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ABSTRACT

Background. Leptospirosis is an endemic disease in countries with tropical climates
such as South America, Southern Asia, and Southeast Asia. There has been an increase
in leptospirosis incidence in Malaysia from 1.45 to 25.94 cases per 100,000 population
between 2005 and 2014. With increasing incidence in Selangor, Malaysia, and frequent
climate change dynamics, a study on the disease hotspot areas and their association
with the hydroclimatic factors could enhance disease surveillance and public health
interventions.

Methods. This ecological cross-sectional study utilised a geographic information
system (GIS) and remote sensing techniques to analyse the spatiotemporal distribution
of leptospirosis in Selangor from 2011 to 2019. Laboratory-confirmed leptospirosis
cases (n = 1,045) were obtained from the Selangor State Health Department. Using
ArcGIS Pro, spatial autocorrelation analysis (Moran’s I) and Getis-Ord Gi* (hotspot
analysis) was conducted to identify hotspots based on the monthly aggregated cases
for each subdistrict. Satellite-derived rainfall and land surface temperature (LST) data
were acquired from NASA’s Giovanni EarthData website and processed into monthly
averages. These data were integrated into ArcGIS Pro as thematic layers. Machine
learning algorithms, including support vector machine (SVM), Random Forest (RF),
and light gradient boosting machine (LGBM) were employed to develop predictive
models for leptospirosis hotspot areas. Model performance was then evaluated using
cross-validation and metrics such as accuracy, precision, sensitivity, and F1-score.
Results. Moran’s I analysis revealed a primarily random distribution of cases across
Selangor, with only 20 out of 103 observed having a clustered distribution. Meanwhile,
hotspot areas were mainly scattered in subdistricts throughout Selangor with clustering
in the central region. Machine learning analysis revealed that the LGBM algorithm had
the best performance scores compared to having a cross-validation score of 0.61, a
precision score of 0.16, and an F1-score of 0.23. The feature importance score indicated
river water level and rainfall contributes most to the model.

Conclusions. This GIS-based study identified a primarily sporadic occurrence of
leptospirosis in Selangor with minimal spatial clustering. The LGBM algorithm
effectively predicted leptospirosis hotspots based on the analysed hydroclimatic factors.
The integration of GIS and machine learning offers a promising framework for disease
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surveillance, facilitating targeted public health interventions in areas at high risk for
leptospirosis.

Subjects Infectious Diseases, Computational Science, Data Mining and Machine Learning,
Environmental Impacts, Spatial and Geographic Information Science
Keywords Leptospirosis, Hotspot areas, Climatic factors, GIS, Predictive model

INTRODUCTION
Background

Leptospirosis is a globally significant zoonotic disease caused by the genus Leptospira
pathogenic bacteria (Chacko et al., 2021). Disease outbreaks are closely linked to heavy
rainfall, flooding, and hot, humid climates (Lau et al., 2010). It disproportionately affects
impoverished communities in developing countries, particularly those in slums, agriculture,
or water-based recreation activities (Jittimanee & Wongbutdee, 2019; Torgerson et al., 2015).
Transmission to humans primarily occurs when broken skin or mucous membranes
encounter water or soil contaminated by urine from infected animal reservoirs (Chacko et
al., 2021; Karpagam ¢ Ganesh, 2020). While many cases exhibit mild, flu-like symptoms
and may not require treatment, severe leptospirosis can manifest as disease complications
such as pneumonia, kidney failure, and pulmonary haemorrhage or can even be fatal
(Karpagam & Ganesh, 2020).

Leptospirosis is endemic in tropical and subtropical areas of South Asia, Southeast
Asia, and South America. While considered a neglected disease in developed countries
like the United States and Europe due to less favourable environmental conditions,
outbreaks can occur via travel to endemic countries or engaging in water-borne activities
without adequate protection (Chacko et al., 2021; Karpagam & Ganesh, 2020). The disease
also flourishes in settings with poor sanitation, as these conditions support large rodent
populations, a significant disease reservoir in the Southeast Asia (SEA) region (Garba et al.,
2018). Warm tropical climates with substantial rainfall common to Southeast Asia (SEA)
create environments favourable for Leptospira growth, promoting transmission to humans
(Nozmi et al., 2018), with Leptospira interrogans and L. borgpetersenii identified as the key
pathogenic species in the region (Cosson et al., 2014).

Malaysia’s consistently hot and humid climate with intermittent heavy rainfall patterns
creates a conducive environment for the disease, influencing leptospirosis outbreaks (Holt,
Davis & Leirs, 2006; Lopez et al., 2019). The state of Selangor exhibits particularly high
leptospirosis incidence, peaking in 2013 at 24.68 cases per 100,000 population (Tan ef al.,
2016). Even though the Selangor State Health Department reports the disease reduction
trend in the years following, i.e., 0.63 cases per 100,000 population in 2019, the actual
incidence may be underestimated due to clinical overlap with other endemic diseases like
dengue fever and malaria (Benacer et al., 2016). Furthermore, climate change may further
worsen leptospirosis risk through increased flood intensity and weather fluctuations,
promoting vector population growth and Leptospira spread (Abdul Rahman, 2018).
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Geographic information systems (GIS) revolutionised epidemiological research by
analysing and layering various spatial data to look at disease patterns (Goodchild,
2005). Spatio-temporal analysis of disease patterns further enhances understanding by
incorporating the time dimension, facilitating understanding disease trends and the creation
of predictive models for disease management (Byun, Lee ¢ Hwang, 2021; Convertino
et al., 2021). Additionally, remote sensing complements GIS in measuring the earth’s
surface environmental properties, such as rainfall patterns and surface temperature, by
detecting electromagnetic waves (DeMers, 2009). These data could then be integrated into
epidemiological studies to examine disease dynamics and their environmental correlations
(Dukiya, 2021; Tran, Kassie ¢& Herbreteau, 2016). Spatial data is essential for understanding
disease patterns and identifying risk factors in health research. By analysing point data
(e.g., individual disease cases) and aggregate data (e.g., regional disease rates), researchers
can uncover valuable insights into the geographic distribution of diseases and potential
contributing factors (Lin ¢ Wen, 2022).

Spatial autocorrelation statistics (Moran’s I) measure the degree of similarity between
observed values at different spatial locations, with positive autocorrelation indicating
an area with high values surrounded by neighbouring values with a higher incidence
than other areas (Lin & Wen, 2022). This analysis has broad applications in identifying
spatial associations of disease incidence and distribution. Studies that demonstrate the
clustering of diseases at particular regions in respective researched areas include kala-azar
cases in India (Bhunia et al., 2013), COVID-19 in Vietnam (Thi-Bich-Thuy ¢ Thi-Hien,
2023), and leptospirosis in Thailand (Chadsuthi et al., 2022). Meanwhile, the Getis-Ord Gi*
statistics identify hotspot areas by measuring the intensity of high values. Hotspot analysis
reveals spatial clusters and provides visual insights into disease trends. Identifying hotspots
enables targeted resource allocation, interventions, and public awareness campaigns
to alleviate environmental risk factors associated with infectious diseases. Additionally,
analysis of climatic variables and their association with leptospirosis hotspots could address
the issues of climate change’s impact on leptospirosis vulnerability, with the associated
secondary chronic disease complications and economic loss from uncontrolled leptospirosis
outbreaks.

Machine learning (ML) is a field within computer science that enables computers to
learn and adapt without being explicitly programmed. It utilises algorithms to analyse data,
identify patterns, and train models that automate decision-making processes (Kufel et al.,
2023). Some examples of ML algorithms include artificial neural networks (ANN), support
vector machine (SVM), decision tree, and Random Forest. Successful development of a
hotspot predictive model relies on integrating pre-processing techniques to ensure high-
quality data. Techniques like normalisation and sampling adjustments are essential in ML
to address biases and data imbalances (Abas et al., 2024). Underreporting or mishandling
geographic of confirmed cases can be handled by oversampling, where minority classes are
augmented, and weights are assigned to equalise data for feature target class, ensuring a
quality data input for building a robust and reliable predictive model (Abas ef al., 2024).
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Objectives

This research aims to explore the spatio-temporal distribution of leptospirosis hotspot areas
and their association with climatic factors to develop a predictive hotspot area using GIS
and remote sensing methods. The study hypothesis posits a significant correlation between
leptospirosis hotspot areas and specific climatic factors. Therefore, this study could (1)
describe the characteristics of leptospirosis cases in Selangor from 2011 to 2019 through
descriptive statistics; (2) determine the spatiotemporal distribution map of leptospirosis
cases; (3) determine leptospirosis hotspot maps at the district level in Selangor; (4) describe
Selangor’s climatic characteristics using remote sensing imagery data (monthly rainfall and
monthly land surface temperature); (5) determine the association between climatic factors
and leptospirosis hotspot areas; and (6) to validate the leptospirosis hotspot area predictive
model (machine learning algorithm). This life-threatening condition demands proactive
hotspot prediction and outbreak management. The methodology used in this study can
be adapted for future research on leptospirosis in other regions, contributing to a better
understanding of disease patterns and risk factors.

MATERIALS & METHODS

This study builds upon the authors’ previously published research protocol (Ab Kadir et al.,
2023), which outlined the methodological framework for investigating the spatiotemporal
distribution of leptospirosis in Selangor. Here, we highlight further details of the
methodology used in the study and the research results.

Study design and data collection

The study was conducted in Selangor, situated in the centre of Peninsular Malaysia,
bordering the Perak, Pahang, and Negeri Sembilan. It is a retrospective ecological
observational study with GIS and remote sensing mapping and analysis concerning
leptospirosis in Selangor using secondary data over nine years from January 2011 to
December 2019. This study obtained data from various available spatial data sets, including
the leptospirosis case reports, satellite images, river hydrometric levels, and topographical
data of Selangor. All of Selangor’s subdistrict polygon areas represent the sampling unit
with a sampling size of fifty-five subdistrict polygon areas. The study utilises the universal
sampling method of all notified laboratory-confirmed leptospirosis cases. Researchers
examined the data to determine the sociodemographic characteristics of cases and
coordinates of possible infection sources. Before the study commenced, ethical approval
(NMRR 1ID-22-01548-C0Z IIR) was obtained from the Medical Research Committee on
the Ministry of Health, the Director General of the Ministry of Health, Malaysia, and the
Ethic Committee for Research Involving Human Subjects, Universiti Putra Malaysia and
registered with the National Medical Research Registry.

Operational definition of variables

Dependent variable: A leptospirosis hotspot area in this study refers to a spatially or
geographically concentrated area in Selangor with a statistically significant clustering of
reported cases in a subdistrict compared to surrounding subdistrict areas identified using
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Figure 1 Monthly rainfall and land surface temperature (LST) contributes to leptospirosis hotspot ar-
eas. The association between the two variables were analysed using machine learning analysis. Concep-
tual framework of the study.

Full-size &l DOL: 10.7717/peerj.18851/fig-1

the Getis-Ord Gi* statistics in the ArcGIS Pro software (Esri, 2021). Some researchers

¢

suggest including modifiers such as “transmission hotspots,” “emergence hotspots” or
“burden hotspots” to further explain how hotspots are defined. The burden hotspot,
which is an area with elevate disease incidence or a geographic cluster of cases, describes
hotspot areas in this study (Lessler et al., 2017). The Getis-Ord Gi* analysis examines a
hotspot according to the high aggregated values (cases) for a subdistrict surrounded by
subdistrict(s) with high values. In this research, the confidence levels corresponding to the
binned p-values are labelled ‘Gi_bin.” The confidence levels involve a range of values from
—3 to 3. Within this range, values from —3 to —1 are categorised as “cold spot” areas,
values from —1 to 1 are considered “not significant,” and values from 1 to 3 are identified
as “hot spot” areas. Independent variables: (1) the rainfall images in millimetres (mm)
captured by the satellite will be analysed to obtain the average monthly rainfall, and (2) the
LST is the earth’s surface temperature captured by the satellite in degrees Celsius. Figure 1
shows the conceptual framework of this study (NASA, 2022). The framework outlines the
geospatial processes of satellite images and their association with leptospirosis hotspot
areas in Selangor from 2011 to 2019.

Data processing and analysis

Processing leptospirosis data: The data cases were cleaned and geocoded according to their
longitude and latitudes of possible infection locations. Next, the coordinates were imported
to the ArcGIS Pro software and plotted as point-shape files on the layered base map to
determine the spatial distribution of the leptospirosis case. Processing satellite data: Images
obtained were processed to obtain the average monthly data for rainfall and LST for each
subdistrict using the clipping and zonal statistic tools in the ArcGIS Pro software. The
images were resampled to smaller pixels to be projected and overlayed on all subdistrict
polygon shapefile boundaries. The output obtained in numerical values was exported as
an Excel table for further processing and analysis. The descriptive statistics of leptospirosis
cases for each month from 2011 to 2019 were analysed using Statistical Package for the
Social Sciences (SPSS) software version 27.0. Descriptive data was presented using the
appropriate frequency and percentage tables.
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The spatio-temporal analysis of patterns and distribution of leptospirosis hotspot
areas in Selangor was analysed using Moran’s I and Getis-Ord Gi spatial statistical tools
in ArcGIS Pro software. Moran’s I analysis measures the global spatial autocorrelation
between locations based on their characteristics. The tool calculates Moran’s index value
with a z-score and p-value to evaluate the significance of the index. The value usually ranges
from —1 to +, and a statistically significant p-value and positive z-score denote that the
data is more spatially clustered. The pattern derived from the analysis indicates whether
the cases are clustered, dispersed, or randomly distributed. Meanwhile, the Getis-Ord Gi*
statistics perform hotspot analysis of the aggregated plotted cases in a subdistrict, indicating
whether it is a hot or cold spot based on the clustering and z-scores derived. It involves
comparing the aggregated values (total cases for a particular subdistrict polygon area in
a specific month and year) with the surrounding values. The method computes a z-score
and a p-value to assess the spatial statistical significance of the local clusters (Esri, 2021).

To assess the relationship between leptospirosis hotspot areas and climatic variables,
the Spearmann’s correlation analysis was employed. Positive significant correlation at
p-value <0.05 between the variables examined were examined. Subsequently, the predictive
models for leptospirosis hotspot areas were developed using Python’s machine learning
capabilities within the Jupyter Notebook environment (Anaconda Navigator). Three well-
established machine learning algorithms were selected: support vector machine (SVM),
Random Forest (RF), and light gradient boosting machine (LGBM). These algorithms
have been successfully applied in various leptospirosis studies to predict disease outbreaks
(Ahangarcani et al., 2019; Douchet et al., 2022; Jayaramu et al., 2023; Mohammadinia et
al., 2019). The best model was determined by evaluating their performance metrics in
identifying actual positive hotspot areas (Abas et al., 2024).

RESULTS

Characteristics of leptospirosis cases in Selangor

The characteristics of leptospirosis cases are shown in Table 1. Between 2011 and 2019,
Selangor reported 1,045 confirmed leptospirosis cases, primarily affecting males (73%)
with an average age of 31. Malays were the most common ethnic group (67%), followed
by Indians (11%) and Chinese (5%). Foreigners, mainly from Indonesia and Bangladesh,
accounted for 14% of cases. While most patients recovered, 5% unfortunately died. Hulu
Langat, Hulu Selangor, and Petaling districts had the highest number of cases during this
period. The overall incidence showed a general decline with fluctuations in some districts. A
peak occurred in early 2011-2012, followed by a decline until 2014. Another peak emerged
in 2014 before a steady decrease until 2019.

A high-density pattern could be observed in Ampang, Klang, Kajang, and Damansara
subdistricts in the Hulu Langat, Petaling, Gombak, and Klang districts, with cumulative
cases ranging from 58 to 109. Cases were more concentrated in Selangor’s central
and northeastern regions, while other subdistricts show a more scattered distribution.
Throughout 108 months from 2011 to 2019, case distribution was discovered in 103
months, mostly showing a random distribution pattern with the clustering of cases
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Table 1 Sociodemographic characteristics of leptospirosis cases (n = 1,045) in Selangor (2011-2019)
based on available data retrieved from the Selangor State Health Department. Characteristics of lep-
tospirosis cases in Selangor (1 =1,045).

Characteristics Mean (SD) Frequency, n Percentage (%)
Gender
Male 765 73.01
Female 282 26.99
Age
31 (18)
Race
Malay 703 67.27
Foreigners 142 13.59
Indian 115 11.00
Chinese 57 5.45
Pribumi Sabah/Sarawak 11 1.05
Orang Asli 9 0.86
Others 8 0.77
Patient’s status
Alive 995 95.22
Dead 50 4.78

occurring in certain months. Case clustering was observed in Selangor’s central regions
in the earlier months of 2011 before shifting toward the western coastal areas of the state.
Cases were mostly randomly distributed throughout the state in 2012, while clustering was
observed in the third quarter of 2013 and 2014. The distribution of cases declined from
2015 to 2019, with yearly cases ranging from 41 to 78 cases. Even though case plotting
shows a random pattern along the years, clustering of cases was observed primarily in
months of the first and fourth quarters of the years.

Spatio-temporal analysis
Moran’s I analysis confirmed spatial clustering of cases in 20 out of 103 months, with
a positive z-value (0.067 to 0.370) and statistically significant p-values. Meanwhile, a
dispersed distribution of cases was observed in June 2018, giving a negative Moran’s I
index z-value. The Getis-Ord Gi* analysis depicts statistically significant hotspots where
subdistricts with similar high cases surround subdistricts with higher leptospirosis cases.
The spatial relationship was conceptualised at a fixed distance band, in which each
feature is analysed within the context of neighbouring features and receives a weightage
according to the specified threshold distance. The Euclidean distance method, which is the
straight line distance of subdistrict polygons containing aggregated leptospirosis cases, was
used in the analysis. The hotspot maps areas throughout the months were mostly scattered
in subdistricts throughout Selangor, with clustering mainly observed in the central regions
in Selangor. The supplementary figures provide further insights into monthly hotspot areas
following Getis-Ord Gi* analysis.
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Figure 2 Satellite data processing for downloaded rainfall raster data for Malaysia from clipping to
Selangor boundaries to data extraction for monthly average rainfall data for every subdistrict polygon
shapefile. (A) Processed satellite image for rainfall raster data in Malaysia. (B) Rainfall raster data clipped
with Selangor boundaries. (C) Resampled rainfall raster data for Selangor.

Full-size Gl DOI: 10.7717/peer;j.18851/fig-2

Table 2 Bivariate correlation analysis using Spearman’s rho statistics between leptospirosis hotspot
area and climatic factors analysed in the study. Correlation between leptospirosis hotspot area and cli-
matic factors in Selangor.

Variable Median (IQR) n (%) r p-value

Monthly rainfall —0.006 0.627
Minimum (mm) 3.62 201.22
Maximum (mm) 613.83 (139.78)

Monthly LST —0.086" <0.001
Minimum (°C) 18.67 29.64
Maximum (°C) 40.89 (3.24)

Notes.

*p-value less than 0.05.

2Spearman’s correlation coefficient.

This study employed statistical methods to assess the link between climate factors
(monthly rainfall and land surface temperature) and areas identified as leptospirosis
hotspot areas. Figure 2 shows satellite data processing steps for a processed rainfall image
for a particular month. The satellite image was resampled to appropriate pixels to fit the
subdistrict boundaries before zonal statistics were performed to extract monthly average
rainfall and LST values for each subdistrict. The similar process was repeated for all months
throughout the study period.

The analysis in Table 2 revealed a statistically significant but weak, negative correlation
only between monthly land surface temperature and leptospirosis hotspots (correlation
coefficient, r = —0.086, p-value < 0.001). Conversely, no significant correlations were
found for monthly rainfall (r = —0.006, p-value = 0.627). These weak associations in
the initial analysis suggest that a more sophisticated approach might be necessary to
capture the complexities underlying these relationships. To address the complexity of these
relationships, we employed machine learning techniques, as supported by literature.
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Table 3 Model performance generated using machine learning analysis.

Model LGBM Random forest SVM
Cross-validation score 0.61 0.61 0.62
Test Score 0.62 0.62 0.61
Precision 0.16 0.13 0.14
Sensitivity 0.43 0.50 0.41
F1-score 0.23 0.20 0.21

Predictive model

After the hyperparameters of the aforementioned algorithms were optimised, a split dataset
was used to evaluate each model’s performance. Using a variety of indicators, we assessed
the algorithms’ ability to predict leptospirosis hotspots. These included cross-validation
scores on the training data and the unseen hold-out dataset with the trained algorithm.
Furthermore, sensitivity, accuracy, and F1-score were assessed to choose the best model
for hotspot prediction.

Based on the analysis, the best model for predicting leptospirosis hotspot areas was
the LGBM algorithm. Compared to RF (0.13) and SVM (0.14), LGBM achieved the
highest precision (0.16), suggesting a more robust capacity to categorise actual hotspot
locations correctly. When identifying all hotspots, LGBM did not show the highest value
for sensitivity (0.43) (RF: 0.50, SVM: 0.41). However, LGBM obtained the greatest F1-score
(0.23), balancing sensitivity and precision. This can be inferred that LGBM finds the best
possible balance between minimising false positives, predicting locations as hotspots when
they are not, and finding actual hotspots. Table 3 provides a thorough analysis of each
model’s performance comparison.

The most significant factors influencing the model’s predictions can be identified
through feature importance analysis. Each input variable is scored according to how well
it predicts the target variable (hotspot areas) in the model. A higher score denotes a more
substantial influence on hotspot prediction. Notably, only the LGBM and RF algorithms
allow feature-importance computation. Rainfall was found to be the most important factor
by LGBM, followed by LST (Fig. 3). On the other hand, RF showed the opposite significance
hierarchy.

DISCUSSION

This study examined 1,045 laboratory-confirmed leptospirosis cases over nine years.
Consistent with prior research, males comprised the majority of cases (73%), likely due
to their increased exposure to contaminated environments through outdoor activities
(Ko et al., 1999; Naing et al., 2019). Similarly, a global review of outbreaks from 1970

to 2012 found that males comprised two-thirds of cases, highlighting their higher risk
during recreational activities (Munoz-Zanzi et al., 2020). The study also found Malays, the
dominant ethnic group in the region, to be the most affected population (67%), which
likely reflects the broader population demographics rather than specific susceptibility.
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Figure 3 Machine learning feature importance analysis can only be performed with the light gradient
boosting machine (LGBM) and Random Forest (RF) algorithms. (A) Feature importance for LGBM al-
gorithm. (B) Feature importance for Random Forest algorithm.
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Furthermore, the study identified younger adults as the most affected age group,

a crucial demographic for national productivity (Torgerson et al., 2015). This suggests
potential socioeconomic factors or cultural practices influencing their exposure risks. A
separate study by Nozmi et al. (2018) found that despite good general knowledge about
leptospirosis, poor preventive practices and healthcare-seeking behaviour may contribute
to their vulnerability during outbreaks. An encouraging trend observed in the study was
the decline in leptospirosis incidence and mortality rates over the nine years. This decrease
could be attributed to improved public awareness and educational efforts regarding
leptospirosis. The behaviour shift to better preventive practices could have reduced the
exposure risks (Zhang et al., 2023). Additionally, implementing the Ministry of Health’s
official Leptospirosis Management Guidelines in 2011 has likely enhanced diagnosis,
treatment protocols, and overall disease management. However, it is crucial to acknowledge
that underreporting of cases remains a possibility, and continued surveillance is necessary
to ensure sustained progress in combating leptospirosis (Jittimanee ¢ Wongbutdee, 2019).

Through spatial analysis, researchers can map disease outbreaks and investigate the
potential influence of environmental factors, such as climate or meteorological phenomena,
on disease patterns. Combining epidemiological and geographic data provides a more
comprehensive understanding of the disease’s complex dynamics, ultimately assisting in
effective control and prevention strategies (Lau et al., 2010; Mwachui et al., 2015). The wet
season (November—March) and dry seasons (May—June) might influence human behaviour
by engaging in events related to heavy rainfall, such as floods, or water related-activities in
the latter, for cooler environments. This study’s findings suggest that local factors rather
than uniform spatial trends drive sporadic outbreaks. Investigating these local factors,
especially environmental variables during clustering periods, could offer crucial insights
into outbreak triggers.

Hot Spot analysis using the Getis-Ord Gi* statistic identifies hotspot areas by examining
the spatial aggregation of cases within neighbouring subdistricts (Esri, 2021), allowing
for targeted and data-driven interventions that are more informative for infectious
disease management than simply knowing the location of case clusters. Identifying
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leptospirosis hotspots emphasises the necessity of understanding the local environmental
and socioeconomic factors that influence disease dynamics. While inadequate drainage
systems, poor sanitation infrastructure, and occupational exposure to contaminated
environments have been identified as risk factors for leptospirosis infection (Lau et al.,
2010), investigating the relationship between these hotspots and climatic variables would
provide an additional valuable perspective. A more sustainable approach could be to design
targeted interventions that address the underlying causes of disease persistence rather than
relying solely on reactive actions during outbreaks (Allen et al., 2017).

The random distribution of leptospirosis cases found in Selangor contrasts with a study
conducted in a neighbouring country, Thailand, by Chadsuthi et al. (2022) where case
distributions showed a more clustered pattern. However, a similar finding was observed
in a study conducted in Sarawak (Kira et al., 2022), where spatial autocorrelation of the
cases showed mixed random and clustered patterns. This similarity could be attributed
to the relatively consistent climate between Selangor and Sarawak and perhaps other
shared risk factors within the context of Malaysian culture. Despite these factors, Hot Spot
analysis using the Getis-Ord Gi* statistic identifies hotspot areas by examining the spatial
aggregation of cases within neighbouring subdistricts (Esri, 2021), allowing for targeted and
data-driven interventions that are more informative for infectious disease management
than simply knowing the location of case clusters.

The temporal analysis performed in this study showed another feature of leptospirosis
epidemiology, suggesting that specific months were associated with increased illness
incidence (Mao et al., 2019). The disease’s cyclical structure suggests a possible link with
seasonal variations in climatic factors such as rainfall, humidity, and temperature. These
factors also alter river water levels, in which a potential overflow contributes to the spread
of Leptospira to humans via contaminated water or soil (Lopez et al., 2019). Understanding
the temporal dynamics of disease transmission allows public health officials to make more
informed decisions about outbreak preparedness and the strategic implementation of
preventive interventions. Subdistricts in a highly urbanised region with a dense population
present more potential for contact with polluted urine, especially among risk populations.

This study discovered a minor relationship between leptospirosis hotspots and climatic
factors. Even though it is clear that studies have found correlations between leptospirosis
and environmental elements like temperature and rainfall (Cunha et al., 2019; Lopez et al.,
2019), some researchers have discovered different results. It has been shown that there is
increasing evidence of the prolonged survival of Leptospira in soil, which can be washed
away to water bodies or soil, particularly in heavy rainfall, which poses a risk of infection
to humans at risk. Research done in Salvador, Brazil, demonstrated that leptospirosis
infection risk was inversely associated with rainfall, and it occurs throughout the year with
bouts of increased infection severity during heavy rainfall periods.

In addition, Warnasekara et al. (2022) postulated that there is growing evidence of the
prolonged survival of Leptospira in soil, which can be washed away to water bodies or soil,
particularly in heavy rainfall, posing a risk of infection to humans at risk. Rainfall and land
surface temperature (LST) are key climatic factors influencing leptospirosis transmission by
affecting the survival and dispersal of Leptospira. River run-off from continuous heavy rain
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can further influence pathogen contamination from water dispersal to surrounding lands
(Lopez et al., 2019). Traditional statistical approaches may have limitations in capturing
the complex nonlinear interactions between variables and leptospirosis hotspot areas,
as observed in bivariate analysis. Machine learning algorithms, such as SVM, RF, and
LGBM, are well-suited to handle these complex interactions and identify patterns that
may not be apparent from traditional statistical methods. This makes them a valuable
tool for investigating these relationships and developing accurate predictive models for
leptospirosis hotspot areas.

Machine learning provides an alternative approach for investigating these relationships
and potentially developing leptospirosis hotspot area prediction models. Constructing a
reliable predictive model requires splitting the dataset into training, validation, and test sets.
The training set trains the algorithm on data patterns, while a separate validation set is used
to assess the model’s performance and prevent overfitting. Overfitting occurs when a model
memorises specific training data patterns, leading to poor performance on unseen data.
To overcome this, the study employed a stratified 10-fold cross-validation. This technique
iteratively splits the data into ten folds, using nine folds for training in each iteration and the
remaining fold for validation. This approach ensures a more robust model with improved
generalizability to unseen datasets (Baheti, 2021). The LGBM algorithm demonstrated
superior precision (0.35) compared to the RF (0.31) and SVM (0.20). Although LGBM
showed slightly lower sensitivity (0.53) than the other models, it achieved the highest
Fl-score (0.42), indicating a superior balance between precision and recall. This suggests
that the LGBM algorithm was able to identify the most true positives (hotspot area) while
minimising false positives, outperforming the other two algorithms (Jagarlapoodi, 2023).

This study compared the performance of SVM and RF algorithms for predicting
leptospirosis hotspots. SVM excels at identifying linear separations between classes but
requires data transformation for non-linear problems (Ben-Hur ¢ Weston, 2010). While
SVMs have achieved high accuracy in disease prediction in some studies (Douchet et al.,
2022; Kim ¢ Ahn, 2021), imbalanced data can hinder their performance (Maldonado,
Weber ¢ Famili, 2014). RF, conversely, performed well with an accuracy of 82.6% and
identified rainfall as the key factor, aligning with our findings (Jayaramu et al., 2023).
However, imbalanced data can still pose challenges, needing modifications like Weighted
Random Forest and Balanced Random Forest methods to be initially applied (Chen ¢
Breiman, 2004). Notably, the LGBM outperformed both algorithms with a higher precision
score, demonstrating its effectiveness in handling imbalanced data and making it the best
choice for identifying true leptospirosis hotspots in this study.

To increase computation speeds and accuracy when working with huge datasets, the
LGBM, an enhanced gradient boosting decision tree algorithm, applies the gradient-based
one-side sampling (GOSS) and exclusive feature bundling (EFB) techniques (Ke et al.,
2017). After adjusting the specified hyperparameters, the method builds a robust model
using the histogram approach, which further derives from learning from the decisions of
previous trees (Khadka, 2024). It would, therefore, be an innovative approach to infectious
disease prediction approaches, enhancing preparedness for potential disease outbreaks
with hotspot area prediction.
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Limited research exists on applying machine learning algorithms for leptospirosis
prediction. Existing studies, like those conducted in Seremban and Kelantan, explored
models such as exploratory data analysis with artificial neural networks (EDA ANN)
and RF (Jayaramu et al., 2023; Rahmat et al., 2020). While integrating these models into
disease surveillance systems remains an open challenge, a multidisciplinary collaboration
involving public health officials, data scientists, engineers and software developers will be
crucial for bridging this gap (Bertagnolli, 2023). This study contributes to this evolving
field by demonstrating the effectiveness of the LGBM algorithm for leptospirosis hotspot
area prediction. Further research can explore the development of user-friendly interfaces
and real-time data integration for seamless integration with existing disease surveillance
systems.

CONCLUSIONS

The study’s spatiotemporal distribution of leptospirosis in Selangor was visualised using
GIS. The results showed a largely sporadic pattern with minimal clusters. This visualisation
tool can be helpful for public health authorities as it gives a clear picture of the typical
locations of incidents, enabling them to make focused interventions. Moreover, the
LGBM algorithm with machine learning could detect leptospirosis hotspots accurately,
demonstrating how artificial intelligence (AI) can transform disease surveillance by
highlighting high-risk regions. The predictive capabilities enable authorities to forecast
outbreaks and focus preventive efforts in the most vulnerable locations.

This research expands our understanding of leptospirosis epidemiology in Selangor
by leveraging GIS software for hotspot analysis, data interpretation, and visualisation. It
could empower public health practitioners to identify disease distribution patterns and
plan targeted outbreak mitigation strategies at the regional level, ultimately contributing
to global efforts against this re-emerging disease. Furthermore, our application of machine
learning, particularly the LGBM algorithm for hotspot prediction, represents an innovative
approach with broader implications. This demonstrates the potential of data-driven
strategies to optimise traditional disease surveillance practices. While links between
hotspots and climatic factors were established, the study focused on only two factors.
Future research should incorporate a broader range of environmental variables, such as
river water level, soil characteristics, humidity, and proximity to water bodies, to refine
predictive models.
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