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Sweet rice wine is a popular traditional Chinese rice wine that is widely loved by the
Chinese people for its high nutritional value. However, the dynamics of the sugar level,
acidity, alcohol content, and microbial community during the fermentation of osmanthus-
flavored sweet rice wine have not been evaluated, which can lead to the unstable quality
of osmanthus flower sweet rice wine (OFSRW). In this study, the dynamic changes in sugar
level, acidity, alcohol content, microbial community composition, and microbial metabolic
pathways during traditional fermentation of OFSRW at four-time points-0 h (AGO0), 24 h
(AG24), 36 h (AG36), and 43 h (AG43)-were analyzed via direct titration, total acid assays,
alcoholometry, and high-throughput macrogenomic techniques. First, we found that
bacteria were the dominant microorganisms in the early stage of OFSRW fermentation
(AGO), fungi were the dominant microorganisms in the middle and late stages of
fermentation (AG24 and AG36), and Rhizopus was the main fungal genus throughout
fermentation. Acidity and total sugars increased with fermentation time, and alcohol was
not detected until the end of fermentation. Diversity analysis revealed that the dominant
species at the beginning of natural fermentation was A. johnsonii, and R. delemar became
the dominant species as natural fermentation progressed. Metabolic pathway analysis
revealed that energy production and conversion, carbohydrate transport, amino acid
transport, and metabolic pathways were the most active metabolic pathways in the
fermenter. These results can provide a reference basis for changes in the microbial
community during the fermentation of cinnamon-flavored sweet rice wine.
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Abstract: Sweet rice wine is a popular traditional Chinese rice wine that is widely loved by the
Chinese people for its high nutritional value. However, the dynamics of the sugar level, acidity,
alcohol content, and microbial community during the fermentation of osmanthus-flavored sweet
rice wine have not been evaluated, which can lead to the unstable quality of osmanthus flower
sweet rice wine (OFSRW). In this study, the dynamic changes in sugar level, acidity, alcohol
content, microbial community composition, and microbial metabolic pathways during traditional
fermentation of OFSRW at four-time points-0 h (AGO0), 24 h (AG24), 36 h (AG36), and 43 h
(AG43)-were analyzed via direct titration, total acid assays, alcoholometry, and high-throughput
macrogenomic techniques. First, we found that bacteria were the dominant microorganisms in
the early stage of OFSRW fermentation (AGO), fungi were the dominant microorganisms in the
middle and late stages of fermentation (AG24 and AG36), and Rhizopus was the main fungal
genus throughout fermentation. Acidity and total sugars increased with fermentation time, and
alcohol was not detected until the end of fermentation. Diversity analysis revealed that the
dominant species at the beginning of natural fermentation was A. johnsonii, and R. delemar
became the dominant species as natural fermentation progressed. Metabolic pathway analysis

revealed that energy production and conversion, carbohydrate transport, amino acid transport,
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and metabolic pathways were the most active metabolic pathways in the fermenter. These results
can provide a reference basis for changes in the microbial community during the fermentation of
cinnamon-flavored sweet rice wine.

Keywords: sweet rice wine; Osmanthus; high-throughput sequencing; sugar content; acidity;

alcohol content; microbial communities and differences; dominant strains.

INTRODUCTION

Osmanthus flower sweet rice wine (OFSRW), a low-alcoholic beverage with regional
characteristics in China, is mainly made from high-quality glutinous rice and osmanthus flowers,
which are mixed and fermented in a natural environment with the addition of a fermenting agent
(Jiuqu). Many studies have confirmed that glutinous rice is a complex organism composed of
various macromolecules with edible and medicinal value (Zheng et al., 2023). For example, it
warms the spleen and stomach, stops cold dysentery deficiency, reduces stool, allows
spontaneous sweating, and facilitates urination. Osmanthus fragrans (Thunb), an evergreen
shrub or tree belonging to the Lignaceae (Oleaceae) family, is a valuable and common
ornamental aromatic plant with good medicinal value (Huang et al., 2019). Its petals contain
many nutrients, such as soluble sugars, soluble proteins, organic acids, vitamin C, flavonoids,
free amino acids, and many minerals. It has the effect of strengthening the stomach and resolving
phlegm, generating fluids, dispersing blood stasis, and flattening the stomach (Zhou et al., 2013),
and it can treat asthma, coughs, toothache, and diarrhea (Wanget al., 2022), as well as having
anticancer, antioxidant, and anti-inflammatory effects (Huang et al., 2023). Sweet rice wine is
soft, long, and pleasantly aromatic and is an essential part of the food culture of the Chinese
people. The nutritional value of rice wine is also of interest. In addition to the nutrients in the raw
material itself, the raw material also contains oligosaccharides, peptides, proteins, B vitamins,
and minerals; amino acids and other components produced during the traditional brewing process

of rice wine are easily digested and absorbed by the human body and can promote appetite;
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warm the stomach; strengthen the spleen; benefit qi; stop diarrhea; produce fluids to stop
sweating; refresh and relieve fatigue (Yuan et al., 2020; Cai et al., 2012); and have anti-aging
effects (Liu et al., 2020; Zhao et al., 2018). Therefore, the OFSRW produced by combining
glutinous rice and osmanthus flowers through the mixed fermentation of wine curd has the aroma
of ordinary sweet rice wine and retains the fresh fragrance of osmanthus flowers, which not only
increases the color, aromas, and taste of sweet rice wine but also allows the release of nutrients
such as oligosaccharides, polypeptides, amino acids, and ethanol in sweet rice wine to increase
its nutritional value.

Jiuqu is rich in microorganisms involved in saccharification, fermentation, and the
production of flavor-related metabolites. For example, Rhizopus breaks the a-1,4 and o-1,6
bonds in the rice starch structure, which is converted more completely into fermentable sugars.
Saccharomyces plants draw monosaccharides such as glucose, fructose, and mannose into the
cell and break them down into carbon dioxide and ethanol under anaerobic conditions and
through the action of endoenzymes. Lactic acid bacteria (LAB) play a major role in fermentation
and the intrinsic properties of fermented products, influencing the development of their aroma,
texture, and acidity (Cai et al., 2019). The fungal communities in Jiuqu have also been shown to
play an essential role in starch and protein hydrolysis and the production of ethanol, organic
acids, higher alcohols, and esters (Medina et al., 2013). Whereas bacterial communities that
produce hydrolytic enzymes, glucoamylases, proteases, and esterases are produced by various
bacteria during fermentation to degrade the raw material substrates, all of which could lead to the
accumulation of aroma-related compounds or secondary metabolites and intermediates
(Gammacurta et al., 2018; Simonen et al., 1993). The bacterial and fungal communities varied
significantly among the different starters of Hongqu yellow rice wine, and the core
microorganisms were positively correlated with specific organic acids and aromatic esters in the
starters (Huang et al., 2019). Regional variations in the wild native microbes and environmental
conditions of Jiuqu production may influence the microbial community composition and quality

of Jiuqu, especially in nonsterile fermentation processes (Zhao et al., 2022). The influence of
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different regional environments, raw materials, and additives in sweet rice wines may also lead
to differences in SRW fermenters, which may confer different organoleptic characteristics,
flavors, and other features of SRW (Su et al., 2014). For example, Chen et al. (Chen et al., 2020)
reported that different microbial communities in three different traditional huangjiu fermenters
resulted in significant differences in the aroma composition of their fermented rice wines. One
study comparing eight CSRW starter samples from different regions of southern China revealed
significant high variation in the bacterial and fungal composition, which likely contributed
substantially to the final flavor quality of the respective CSRWs (Cai et al., 2018). Sugars,
acidity, and alcohol content, which are crucial parameters in the sweet rice wine fermentation
process, have a great impact on the quality and flavor of sweet rice wine. For example,
insufficient sweetness or oversweetness will make sweet rice wine taste too light or too mushy.
Excessive alcohol content will make sweet rice wine bitter and astringent, with a slight off-flavor,
a strong taste, or even a distinct white wine taste. Excessive acidity will reduce the taste of sweet
rice wine or even cause rancidity.

OFSRW fermentation is a complex process involving maceration, steaming, rinsing,
fermentation inoculation, and saccharification. The entire fermentation process includes a range
of strains obtained from fermenters, raw materials, and the environment. In addition, in this
complex environment, a series of changes in sugar level, acidity, alcohol content, and microflora
occur, affecting the unique aroma, flavor, and color of rice wine. Furthermore, OFSRW
fermentation follows the traditional technique of an uncontrolled fermentation process that
produces inconsistent flavors. However, few studies have evaluated the evolution of sugar,
acidity, alcohol, and microbiota during traditional OFSRW fermentation, and the interactions
between microbiota and sugar, acidity, and alcohol have not been elucidated. To explain this, it
is first necessary to understand the dynamic relationships among the brix, acidity, alcohol, and
microorganisms in OFSRW. In this paper, direct titration was used to determine the sugar level
in OFSRW. Total acidity determination was used to determine the acidity of OFSRW, and

alcoholic strength was used to determine the alcoholic strength of OFSRW. Available methods
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include culture-dependent methods (Lv et al., 2012) and culture-independent PCR-denaturing
gradient gel electrophoresis (DGGE) techniques (Lv et al., 2015; Lv et al., 2017) were employed
to study the microbial composition of OFSRW, but all of the above ones have difficulties
distinguishing the species present at population densities below 10° CFU/g or two orders of
magnitude lower than the most abundant members of these communities (Cocolin et al., 2011;
Prakitchaiwattana et al., 2004). High-throughput sequencing technology, on the other hand, is
capable of analyzing the transcriptome and genome data of a species in a detailed and
comprehensive manner, also known as deep sequencing or next-generation sequencing (NGS).
This technique has quantitative capabilities for determining the abundance of species
components in a sample. In addition, the utilization of this technique is simple and cost-effective,
the results are feasible (Liu et al., 2019), and it is faster and better than ITS PCR and fluorescent
ITS PCR capillary electrophoresis. This technique has been widely used to analyze the microbial
community dynamics of various fermented foods and vegetables, such as Sichuan kimchi (Luo et
al., 2021), soy sauce (Zhao et al., 2021), kiwifruit (Zhang et al., 2022), grape juice (Zhao et al.,
2022), and rice wine (Zou et al., 2023), and the use of macro-genome sequencing in these studies
provided a theoretical basis for analyzing the relationships between microbial populations and
specific flavors in these fermented foods.

Therefore, in this paper, direct titration, total acid determination, alcoholometry, and high-
throughput macrogenomic rDNA (16S rRNA and ITS genes) were used to dynamically monitor
the brix, acidity, alcohol content, and microbial community structure of traditionally fermented
OFSRW, direct titration was used to determine the sugar level in OFSRW, with total acidity
determination used to determine the acidity in OFSRW. Alcoholic strength was used to
determine the alcoholic strength of OFSRW. (1) Changes in brix, acidity, alcohol content, and
microbial community composition of OFSRW were analyzed. (2) Comparisons were made
between the OFSRW in this paper, and direct titration was used to determine the sugar level in
OFSRW, total acidity determination was employed to determine the acidity in OFSRW, and

alcoholic strength was used to determine the alcoholic strength of OFSRW microbial diversity
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changes and differences during fermentation and the correlation between microbial community
and sugar level, acidity, and alcohol content. (3) The functional metabolism prediction of
OFSRW was followed. This study provides insights into how microorganisms in OFSRW
fermentation broth adapt to environmental changes during fermentation and can also be crucial

for optimizing fermentation conditions and improving product quality and flavor.

Materials and Methods

Sample preparation and sampling

The raw materials used for OFSRW were Angie's Sweet Wine Quartz (Hubei Angie's
Yeast), glutinous rice, and osmanthus (Guangzhou Zhenyuantang Food Co., Ltd.). The prime
operation  process of OFSRW is as  follows:  glutinous rice—washing,
soaking—steaming—drinking and  cooling—mixing  with  quartz—mixing  with
osmanthus—bottling—compacting—mashing—placing in a constant temperature box at 30°C
for fermentation for 43 h. In the production of [BRISW, it is necessary to select glutinous rice that
is full of grains, has no yellowing and no mold, and has no insect pests. When making TRSW,
glutinous rice with full grains, no yellowing, no mildew, and no insect pests were selected, and
the rice was washed into a pottery jar with 2.5-3.0 times the quality of glutinous rice to soak for
9-12 h. The soaked glutinous rice at 108°C was steamed for 40-50 min, and the steamed rice was
hard and soft outside and inside, loose but not rotten, with no white heart or uniformity. After the
glutinous rice was steamed and cooked, 30% cool white boiled water was used to cool it to 30-
35°C, after which 0.4% of the wine and rice was added and stirred evenly. After that, 0.4% of the
wine and rice were stirred well, and 0.75% of the dried cinnamon was added again and stirred
well. Finally, the mixture was bottled, compacted, mashed, and placed in a constant temperature
box at 30°C for 43 h of fermentation. At 0, 24, 36, and 43 h, 20 g of the samples were randomly

taken for the determination of sugar, acidity, and alcohol content. At the same time, 380 mL of
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fermentation mash was collected for high-throughput sequencing analysis.

Determination of Brix, Acidity, and Alcohol Content

The direct titration method GB 5009.7-2016 was used to determine the sugar content in
osmanthus sweet rice wine. The acid was sent to the Laboratory Department of Hongbin Foods
Co. Ltd. for testing, and its determination method was GB 12456-2021. The alcohol content was

determined using the GB 5009.225-2023 alcoholometer method.

High-throughput sequencing and bioinformatics analysis DNA extraction and sequencing

Total DNA was extracted from each microbial sample using the CTAB method (Liu et al.,
2017). High-throughput sequencing was performed by DynaTech Biotechnology Limited
(Yunnan Province, China) for macro-genome sequencing. Metagenomic sequencing was
conducted, and ITSS (GGAAGTAAAAGTCGTAACAAGQG) and ITS2
(GCTGCGTTCTTCATCGATGC) were used for sequencing (Kumar et al., 2020). The
sequences had a mean read length of 150 bases and a Q score of 30. The sequencing data were

analyzed on the GenesCloud platform (www.genescloud.cn).

Sequence processing and analysis

Paired-end sequencing of DNA fragments was performed on the Illumina platform. Vsearch
(v2.13.4-linux-x86_64) and cutadapt (v2.3) were used to denoise and cluster the sequences
(Rognes et al. 2016). After using the QIIME cutadapt trim paired to excise sequence primer
fragments, the sequences unmatched with primers were discarded.

The Vsearch module was used for splicing, deduplicating, and dechimericing the sequences,
and the UNITE database (Release 8.0, https://unite.ut.ee/) was used to filter the concentrated

chimeras to obtain high-quality chimeras. The QIIME2 (classify sklearn algorithm
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https://github.com/QIIME2/q2-feature-classifer) was used to annotate the characteristic
sequences of each operational taxonomic unit (OTU) in the naive Bayes classifiers (Elolimy et al.
2020). The QIIME2 qgiime feature-table Rarefy function was used to set the leveling depth to 95%

of the smallest sample sequence size, and the final OTUs were obtained.

Analysis of changes in species composition

Krona software (https://github.com/marbl/Krona/wiki) was used to analyze the community
taxonomic composition of the samples2020 (Ondov, Bergman & Phillippy, 2011). The
RGGplot2 package was used to construct a circle stair tree diagram, and the abundance of each
group was added to the diagram in the form of a pie chart (Steenwyk & Rokas, 2021). To further
compare the species composition differences among the samples and display the distribution
trend of the species abundance of each sample, R language and the pheatmap package were used

to construct heatmaps for the species composition analysis.

Alpha diversity analysis

Alpha diversity refers to the diversity within a sample. Commonly used alpha diversity
indices include the Chaol estimator, Good's coverage index, observed species index, Pielou's
evenness index, Shannon index, Simpson index, etc. (Chao & Ricotta 2019; Liu et al. 2020). The
Chao 1 index measures species richness and estimates the number of species in a sample. Good's
coverage refers to the coverage rate of each sample library, and this index reflects whether the
sequencing result represents the situation of the microorganisms in the sample. The observed
species index represents the number of species in the samples. Pielou's evenness indicates the
uniformity of the community. The Shannon index combines abundance and evenness, giving
more weight to rare species. The Simpson index combines abundance and evenness but focuses
more on common species.

QIIME2, R language, and the ggplot2 package were used for alpha diversity analysis. After
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using the unleveled OTU table, calling the “qiime diversity alpha-rarefaction” command, and
setting the minimum leveling depth to ten and the minimum sequencing depth to 95% of the

sample sequence, each depth value was fattened ten times to calculate the alpha diversity index.

Beta diversity analysis

Beta diversity refers to the differences between samples or groups and is often used to
analyze whether the differences in microbial composition between two groups are significant.
Commonly used beta diversity indices include the Jaccard, Bray—Curtis, unweighted UniFrac,
and weighted UniFrac indices (Lozupone et al. 2007; Chao & Ricotta 2019). The Jaccard index
compares the similarities and differences between limited sample sets. Bray—Curtis dissimilarity
is a measure used to analyze differences in species composition in different places. Unweighted
UniFrac can detect the presence of variations between samples, while weighted UniFrac can
further quantitatively detect the variation between samples of various lineages.

Principal coordinate analysis (PCoA) and nonmetric multidimensional scaling (NMDS)
methods were used to analyze the beta diversity of the samples (Ramette, 2007; Legendre &
Legendre, 1998). By default, the UPGMA algorithm was used for cluster analysis of the Bray-
Curtis distance matrix (Bray & Curtis, 1957), and a ggtree of R language was used to analyze the

relationships between different samples for visualization.

Functional prediction

Functional annotation information was obtained by comparing the nonredundant genes with
each functional database using DIAMOND software, taking the annotations with e<le’, and
filtering the proteins with the most abundant sequences. For each sequence comparison result,
the comparison result with the highest SCORE (oneHSP>60 bits) was selected for subsequent
analysis  (Backhed, Roswall &  Peng, 2015). Using PICRUSt2  software

Peer] reviewing PDF | (2024:07:103011:0:2:NEW 17 Jul 2024)



PeerJ

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

(https://github.com/picrust/picrust2/wiki), the abundance values of metabolic pathways were
obtained. The generated data were entered into the KEGG biological metabolic pathway analysis
database (KEGG Pathway Database, http://www.genome.jp/kegg/pathway.html), the eggNOG
database, and metabolic pathways for different sample statistics (Qin, Li &Cai., 2012). Using R
language and the MetaGenomeseq package, the Fit Feature Model function was employed, and
the distribution of each pathway/group was analyzed using a zero-log-normal model. The results
were used to calculate the significance of the metabolic differences between each natural
fermentation sample and the CK control group. According to the data selected in the metabolic
pathway abundance table, a bar chart was drawn to analyze which species affect the metabolic

pathways.

Results

Brix, acidity, and alcohol analysis

During OFSRW fermentation, the time before fermentation (AGOh) was 0 h, the brix of
OFSRW was undetectable, the acidity of OFSRW was 0.03, and the alcoholic strength of
OFSRW was undetectable, indicating that fermentation had not yet begun, that no fermentable
sugar existed in the raw material and that the acidity was low, which might be related to the
activity of L. plantarum. In the middle of fermentation (AG24h and AG36h), the sugar level of
AG24h was 7.11, the acidity was 0.14, and the alcoholic strength was not detected, while the
sugar level of AG36h was 14.05, the acidity was 0.25, and the alcoholic strength was not
detected. The increase in brix and acidity during the mid-fermentation period also confirms the
association of enhanced microbial activity, especially related to the activity of LAB and
Rhizopus, which can produce acid through the metabolism of sugars during the fermentation
process. An increase in acidity helps to prevent the growth of other microorganisms, thus

controlling the structure of the microbial community to some extent during fermentation, and an
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increase in acidity causes a decrease in the viability of LAB. The sugar level after fermentation
(AG43h) was 16.55, the acidity was 0.35, and the alcohol content was 2%Vol, which indicated
that the fermentation process had begun to enter the alcoholic fermentation stage (Table 1). The
fact that alcohol was not detected until the end of fermentation may be due to the inhibition of

Saccharomyces and Rhizopus activity by L. plantarum during the pre-fermentation period.

Table 1 Physicochemical properties of sweet rice wine produced from cinnamon osmanthus flower.

Analysis of species composition

In this study, the dynamics of fungal and bacterial communities in OFSRW fermenters at
different time intervals were detected using Krona analysis (Fig. 1). According to the results of
the study, it was concluded that in the AGO samples, bacteria were mainly dominated by
Gammaproteobacteria and Bacilli, with 76% and 18%, respectively. Fungi were dominated by
Mucoromycetes and Magnoliopsida at 51% and 40%, respectively. In the AG24 sample, the
bacteria were the same as those in the AGO stage. The fungi were dominated by
Saccharomycetes and Mucoromycetes at 86% and 8%, respectively. In the AG36 samples, fungi
decreased, and bacteria increased, but fungi remained the dominant species. The bacteria were
dominated by 11% FEnterobacterales. Fungi were dominated by Mucorales and
Saccharomycetales at 66% and 15%, respectively. In the AG43 samples, Mucorales was the
dominant order of fungi, accounting for 83%. The bacteria were dominated by 6% and 3%

Enterobacterales and Moraxellales, respectively.

Figure 1 Classification level and abundance information of Krona diagram of sample species. From the inside

to the outside, the Krona circle represents the seven taxonomic levels of domain, phylum, class, order, family,

genus, and species. The sector’s size reflected the relative abundance of different taxa, and there were specific
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values.

The 30 most abundant species for each sample were plotted as a bar graph (Fig. 2). The
dominant species in AGO were A. johnsonii (abundance value= 25328.43406), P. pentosaceus
(abundance value= 19416.53625) and L. plantarum (abundance value= 13204.09352). The
significant activity of P. pentosaceus and L. plantarum also explains the low acidity at this stage.
However, as fermentation continued, A. johnsonii and P. pentosaceus disappeared. After 24 h of
fermentation, K. ascorbata decreased. The dominant fungi were C. lusitaniae (abundance =
347248.9604) and R. delemar (abundance = 20415.18217). Subsequently, the abundance of
bacteria increased, but fungi remained dominant, and the abundance of C. lusitaniae decreased or
even disappeared. The significant activity of Rhizopus indicates the beginning of fermentation of
starch in rice, thus converting it into fermentable sugars. C. lusitaniae is a non-Saccharomyces
yeast species capable of utilizing sugars for fermentation, resulting in turbidity and precipitation
of OFSRW and alcohol production (Cao et al., 2014). After 36 h of fermentation, Rhizopus
accounted for the greatest percentage, with R. delemar (abundance = 221286.5492) being the
dominant strain, followed by R. microsporus (abundance = 42293.8848). W. anomalus
(abundance = 74557.64045) was dominant among the yeasts. The continuous activity of
Rhizopus at this stage indicates an inextricable relationship with the sustained increase in brix. W.
anomalus 1s a yeast of the non-Saccharomyces genus with certain aroma-producing, ester-
producing, and alcohol-producing abilities that can significantly enhance the sensory quality of
wine, and it is an important functional microorganism in the fermentation of wine grains (Xie et
al., 2022). The significant activity of Rhizopus, C. lusitaniae and W. anomalus in the middle and
late stages of fermentation paved the way for the alcoholic fermentation stage (AG43) to monitor
the alcohol content. As fermentation continued, the yeasts decreased or even disappeared. At 43
h of fermentation, Rhizopus became dominant, especially R. delemar (abundance value =
284014.9015), which became the dominant strain, and R. microsporus (abundance value =

52561.42163) accounted for a greater percentage. At this stage, the alcohol content was tested at
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2%Vol, but the Saccharomyces decreased or even disappeared, indicating that the elevated
alcohol content inhibited the yeast activity. However, Rhizopus was still the dominant fungus,
which stated that the continuous increase in both the detected alcohol content and the sugar
content was related to Rhizopus because Rhizopus has abundant amylase and certain liquefaction
enzymes, which can chain OFSRW with saccharification and fermentation throughout the whole
fermentation process from the beginning to the end of the fermentation process, and the

fermentation effect was more thorough; thus, the starch yield further improved.

Figure 2 Column diagram of the horizontal species composition of each sample species. The abscissa is the
name of each group of the grouping scheme, and the ordinate is the relative abundance of each taxon at a

specific taxonomic level.

Heatmaps were generated based on the average abundance of the top 50 strains, reflecting
the correlation of colonies between samples and showing the trend of the distribution of strains
in each sample. The results are shown in Figure 3. The relationship between each sample and
each colony can be seen in the heatmap. Species diversity was highest at AG36. The diversity
gradually increased as fermentation progressed. The results of the heatmap analysis were

consistent with the results of the species composition analysis.

Figure 3 Horizontal distribution heatmap of each sample species.

Analysis of alpha diversity index

The Shannon, Simpson, and invsimpson indices were calculated to characterize the alpha
diversity of the microbiota in each of the starting samples (Fig. 4). The Shannon and Simpson
indices reflect the diversity of the microbial community, with higher Shannon scores and lower

Simpson scores indicating greater diversity of the microbial community, and there were
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differences between bacteria and fungi. During OFSRW fermentation, the highest species
diversity was found in sample AGO, and the lowest in AG24. In the four fermentation broth
samples of AGO (CK), AG24, AG36, and AG43, the Shannon index first decreased and then
increased and then decreased, and the Simpson index also showed the same trend as the Shannon
index, which indicated that the species diversity first reduced and then increased and then

decreased with the continuation of natural fermentation.

Figure 4 Alpha diversity indices among the samples.

Beta diversity analysis

The results of the beta diversity analysis are shown in Figure 5. Using AGO as the sample
control (CK), the species composition of the AGO samples was far from the species composition
of the AG24, AG36, and AG43 samples, and the difference in species composition was large,
which indicated that the number of strains in the CK samples was not large, and the colony

structure was more different from that in the AG24, AG36, and AG43 samples.

Figure 5 PCoA and NMDS diagram. Each dot in the figure represents a sample, and different colored dots

indicate different samples (groups).

The similarity between the samples is shown in the form of a hierarchical tree (Fig. 6), with
the AG36 and AG43 samples having the closest species composition distances, suggesting that
the two samples are most similar. Taken together, these results indicate that the microbial
communities of OFSRW fermenters from different periods showed variability and similarity.
The clustered hierarchical tree showed that the proportion of R. delemar was greater in samples

AG36 and AG43, but the largest proportion of C. lusitaniae was found in sample AG24. On the
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other hand, the species composition of sample AG0 was the farthest from that of the other
samples, indicating that the species composition of AG0 was different from that of the other
samples. The difference between them was significant. This result is consistent with the results

of the PCoA and NMDS analyses.

Figure 6 Hierarchical cluster analysis among samples. The upper panel shows a hierarchical clustering tree
diagram in which the samples were clustered according to similarity. The shorter the branch length between
the samples was, the more similar the samples were. The lower panel is a stacked histogram of the 30 most

abundant species.

Prediction of microbial function

The functional metabolic capacity of the microbial community was inferred from the
composition of 16S rRNA genes in the macro-genomic data of different fermenters(Chen et al.,
2020). Among the first-order KEGG metabolic pathways, the predicted functional genes
enriched in the OFSRW fermenters were related to cellular processes, environmental information
processing, genetic information processing, human diseases, metabolism, and organismal
systems. A comparison of the abundances of the four samples is shown in Figure 7. Metabolism-
related pathways were significantly enriched in most of the samples, especially AGO, while the
abundance of predicted genes related to organismal systems was relatively low in the AGO
samples, but the metabolic pathways declined and then stabilized with increasing fermentation
time, while the number of organismal systems metabolic pathways was greater than that in the

AGO fermentation samples in AG24, AG36, and AG43.

Figure 7 Comparison of KEGG primary metabolic pathways. The vertical coordinates are the mean values of
the abundance of functional pathways in the selected samples, and the horizontal coordinates are the sample

groupings. Different colors represent different metabolic pathways.
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To explore the reasons for the changes in functional pathways, we counted the secondary
pathways involved in the metabolism of OFSRW, which involved a total of 45 secondary
metabolic pathways, and the abundance values corresponding to each secondary pathway are
shown in Table S1. The secondary metabolic pathways with increased expression were subjected
to heatmap analysis, as shown in Figure 8. The most abundant predicted metabolism in the
category of level 2 KEGG pathways was energy production and conversion, followed by
inorganic ion transport and metabolism, carbohydrate transport, amino acid transport and
metabolism, nucleotide transport and metabolism, and lipid transport and metabolism. Inferred
carbohydrate transport, amino acid transport, and metabolism were prominent in sample AGO;
energy generation and conversion metabolic pathways were prominent in sample AG24;
posttranslational modification, protein turnover, and chaperone metabolic pathways were
prominent in sample AG36; and chromatin structure and dynamics were prominent in sample
AG43, which may have contributed to the observed variations in volatile compound profiles

between these samples.

Figure 8 Heatmap of the horizontal distribution of KEGG secondary metabolic pathways for each sample.

Discussion

Brix, acidity, and alcohol content are the most important parameters applied to monitor
the fermentation process of osmanthus flower sweet rice wine. Glucose, sucrose, and maltose are
three major fermentable sugars in the fermentation process of yellow rice wine because the
starch in rice/wheat is predominantly degraded by a-amylase and glucosidase from Jiuqu (M.
Kim et al., 2021; Yu et al., 2015). During fermentation, some low-molecular-weight sugars are
mainly consumed by microorganisms, contributing to an increase in the organic acid content
(Huang et al., 2019). In this study, the time before fermentation (AGOh) was 0 h, the sugar

content was not detected, the acidity was 0.03, and the alcohol content was not detected, which
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indicated that fermentation had not yet begun, that basically, no fermentable sugar existed in the
raw material and that the acidity was low, which might be related to the activity of L. plantarum.
The sugar content and acidity gradually increased with fermentation time. This may be related to
the gradual decomposition of other sugars and indicates that the microorganisms became active
and consumed sugars to produce energy and the gradual increase in acidity (from 0.03 to 0.35)
also confirms the intensification of microbial activity, especially the activity of acid-producing
bacteria such as P. pentosaceus and L. plantarum, which are capable of producing acid through
the metabolism of sugars during the fermentation process. The sustained increase in acidity is
consistent with previous findings (Tian et al., 2022), and the increase in acidity may be related to
the decrease in L. plantarum, which lowers the pH of OFSRW and inhibits the growth of
spoilage microorganisms that are sensitive to acidic conditions (Perpetuini et al., 2020), thereby
controlling, to some extent, the fermentation microbial community structure during the process.
Rhizopus, as the main fungal genus throughout the fermentation process, could more completely
convert the starch in glutinous rice into fermentable sugars, indicating that the presence of
Rhizopus was inextricably linked to the increase in sugar content.

In this study, by the end stage of fermentation (AG43h), the first brix of 2%Vol was
detected, which indicated that the fermentation process had started to enter the alcoholic
fermentation stage. The lack of alcohol detection in the first three fermentation stages could also
be related to L. plantarum, since LAB has strong inhibitory activity against E. coli,
Saccharomyces, and Mucor under low pH conditions (Russo et al., 2017). Alcohol production
marks the beginning of the conversion of sugars into alcohol and carbon dioxide by
Saccharomyces, typical of the traditional alcoholic fermentation phase (Fugelsang et al., 2007;
Fleet et al., 1993). The detection of alcohol at the end stage of fermentation (AG43h) may be
related to the significant activity of Saccharomyces and Rhizopus in the middle and late stages of
fermentation (AG24 and AG36), where Rhizopus is capable of hydrolyzing starch to obtain
sugars, and Saccharomyces are capable of fermenting sugars to produce alcohol, especially C.

lusitaniae and W. anomalus, because C. lusitaniae can utilize sugars in the fermentation of
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alcohol, and W. anomalus can secrete a variety of glycosidases, such as B-D-glucosidase, -D-
xylosidase, and o-L-rhamnosidase, which can promote the formation of aroma and flavor
substances, and it can produce high amounts of ethyl acetate and 2-phenylethanol, which can
significantly improve the sensory quality of the wine body (Padilla et al., 2018; Sabel et al., 2014;
Sun et al., 2022). However, the trend of alcohol content in this study was opposite to that of total
sugar, possibly because sugar has not yet been converted to ethanol and L. plantarum during the
continuous fermentation process.

It has been shown that microorganisms play a crucial role in the formation of Chinese rice
wine, including the synthesis of many flavor, texture, and color metabolites (Englezos et al.,
2022; Huang et al., 2019). Krona analysis revealed that the microbial communities differed
significantly at different fermentation stages, which may be closely related to changes in
nutrients, pH, temperature, and other biotic and abiotic factors in the fermentation environment.
At the early stage of fermentation (AGO), bacteria were the dominant microorganisms and were
dominated by Gammaproteobacteria and Bacilli. The high proportion of Gammaproteobacteria
may be related to their stronger metabolic activity in the sugar-rich environment. After 24 h of
fermentation (AG24), fungi, especially the yeast group C. lusitaniae, began to dominate,
showing high adaptability to the environment and efficient conversion of substrates during
fermentation. The rapid growth of the yeast species may be related to their ability to grow under
low oxygen or anaerobic conditions, which are common during hermetic fermentation. After 36
hours (AG36), a decrease in the proportion of fungi and an increase in the proportion of bacteria
were observed, which may be attributed to a reduction in fungal activity due to the depletion of
available sugars in the fermentation substrate, while the bacteria adapted to this change and
began to utilize the products of fungal metabolism or other nonsugar organic acids. By 43 hours
(AG43), Rhizopus became dominant, and its growth may have been due to increased acidity and
certain nutrients (e.g., proteins and fats) becoming more available later in the fermentation
process. This change reflects the adaptive strategy of the microbial community to survive and

thrive under nutrient competition and environmental stresses during the fermentation process.
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Pediococcus 1s widely distributed in Jiuqu, which helps improve food taste and nutrition.
The occurrence of Pediococcus pentosaceus in the AGO samples is in line with the results of a
previous study (Liang et al., 2020). The presence of P. pentosaceus improved the flavor of
fermented food by increasing the levels of short-chain fatty acids (SCFAs) (Jiang et al., 2021). In
samples AG24 and AG36, the presence of C. lusitaniae and W. anomalus can decompose sugar
into alcohol, carbon dioxide, and other secondary products, which exert a far-reaching effect on
the flavor and aroma of Chinese rice wine (Zhang et al., 2022). In AG43h, Rhizopus became
dominant because Rhizopus can utilize macromolecular ingredients in the raw materials and
consume nutrients that promote the growth and reproduction of the strain (Wu et al., 2022).

In this study, the trends in metabolic pathway changes during OFSRW fermentation were
analyzed in depth, which may be closely related to the dynamics of microbial communities and
metabolic activities. By comparing the abundance of metabolic pathways at different
fermentation stages, this study revealed the importance and change patterns of specific metabolic
pathways during fermentation. First, the abundance of organismal systemic metabolic pathways
was generally greater in the AG24, AG36, and AG43 samples during fermentation than in the
initial fermentation stage (AGO0), which may reflect the mechanism by which fermenting
microorganisms respond to environmental stresses. The activation of these metabolic pathways
may be related to the microbial response to oxidative stress, nutrient limitation, and other biotic
stress conditions in the fermentation environment. In particular, the activation of these pathways
may be related to cellular protective mechanisms such as antioxidant and damage repair
functions. Second, the gradual decline in metabolic pathways with increasing fermentation time
suggested that as the fermentation process proceeded, nutrient sources such as carbohydrates
initially utilized were gradually depleted, and the microorganisms had to adjust their metabolic
strategies to adapt to less nutritious environments. Finally, functional analysis revealed
significant carbohydrate transport, lipid transport and metabolism, and amino acid transport and
metabolism pathway activity in the AGO fermentation broth, implying that flavor formation in

these samples was likely linked to protein and starch metabolism (Xiao et al., 2021; Chen et al.,
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2020), thus contributing to the increase in sugar content and detectable alcohol content during
the middle and late stages of fermentation until the end of fermentation. This finding suggested
that carbohydrate metabolism is the main pathway for microbial growth and energy production
during the early stages of fermentation. The energy production of microbial flora depends mainly
on the phosphorylation of substrates through sugar fermentation to acetate, while energy
production and conversion) can drive the energy demand of bacterial flora, which explains the
increase in bacteria in this AG24 sample. The significant activation of the metabolic pathway of
energy production and conversion in the fermentation broths of AG24 suggested that C.
lusitaniae and R. delemar are active during this fermentation phase and thus contribute to the
increase in sugar level and acidity. The significant activation of posttranslational modifications,
protein turnover, chaperones in AG36 fermentation broth, and signal transduction mechanisms in
AG43 fermentation broth suggested enhanced microbially driven nutrient-seeking activity in
samples from this phase, which may have increased microbial signal perception through a
complex signaling network, enabling better nutrient utilization (Zhao et al., 2022), especially in
the case of W. anomalus and R. delemar, and significant activity may contribute to the increase
in alcohol and sugar levels through posttranslational modifications, protein turnover, chaperones
and signal transduction mechanisms. The high expression of these metabolic pathways may,
therefore, be inextricably linked to increased sugar, acidity, and alcohol content, suggesting that
some of the differences in the functional metabolic abundance of the samples from different
periods may be related to the composition of the microbial community at various periods, which

may help to observe changes in the volatile compound profiles between these samples.

4 Conclusion

It is the first report on employing high-throughput sequencing to study the predicted
dynamic changes in microbial communities and metabolic pathways in OFSRW natural
fermentation broth. By comparing the bacterial strains under natural fermentation conditions at

different time points, it was found that the number of strains detected in the samples first
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increased and then decreased with increasing fermentation time. However, bacteria decreased,
and fungi became the dominant microorganisms over time, with Rhizopus being the dominant
fungal genus throughout the fermentation process. The increase in acidity and total sugar content
with fermentation time was associated with L. plantarum and Mucor, and the addition in alcohol
content was not detected until the end of fermentation because Saccharomyces and Mucor were
inhibited by L. plantarum at 0 h, 24 h, and 36 h of fermentation. The diversity analysis results
showed that the species composition of the AGO samples was very different from that of the
AG24, AG36, and AG43 samples, and the species diversity showed a decreasing trend followed
by an increasing and then decreasing trend. Energy production and conversion, carbohydrate
transport, amino acid transport, and metabolic pathways are the most active metabolic pathways
in fermenters. The results of this study not only provide insights into how microorganisms adapt
to environmental changes during fermentation but can also be crucial for optimizing

fermentation conditions and improving product quality and flavor.
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Table 1l(on next page)

Table 1 Physicochemical properties of sweet rice wine produced from cinnamon
osmanthus flower.
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1 Table 1 Physicochemical properties of sweet rice wine produced from cinnamon osmanthus flower.

Local ﬂavor OFSRW
fermentation cycle
Oh 24h 36h 43h

Physical and
chemical indicator

acidity 0.03 0.14 0.25 0.35
total sugar (g/250ml) not detected 7.11 14.05 16.55

alcoholic strength
not detected not detected not detected 2
(v/vol,%)
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Figure 1

Fig. 1. Classification level and abundance information of Krona diagram of sample
species.

From the inside to the outside, the Krona circle represents the seven taxonomic levels of
domain, phylum, class, order, family, genus, and species. The sector’s size reflected the

relative abundance of different taxa, and there were specific values.
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Figure 2

Fig. 2. Column diagram of the horizontal species composition of each sample species.

The abscissa is the name of each group of the grouping scheme, and the ordinate is the

relative abundance of each taxon at a specific taxonomic level.

Peer] reviewing PDF | (2024:07:103011:0:2:NEW 17 Jul 2024)



Peer] Manuscript to be reviewed

1.001
others
s__Wickerhamomyces_ciferrii
s__Lodderomyces_elongisporus
s__Meyerozyma_guilliermondii
0.751 s__Candida_albicans

s__Metschnikowia_bicuspidata
s__Mucor_circinelloides
s__Choanephora_cucurbitarum
s__Aspergillus_saccharolyticus
s__Staphylococcus_saprophyticus
s__Wickerhamomyces_anomalus
s__Parasitella_parasitica
s__Rhizopus_azygosporus
s__Clavispora_lusitaniae
s__Rhizopus_arrhizus
s__Rhizopus_stolonifer
s__Rhizopus_microsporus
s__Pantoea_septica
s__Rhizopus_delemar
s__Leclercia_adecarboxylata
s__Enterobacter_cloacae
s__Enterobacter_ludwigii
s__Enterobacter_kobei
s__Escherichia_coli
s__Klebsiella_pneumoniae
s__Enterobacter_hormaechei

Relative Abundance
o
(4,
-

0201 s__Kluyvera_ascorbata
s__Pseudomonas_putida
I s__Lactiplantibacillus_plantarum
I s__Pediococcus_pentosaceus
s__Acinetobacter_johnsonii
0.0041

Peer] reviewing PDF | (2024:07:103011:0:2:NEW 17 Jul 2024)



PeerJ Manuscript to be reviewed

Figure 3

Fig. 3. Horizontal distribution heatmap of each sample species.
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Figure 4

Fig. 4. Alpha diversity indices among the samples.
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Figure 5

Fig. 5. PCoA and NMDS diagram.

Each dot in the figure represents a sample, and different colored dots indicate different

samples (groups).
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Figure 6
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Fig. 6. Hierarchical cluster analysis among samples.

The upper panel shows a hierarchical clustering tree diagram in which the samples were

clustered according to similarity. The shorter the branch length between the samples was,

the more similar the samples were. The lower panel is a stacked histogram of the 30 most

abundant species.
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Figure 7

Fig. 7. Comparison of KEGG primary metabolic pathways.

The vertical coordinates are the mean values of the abundance of functional pathways in the
selected samples, and the horizontal coordinates are the sample groupings. Different colors

represent different metabolic pathways.
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Figure 8

Fig. 8. Heatmap of the horizontal distribution of KEGG secondary metabolic pathways
for each sample.
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