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ABSTRACT
Background: To develop an artificial intelligence system that can accurately identify
acute non-traumatic intracranial hemorrhage (ICH) etiology (aneurysms,
hypertensive hemorrhage, arteriovenous malformation (AVM), Moyamoya disease
(MMD), cavernous malformation (CM), or other causes) based on non-contrast
computed tomography (NCCT) scans and investigate whether clinicians can benefit
from it in a diagnostic setting.
Methods: The deep learning model was developed with 1,868 eligible NCCT scans
with non-traumatic ICH collected between January 2011 and April 2018. We tested
the model on two independent datasets (TT200 and SD 98) collected after April 2018.
The model’s diagnostic performance was compared with clinicians’ performance. We
further designed a simulated study to compare the clinicians’ performance with and
without the deep learning system complements.
Results: The proposed deep learning system achieved area under the receiver
operating curve of 0.986 (95% CI [0.967–1.000]) on aneurysms, 0.952 (0.917–0.987)
on hypertensive hemorrhage, 0.950 (0.860–1.000) on arteriovenous malformation
(AVM), 0.749 (0.586–0.912) on Moyamoya disease (MMD), 0.837 (0.704–0.969) on
cavernous malformation (CM), and 0.839 (0.722–0.959) on other causes in TT200
dataset. Given a 90% specificity level, the sensitivities of our model were 97.1% and
90.9% for aneurysm and AVM diagnosis, respectively. On the test dataset SD98, the
model achieved AUCs on aneurysms and hypertensive hemorrhage of 0.945 (95% CI
[0.882–1.000]) and 0.883 (95% CI [0.818–0.948]), respectively. The clinicians achieve
significant improvements in the sensitivity, specificity, and accuracy of diagnoses of
certain hemorrhage etiologies with proposed system complements.
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Conclusions: The proposed deep learning tool can be an accuracy tool for early
identification of hemorrhage etiologies based on NCCT scans. It may also provide
more information for clinicians for triage and further imaging examination selection.

Subjects Neurology, Radiology and Medical Imaging
Keywords Deep learning, Intracranial hemorrhage, CT scan, Etiology

INTRODUCTION
Spontaneous and nontraumatic intracerebral hemorrhage (ICH) represents a significant
global health concern, with an annual incidence of 10–30 per 100,000 population. As the
most devastating stroke subtype, ICH accounts for 15−20% of all strokes and is associated
with substantial morbidity and mortality worldwide (Qureshi, Mendelow & Hanley, 2009;
Labovitz et al., 2005). While hypertension is the predominant cause of ICH, a considerable
number of cases stem from underlying macrovascular abnormalities, including
arteriovenous malformation (AVM), aneurysm, cavernous malformation (CM), and
Moyamoya disease (MMD) (Qureshi, Mendelow & Hanley, 2009; Meretoja et al., 2012;
Zhao et al., 2023). Timely and accurate diagnosis, coupled with appropriate surgical
interventions, can significantly reduce mortality and improve functional outcomes in ICH
patients (van Donkelaar et al., 2020). Thus, rapid and precise identification of ICH etiology
is crucial, as treatment strategies vary considerably depending on the underlying cause,
particularly for vascular abnormalities (Hemphill et al., 2015; Derdeyn et al., 2017).

The optimal approach for early identification of macrovascular causes in non-traumatic
ICH patients remains a subject of debate (Cordonnier et al., 2018). Although digital
subtraction angiography (DSA) was the gold standard for detecting macrovascular
abnormalities, its invasive nature poses inherent risks. Non-contrast computed
tomography (NCCT) has emerged as the primary diagnostic tool in emergency settings for
patients presenting with symptoms suggestive of hemorrhage, owing to its widespread
availability, cost-effectiveness, and rapid acquisition capabilities (Hemphill et al., 2015).
Following ICH identification via NCCT, computed tomography angiography (CTA) and
magnetic resonance angiography (MRA) are typically recommended for detecting
underlying vascular lesions (Hemphill et al., 2015). Early diagnosis of these vascular
abnormalities can significantly impact clinical management and prognostic predictions in
ICH patients. However, the high costs and limited accessibility of time-intensive magnetic
resonance imaging (MRI), MRA, and CTA often restrict their application in the acute
phase (Demchuk, Menon & Goyal, 2016). In clinical practice, particularly in underserved
healthcare environments, it’s rarely feasible for every ICH case to undergo emergency CTA
or MRA examination (Bekelis et al., 2012). Moreover, there’s a lack of clear guidelines for
selecting patients for further angiographic imaging to identify etiology (Hilkens et al., 2018;
Cordonnier et al., 2010).

While NCCT can potentially screen for macrovascular causes, identifying key features
remains challenging. Enhancing the sensitivity, specificity, and accuracy of NCCT
screening, particularly in primary etiology identification of ICH, could prove invaluable in
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assisting physicians to make rapid, well-informed decisions regarding further angiographic
imaging or immediate intervention (Singh & Bhatia, 2019). Recent advancements in
artificial intelligence, specifically convolutional neural networks (CNNs), have
demonstrated excellent performance in various clinical image-based recognition tasks,
showing promise as a diagnostic strategy (Ye et al., 2019). Several deep learning algorithms
based on CNNmodels have received approval from the US Food and Drug Administration
(FDA) for medical image interpretation, further underscoring their potential in this field
(Ye et al., 2019). Given the potentially less favorable outcomes that from delayed clinical
management due to ICH etiology identification process, such as vasospasm and delayed
cerebral ischemia. An accurate and timely deep learning model that could help clinicians
reliably identify ICH etiology from NCCT scans is especially valuable. However, to date,
the integration of human and artificial intelligence (AI) for ICH etiology detection have
barely started, and the ability of deep learning systems to augment clinician performance
remains relatively unexplored. In the past, the subtype of ICH was predicted based on the
2D CNN model. Ye et al. (2019) tried to apply a 3D CNN-based approach to detect ICH,
using a simple CNN network with five convolutional layers and two fully connected layers.
The performance of this plain 3D CNN seems to improve. It is unclear whether this
method can produce reliable predictions (Ye et al., 2019).

This study aimed to investigate the potential of a CNN system for diagnosis of ICH
etiology from NCCT scans. The main hypothesis of our research is that a deep learning
model can achieve high accuracy in classifying different ICH etiologies and provide
significant diagnostic support to clinicians in a real-world setting. In addition, we also
compared the performance of the proposed system with clinician diagnoses. We further
conducted a simulated study to compare the clinicians’ performance with and without the
deep learning system complements.

MATERIALS AND METHODS
Datasets and clinical taxonomy
Data collection
For dataset development, we conducted a retrospective review of NCCT scans from 4,019
consecutive patients with non-traumatic acute ICH who presented at Beijing Tiantan
Hospital between January 2011 and April 2018 (Fig. 1). Two radiologists independently
confirmed the ICH diagnoses (Meretoja et al., 2012). We included only the initial NCCT
scan following each ICH event in our analysis. Data were collected similarly as previously
described by Meretoja et al. (2012) We also uploaded our detailed methods to Protocol.io
(dx.doi.org/10.17504/protocols.io.yxmvmejoog3p/v1). Portions of this text were
previously published as part of a preprint (Zhao et al., 2023).

We excluded examinations that were: (1) diagnosed as traumatic, (2) associated with a
history of brain surgery or external ventricular drain, (3) conducted 24 h or more after the
first ICH event, (4) duplicated scans with rescan due to compromised image quality, initial
head motion and metal artifacts arisen from finger and ear rings, (5) lacked a complete
image series, or (6) were from patients under 4 years of age. We reviewed medical records
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for patient age, sex, complaint, medical history, known hypertension, and impaired
coagulation (Meretoja et al., 2012). Of the original 4,019 records, 1,868 were eligible for the
model development dataset.

To assess the accuracy and generalizability of our developed system, we collected two
independent test datasets: NCCT scans of consecutive patients with non-traumatic ICH
who presented at Beijing Tiantan Hospital from April 2018 to November 2018 (TT200),
and NCCT scans of consecutive patients with non-traumatic ICH who presented at the
Affiliated Hospital of Shandong Jining Medical College from April 2018 to January 2019
(SD98). The NCCT parameters were 120 kVp, 300 mA, 512 × 512 image matrix, 1-s
rotation, 5-mm section thickness, 5-mm intersection space, and CTDIvol was
approximately 40 mGy. We applied the same exclusion criteria, preprocessing, and
labelling methods to both datasets as we did to the development dataset (Meretoja et al.,
2012).

This study received approval from the Institutional Review Boards of the Beijing
Tiantan Hospital and Affiliated Hospital of Jining Medical College (KYSQ 2019-163-01).
All medical images and clinical data underwent complete anonymization (Meretoja et al.,
2012). We retrieved Digital Imaging and Communications in Medicine (DICOM) images
from picture archiving and communication system servers in compliance with the Health
Insurance Portability and Accountability Act. To protect patient privacy, we removed all
protected health information from the dataset, including names, dates of birth, medical
record numbers, and other direct identifiers. We obtained written consent from all
participants.

Data labelling
Our etiologic classification and definitions were based on the method proposed by
Meretoja et al. (2012). We confirmed etiology diagnoses using NCCT scans in conjunction

Figure 1 Dataset selection flow chart. (A) Development dataset. (B) TT200 dataset. (C) SD98 dataset.
Full-size DOI: 10.7717/peerj.18850/fig-1
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with additional clinical evidence, including CTA, MRA, digital subtraction angiography, or
surgical pathology notes. Two radiologists with over 10 years of experience labeled the ICH
etiologies, with any disagreements resolved by a third investigator (Meretoja et al., 2012).
We categorized each NCCT case as having one of the following six causes: hypertensive
hemorrhage, aneurysm, AVM, MMD, CM, or other causes, which included cerebral
amyloid angiopathy, systemic disease, undetermined causes, arteriovenous fistula.

Data preprocessing and model development
Data preprocessing
First, each volume was rotated every 20 degrees along the axial plane with a widely used
bilinear algorithm (Ballard & Brown, 1982), resulting in 18 different image volumes.
Second, each volume was resized into a new volume with a consistent physical voxel size of
0.6 � 0.6 � 4.2 mm3, which was almost the same as the mean voxel size of the training set
(Han, 2013). Third, an unsupervised intensity-based skull-stripping algorithm was applied
to the volume, and the stripped volume was cropped to 280 × 280 × 30 voxels. We obtained
a total of 33,624 file volumes for the training database.

Model selection
The proposed ICHNet model demonstrated superior performance compared to other
convolutional neural network architectures (AlexNet (Krizhevsky, Sutskever & Hinton,
2012), ResNet (He et al., 2016), and SENetNet (Hu, Shen & Sun, 2018)) across multiple
classification tasks (See Table S1). ICHNet achieved the highest accuracy for hypertensive
hemorrhage (0.9457), Moyamoya disease (0.8466), and cavernous malformation (0.8983).
It ranked second in accuracy for aneurysm (0.9395) and arteriovenous malformation
(0.8606) detection. Moreover, ICHNet tied with SENet for the highest pooled accuracy
(0.7383) across all categories. While ICHNet did not achieve the highest accuracy for the
‘Others’ category, it still outperformed SENet in this metric (0.7108 vs. 0.6969). These
results indicate that ICHNet exhibits robust capability in classifying various types of
intracranial hemorrhages, often surpassing or matching the performance of established
CNN architectures. AUCs and the overall accuracy served as the evaluation metrics
(Chilamkurthy et al., 2018). The proposed model outperformed all of the previous models
outperformed on most metrics (see Tables S1 and S3).

Model development
We used ICHNet for classification of the causes of intracranial hemorrhages from NCCT
scans which inspired by CNN architecture SlowFast Networks (Feichtenhofer et al., 2019)
(see Fig. S1). The output of ICHNet was a vector for the probability of each cause of ICH.
Using stratified random sampling, the initial dataset was split so that both the training and
validation sets had similar proportions of the six class labels. Raw data/code is available
DOI: 10.5281/zenodo.13337992.
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Training and test protocol
Training procedure
We oversampled classes other than aneurysm and hypertension because of the imbalanced
classes, with the training data for AVM, MMD, CM and others are repeated for six, 14, 17,
and three times, respectively. The parameters of the model were initialized by the Kaiming
method and optimized with an Adam optimizer (He et al., 2016). To find the optimal
weights, the network was trained by the summation of two different losses, the weighted
categorical cross entropy loss and the triplet loss (Chechik et al., 2010). The weights for the
weighted cross entropy loss were computed based on the inverse frequency of each class
before oversampling (Fig. S2). In the triplet loss function, the triplet margins of these four
classes mentioned above were also half of the margins of the two main classes.

Test procedure
An ensemble strategy was established to validate the proposed approach on the prospective
test data by computing the average probability of five models from five-fold cross
validation. The diagnosis could then be predicted from the average probability of all
images of the same patient over AUCs. The training and testing procedures were
implemented using the Pytorch-0.4.1 package with Python 3.6.

Performance evaluation
Our model produced confidence scores (0–1) indicating the likelihood of each potential
ICH etiology for given NCCT inputs. We applied these algorithms to each case in two
independent test datasets. Diagnoses were assigned based on the highest predicted
probability for each sample. To assess model robustness, we calculated overall accuracy
and plotted receiver operating characteristic (ROC) curves for each diagnostic label. We
evaluated the algorithms using accuracy, sensitivities, specificities, and area under the
receiver operating curve (AUCs). Furthermore, we compared high-sensitivity and
high-specificity points (both approximately 0.9) from the ROC curves for each label.

We applied the deep learning model to both test datasets and compared the results on
the TT200 dataset with ICH etiology predictions from six expert raters: two
neuroradiologists (with 7 and 21 years of experience) and four neurosurgeons (two with 6
years of attending experience, one with 1 year as attending, and one with 6 years as a
resident). Importantly, none of these raters participated in data collection or model
development.

The evaluation process comprised three distinct tasks for the raters:
Task One: Three neuroradiologists raters independently predicted ICH etiologies based

solely on NCCT images.
Task Two: After a 14-day interval, all six raters made predictions using both NCCT

scans and associated clinical data (age, sex, chief complaint, physical examination, and
medical history).

Task Three: Following another 14-day period, raters made predictions with access to the
model’s probabilistic etiology predictions for each case. Raters could consider or disregard
the model’s confidence scores at their discretion.
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Raters were informed about the model’s performance metrics on the validation dataset
but not on the test datasets. Each rater assigned one of six etiology prediction labels to each
case, and all tasks were conducted without time constraints. This comprehensive
evaluation process allowed us to assess both the model’s performance and its potential
impact on clinical decision-making when used as a supportive tool.

Statistical analysis
For the model performance assessment, we generated confusion matrices for each of the
six etiologies and plotted the true positive rate against the false positive rate for different
possible thresholds in one-vs.-all diagnostic tests, and the AUC was calculated to evaluate
the model. The AUC values for the model were calculated based on the model’s prediction
scores. The 95% confidence intervals (CIs) of sensitivity and specificity were then
calculated using the exact Clopper-Pearson method based on the β distribution, Clopper &
Pearson (1934) and 95% CIs of AUCs were calculated using the Hanley and McNeil
method (Hanley & McNeil, 1982). The pooled accuracy was obtained from the diagnosis
results of all raters. The concordance between paired raters was computed using Cohen κ

coefficient (Cohen, 1960). The exact Fleiss κ was also obtained to measure the concordance
of all raters (Fleiss & Cohen, 1973). To compare the performances of the algorithm and the
raters, we applied the bootstrapping method to obtain samples of metrics for assessment.
p-values of less than 0.05 were considered significant.

RESULTS
For model development, we retrospectively reviewed the NCCT scans consecutive patients
with non-traumatic acute ICH who presented at Beijing Tiantan Hospital between January
2011 and April 2018. Of 4,019 NCCT scans reviewed, 1,868 were eligible for inclusion, as
shown in Fig. 1. For a qualified input NCCTDICOM volume of an ICH patient, the system
was designed as an end-to-end approach, including skull-stripping, rotation and
classification, that analyzed the entire NCCT volume automatically and produced a series
of scores representing the probabilities of different etiologies. The TT1868 dataset was
randomly divided into five folds with four folds in the training set and one-fold in the
validation set; TT200 and SD98 were prepared as test sets (Fig. S2). The patient
demographics and image characteristics from the 1,868 records used for model
development are summarized in Table 1.

In our analysis of 1,868 ICH scans, we identified 628 (33.6%) as hypertension-related,
845 (45.2%) as aneurysm-related, 44 (2.4%) as MMD-related, 34 (1.8%) as CM-related, 104
(5.6%) as AVM-related, and 213 (11.4%) as related to other causes. Following
pre-processing and data complementation, our dataset expanded to 33,624 NCCT
volumes.

The TT200 dataset comprised 200 examinations: 75 hypertension-related, 70
aneurysm-related, 12 MMD-related, 11 AVM-related, 14 CM-related, and 18 related to
other causes. The SD98 dataset included 61 hypertension-related, 25 aneurysm-related,
five MMD-related, four AVM-related, one CM-related, and two other cause-related
records (Table 1).
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Tables S1 and S2 present the comparative results of various CNN models for model
selection. Table 2 and Fig. 2 summarize the performance of the ICHNet algorithm at
selected operating points. On the TT200 dataset, ICHNet achieved AUCs of 0.986 (95% CI
[0.967–1.000]) for aneurysms, 0.952 (95% CI [0.917–0.987]) for hypertensive hemorrhage,
0.950 (95% CI [0.860–1.000]) for AVM, 0.749 (95% CI [0.586–0.912]) for MMD, 0.837
(95% CI [0.704–0.969]) for CMs, and 0.839 (95% CI [0.722–0.959]) for other causes. On
the SD98 dataset, ICHNet achieved AUCs of 0.945 (95% CI [0.882–1.000]) for aneurysms
and 0.883 (95% CI [0.818–0.948]) for hypertensive hemorrhage.

Six raters evaluated the TT200 test dataset to assess the deep learning system’s
performance. In task one, based solely on image information, four clinicians achieved an
average accuracy of 0.706, compared to the proposed approach’s accuracy of 0.760.
Bootstrapping tests indicated that our system significantly outperformed three of four
clinicians (p < 0.05), as shown in Table S3 and Fig. S3.

In task two, with additional clinical information provided, raters achieved an average
accuracy of 0.725. Despite this improvement, our approach still performed significantly
better than three of six raters (p < 0.05) (Fig. S4 and Table S3).

In task three, with access to the algorithm’s probability predictions, significant increases
were observed in mean sensitivity to aneurysms (0.091, p < 0.05) and hypertensive
hemorrhage (0.133, p < 0.05), and mean specificity to AVM (0.032, p < 0.05), MMD (0.044,
p < 0.05), and CM (0.028, p < 0.05) with AI complements on NCCT images and clinical
information. Table 3 and Fig. 3 present these results. Table S4 and Fig. S5 detail each rater’s

Table 1 Characteristics for both training (TT1868) and two test datasets (TT200 and SD98).

Development dataset TT200 SD98

Number of patients (with both scans and reports) 1,868 200 98

Mean age (SD; range) 52.5 ± 14.9 (4–94) 50.5 ± 15.9 (4–83) 55.7 ± 13.0 (15–86)

Female patients 805 (43.1%) 86 (43.0%) 37 (37.8%)

Etiologies

Aneurysm 845 (45.2%) 70 (30.0%) 25 (25.5%)

Hypertensive hemorrhage 628 (33.6%) 75 (32.5%) 61 (62.2%)

AVM 104 (5.6%) 11 (5.5%) 4 (4.1%)

MMD 44 (2.4%) 12 (6.0%) 5 (5.1%)

CM 34 (1.8%) 14 (7.0%) 1 (1.0%)

Others 213 (11.4%) 18 (9.0%) 2 (2.0%)

Undetermined 116 (6.2%) 5 (2.5%) 0

Cerebral venous thrombosis 17 (0.9%) 4 (6.2%) 0

CAA 16 (0.9%) 4 (6.2%) 0

AVF 9 (0.5%) 0 0

Medication 32 (1.7%) 5 (6.2%) 2 (2.0%)

Systemic disease/tumor 23 (1.2%) 0 0

Note:
AVM, Arteriovenous Malformation; MMD, Moyamoya Disease; CM, Cavernous Malformation; CAA, Cerebral Amyloid Angiopathy; AVF, Arteriovenous Fistula;
Medication, Anticoagulation-related Medication.
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Figure 2 Performance of proposed deep learning system on TT200 and SD98 test datasets. Full-size DOI: 10.7717/peerj.18850/fig-2

Table 2 Performance of algorithms on the TT200 dataset and SD98 dataset.

TT200 dataset No. of
positives

Number of
negatives

AUC High specificity point (=0.9):
sensitivity (95% CI)

High sensitivity point (=0.9):
specificity (95% CI)

Aneurysm 70 130 0.986 (0.967, 1.000) 0.971 [0.901–0.997] 0.962 [0.913–0.987]

Hypertensive
hemorrhage

75 125 0.952 (0.917, 0.987) 0.853 [0.753–0.924] 0.840 [0.764–0.899]

AVM 11 189 0.950 (0.860, 1.000) 0.909 [0.587–0.998] 0.910 [0.860–0.947]

MMD 12 188 0.749 (0.586, 0.912) 0.417 [0.152–0.723] 0.468 [0.395–0.542]

CM 14 186 0.837 (0.704, 0.969) 0.571 [0.289–0.823] 0.457 [0.384–0.532]

Others 18 182 0.839 (0.722, 0.959) 0.611 [0.358–0.827] 0.528 [0.452–0.602]

SD98 dataset

Aneurysm 25 73 0.945 (0.882, 1.000) 0.904 [0.795–0.952] 0.920 [0.740–0.990]

Hypertensive
hemorrhage

61 37 0.883 (0.818, 0.948) 0.649 [0.448–0.775] 0.689 [0.540–0.787]

AVM 4 94 0.872 0.553 0.750

MMD 5 93 0.796 0.172 0.800

CM 1 97 0.979 0.979 1.000

Others 2 96 0.781 0.740 0

Note:
AVM, Arteriovenous Malformation; MMD, Moyamoya Disease; CM, cavernous malformation; AUC, area under the receiver operating characteristic curve.
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performance. The mean accuracy of raters’ diagnoses significantly improved from 0.725 to
0.803 (p < 0.01) with deep learning complements (Fig. S6).

Figure 4 presents the evaluated Cohen’s kappa coefficients for pair-wise concordance.
Pre-complement, these coefficients ranged from 0.51 to 0.69 across all rater pairs. Post-
complement, concordance improved to 0.83 (p < 0.01), with nine of 15 pairs showing
excellent agreement (>0.75) (Fleiss, Levin & Paik, 2013). The Fleiss’ kappa for overall rater

Table 3 Clinician performance metrics with and without augmentation.

Sensitivity Specificity

Without
augmentation

With
augmentation

Increment p-
value

Without
augmentation

With
augmentation

Increment p-
value

Aneurysm 0.874 (0.791, 0.957) 0.964 (0.944, 0.984) 0.091 0.019 0.949 (0.933, 0.964) 0.947 (0.938, 0.957) −0.001 0.744

Hypertensive
hemorrhage

0.798 (0.752, 0.843) 0.931 (0.921, 0.942) 0.133 0.002 0.917 (0.888, 0.946) 0.896 (0.871, 0.921) −0.021 0.926

AVM 0.697 (0.587, 0.807) 0.712 (0.627, 0.797) 0.015 0.500 0.920 (0.894, 0.946) 0.952 (0.943, 0.960) 0.032 0.018

MMD 0.264 (0.149, 0.379) 0.236 (0.129, 0.343) −0.028 0.690 0.943 (0.901, 0.986) 0.988 (0.982, 0.993) 0.044 0.008

CM 0.655 (0.588, 0.722) 0.464 (0.300, 0.629) −0.191 0.971 0.955 (0.943, 0.968) 0.983 (0.972, 0.994) 0.028 0.010

Others 0.222 (0.121, 0.324) 0.343 (0.219, 0.466) 0.120 0.144 0.979 (0.961, 0.997) 0.973 (0.96, 0.987) −0.006 0.836

Note:
AVM, Arteriovenous Malformation; MMD, Moyamoya Disease; CM, cavernous malformation; AUC, area under the receiver operating characteristic curve.
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Figure 3 Comparison between ROC curves of ICHNet’s and clinicians’ sensitivities and specificities before and after augmentation (Task Two
and Task Three). ROC, receiver operating characteristic. Full-size DOI: 10.7717/peerj.18850/fig-3
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concordance increased from 0.61 to 0.75 (p < 0.01) after deep learning system
complements.

DISCUSSION
This study presents a pioneering deep learning system trained to diagnose ICH etiology
from NCCT scans, achieving accuracy comparable to human experts. We validated the
algorithm on two independent prospective datasets comprising diverse cases. Notably,
when clinicians utilized the model’s output, their diagnostic accuracy for ICH etiology
significantly improved, surpassing the performance of the algorithm alone.

The field of AI in medical imaging has shown promising results, potentially enabling
rapid, cost-effective, and accurate diagnostics with global accessibility. Deep learning
algorithms have been successfully applied to various medical imaging modalities, including
OCT scans (De Fauw et al., 2018), retinal fundus images (Gulshan et al., 2016), and
digitized pathology slides (Golden, 2017). Previous studies have developed algorithms for
identifying head computed tomography (CT) scan abnormalities requiring urgent
attention (Chilamkurthy et al., 2018) and for detecting acute ICH and classifying its
location from NCCT (Lee et al., 2019).

However, while progress has been made in applying deep learning to ICH CT imaging
interpretation, identifying location alone is insufficient for clinical practice. Several
prediction scores have been developed to assess the risk of underlying macro-vascular
etiology in non-traumatic ICH patients, such as the simple ICH score, the secondary ICH
score, and the DIAGRAM prediction score (Hilkens et al., 2018). Yet, these scores cannot
predict or classify the specific ICH cause. Our system, capable of predicting various ICH

Figure 4 The Cohen’s kappa coefficients for pair-wise concordance before (A) and after (B) augmentation.
Full-size DOI: 10.7717/peerj.18850/fig-4
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etiologies, could provide valuable information to clinicians for triage and imaging selection
(Singh & Bhatia, 2019).

CT-angiography, although considered a standard diagnostic tool for ICH etiology, is not
routinely performed in most centers (Becker et al., 1999). Studies on spontaneous ICH
indicate that only 37.4–76.0% of ICH patients undergo CTA scans (Bekelis et al., 2012;
Oleinik et al., 2009; Sorimachi et al., 2020). A large study involving 1,423 consecutive adult
ICH patients reported CTA sensitivity of 95.7% for secondary ICH diagnosis (Sorimachi
et al., 2020), with sensitivities of 99.1% and 90.4% for aneurysm and AVM diagnosis,
respectively. Our algorithm demonstrated comparable performance on two independent
datasets. At a 90% specificity threshold, our model’s sensitivities in the TT200 dataset were
97.1% and 90.9% for aneurysm and AVM diagnosis, respectively, rivaling or potentially
surpassing CTA performance.

To simulate a typical clinical setting, we provided raters with clinical information in the
second task. Although this improved the sensitivity and specificity of clinicians’ diagnoses,
they generally remained less accurate than our proposed algorithm. Figure S8 illustrates
cases where raters’ diagnostic accuracy improved after considering the system’s predicted
probabilities. Figure S7 displays spatial resolution histograms for the training and test
datasets, showing that the TT200 dataset’s resolution distributions more closely resembled
the training dataset (TT1868) than SD98.

When clinicians had access to the model’s predicted probabilities, they achieved higher
specificity in diagnosing AVM, MMD, and CM, while maintaining high sensitivity for
AVM and MMD diagnoses. This is particularly crucial as false negatives in macrovascular
etiology diagnoses should be minimized in clinical practice. Notably, the sensitivity of
clinicians’ diagnoses for hypertensive hemorrhage, the most common ICH etiology,
increased significantly with AI assistance.

Our results demonstrate the model’s high accuracy in classifying ICH etiologies, as
evidenced by the impressive AUC values across various categories. The model’s
performance, particularly in challenging cases, underscores its potential to enhance clinical
decision-making and optimize patient management strategies. It’s crucial to emphasize
that this deep learning system should be viewed as a supportive tool for clinicians rather
than a standalone diagnostic device. Overreliance on AI systems can lead to issues such as
automation bias or deskilling of clinicians. Therefore, we envision this tool as augmenting
clinical decision-making, not replacing it.

This study had some limitations. Our study was hospital-based, and the two datasets
were from two large tertiary referral hospitals. The distribution of the hemorrhage
etiologies was unbalanced and may have been biased towards referrals. Despite the
substantial number of scans with diversified etiologies, the number of cases in minority
classes, like MMD and CM, were limited. While our results are promising, we acknowledge
that clinical implementation of this system would require careful consideration and further
validation. Future research should focus on developing and validating a protocol for
integrating this tool into clinical workflows, with particular attention to patient safety and
the potential for unintended consequences. Therefore, it is important to enrich the training
database in the future work, especially the minority classes. Spectral CT provides enhanced
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tissue characterization and improved contrast resolution, which could potentially augment
the performance of our deep learning model (Sedaghat et al., 2021). Future investigations
could explore how incorporating spectral CT data into our model might improve
diagnostic accuracy and provide additional insights into various intracranial hemorrhage
etiologies. Future work should also focus on developing explainable AI techniques for this
system. Providing interpretable explanations for the model’s predictions could enhance
clinician trust, facilitate error detection, and potentially offer new insights into radiological
features associated with different ICH etiologies.

CONCLUSIONS
In conclusion, we presented a novel deep learning system that analyzes clinical NCCT
scans and makes predictions of ICH etiology with sensitivities, specificities, and accuracies
similar to those of clinical specialists. This system could potentially assist in triaging
patients with ICH for further neurovascular evaluation, particularly in cases where the
system indicates a high probability of etiologies such as aneurysm or AVM that would
require immediate attention. We also demonstrated that integration of the deep learning
model can augment clinician performance and could equip specialists with the ability to
make better decisions. Further research is necessary to develop and validate a protocol for
safely integrating this algorithm into clinical practice before assessing its potential impact
on care outcomes.
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