondary criteria that retain significance, potentially at regional scales. This distinction has 

445 enabled us to underscore the vital importance of data concerning plants and animals in boreal 

446 (e.g.  Lait et al., 2013; Thiffault et al., 2016; Martin et al., 2022) and arctic ecosystems (e.g. 

447 Leblond et al., 2017; Lamarre et al., 2018; Chagnon et al., 2021), which face heightened 

448 vulnerability and remain underexplored in Quebec, along with the inclusion of new species 

449 (Anderson et al., 2016). 

450

451 Nevertheless, it is worth noting that the development of a universally accepted and standardized 

452 classification system for dataset relevance could itself be a substantial undertaking, warranting 

453 collaborative efforts from a multitude of experts. Such a system, once established, could serve as 

454 a common benchmark for dataset retrieval projects and should be periodically revisited and 

455 incorporated into the Essential Biodiversity Variables framework to ensure its enduring 

456 relevance and utility.

457

458 Our assessment, however, has revealed a significant challenge in accessing the metadata 

459 essential for automated algorithms to assign categories of relevance to publications. This 

460 challenge stems from the absence and dispersion of critical features throughout various sections 

461 of the publication, making it particularly problematic for detecting Main Classifiers related to 

462 temporal and spatial extents. In the majority of datasets we examined, these details were either 

463 entirely missing or exclusively located within the article text, neglecting inclusion in the abstract 

464 or repository page. Search algorithms should then be engineered to thoroughly scan all parts of a 

465 publication, encompassing the dataset itself, to capture these essential features.

466

467 This underscores the urgency of developing general and standardized frameworks within 

468 publication guidelines to supply the requisite metadata for automatic detection and extraction of 

469 information. Presently, various global frameworks and initiatives, such as the FAIR Data 

470 Principles, GBIF guidelines and standards, and Biodiversity Data Journal recommendations, 
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471 advocate for accompanying data with comprehensive metadata, encompassing methodological 

472 details, temporal scope, geographic coverage, and more. However, the manner in which this 

473 information is presented poorly reflects information needs and is the biggest obstacle in 

474 retrieving relevant biodiversity data (Jones et al., 2019; Löffler et al., 2021).

475

476 For the establishment of an automated framework for biodiversity data retrieval, it becomes 

477 imperative to take an additional stride. Contemporary formats of online publications should 

478 incorporate structures that facilitate access for automated algorithms to evaluate data relevance 

479 based on standardized global criteria. This can be achieved by incorporating dedicated sections 

480 within publications, both in online repositories and articles, where authors are required to 

481 provide a predefined set of metadata, including the Main Classifiers. Implementing such 

482 straightforward updates would effectively alleviate the primary challenges we encountered 

483 regarding the identification of features necessary for assessing data relevance. 

484

485 Our findings highlight that repositories like Dryad and Zenodo, as well as scientific literature 

486 search engines such as Semantic Scholar, offer distinct advantages and disadvantages when it 

487 comes to automated data retrieval. Sources of scientific literature may exhibit a relatively high 

488 percentage of publications that lack data or render it inaccessible as it was observed for Semantic 

489 Scholar, which can potentially pose challenges when retrieving datasets and assessing their 

490 relevance. Conversely, repositories offer readily accessible datasets and prove to be highly 

491 efficient sources for data retrieval. However, repositories may exhibit a limited temporal depth of 

492 datasets, typically spanning only the past decade, given their contemporary nature. In contrast, 

493 sources of scientific literature have the potential to provide a more extensive historical dataset 

494 archive. Moreover, articles may make reference to and cite other data sources, such as the six 

495 distinct highly relevant databases we found referenced in retrieved articles, thereby facilitating 

496 the identification of unknown relevant datasets. These substantial differences underscore the 

497 importance of conducting data retrieval from both types of sources to ensure a comprehensive 

498 approach.

499

500 In the realm of automated algorithm development, manual evaluations, such as the one 

501 conducted in this study (publicly available; see Data Availability Statement), will remain 
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502 invaluable. They serve both as training data for automated algorithms to learn identifying 

503 relevant datasets, and as a crucial benchmark that enables the assessment of automated processes 

504 by drawing comparisons with the results from manual evaluations. Furthermore, it's imperative 

505 to acknowledge the need for specialized strategies when dealing with diverse data sources. For 

506 instance, one we did not assess here are the increasingly digitized collections of museums, which 

507 might require specific automated search and evaluation approaches.  An exciting avenue for 

508 future research lies in these sources, which harbor invaluable historical data often absent from 

509 contemporary global information systems or databases (Graham et al., 2004; Guralnick et al., 

510 2007; Page et al., 2015; Wen et al., 2015). 

511

512 While the development of literature classification algorithms is advancing vertiginously, 

513 especially with AI systems (see Google Gemini, www.deepmind.google), it is imperative to 

514 recognize that the challenges surrounding information structure and metadata organization within 

515 scientific literature persist regardless of technological evolution. The effectiveness of automated 

516 systems relies not only on the sophistication of algorithms but also on the clarity and consistency 

517 of metadata standards, the accessibility of data repositories, and the interoperability of databases. 

518 Our work not only identifies significant challenges for forthcoming automated algorithms tasked 

519 with dataset retrieval for biodiversity but also underscores the relatively surmountable nature of 

520 these challenges. These foundational issues transcend the current state of AI technology and are 

521 central to ensuring the long-term viability and utility of automated systems for biodiversity data 

522 retrieval. As such, efforts to address these structural challenges as well as standardized schemes 

523 for prioritization such as the one we proposed, must remain a priority alongside advancements in 

524 AI capabilities. To move forward effectively, prioritizing the establishment of global frameworks 

525 and guidelines that streamline the workflow for automated data retrieval systems is essential. 

526 Simultaneously, raising awareness among scientists about the importance of publishing data in 

527 formats conducive to automatic retrieval and evaluation holds great promise. These initiatives 

528 carry the transformative potential to reshape our data acquisition capabilities profoundly, greatly 

529 bolstering our capacity for biodiversity monitoring and informed decision-making, with far-

530 reaching positive ecological implications.

531
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Figure 1
Sources and availability of datasets relevant for biodiversity.
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Figure 2
Queries performance retrieving relevant datasets from repositories (Dryad and Zenodo)

(A) Number of publications and counts of relevant categories per query. Colors indicate
relevance categories: H (High), M (Moderate), L (Low), and X (Negligible). (B) F scores,
precision, and recall metrics for each query. All queries also account for the word <Quebec=.
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Figure 3
Features of retrieved datasets from repositories Dryad and Zenodo and results of the
relevance evaluation.

(A) Temporal duration and ranges. Red range bars indicate datasets with time series data.
The ûrst dataset extends to 1875. Not showing outlier dataset from 20.000 ya to the present.
(B) Duration, spatial rage, and relevance category. (C) Publication counts by EBV data types.
(D) Spatial range counts in the low, medium, and high range categories, respectively. (E)
Publication counts by taxa and relevance categories: the left panel shows species-level
studies, which contain data for 1 to 10 species, whereas the right panel shows community-
level studies with data for more than 10 species. Letters H, M, and L correspond to High,
Moderate, and Low dataset relevance categories, respectively.
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Figure 4
Location of features (i.e. metadata) in the publication spaces.

(A) Spatiotemporal features and (B) geospatial features.
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Figure 5
Comparison between Semantic Scholar and repositories (Dryad and Zenodo).

(A) Relevance and accessibility of datasets. (B) Temporal depth of retrieved publications.
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Table 1(on next page)

Manually evaluated features from retrieved datasets.
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1 Feature Type Example

EBV data type categorical abundance

Geospatial information continuous sample coordinates

Spatial range continuous 100.000 km2

Temporal range string from 1999 to 2008

Temporal duration continuous 9 years

Taxons string black-legged tick

Referred dataset source string

Ministère des Ressources 

naturelles et des Forêts

Dataset location categorical repository

Dataset type location categorical abstract

Geospatial information 

location categorical article text

Spatial range location categorical abstract

Temporal range location categorical dataset

Temporal duration location categorical article text
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Table 2(on next page)

Evaluation criteria used to assign the relevance category to the datasets.

First, the main classiûers determine whether the dataset relevance is <High=, <Medium=,
<Low=, or <Negligible= (<Relevance by Main Classiûers= column), and then Modulators can
increase or decrease the relevance category by one (e.g. <Low= to <Medium= but not <Low=
to <High=). The <Organization level= modulator takes into account whether the data is about
individuals, populations, or species; the <Bias North-South= modulator is evaluated by
establishing an arbitrary latitudinal threshold to separate northern from southern areas of
Québec, with northern areas having higher relevance. In the example below, data on an
endangered species may have relevance <Moderate= according to the main classiûers but its
conservation status and priority location would increase it to <High=.
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1

Main Classifiers Modulators

Data type Data size Spatial 

range

Temporal 

range

Relevance by 

Main Classifiers

Organization 

level

Conservation 

status

New regional 

species

Bias North-

South Quebec

Relevance 

Presence 

only

Moderate Moderate Low Moderate individual EN FALSE North High
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