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ABSTRACT
The genus Euplotes, a group of ciliated protists, has attracted attention as a model
organism due to its widespread distribution and ease of cultivation. This study
examines the evolutionary patterns of the SSU rRNA secondary structure within this
genus, aiming to elucidate its role in supporting evolutionary relationships and
uncovering cryptic species. By predicting the secondary structure of SSU rRNA and
applying the CBC (Compensatory Base Change) concept analysis, we examined 69
species of the genus Euplotes, with 57 SSU rRNA gene sequences retrieved from
GenBank and 12 newly sequenced specimens from South Korea. Our analysis
revealed significant variations in the V4 region secondary structure, particularly in
helix E23_8, across different clades of Euplotes. Reconstruction of the ancestral state
indicated a transition from a simpler (Type I) to a more complex (Type II) secondary
structure, with several species showing a reversal to Type I especially species in clade
VI, suggesting of reverse evolution. In addition, our study identified cryptic species
within Euplotes based on differences in the secondary structure of the V4 region,
particularly evident in clade VI, where CBC analysis highlighted differences in
E. minuta compared to E. vannus and E. crassus. These results highlight the utility of
molecular data in refining species boundaries and evolutionary patterns within the
genus Euplotes.

Subjects Biodiversity, Bioinformatics, Evolutionary Studies, Microbiology, Molecular Biology
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INTRODUCTION
Genus Euplotes is a remarkably diverse genus of ciliates, comprising more than 100 species
(Bisby et al., 2010). This genus is notable for its cosmopolitan distribution and ease of
cultivation in the laboratory, as it is commonly found in a wide variety of environment.
Euplotes serves as a valuable model organism alongside Paramecium and Tetrahymena
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(Aury et al., 2006; Greider & Blackburn, 1989; Kruger et al., 1982; Sonneborn, 1975).
Euplotes has been extensively utilized in studies investigate the adaptation of single-celled
organisms to extreme conditions such as cold environments (La Terza et al., 2001;
Marziale et al., 2008;Mozzicafreddo et al., 2021), as well as research in mating on processes
and pheromone studies (Di Giuseppe et al., 2011; Gong et al., 2022; Pedrini et al., 2022), the
symbiotic relationships between symbionts and hosts (Boscaro et al., 2019a, 2019b;
Vannini et al., 2017), and the geographical distribution of unicellular organisms (Syberg-
Olsen et al., 2016). Given the importance of Euplotes’s as a model organism, numerous
studies have focused on species delimitation and the exploration of new species across
diverse environments and biogeographies (Abraham et al., 2021; Han, Pan & Jiang, 2022;
Lian et al., 2020; Syberg-Olsen et al., 2016; Valbonesi et al., 2021; Zhao et al., 2018). In the
process of delimitation within the genus Euplotes several cryptic species emerge due to
their indistinguishable morphological character (Wang et al., 2021; Zhao et al., 2018).
Molecular data have mainly played a supporting role in the phylogenetic studies of
Euplotes and in the attempt to reveal cryptic species within genus Euplotes (Zhao et al.,
2018). However, it should be noted that molecular data can play a more significant role
than previously discussed. For example, in the study of the genus Euplotes, molecular data,
such as SSU rRNA secondary structure, can serve as a key feature to identify new species
(Abraham et al., 2021).

The SSU rRNA secondary structure, which serving as a molecular character, exhibits
specific evolutionary patterns that have proven valuable in phylogenetic studies of different
taxa (Marin et al., 2003; Rusin et al., 2001; Telford, Wise & Gowri-Shankar, 2005; Voronova
& Chelomina, 2020). This is evident in phylogenetic studies of ciliates (Du, Zhao & Tang,
2018; Gao, Katz & Song, 2013; Gao et al., 2014; Li et al., 2008; Wang et al., 2015;
Zhang et al., 2014; Zhang et al., 2015). Components of the RNA secondary structure,
including stems, inner loops, hairpin loops, and bulges, are features that can support
traditional cladistics and contribute to our understanding of the universal tree of
life by examine the evolutionary patterns inherent in these molecular characters
(Caetano-Anollés, 2002).

The secondary structure of SSU rRNA contains nine variable regions (V1–V9) that
hold phylogenetic information. Among these, the V4 region is one of the most studied
in ciliates due to its superior ability to resolve phylogenetic relationships compared to
the V9 region (Dunthorn et al., 2012, 2014; Santoferrara, McManus & Alder, 2013). The
V4 region has been widely used to differentiate closely related ciliate taxa, such as
scuticociliates (Gao et al., 2014), litostomes (Strüder-Kypke et al., 2006), and haptorians
(Zhang, Simpson & Song, 2012). Furthermore, the V4 region is valuable for estimating the
diversity of different protist taxa due to its high mutation rate (Stoeck et al., 2010, 2014;
Santoferrara, McManus & Alder, 2013; Dunthorn et al., 2014).

In addition to elucidating taxonomic relationships and evolutionary history, the
secondary structure of SSU rRNA can also be used to distinguish between different species.
This is achieved through compensatory base change (CBC) analysis on the helices of the
secondary structure, which detects nucleotide base changes on both sides of the paired
bases. An experimental study by Coleman & Vacquier (2002) demonstrated a correlation
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between CBCs and sexual compatibility between species. The study found that taxa
differing by CBCs, even by just a single CBC in conserved pairing positions, showed
differences in sexual compatibility.

Therefore, this study aims (1) to observe the evolutionary pattern of the SSU rRNA
secondary structure of V4 region in the genus Euplotes as a speciose and model organism
group and its usability in supporting the phylogenetic and evolutionary of the genus
Euplotes, and (2) to reveal cryptic species within the genus Euplotes through CBC analysis
of the secondary structure of the V4 region.

MATERIALS AND METHODS
Sample collection and morphological study
Twelve species of Euplotes were collected from various locations in South Korea (Table 1).
These specimens were cultured in Petri dishes containing water from their respective
habitats. The cells were initially observed in their live state using a stereomicroscope
(Nikon SMZ800, Nishioi, Shinagawa-ku, Tokyo) to assess their typical shape, movement,
and behavior. For more detailed analysis, a differential interference contrast (DIC)
microscope (Axio Imager A.1, Carl Zeiss, Oberkochen, Germany) was used, allowing for
magnification between 100× and 1,000× for both live and stained samples.

DNA extraction, amplification, and sequencing
Genomic DNA extraction was performed using the RED Extract-N-Amp Tissue PCR Kit
from Sigma (St. Louis, MO, USA), according to the manufacturer’s instructions. For
polymerase chain reaction (PCR), the forward primer EUK A (5′-GAC CGT CCT AGT
TGG TC-3′) and the reverse primer EUK B (5′-CTT GGA CGY CTT CCT AGT-3′) were
used, as described by Medlin et al. (1988). PCR amplification was performed using the
TaKaRa ExTaq DNA polymerase kit from TaKaRa Bio-medicals (Otsu, Japan) according
to this specific protocol: an initial denaturation at 94 �C for 2 min, followed by 37 cycles of
denaturation at 95 �C for 30 s, annealing at 50 �C for 40 s, and extension at 72 �C for 4 min.
This was followed by a final extension at 72 �C for 10 min (Kim et al., 2011). Sequencing
was performed with bidirectional sequencing using the primers used in the PCR reaction
(EUK A and EUK B).

Predicting the secondary structure of the V4 region of SSU-rRNA and
CBC (compensatory base change) concept analysis
To predict the secondary structure of the SSU-rRNA, we performed an alignment of 69
SSU rRNA gene sequences from the species of genus Euplotes retrieved from GenBank
(NCBI) and together with newly sequenced species from Korea (Table 1), related genera
members (Certesia quadrinucleata, Aspidisca fusca, Euplotidium Rosati, Diophrys scutum,
Uronychia xinjiangensis, and Discocephalus pararotatorius) selected as an outgroup. The
alignment was performed using SSU-ALIGN and based on the alignment results from
SSU-ALIGN, it was determined that the V4 region is a longer variable region (163–261 bp)
(Table S1) and has more mutations compared to other variable regions (Fig. S1). From the
SSU-ALIGN results, we isolated the V4 region of the SSU rRNA gene (Nawrocki, 2009). To
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generate consensus secondary structure of the V4 region of genus Euplotes member, we
used RNAalifold software (Hofacker, 2008), the consensus secondary structure of V4
region used as a reference for predicting the secondary structure of the V4 region for each
species. The prediction of the secondary structure for each species was achieved by using
MFOLD, which calculates the minimum energy (Zuker, 2003). To guide the construction
of the secondary structure using MFOLD, we used the consensus secondary structure and
several criteria. First, we closed bilateral bulges (internal loops) present in published
models if they could consistently form G:C pairs with non-canonical pairing bases in the
stem. Second, we did not retain paired structures if multiple non-canonical base pairings
occurred, instead of canonical (G:C or A:U) or wobble (G:U) base pairs. Final, in cases
where multiple structures were predicted, we selected the structure with either the
minimum free energy or the best compatibility with similar sequences (Řeháková et al.,
2014; Voigt, Erpenbeck & Wörheide, 2008). The final secondary structure of the
hypervariable region of SSU-rRNA was visualized using RNAviz software (De Rijk, Wuyts
& De Wachter, 2003).

For the compensatory base change (CBC) analysis, we used 4SALE (Seibel et al., 2006) to
detect CBCs between sequence-structure pairs within the alignment. The CBC analysis was
applied to members of clade VI within the genus Euplotes (E. minuta, E. cf. mutabilis, E.
crenosus, E. japonicum, E. cristatus, E. crassus, and E. vannus) (Fig. S2).

Reconstruction of ancestral state
For the ancestral state analysis of the V4 (SSU-rRNA) secondary structure, we used
representative species from the genus Euplotes and related genera (Certesia
quadrinucleata, Aspidisca fusca, Euplotidium rosati, Diophrys scutum, Uronychia
xinjiangensis, and Discocephalus pararotatorius) (Table S1). The presence or absence of

Table 1 Characterization of SSU rRNA gene sequences of Euplotes species from Korea.

Taxon Collection site SSU rRNA gene Clade

GenBank
entry

Length
(nt)

GC
(%)

Euplotes cf. inkystans Dokdo, Korea PP648189 1,794 45.2 V

Euplotes cf. mutabilis Dokdo, Korea PP648190 1,836 44 VI

Euplotes crenosus Dokdo, Korea PP648191 1,972 42 VI

Euplotes neopolitanus Dokdo, Korea PP648192 1,874 42 IV

Euplotes trisulcatus Busan, Korea PP648193 1,750 45.3 V

Euplotes gracilis Ulsan, Korea PP648194 1,803 44 V

Euplotes muscorum oligomembrana n.subsp. Ulsan, Korea PP648195 1,814 43 V

Euplotes paramuscicola n.sp. Ulsan, Korea PP648196 1,807 46 V

Euplotes vannus pop.1 Pohang, Korea PP648197 1,840 43 VI

Euplotes vannus pop.2 Pohang, Korea PP648198 1,846 43 VI

Euplotes n. sp. Dokdo, Korea PP648199 1,807 45 V

Euplotes sp. Dokdo, Korea PP648200 1,797 45 V
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two additional helices on the extension helix E23_8 (Type I vs. Type II) (Fig. 1) was
mapped onto the best-likelihood tree generated by RAxML analysis on the CIPRES
platform (Miller, Pfeiffer & Schwartz, 2011). The character matrix and subsequent
ancestral state reconstruction were performed using the parsimony model in Mesquite
software (version 3.70) (Maddison & Maddison, 2021) (Table S1).

RESULTS
Significant characters of SSU rRNA secondary structure
In this study, we focused on the secondary structures of the V4 region. This choice was
prompted by the observation of a significant number of mutations in this region, as
indicated by the results of SSU-Align and primary sequence alignment. The consensus
secondary structure predicted for the V4 region by the RNAalifold software identified four
major helices (Fig. 1). In general, the secondary structure of each member of the genus
Euplotes consists of four helices, with variations observed specifically in helix E23_8. These
variations include two additional helices or hairpin loops at the end of the helix,
highlighting the structural diversity within the genus Euplotes in the V4 region (Fig. 1).

Each clade depicted in the phylogenetic tree (Fig. S2) has a distinct secondary structure
pattern. Members of clade I display a single large hairpin loop composed of 21 nucleotides
in helix E23_8 (Fig. 2). This structural feature is also shared by the members of clade II, but
smaller in size, consisting of 13 nucleotides (Fig. 2). Clade III is divided into two groups
based on the characteristics of the V4 secondary structure. The first group include species
with a hairpin loop consisting of five nucleotides (Fig. 2). Members of this group include
E. curdsi, E. dominicanus, E. estuarianus, E. nobili, E. raikovi, and E. shii (Fig. 3). The
second group is characterized by a long helix in E23_8 and the presence of two additional
helices (E23_11 & E23_12) (Fig. 2). This group includes E. bergeri, E. elegans, E. qatarensis,
and E. wuhanensis (Fig. 3). All members of clade IV share a V4 secondary structure

Figure 1 Summary of V4 secondary structure on Euplotes and related genera. (A) Helices of V4 secondary structure marked in red, representing
helices commonly found in Prokaryotes (Bacteria), and in green mark, representing extended helices in Eukaryotes (Lee & Gutell, 2012), (B) V4
secondary structure type I in genus Euplotes members, featuring one hairpin loop at the end of E23_8, (C) V4 secondary structure type II in genus
Euplotes members, with two extra helices (E23_11 & E23_12). Full-size DOI: 10.7717/peerj.18852/fig-1
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characterized by the presence of two additional helices (E23_11 & E23_12), with the helix
E23_8 shorter compared to the second group of clade III (Fig. 2). All members of clade V
have two additional helices, except for three species that have a single hairpin loop at the
end of helix E23_8 (Fig. 3). These three species are E. trisulcatus (hairpin loop consisting of
32 nucleotides), E. trisulcatus (hairpin consisting of 17 nucleotides) and E. shini (hairpin
loop consisting of 29 nucleotides) (Fig. 2). In clade VI, members share a common pattern
of a single large hairpin loop composed of 25–29 nucleotides. Interestingly, E. minuta, a
member of clade VI, deviates from this pattern and show two additional helices (E23_11 &
E23_12) (Fig. 3 and Fig. S2).

In addition to secondary structure, we applied compensatory base change (CBC)
analysis to the members of clade VI, focusing specifically on the genus Euplotes

Figure 2 Several species of the genus Euplotes and their V4 secondary structure (E23_8, E23_11, and E23_12).
Full-size DOI: 10.7717/peerj.18852/fig-2
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vannus-minuta-crassus complex. The CBC shows that E. minuta has one CBC compared
to other members of clade VI (Fig. 4).

Ancestral state of V4 secondary structure within genus Euplotes
The ancestral state was analyzed using the V4 secondary structure within the genus
Euplotes to discern the evolutionary pattern of molecular characters, with particular focus
on helix E23_8 (hairpin loop vs. two additional helices) (Fig. 1). The V4 secondary
structure type I represents a molecular feature inherited from the ancestor of the genus
Euplotes, and it is retained in members of clade I and II (Fig. 3). The ancestral state analysis
shows that Type II of the V4 secondary structure, indicating the addition of two helices, is

Figure 3 Ancestral state analysis of V4 in the genus Euplotes, with V4 secondary structure “Type I” and “Type II” as characters.
Full-size DOI: 10.7717/peerj.18852/fig-3
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evolve feature compared to Type I of the V4 secondary structure (Fig. 3). Type II V4
secondary structure is commonly observed in almost all members of clade III to V with the
exceptions of a few species that have Type I of the V4 secondary structure as their
molecular character. These species include E. dominicanus, E. estuarinus, E. curdsi, E.
nobilii, and E. shii in clade III, and E. trisulcatus, E. bisulcatus and E. shini in clade V
(Fig. 3).

An interesting observation arises in the members of clade VI, where all members except
E. minuta have Type I of the V4 secondary structure as their molecular character. Clade VI
appears to represent a relatively recent clade in the phylogenetic tree of the genus, and
these results suggest a remark reappearance of primitive characters reappearing in the
most advanced species within this clade (Fig. 3).

DISCUSSION
Reverse evolutionary pattern of the V4 secondary structure within the
genus Euplotes
The Type I of V4 secondary structure is regarded as simpler compared to Type II, as it
shares structural similarities to the V4 secondary structure found in prokaryotes. In
prokaryotes, the E23 (V4) region typically lacks an additional helix, indicating a primitive
feature compared to eukaryotes (Lee & Gutell, 2012). This primitive feature is observed in
members of the genus Euplotes and outgroup genera used as the earliest divergence group
at the base of the phylogenetic tree, as supported by molecular clock analysis (Fig. S3). The
primitive character of the V4 secondary structure was also observed in some later diverging
species, particularly in Group VI (Fig. 3 & Fig. S1).

The secondary structure of V4 in the common ancestor of the genus Euplotes is
characterized by Type I, which later evolved into the more complex Type II structure
(Fig. 3). Interestingly, in certain evolved species there was a reduction in the E23_11 and
E23_12 helices, resulting in a reversion to the Type I V4 secondary structure (Fig. 3). This
pattern is suggestive of reverse evolution, where a character state changes to resemble the

Figure 4 Euplotes minuta shows one compensatory base change (CBC) compared to another member of Clade VI.
Full-size DOI: 10.7717/peerj.18852/fig-4
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ancestral state, involving reversals and regressions that reflect evolutionary patterns of
reversion to earlier or simplified forms after initially becoming more complex (Porter &
Crandall, 2003; Teotónio & Rose, 2001).

The structural variations observed in the V4 secondary structure result from deletions
or insertions in the V4 SSU rRNA region (Fig. S4). This pattern suggests that the
occurrence of insertions or deletions in this region implies its lack of conservation and
limited relevance to ribosome function, and thus the high degree of evolutionary change in
this region is unlikely to have a significant impact on ribosomal function (Wuyts, Van de
Peer & De Wachter, 2001). Although this region may not directly affect ribosome function,
it is important because of the exceptionally high mutation rate within the SSU rRNA gene
sequence. This region is likely to play a critical role in maintaining the free energy level to
support the conservation of the SSU rRNA secondary structure. This study shows that the
Type II of the V4 secondary structure has a more favorable free energy profile when
compared to Type I (Table S1). The reverse evolution of the V4 secondary structure is not
driven by the energy favorability, but is likely due to deletions that occur within this
specific region.

The evolutionary pattern of V4 secondary structure supports the
primitive nature of the basal clade in the genus Euplotes
The genus Euplotes shows distinct groupings, with a basal group (clade I) containing
species such as E. huizhouensis, E. petzi, and E. sinicus, and subsequent divergent groups
(clades II to VI) (Fig. 3). The evolutionary pattern of the V4 secondary structure shows that
clade I, as a basal group, has primitive or ancestral characteristics compared to the later
evolved groups. This pattern extends beyond molecular characters, morphological
characters also follow a similar trend. Specifically, the basal group (clade I) displays a
distinctive double-pattern argyrome character, representing the ancestral state of the genus
Euplotes. In addition, these species display 10 fronto-ventral cirri (FVC), another character
considered primitive or plesiomorphic in the genus Euplotes. In summary, molecular
evidence from the V4 secondary structure supports the idea that species in the basal group
(clade I) of the genus Euplotes are characterized by primitive traits compared to species in
later diverging groups (clades II to VI), as reflected in their morphological characters
(Syberg-Olsen et al., 2016; Zhao et al., 2018).

Cryptic species within the genus Euplotes in clade VI are revealed by
the CBC concept in the V4 secondary structure
In this study, the CBC concept is applied to the members within clade VI, that potentially
contain cryptic species. The presence of cryptic species makes it difficult to distinguish the
species by morphological characters. By examining the secondary structure of V4, it is clear
that E. minuta has a different structure compared to other members of clade VI. The CBC
shows changes in nucleotide bonds in E. minuta compared to E. crassus, E. vannus, E. cf.
mutabilis, and E. japonicum. To date, cryptic species have been identified among
E. minuta, E. crassus, and E. vannus, which can be distinguished mainly by cell size alone
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(Dini, 1984; Valbonesi, Ortenzi & Luporini, 1988). However, the presence of CBC in
E. minuta allows us to reasonably conclude that E. minuta represents a separate species
from E. crassus and E. vannus. Furthermore, the CBC concept in E. crassus and E. vannus
is consistent with evidence that both species are capable of mating under laboratory
conditions (Valbonesi, Ortenzi & Luporini, 1988). This mating compatibility results from
their morphological and chemical compatibility, in particular their pheromones.
Considering both mating compatibility and the CBC concept, it is plausible that these two
species are more appropriately classified as a single species.

CONCLUSIONS
The study of the V4 secondary structure within the genus Euplotes provides valuable
insights into the evolutionary dynamics of this group. The observed pattern of reverse
evolution, in which the V4 structure reverts from the more complex Type II to the simpler
Type I, suggests a reversion to ancestral features. Furthermore, the application of CBC
analysis within Clade VI reveals the presence of cryptic species, providing a more
nuanced understanding of species differentiation within Euplotes. The CBC
analysis not only supports the distinct classification of species such as E. minuta but also
raises the possibility that E. crassus and E. vannus may share such close genetic
similarities that they could potentially be considered as a single species. In conclusion, this
research highlights the evolutionary complexity within the genus Euplotes and
demonstrates the effectiveness of molecular tools such as V4 secondary structure
analysis and CBC in elucidating species relationships and evolutionary history. These
findings contribute to a deeper understanding of the processes driving diversity within
the genus.
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