# Acidity, sugar, and alcohol during the fermentation of Osmanthus-flavored sweet rice wine and microbial community dynamics (#103011)

First submission

#### Guidance from your Editor

Please submit by 9 Sep 2024 for the benefit of the authors (and your token reward) .



#### **Structure and Criteria**

Please read the 'Structure and Criteria' page for guidance.



#### **Custom checks**

Make sure you include the custom checks shown below, in your review.



#### Raw data check

Review the raw data.



#### Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

#### **Files**

Download and review all files from the <u>materials page</u>.

Custom checks

8 Figure file(s)

2 Table file(s)

#### **DNA data checks**

- Have you checked the authors <u>data deposition statement</u>?
- Can you access the deposited data?
- ! Has the data been deposited correctly?
- Is the deposition information noted in the manuscript?

## Structure and Criteria



#### Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

#### **Editorial Criteria**

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

#### **BASIC REPORTING**

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
  Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

#### **EXPERIMENTAL DESIGN**

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

#### **VALIDITY OF THE FINDINGS**

- Impact and novelty is not assessed.

  Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.



Conclusions are well stated, linked to original research question & limited to supporting results.

## Standout reviewing tips



The best reviewers use these techniques

| Τ | p |
|---|---|

## Support criticisms with evidence from the text or from other sources

### Give specific suggestions on how to improve the manuscript

### Comment on language and grammar issues

### Organize by importance of the issues, and number your points

## Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

#### **Example**

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.





### Acidity, sugar, and alcohol during the fermentation of Osmanthus-flavored sweet rice wine and microbial community dynamics

Ping Tian <sup>1</sup>, Jiaqiong Wan <sup>1</sup>, Tuo Yin <sup>1</sup>, Li Liu <sup>2</sup>, Hongbing Ren <sup>2</sup>, Hanbing Cai <sup>1</sup>, Xiaozhen Liu <sup>1</sup>, Hanyao Zhang <sup>Corresp. 1</sup>

Corresponding Author: Hanyao Zhang Email address: zhanghanyao@swfu.edu.cn

Sweet rice wine is a popular traditional Chinese rice wine that is widely loved by the Chinese people for its high nutritional value. However, the dynamics of the sugar level, acidity, alcohol content, and microbial community during the fermentation of osmanthusflavored sweet rice wine have not been evaluated, which can lead to the unstable quality of osmanthus flower sweet rice wine (OFSRW). In this study, the dynamic changes in sugar level, acidity, alcohol content, microbial community composition, and microbial metabolic pathways during traditional fermentation of OFSRW at four-time points-0 h (AG0), 24 h (AG24), 36 h (AG36), and 43 h (AG43)-were analyzed via direct titration, total acid assays, alcoholometry, and high-throughput macrogenomic techniques. First, we found that bacteria were the dominant microorganisms in the early stage of OFSRW fermentation (AG0), fungi were the dominant microorganisms in the middle and late stages of fermentation (AG24 and AG36), and Rhizopus was the main fungal genus throughout fermentation. Acidity and total sugars increased with fermentation time, and alcohol was not detected until the end of fermentation. Diversity analysis revealed that the dominant species at the beginning of natural fermentation was A. johnsonii, and R. delemar became the dominant species as natural fermentation progressed. Metabolic pathway analysis revealed that energy production and conversion, carbohydrate transport, amino acid transport, and metabolic pathways were the most active metabolic pathways in the fermenter. These results can provide a reference basis for changes in the microbial community during the fermentation of cinnamon-flavored sweet rice wine.

<sup>&</sup>lt;sup>1</sup> Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China

 $<sup>^{\</sup>rm 2}$  R&D Department, Honghe Hongbin Food Co., Ltd., Jianshui, China



#### 1 Acidity, sugar, and alcohol during the fermentation of Osmanthus-

#### flavored sweet rice wine and microbial community dynamics

3 4

Ping Tian<sup>1,\*</sup> Jiaqiong Wan<sup>1</sup> Tuo Yin<sup>1</sup> Li Liu<sup>2</sup> Hongbing Ren<sup>2</sup> Hanbing Cai<sup>1</sup> Xiaozhen Liu<sup>1</sup> and Han Yao Zhang<sup>1,\*</sup>

5 6 7

8

- 1 Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, Yunnan, China;
- 9 2 R&D Department, Honghe Hongbin Food Co., Ltd.
- \* These authors contributed equally to this work.

11 12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

**Abstract:** Sweet rice wine is a popular traditional Chinese rice wine that is widely loved by the Chinese people for its high nutritional value. However, the dynamics of the sugar level, acidity, alcohol content, and microbial community during the fermentation of osmanthus-flavored sweet rice wine have not been evaluated, which can lead to the unstable quality of osmanthus flower sweet rice wine (OFSRW). In this study, the dynamic changes in sugar level, acidity, alcohol content, microbial community composition, and microbial metabolic pathways during traditional fermentation of OFSRW at four-time points-0 h (AG0), 24 h (AG24), 36 h (AG36), and 43 h (AG43)-were analyzed via direct titration, total acid assays, alcoholometry, and high-throughput macrogenomic techniques. First, we found that bacteria were the dominant microorganisms in the early stage of OFSRW fermentation (AG0), fungi were the dominant microorganisms in the middle and late stages of fermentation (AG24 and AG36), and Rhizopus was the main fungal genus throughout fermentation. Acidity and total sugars increased with fermentation time, and alcohol was not detected until the end of fermentation. Diversity analysis revealed that the dominant species at the beginning of natural fermentation was A. johnsonii, and R. delemar became the dominant species as natural fermentation progressed. Metabolic pathway analysis revealed that energy production and conversion, carbohydrate transport, amino acid transport,



- and metabolic pathways were the most active metabolic pathways in the fermenter. These results can provide a reference basis for changes in the microbial community during the fermentation of
- 30 cinnamon-flavored sweet rice wine.
- 31 **Keywords:** sweet rice wine; *Osmanthus*; high-throughput sequencing; sugar content; acidity;
- alcohol content; microbial communities and differences; dominant strains.

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

#### INTRODUCTION

Osmanthus flower sweet rice wine (OFSRW), a low-alcoholic beverage with regional characteristics in China, is mainly made from high-quality glutinous rice and *osmanthus* flowers, which are mixed and fermented in a natural environment with the addition of a fermenting agent (Jiuqu). Many studies have confirmed that glutinous rice is a complex organism composed of various macromolecules with edible and medicinal value (Zheng et al., 2023). For example, it warms the spleen and stomach, stops cold dysentery deficiency, reduces stool, allows spontaneous sweating, and facilitates urination. Osmanthus fragrans (Thunb), an evergreen shrub or tree belonging to the Lignaceae (Oleaceae) family, is a valuable and common ornamental aromatic plant with good medicinal value (Huang et al., 2019). Its petals contain many nutrients, such as soluble sugars, soluble proteins, organic acids, vitamin C, flavonoids, free amino acids, and many minerals. It has the effect of strengthening the stomach and resolving phlegm, generating fluids, dispersing blood stasis, and flattening the stomach (Zhou et al., 2013), and it can treat asthma, coughs, toothache, and diarrhea (Wanget al., 2022), as well as having anticancer, antioxidant, and anti-inflammatory effects (Huang et al., 2023). Sweet rice wine is soft, long, and pleasantly aromatic and is an essential part of the food culture of the Chinese people. The nutritional value of rice wine is also of interest. In addition to the nutrients in the raw material itself, the raw material also contains oligosaccharides, peptides, proteins, B vitamins, and minerals; amino acids and other components produced during the traditional brewing process of rice wine are easily digested and absorbed by the human body and can promote appetite;



55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

warm the stomach; strengthen the spleen; benefit qi; stop diarrhea; produce fluids to stop sweating; refresh and relieve fatigue (Yuan et al., 2020; Cai et al., 2012); and have anti-aging effects (Liu et al., 2020; Zhao et al., 2018). Therefore, the OFSRW produced by combining glutinous rice and *osmanthus* flowers through the mixed fermentation of wine curd has the aroma of ordinary sweet rice wine and retains the fresh fragrance of *osmanthus* flowers, which not only increases the color, aromas, and taste of sweet rice wine but also allows the release of nutrients such as oligosaccharides, polypeptides, amino acids, and ethanol in sweet rice wine to increase its nutritional value.

Jiugu is rich in microorganisms involved in saccharification, fermentation, and the production of flavor-related metabolites. For example, *Rhizopus* breaks the  $\alpha$ -1,4 and  $\alpha$ -1,6 bonds in the rice starch structure, which is converted more completely into fermentable sugars. Saccharomyces plants draw monosaccharides such as glucose, fructose, and mannose into the cell and break them down into carbon dioxide and ethanol under anaerobic conditions and through the action of endoenzymes. Lactic acid bacteria (LAB) play a major role in fermentation and the intrinsic properties of fermented products, influencing the development of their aroma, texture, and acidity (Cai et al., 2019). The fungal communities in Jiuqu have also been shown to play an essential role in starch and protein hydrolysis and the production of ethanol, organic acids, higher alcohols, and esters (Medina et al., 2013). Whereas bacterial communities that produce hydrolytic enzymes, glucoamylases, proteases, and esterases are produced by various bacteria during fermentation to degrade the raw material substrates, all of which could lead to the accumulation of aroma-related compounds or secondary metabolites and intermediates (Gammacurta et al., 2018; Simonen et al., 1993). The bacterial and fungal communities varied significantly among the different starters of Hongqu yellow rice wine, and the core microorganisms were positively correlated with specific organic acids and aromatic esters in the starters (Huang et al., 2019). Regional variations in the wild native microbes and environmental conditions of Jiugu production may influence the microbial community composition and quality of Jiugu, especially in nonsterile fermentation processes (Zhao et al., 2022). The influence of



different regional environments, raw materials, and additives in sweet rice wines may also lead to differences in SRW fermenters, which may confer different organoleptic characteristics, flavors, and other features of SRW (Su et al., 2014). For example, Chen et al. (Chen et al., 2020) reported that different microbial communities in three different traditional huangjiu fermenters resulted in significant differences in the aroma composition of their fermented rice wines. One study comparing eight CSRW starter samples from different regions of southern China revealed significant high variation in the bacterial and fungal composition, which likely contributed substantially to the final flavor quality of the respective CSRWs (Cai et al., 2018). Sugars, acidity, and alcohol content, which are crucial parameters in the sweet rice wine fermentation process, have a great impact on the quality and flavor of sweet rice wine. For example, insufficient sweetness or oversweetness will make sweet rice wine taste too light or too mushy. Excessive alcohol content will make sweet rice wine bitter and astringent, with a slight off-flavor, a strong taste, or even a distinct white wine taste. Excessive acidity will reduce the taste of sweet rice wine or even cause rancidity.

OFSRW fermentation is a complex process involving maceration, steaming, rinsing, fermentation inoculation, and saccharification. The entire fermentation process includes a range of strains obtained from fermenters, raw materials, and the environment. In addition, in this complex environment, a series of changes in sugar level, acidity, alcohol content, and microflora occur, affecting the unique aroma, flavor, and color of rice wine. Furthermore, OFSRW fermentation follows the traditional technique of an uncontrolled fermentation process that produces inconsistent flavors. However, few studies have evaluated the evolution of sugar, acidity, alcohol, and microbiota during traditional OFSRW fermentation, and the interactions between microbiota and sugar, acidity, and alcohol have not been elucidated. To explain this, it is first necessary to understand the dynamic relationships among the brix, acidity, alcohol, and microorganisms in OFSRW. In this paper, direct titration was used to determine the sugar level in OFSRW. Total acidity determination was used to determine the acidity of OFSRW, and alcoholic strength was used to determine the alcoholic strength of OFSRW. Available methods



include culture-dependent methods (Ly et al., 2012) and culture-independent PCR-denaturing 108 gradient gel electrophoresis (DGGE) techniques (Lv et al., 2015; Lv et al., 2017) were employed 109 to study the microbial composition of OFSRW, but all of the above ones have difficulties 110 distinguishing the species present at population densities below 10<sup>3</sup> CFU/g or two orders of 111 magnitude lower than the most abundant members of these communities (Cocolin et al., 2011; 112 Prakitchaiwattana et al., 2004). High-throughput sequencing technology, on the other hand, is 113 114 capable of analyzing the transcriptome and genome data of a species in a detailed and comprehensive manner, also known as deep sequencing or next-generation sequencing (NGS). 115 This technique has quantitative capabilities for determining the abundance of species 116 components in a sample. In addition, the utilization of this technique is simple and cost-effective, 117 the results are feasible (Liu et al., 2019), and it is faster and better than ITS PCR and fluorescent 118 119 ITS PCR capillary electrophoresis. This technique has been widely used to analyze the microbial community dynamics of various fermented foods and vegetables, such as Sichuan kimchi (Luo et 120 al., 2021), soy sauce (Zhao et al., 2021), kiwifruit (Zhang et al., 2022), grape juice (Zhao et al., 121 2022), and rice wine (Zou et al., 2023), and the use of macro-genome sequencing in these studies 122 provided a theoretical basis for analyzing the relationships between microbial populations and 123 specific flavors in these fermented foods. 124 Therefore, in this paper, direct titration, total acid determination, alcoholometry, and high-125 throughput macrogenomic rDNA (16S rRNA and ITS genes) were used to dynamically monitor 126 127 the brix, acidity, alcohol content, and microbial community structure of traditionally fermented OFSRW, direct titration was used to determine the sugar level in OFSRW, with total acidity 128 determination used to determine the acidity in OFSRW. Alcoholic strength was used to 129 determine the alcoholic strength of OFSRW. (1) Changes in brix, acidity, alcohol content, and 130 microbial community composition of OFSRW were analyzed. (2) Comparisons were made 131 between the OFSRW in this paper, and direct titration was used to determine the sugar level in 132 OFSRW, total acidity determination was employed to determine the acidity in OFSRW, and 133 alcoholic strength was used to determine the alcoholic strength of OFSRW microbial diversity 134



changes and differences during fermentation and the correlation between microbial community and sugar level, acidity, and alcohol content. (3) The functional metabolism prediction of OFSRW was followed. This study provides insights into how microorganisms in OFSRW fermentation broth adapt to environmental changes during fermentation and can also be crucial for optimizing fermentation conditions and improving product quality and flavor.

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

#### **Materials and Methods**

#### Sample preparation and sampling

The raw materials used for OFSRW were Angie's Sweet Wine Quartz (Hubei Angie's Yeast), glutinous rice, and osmanthus (Guangzhou Zhenyuantang Food Co., Ltd.). The prime operation of **OFSRW** is follows: rice→washing. process as glutinous cooling→mixing with soaking→steaming→drinking and guartz→mixing with osmanthus→bottling→compacting→mashing→placing in a constant temperature box at 30°C for fermentation for 43 h. In the production of TRSW, it is necessary to select glutinous rice that is full of grains, has no yellowing and no mold, and has no insect pests. When making TRSW, glutinous rice with full grains, no yellowing, no mildew, and no insect pests were selected, and the rice was washed into a pottery jar with 2.5-3.0 times the quality of glutinous rice to soak for 9-12 h. The soaked glutinous rice at 108°C was steamed for 40-50 min, and the steamed rice was hard and soft outside and inside, loose but not rotten, with no white heart or uniformity. After the glutinous rice was steamed and cooked, 30% cool white boiled water was used to cool it to 30-35°C, after which 0.4% of the wine and rice was added and stirred evenly. After that, 0.4% of the wine and rice were stirred well, and 0.75% of the dried cinnamon was added again and stirred well. Finally, the mixture was bottled, compacted, mashed, and placed in a constant temperature box at 30°C for 43 h of fermentation. At 0, 24, 36, and 43 h, 20 g of the samples were randomly taken for the determination of sugar, acidity, and alcohol content. At the same time, 380 mL of



160 fermentation mash was collected for high-throughput sequencing analysis.

#### **Determination of Brix, Acidity, and Alcohol Content**

The direct titration method GB 5009.7-2016 was used to determine the sugar content in *osmanthus* sweet rice wine. The acid was sent to the Laboratory Department of Hongbin Foods Co. Ltd. for testing, and its determination method was GB 12456-2021. The alcohol content was determined using the GB 5009.225-2023 alcoholometer method.

#### High-throughput sequencing and bioinformatics analysis DNA extraction and sequencing

Total DNA was extracted from each microbial sample using the CTAB method (Liu et al., 2017). High-throughput sequencing was performed by DynaTech Biotechnology Limited (Yunnan Province, China) for macro-genome sequencing. Metagenomic sequencing was conducted, and ITS5 (GGAAGTAAAAGTCGTAACAAGG) and ITS2 (GCTGCGTTCTTCATCGATGC) were used for sequencing (Kumar et al., 2020). The sequences had a mean read length of 150 bases and a Q score of 30. The sequencing data were analyzed on the GenesCloud platform (www.genescloud.cn).

#### Sequence processing and analysis

Paired-end sequencing of DNA fragments was performed on the Illumina platform. Vsearch (v2.13.4-linux-x86\_64) and cutadapt (v2.3) were used to denoise and cluster the sequences (Rognes et al. 2016). After using the QIIME cutadapt trim paired to excise sequence primer fragments, the sequences unmatched with primers were discarded.

The Vsearch module was used for splicing, deduplicating, and dechimericing the sequences, and the UNITE database (Release 8.0, https://unite.ut.ee/) was used to filter the concentrated chimeras to obtain high-quality chimeras. The QIIME2 (classify sklearn algorithm



https://github.com/QIIME2/q2-feature-classifer) was used to annotate the characteristic sequences of each operational taxonomic unit (OTU) in the naive Bayes classifiers (Elolimy et al. 2020). The QIIME2 qiime feature-table Rarefy function was used to set the leveling depth to 95% of the smallest sample sequence size, and the final OTUs were obtained.

#### Analysis of changes in species composition

Krona software (https://github.com/marbl/Krona/wiki) was used to analyze the community taxonomic composition of the samples2020 (Ondov, Bergman & Phillippy, 2011). The RGGplot2 package was used to construct a circle stair tree diagram, and the abundance of each group was added to the diagram in the form of a pie chart (Steenwyk & Rokas, 2021). To further compare the species composition differences among the samples and display the distribution trend of the species abundance of each sample, R language and the pheatmap package were used to construct heatmaps for the species composition analysis.

#### Alpha diversity analysis

Alpha diversity refers to the diversity within a sample. Commonly used alpha diversity indices include the Chao1 estimator, Good's coverage index, observed species index, Pielou's evenness index, Shannon index, Simpson index, etc. (Chao & Ricotta 2019; Liu et al. 2020). The Chao 1 index measures species richness and estimates the number of species in a sample. Good's coverage refers to the coverage rate of each sample library, and this index reflects whether the sequencing result represents the situation of the microorganisms in the sample. The observed species index represents the number of species in the samples. Pielou's evenness indicates the uniformity of the community. The Shannon index combines abundance and evenness, giving more weight to rare species. The Simpson index combines abundance and evenness but focuses more on common species.

QIIME2, R language, and the ggplot2 package were used for alpha diversity analysis. After



using the unleveled OTU table, calling the "qiime diversity alpha-rarefaction" command, and setting the minimum leveling depth to ten and the minimum sequencing depth to 95% of the sample sequence, each depth value was fattened ten times to calculate the alpha diversity index.

#### Beta diversity analysis

Beta diversity refers to the differences between samples or groups and is often used to analyze whether the differences in microbial composition between two groups are significant. Commonly used beta diversity indices include the Jaccard, Bray–Curtis, unweighted UniFrac, and weighted UniFrac indices (Lozupone et al. 2007; Chao & Ricotta 2019). The Jaccard index compares the similarities and differences between limited sample sets. Bray–Curtis dissimilarity is a measure used to analyze differences in species composition in different places. Unweighted UniFrac can detect the presence of variations between samples, while weighted UniFrac can further quantitatively detect the variation between samples of various lineages.

Principal coordinate analysis (PCoA) and nonmetric multidimensional scaling (NMDS) methods were used to analyze the beta diversity of the samples (Ramette, 2007; Legendre & Legendre, 1998). By default, the UPGMA algorithm was used for cluster analysis of the Bray-Curtis distance matrix (Bray & Curtis, 1957), and a ggtree of R language was used to analyze the relationships between different samples for visualization.

#### **Functional prediction**

Functional annotation information was obtained by comparing the nonredundant genes with each functional database using DIAMOND software, taking the annotations with e<1e-5, and filtering the proteins with the most abundant sequences. For each sequence comparison result, the comparison result with the highest SCORE (oneHSP>60 bits) was selected for subsequent analysis (Backhed, Roswall & Peng, 2015). Using PICRUSt2 software



(https://github.com/picrust/picrust2/wiki), the abundance values of metabolic pathways were obtained. The generated data were entered into the KEGG biological metabolic pathway analysis database (KEGG Pathway Database, http://www.genome.jp/kegg/pathway.html), the eggNOG database, and metabolic pathways for different sample statistics (Qin, Li &Cai., 2012). Using R language and the MetaGenomeseq package, the Fit Feature Model function was employed, and the distribution of each pathway/group was analyzed using a zero-log-normal model. The results were used to calculate the significance of the metabolic differences between each natural fermentation sample and the CK control group. According to the data selected in the metabolic pathway abundance table, a bar chart was drawn to analyze which species affect the metabolic pathways.

#### Results

#### Brix, acidity, and alcohol analysis

During OFSRW fermentation, the time before fermentation (AG0h) was 0 h, the brix of OFSRW was undetectable, the acidity of OFSRW was 0.03, and the alcoholic strength of OFSRW was undetectable, indicating that fermentation had not yet begun, that no fermentable sugar existed in the raw material and that the acidity was low, which might be related to the activity of *L. plantarum*. In the middle of fermentation (AG24h and AG36h), the sugar level of AG24h was 7.11, the acidity was 0.14, and the alcoholic strength was not detected, while the sugar level of AG36h was 14.05, the acidity was 0.25, and the alcoholic strength was not detected. The increase in brix and acidity during the mid-fermentation period also confirms the association of enhanced microbial activity, especially related to the activity of LAB and *Rhizopus*, which can produce acid through the metabolism of sugars during the fermentation process. An increase in acidity helps to prevent the growth of other microorganisms, thus controlling the structure of the microbial community to some extent during fermentation, and an





increase in acidity causes a decrease in the viability of LAB. The sugar level after fermentation (AG43h) was 16.55, the acidity was 0.35, and the alcohol content was 2%Vol, which indicated that the fermentation process had begun to enter the alcoholic fermentation stage (Table 1). The fact that alcohol was not detected until the end of fermentation may be due to the inhibition of *Saccharomyces* and *Rhizopus* activity by *L. plantarum* during the pre-fermentation period.

Table 1 Physicochemical properties of sweet rice wine produced from cinnamon osmanthus flower.

#### **Analysis** of species composition

In this study, the dynamics of fungal and bacterial communities in OFSRW fermenters at different time intervals were detected using Krona analysis (Fig. 1). According to the results of the study, it was concluded that in the AG0 samples, bacteria were mainly dominated by *Gammaproteobacteria* and *Bacilli*, with 76% and 18%, respectively. Fungi were dominated by *Mucoromycetes* and *Magnoliopsida* at 51% and 40%, respectively. In the AG24 sample, the bacteria were the same as those in the AG0 stage. The fungi were dominated by *Saccharomycetes* and *Mucoromycetes* at 86% and 8%, respectively. In the AG36 samples, fungi decreased, and bacteria increased, but fungi remained the dominant species. The bacteria were dominated by 11% *Enterobacterales*. Fungi were dominated by *Mucorales* and *Saccharomycetales* at 66% and 15%, respectively. In the AG43 samples, *Mucorales* was the dominant order of fungi, accounting for 83%. The bacteria were dominated by 6% and 3% *Enterobacterales* and *Moraxellales*, respectively.

Figure 1 Classification level and abundance information of Krona diagram of sample species. From the inside to the outside, the Krona circle represents the seven taxonomic levels of domain, phylum, class, order, family, genus, and species. The sector's size reflected the relative abundance of different taxa, and there were specific



values.

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

The 30 most abundant species for each sample were plotted as a bar graph (Fig. 2). The dominant species in AG0 were A. johnsonii (abundance value= 25328.43406), P. pentosaceus (abundance value= 19416.53625) and L. plantarum (abundance value= 13204.09352). The significant activity of *P. pentosaceus* and *L. plantarum* also explains the low acidity at this stage. However, as fermentation continued, A. johnsonii and P. pentosaceus disappeared. After 24 h of fermentation, K. ascorbata decreased. The dominant fungi were C. lusitaniae (abundance = 347248.9604) and R. delemar (abundance = 20415.18217). Subsequently, the abundance of bacteria increased, but fungi remained dominant, and the abundance of C. lusitaniae decreased or even disappeared. The significant activity of *Rhizopus* indicates the beginning of fermentation of starch in rice, thus converting it into fermentable sugars. C. lusitaniae is a non-Saccharomyces yeast species capable of utilizing sugars for fermentation, resulting in turbidity and precipitation of OFSRW and alcohol production (Cao et al., 2014). After 36 h of fermentation, Rhizopus accounted for the greatest percentage, with R. delemar (abundance = 221286.5492) being the dominant strain, followed by R. microsporus (abundance = 42293.8848). W. anomalus (abundance = 74557.64045) was dominant among the yeasts. The continuous activity of *Rhizopus* at this stage indicates an inextricable relationship with the sustained increase in brix. W. anomalus is a yeast of the non-Saccharomyces genus with certain aroma-producing, esterproducing, and alcohol-producing abilities that can significantly enhance the sensory quality of wine, and it is an important functional microorganism in the fermentation of wine grains (Xie et al., 2022). The significant activity of *Rhizopus*, C. lusitaniae and W. anomalus in the middle and late stages of fermentation paved the way for the alcoholic fermentation stage (AG43) to monitor the alcohol content. As fermentation continued, the yeasts decreased or even disappeared. At 43 h of fermentation, Rhizopus became dominant, especially R. delemar (abundance value = 284014.9015), which became the dominant strain, and R. microsporus (abundance value = 52561.42163) accounted for a greater percentage. At this stage, the alcohol content was tested at





2%Vol, but the *Saccharomyces* decreased or even disappeared, indicating that the elevated alcohol content inhibited the yeast activity. However, *Rhizopus* was still the dominant fungus, which stated that the continuous increase in both the detected alcohol content and the sugar content was related to *Rhizopus* because *Rhizopus* has abundant amylase and certain liquefaction enzymes, which can chain OFSRW with saccharification and fermentation throughout the whole fermentation process from the beginning to the end of the fermentation process, and the fermentation effect was more thorough; thus, the starch yield further improved.

Figure 2 Column diagram of the horizontal species composition of each sample species. The abscissa is the name of each group of the grouping scheme, and the ordinate is the relative abundance of each taxon at a specific taxonomic level.

Heatmaps were generated based on the average abundance of the top 50 strains, reflecting the correlation of colonies between samples and showing the trend of the distribution of strains in each sample. The results are shown in Figure 3. The relationship between each sample and each colony can be seen in the heatmap. Species diversity was highest at AG36. The diversity gradually increased as fermentation progressed. The results of the heatmap analysis were consistent with the results of the species composition analysis.

Figure 3 Horizontal distribution heatmap of each sample species.

#### Analysis of alpha diversity index

The Shannon, Simpson, and invsimpson indices were calculated to characterize the alpha diversity of the microbiota in each of the starting samples (Fig. 4). The Shannon and Simpson indices reflect the diversity of the microbial community, with higher Shannon scores and lower Simpson scores indicating greater diversity of the microbial community, and there were





differences between bacteria and fungi. During OFSRW fermentation, the highest species diversity was found in sample AG0, and the lowest in AG24. In the four fermentation broth samples of AG0 (CK), AG24, AG36, and AG43, the Shannon index first decreased and then increased and then decreased, and the Simpson index also showed the same trend as the Shannon index, which indicated that the species diversity first reduced and then increased and then decreased with the continuation of natural fermentation.

Figure 4 Alpha diversity indices among the samples.

#### Beta diversity analysis

The results of the beta diversity analysis are shown in Figure 5. Using AG0 as the sample control (CK), the species composition of the AG0 samples was far from the species composition of the AG24, AG36, and AG43 samples, and the difference in species composition was large, which indicated that the number of strains in the CK samples was not large, and the colony structure was more different from that in the AG24, AG36, and AG43 samples.

Figure 5 PCoA and NMDS diagram. Each dot in the figure represents a sample, and different colored dots indicate different samples (groups).

The similarity between the samples is shown in the form of a hierarchical tree (Fig. 6), with the AG36 and AG43 samples having the closest species composition distances, suggesting that the two samples are most similar. Taken together, these results indicate that the microbial communities of OFSRW fermenters from different periods showed variability and similarity. The clustered hierarchical tree showed that the proportion of R. *delemar* was greater in samples AG36 and AG43, but the largest proportion of C. *lusitaniae* was found in sample AG24. On the





other hand, the species composition of sample AG0 was the farthest from that of the other samples, indicating that the species composition of AG0 was different from that of the other samples. The difference between them was significant. This result is consistent with the results of the PCoA and NMDS analyses.

Figure 6 Hierarchical cluster analysis among samples. The upper panel shows a hierarchical clustering tree diagram in which the samples were clustered according to similarity. The shorter the branch length between the samples was, the more similar the samples were. The lower panel is a stacked histogram of the 30 most abundant species.

#### **Prediction of microbial function**

The functional metabolic capacity of the microbial community was inferred from the composition of 16S rRNA genes in the macro-genomic data of different fermenters(Chen et al., 2020). Among the first-order KEGG metabolic pathways, the predicted functional genes enriched in the OFSRW fermenters were related to cellular processes, environmental information processing, genetic information processing, human diseases, metabolism, and organismal systems. A comparison of the abundances of the four samples is shown in Figure 7. Metabolism-related pathways were significantly enriched in most of the samples, especially AG0, while the abundance of predicted genes related to organismal systems was relatively low in the AG0 samples, but the metabolic pathways declined and then stabilized with increasing fermentation time, while the number of organismal systems metabolic pathways was greater than that in the AG0 fermentation samples in AG24, AG36, and AG43.

Figure 7 Comparison of KEGG primary metabolic pathways. The vertical coordinates are the mean values of the abundance of functional pathways in the selected samples, and the horizontal coordinates are the sample groupings. Different colors represent different metabolic pathways.



To explore the reasons for the changes in functional pathways, we counted the secondary pathways involved in the metabolism of OFSRW, which involved a total of 45 secondary metabolic pathways, and the abundance values corresponding to each secondary pathway are shown in Table S1. The secondary metabolic pathways with increased expression were subjected to heatmap analysis, as shown in Figure 8. The most abundant predicted metabolism in the category of level 2 KEGG pathways was energy production and conversion, followed by inorganic ion transport and metabolism, carbohydrate transport, amino acid transport and metabolism, nucleotide transport and metabolism, and lipid transport and metabolism. Inferred carbohydrate transport, amino acid transport, and metabolism were prominent in sample AG0; energy generation and conversion metabolic pathways were prominent in sample AG24; posttranslational modification, protein turnover, and chaperone metabolic pathways were prominent in sample AG36; and chromatin structure and dynamics were prominent in sample AG43, which may have contributed to the observed variations in volatile compound profiles between these samples.

Figure 8 Heatmap of the horizontal distribution of KEGG secondary metabolic pathways for each sample.

#### Discussion

Brix, acidity, and alcohol content are the most important parameters applied to monitor the fermentation process of *osmanthus* flower sweet rice wine. Glucose, sucrose, and maltose are three major fermentable sugars in the fermentation process of yellow rice wine because the starch in rice/wheat is predominantly degraded by α-amylase and glucosidase from Jiuqu (M. Kim et al., 2021; Yu et al., 2015). During fermentation, some low-molecular-weight sugars are mainly consumed by microorganisms, contributing to an increase in the organic acid content (Huang et al., 2019). In this study, the time before fermentation (AG0h) was 0 h, the sugar content was not detected, the acidity was 0.03, and the alcohol content was not detected, which



indicated that fermentation had not yet begun, that basically, no fermentable sugar existed in the 415 raw material and that the acidity was low, which might be related to the activity of L. plantarum. 416 417 The sugar content and acidity gradually increased with fermentation time. This may be related to the gradual decomposition of other sugars and indicates that the microorganisms became active 418 and consumed sugars to produce energy and the gradual increase in acidity (from 0.03 to 0.35) 419 also confirms the intensification of microbial activity, especially the activity of acid-producing 420 421 bacteria such as P. pentosaceus and L. plantarum, which are capable of producing acid through 422 the metabolism of sugars during the fermentation process. The sustained increase in acidity is consistent with previous findings (Tian et al., 2022), and the increase in acidity may be related to 423 the decrease in L. plantarum, which lowers the pH of OFSRW and inhibits the growth of 424 spoilage microorganisms that are sensitive to acidic conditions (Perpetuini et al., 2020), thereby 425 426 controlling, to some extent, the fermentation microbial community structure during the process. Rhizopus, as the main fungal genus throughout the fermentation process, could more completely 427 convert the starch in glutinous rice into fermentable sugars, indicating that the presence of 428 *Rhizopus* was inextricably linked to the increase in sugar content. 429 In this study, by the end stage of fermentation (AG43h), the first brix of 2%Vol was 430 detected, which indicated that the fermentation process had started to enter the alcoholic 431 fermentation stage. The lack of alcohol detection in the first three fermentation stages could also 432 be related to L. plantarum, since LAB has strong inhibitory activity against E. coli, 433 434 Saccharomyces, and Mucor under low pH conditions (Russo et al., 2017). Alcohol production marks the beginning of the conversion of sugars into alcohol and carbon dioxide by 435 Saccharomyces, typical of the traditional alcoholic fermentation phase (Fugelsang et al., 2007; 436 Fleet et al., 1993). The detection of alcohol at the end stage of fermentation (AG43h) may be 437 related to the significant activity of Saccharomyces and Rhizopus in the middle and late stages of 438 fermentation (AG24 and AG36), where *Rhizopus* is capable of hydrolyzing starch to obtain 439 sugars, and Saccharomyces are capable of fermenting sugars to produce alcohol, especially C. 440 lusitaniae and W. anomalus, because C. lusitaniae can utilize sugars in the fermentation of 441



443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

alcohol, and *W. anomalus* can secrete a variety of glycosidases, such as β-D-glucosidase, β-D-xylosidase, and α-L-rhamnosidase, which can promote the formation of aroma and flavor substances, and it can produce high amounts of ethyl acetate and 2-phenylethanol, which can significantly improve the sensory quality of the wine body (Padilla et al., 2018; Sabel et al., 2014; Sun et al., 2022). However, the trend of alcohol content in this study was opposite to that of total sugar, possibly because sugar has not yet been converted to ethanol and L. *plantarum* during the continuous fermentation process.

It has been shown that microorganisms play a crucial role in the formation of Chinese rice wine, including the synthesis of many flavor, texture, and color metabolites (Englezos et al., 2022; Huang et al., 2019). Krona analysis revealed that the microbial communities differed significantly at different fermentation stages, which may be closely related to changes in nutrients, pH, temperature, and other biotic and abiotic factors in the fermentation environment. At the early stage of fermentation (AG0), bacteria were the dominant microorganisms and were dominated by Gammaproteobacteria and Bacilli. The high proportion of Gammaproteobacteria may be related to their stronger metabolic activity in the sugar-rich environment. After 24 h of fermentation (AG24), fungi, especially the yeast group C. lusitaniae, began to dominate, showing high adaptability to the environment and efficient conversion of substrates during fermentation. The rapid growth of the yeast species may be related to their ability to grow under low oxygen or anaerobic conditions, which are common during hermetic fermentation. After 36 hours (AG36), a decrease in the proportion of fungi and an increase in the proportion of bacteria were observed, which may be attributed to a reduction in fungal activity due to the depletion of available sugars in the fermentation substrate, while the bacteria adapted to this change and began to utilize the products of fungal metabolism or other nonsugar organic acids. By 43 hours (AG43), *Rhizopus* became dominant, and its growth may have been due to increased acidity and certain nutrients (e.g., proteins and fats) becoming more available later in the fermentation process. This change reflects the adaptive strategy of the microbial community to survive and thrive under nutrient competition and environmental stresses during the fermentation process.



470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

Pediococcus is widely distributed in Jiuqu, which helps improve food taste and nutrition. The occurrence of Pediococcus pentosaceus in the AG0 samples is in line with the results of a previous study (Liang et al., 2020). The presence of P. pentosaceus improved the flavor of fermented food by increasing the levels of short-chain fatty acids (SCFAs) (Jiang et al., 2021). In samples AG24 and AG36, the presence of C. lusitaniae and W. anomalus can decompose sugar into alcohol, carbon dioxide, and other secondary products, which exert a far-reaching effect on the flavor and aroma of Chinese rice wine (Zhang et al., 2022). In AG43h, Rhizopus became dominant because Rhizopus can utilize macromolecular ingredients in the raw materials and consume nutrients that promote the growth and reproduction of the strain (Wu et al., 2022).

In this study, the trends in metabolic pathway changes during OFSRW fermentation were analyzed in depth, which may be closely related to the dynamics of microbial communities and metabolic activities. By comparing the abundance of metabolic pathways at different fermentation stages, this study revealed the importance and change patterns of specific metabolic pathways during fermentation. First, the abundance of organismal systemic metabolic pathways was generally greater in the AG24, AG36, and AG43 samples during fermentation than in the initial fermentation stage (AG0), which may reflect the mechanism by which fermenting microorganisms respond to environmental stresses. The activation of these metabolic pathways may be related to the microbial response to oxidative stress, nutrient limitation, and other biotic stress conditions in the fermentation environment. In particular, the activation of these pathways may be related to cellular protective mechanisms such as antioxidant and damage repair functions. Second, the gradual decline in metabolic pathways with increasing fermentation time suggested that as the fermentation process proceeded, nutrient sources such as carbohydrates initially utilized were gradually depleted, and the microorganisms had to adjust their metabolic strategies to adapt to less nutritious environments. Finally, functional analysis revealed significant carbohydrate transport, lipid transport and metabolism, and amino acid transport and metabolism pathway activity in the AG0 fermentation broth, implying that flavor formation in these samples was likely linked to protein and starch metabolism (Xiao et al., 2021; Chen et al.,



497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

2020), thus contributing to the increase in sugar content and detectable alcohol content during the middle and late stages of fermentation until the end of fermentation. This finding suggested that carbohydrate metabolism is the main pathway for microbial growth and energy production during the early stages of fermentation. The energy production of microbial flora depends mainly on the phosphorylation of substrates through sugar fermentation to acetate, while energy production and conversion) can drive the energy demand of bacterial flora, which explains the increase in bacteria in this AG24 sample. The significant activation of the metabolic pathway of energy production and conversion in the fermentation broths of AG24 suggested that C. lusitaniae and R. delemar are active during this fermentation phase and thus contribute to the increase in sugar level and acidity. The significant activation of posttranslational modifications, protein turnover, chaperones in AG36 fermentation broth, and signal transduction mechanisms in AG43 fermentation broth suggested enhanced microbially driven nutrient-seeking activity in samples from this phase, which may have increased microbial signal perception through a complex signaling network, enabling better nutrient utilization (Zhao et al., 2022), especially in the case of W. anomalus and R. delemar, and significant activity may contribute to the increase in alcohol and sugar levels through posttranslational modifications, protein turnover, chaperones and signal transduction mechanisms. The high expression of these metabolic pathways may, therefore, be inextricably linked to increased sugar, acidity, and alcohol content, suggesting that some of the differences in the functional metabolic abundance of the samples from different periods may be related to the composition of the microbial community at various periods, which may help to observe changes in the volatile compound profiles between these samples.

517

518

519

520

521

522

#### 4 Conclusion

It is the first report on employing high-throughput sequencing to study the predicted dynamic changes in microbial communities and metabolic pathways in OFSRW natural fermentation broth. By comparing the bacterial strains under natural fermentation conditions at different time points, it was found that the number of strains detected in the samples first



524

525

526

527

528

529

530

531

532

533

534

535

increased and then decreased with increasing fermentation time. However, bacteria decreased, and fungi became the dominant microorganisms over time, with *Rhizopus* being the dominant fungal genus throughout the fermentation process. The increase in acidity and total sugar content with fermentation time was associated with *L. plantarum* and *Mucor*, and the addition in alcohol content was not detected until the end of fermentation because *Saccharomyces* and *Mucor* were inhibited by *L. plantarum* at 0 h, 24 h, and 36 h of fermentation. The diversity analysis results showed that the species composition of the AG0 samples was very different from that of the AG24, AG36, and AG43 samples, and the species diversity showed a decreasing trend followed by an increasing and then decreasing trend. Energy production and conversion, carbohydrate transport, amino acid transport, and metabolic pathways are the most active metabolic pathways in fermenters. The results of this study not only provide insights into how microorganisms adapt to environmental changes during fermentation but can also be crucial for optimizing fermentation conditions and improving product quality and flavor.

536

537

#### **Authorship Contribution Statement**

- Ping Tian performed the experiments, analyzed the data, prepared figures and/or
- tables, and authored or reviewed drafts of the paper.
- Jiaqiong Wan performed the experiments and reviewed drafts of the paper.
- Tuo Yin: Methodology, formal analysis.
- Li Liu: Providing and experimental equipment, guiding the production process.
- Hongbing Ren: Providing production site and experimental equipment, funding acquisition.
- Hanbing Cai: Image modification.
- Xiaozhen Liu: Review and editing, supervision, funding acquisition.
- Hanyao Zhang: Methodology, writing-review and editing, supervision, funding acquisition.
- All the authors have read and approved the final manuscript.

548



554

#### **Declaration of Competing Interest**

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. Ren Hongbing is the chairman of Honghe Hongbin Foods Co Ltd. Liu Li is employed by Honghe Hongbin Foods Co., Ltd.

#### Acknowledgments

This study is supported by a Major Scientific and Technological Project in Yunnan Province-Biological Seed Industry and Agricultural Products Deep Processing Project (200302AE090019), the National Natural Science Foundation of China (Grant No. 31760450), and the Yunnan First-class Construction Discipline of Forestry Science of Southwest Forestry University. The funders had no role in the design of the study, the collection, analysis, or interpretation of the data, or the writing of the manuscript.

561

562

#### REFERENCES

- Bray JR, Curtis JT. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs 27(4):217-234 DOI: org/10.2307/1942268.
- Backhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, Li Y, Xia Y, Xie H,
- Zhong H, Khan MT, Zhang J, Li J, Xiao L, Al-Aama J, Zhang D, Lee YS, Kotowska D,
- Colding C, Tremaroli V, Yin Y, Bergman S, Xu X, Madsen L, Kristiansen K,
- Dahlgren J, Wang J. 2015. Dynamics and stabilization of the human gut microbiome
- during the first year of life.[J]. Cell Host & Microbe 17(5):690-703 DOI:
- org/10.1016/j.chom.2015.04.004.
- 571 Cai L, Xiong X, Zhang T, Zeng, L. 2012. Optimization of fermentation process of glutinous



- 572 rice sweet wine and the stability of the main fermentation indices. Modern Food Science
- and Technology **28(5):**527-529,520.
- 574 Cai W, Tang F, Zhao X, Guo Z, Zhang Z, Dong Y, Shan C. 2019. Different LAB strains
- affecting the flavor profile of fermented jujube juice. Journal of Food Processing and
- Preservation **43:**e14095 DOI: org/10.1111/jfpp.14095.
- 577 Chen L, Ren L, Li D, Ma X. 2020. Analysis of microbiomes in three traditional starters and
- volatile components of the Chinese rice wines. Food science and biotechnology, **30(1)**, 87-
- 579 96 DOI: 10.1007/s10068-020-00839-y.
- 580 Cai H, Zhang T, Zhang Q, Luo J, Cai C, Mao J. 2018. Microbial diversity and chemical
- analysis of the starters used in traditional Chinese sweet rice wine. Food Microbiology 73,
- 582 319-326 DOI: 10.1016/j.fm.2018.02.002.
- 583 Cocolin, L., Campolongo, S., Alessandria, V., Dolci, & P., Rantsiou, K. 2011. Culture
- independent analyses and wine fermentation: an overview of achievements 10 years after
- first application. Annals of Microbiology **61(1)**,17-23 DOI: 10.1007/s13213-010-0076-.
- 586 Chao A, Ricotta C. 2019. Quantifying evenness and linking it to diversity, beta diversity, and
- similarity. Ecology, **100(12):**1-38 DOI: org/10.1002/ecy.2852.
- 588 Cao M, Duan Q, Liu J, Huang Q, Yang X. 2014. The opportunistic pathogenic yeast in orange
- juice and its control strategy. Journal of Food Safety and Quality 5 (07): 2125-2132.
- 590 Elolimy A, Alharthi A, Zeineldin M, Parys C, Loor JJ. 2020. Residual feed intake divergence
- during the preweaning period is associated with unique hindgut microbiome and
- metabolome profles in neonatal Holstein heifer calves. Journal of Animal Science and
- 593 Biotechnology **11(1):**13-28 DOI: org/10.1186/s40104-019-0406-x.
- Englezos V, Jolly NP, Di Gianvito P, Rantsiou K, Cocolin L. 2022. Microbial interactions in
- winemaking: Ecological aspects and effect on wine quality. Trends in Food Science &
- Technology **127**, 99-113 DOI: 10.1016/j.tifs.2022.06.015.
- Fugelsang KC, Edwards CG. 2007. Wine Microbiology: Practical Applications and Procedures.
- 598 Springer.



- Fleet GH. 1993. The microorganisms of winemaking-isolation, enumeration and identification.
- In Wine Microbiology and Biotechnology. Harwood Academic Publishers.
- 601 Gammacurta M, Lytra G, Marchal A, Marchand S, Barbe JC, Moine V. 2018. Influence of
- LAB strains on ester concentrations in red wines: Specific impact on branched hydroxylated
- compounds. Food Chemistry **239**, 252-259 DOI: 10.1016/j.foodchem.2017.06.123.
- 604 Huang M, Tian P, Liu Z, Li L, Dong X. 2019. Extraction process study and antioxidant
- 605 evaluation of new-typed *osmanthus* wine. Food Research and Development **40(4):**118-124.
- 606 Huang SK, Bueno PRP, Garcia PJB, Lee MJ, De Castro-Cruz K A, Leron R B, Tsai PW.
- 607 **2023.** Antioxidant, anti-inflammatory and antiproliferative effects of Osmanthus
- fragrans (Thunb.) Lour. flower extracts. Plants (Basel, Switzerland) 12(17),3168 DOI:
- 609 10.3390/plants12173168.
- 610 Huang ZR, Guo WL, Zhou WB, Li L, Xu JX, Hong JL, Liu HP, Zeng F, Bai WD, Liu B, Ni
- L, Rao PF, Lv XC. 2019. Microbial communities and volatile metabolites in different
- traditional fermentation starters used for Hong Qu glutinous rice wine. Food Research
- 613 International **121**, 593-603 DOI: org/10.1016/j.foodres.2018.12.024.
- Jiang S, Cai L, Lv L, Li L. 2021. Pediococcus pentosaceus, a future additive or probiotic
- candidate. Microbial Cell Factories **20(1)**,1-14 DOI: 10.1186/s12934-021-01537-y.
- 616 Kumar G, Eble JE, Gaither MR. 2020. A practical guide to sample preservation and pre-PCR
- processing of aquatic environmental DNA. Molecular Ecology Resources **20(1):**29-39 DOI:
- 618 10.1111/1755-0998.13107.
- 619 Liu R, Fu Z, Zhang F, Mao Q, Luan C, Han X, Xue J, Wang D, Qin S, Hao F. 2020.
- Effect of yellow rice wine on anti-aging ability in aged mice induced by dgalactose[J]. Food
- Science and Human Wellness (2):104-110 DOI: org/10.1016/j.fshw.2020.02.00.
- 622 Lv XC, Weng X, Zhang W, Rao PF, Ni L. 2012. Microbial diversity of traditional fermentation
- starters for Hong Qu glutinous rice wine as determined by PCR-mediated DGGE. Food
- 624 Control **28(2)**,426-434 DOI: org/10.1016/j.foodcont.2012.05.025.
- 625 Lv XC, Chen ZC, Jia RB, Liu ZB, Zhang W, Chen S, Ni L. 2015. Microbial community



structure and dynamics during the traditional brewing of Fuzhou Hong Ou glutinous rice 626 wine as determined by culture-dependent and culture-independent techniques. Food Control 627 **57,**216-224 DOI: org/10.1016/j.foodcont.2015.03.054. 628 Lv XC, Jiang YJ, Liu J, Guo WL, Liu ZB, Zhang W, Ni L. 2017. Evaluation of different PCR 629 primers for denaturing gradient gel electrophoresis (DGGE) analysis of fungal community 630 structure in traditional fermentation starters used for Hong Qu glutinous rice wine. 631 632 International Journal of Food Microbiology **255,**58-65 DOI: org/10.1016/j.ijfoodmicro.2017.05.010. 633 Liu Z, Li J, Wei B, Huang T, Xiao Y, Peng Z, Xie M, Xiong T. 2019. Bacterial community 634 and composition in Jiang-shui and Suan-cai revealed high-thoughput sequencing of 16S 635 of Food Microbiology 636 rRNA. International Journal **306:**108271 DOI: 637 10.1016/j.ijfoodmicro.2019.108271. Luo F, Yang Z, Zhong K, Huang C, Yu Z, Peng Z, Wu Y, Bu Q, Gao H. 2021. Effects of 638 Bacillus megaterium L222 on quality and bacterial diversity of Sichuan paocai. Food 639 Research International **140:**109994 DOI: 10.1016/j.foodres.2020.109994. 640 Liu XZ, Sang M, Zhang XA, Zhang TK, Zhang HY, He X, Li SX, Sun XD, Zhang ZM. 641 2017. Enhancing expression of SSU1 genes in Saccharomyces uvarum leads to sulfite 642 tolerance increase and transcriptome profiles change. FEMS Yeast Research 17(3):fox023 643 DOI: 10.1093/femsyr/fox023. 644 Liu K, Zhang Y, Li Q, Li H, Long D, Yan S, Huang W, Long R, Huang X. 645 differences shape the alpha but not beta diversity of gut microbiota from school children in 646 absence of environ-mental differences. Microorganisms 8(2):254-269 647 org/10.3390/microorganisms8020254. 648 Lozupone CA, Hamady M, Kelley ST, Knight R. 2007. Quantitative and qualitative beta 649 diversity measures lead to different insights into factors that structure microbial 650 Environmental Microbiology, 217(3):356-399 communities. Applied and DOI: 651 org/10.1128/AEM.01996-06. 652



- 653 Legendre P, Legendre L. 1998. Numerical ecology (second edition). Amsterdam, Nether-lands:
- Elsevier, Science BV.
- 655 Liang ZC, Lin XZ, He ZG, Su H, Li WX, Guo QQ. 2020. Comparison of microbial
- 656 communities and amino acid metabolites in different traditional fermentation starters used
- during the fermentation of Hong Qu glutinous rice wine. Food Research International 136,
- Article 109329 DOI: 10.1016/j.foodres.2020.109329.
- 659 Medina K, Boido E, Fariña L, Gioia O, Gomez ME, Barquet M, Gaggero C, Dellacassa E,
- 660 Carrau F. 2013. Increased flavour diversity of Chardonnay wines by spontaneous
- 661 fermentation and co-fermentation with Hanseniaspora vineae. Food Chemistry
- 141(3),2513-2521 DOI: 10.1016/j.foodchem.2013.04.056.
- 663 M Kim, JA. 2021. SeoFermentation profiling of rice wine produced by Aspergillus oryzae KSS2
- and Rhizopus oryzae KJJ39 newly isolated from Korean fermentation starter. Applied
- Biological Chemistry, **64 (1)**, DOI: org/10.1186/s13765-020-00582-2.
- 666 Ondov BD, Bergman NH, Phillippy AM. 2011. Interactive metagenomic visualization in a
- Web browser. BMC Bioinformatics **12(1)**:385-395 DOI: org/10.1186/1471-2105-12-385.
- Prakitchaiwattana CJ, Fleet GH, Heard GM. 2004. Application and evaluation of denaturing
- gradient gel electrophoresis to analyzlyse the yeast ecology of wine grapes. LWT -Food
- Science and Technology **4(8)**,855-877 DOI: 10.1016/j.femsyr.2004.05.004.
- 671 Perpetuini G, Prete R, Garcia-Gonzalez N, Khairul Alam M, Corsetti A. 2020. Table
- olives more than a fermented food. Foods 9:178 DOI: 10.3390/foods9020178.
- 673 Padilla B, Gil JV, Manzanares P. 2018. Challenges of the non-con-ventional yeast
- Wickerhamomyces anomalus in winemaking[J]. Fermentation 4(3): 68.
- 675 10.3390/fermentation403006.
- 676 Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, Peng Y,
- Zhang D, Jie Z, Wu W, Qin Y, Xue W, Li J, Han L, Lu D, Wu P, Dai Y, Sun X, Li Z,
- Tang A, Zhong S, Li X, Chen W, Xu R, Wang M, Feng Q, Gong M, Yu J, Zhang Y,
- Zhang M, Hansen T, Sanchez G, Raes J, Falony G, Okuda S, Almeida M, LeChatelier



- E, Renault P, Pons N, Batto JM, Zhang Z, Chen H, Yang R, Zheng W, Li S, Yang H,
- Wang J, Ehrlich SD, Nielsen R, Pedersen O, Kristiansen K, Wang J. 2012. A
- metagenome-wide association study of gut microbiota in type 2 diabetes.[J]. Nature
- 683 **490(7418):**55-60 DOI: 10.1038/nature11450.
- Rognes T, Flouri T, Nichols B, Quince C, Mahé F. 2016. Vsearch: a versatile open source tool
- for metagenomics. PeerJ **4(10)**:2584-2590 DOI: 10.7717/peerj.2584.
- Ramette A. 2007. Multivariate analyses in microbial ecology. FEMS Microbiology Ecology
- **62:**142-160 DOI: 10.1111/j.1574-6941.2007.00375.x.
- Russo P, Arena MP, Fiocco D, Capozzi V, Drider D, Spano G. 2017. Lactiplantibacillus
- plantarum with broad antifungal activity: A promising approach to increase safety and
- shelf-life of cereal-based products. International Journal of Food Microbiology 247:48-54
- DOI: 10.1016/j.ijfoodmicro.2016.04.027.
- 692 Simonen M, Palva I.1993. Protein secretion in Bacillus species. Microbiol. Rev. 57, 109-137
- 693 DOI: 10.1128/mr.57.1.109-137.1993.
- 694 Su y, Zhao S. 2014. Research progress of process technology and quality characteristics of
- sweet rice wine. China Brewing **33(04):**27-30.
- 696 Steenwyk JL, Rokas A. 2021. Ggpubfigs: colorblind-friendly color palettes and ggplot2 graphic
- system extensions for publication-quality scientific figures. Microbiology Resource
- Announcements **10(44):**e0087121 DOI: 10.1128/MRA.00871-21.
- 699 Sabel A, Martens S, Petri A, König H, Claus H. 2014. Wickerhamomyces anomalus AS1: a
- new strain with potential to improve wine aroma[J]. Annals of Microbiology 64(2): 483-
- 701 491 DOI: org/10.1007/s13213-013-0678-x.
- 702 Sun N, Gao Z, Li S, Chen X, Guo J. 2022. Assessment of chemical constitution and aroma
- properties of Kiwi wines obtained from pure and mixed fermentation with
- Wickerhamomyces anomalus and Saccharomyces cerevisiae. Journal Of The Science Of
- Food And Agriculture **102(1):**175-184 DOI: org/10.1002/jsfa.11344.
- 706 Tian S, Zeng W, Zhou J, Du G. 2022. Correlation between the microbial community and ethyl



- carbamate generated during Huzhou rice wine fermentation. Food Research International
- 708 **154,** 111001 DOI: org/10.1016/j. foodres.2022.111001.
- 709 Wang B, Luan F, Bao Y, Peng X, Rao Z, Tang Q, Zeng N. 2022. Traditional uses,
- phytochemical constituents and pharmacological properties of Osmanthus fragrans: a
- review. Journal Of Ethnopharmacology 293,115273 DOI: org/10.1016/j.jep.2022.115273.
- 712 Wu J, Ren L, Zhao N, Wu T, Liu R, Sui W, Zhang M. 2022. Solid-state fermentation by
- 713 Rhizopus oryzae improves flavor of wheat bran for application in food. Journal of Cereal
- 714 Science **107**, 103536 DOI: org/10.1016/j.jcs.2022.103536.
- 715 Xie Z, Wang T, Wang Q, Qin X, Li W, Chang X, Chen H, Xu Y. 2022. Application of
- Wickerhamomyces anomalus in Baijiu-brewing. China Brewing 41(5):18-22.
- 717 Xiao C, Wang L, Zhang YG, Tu TY, Wang ST, Shen CHA. 2021. A Comparison of microbial
- communities and volatile compounds in wheat Qu from different geographic locations.
- T19 LWT-Food Science and Technology **148**, 111752 DOI: org/10.1016/j.lwt.2021.111752.
- 720 Yuan C, Zhang M, Fang J. 2020. Current status of rice wine processing and development in
- 721 China. food industry **41(3):**40-44.
- 722 Yu H, Zhao J, Li F, Tian H, Ma X. 2015. Characterization of Chinese rice wine taste attributes
- using liquid chromatographic analysis, sensory evaluation, and an electronic tongue. J
- 724 Chromatogr B Analyt Technol Biomed Life Science, 997:129-135 DOI:
- 725 10.1016/j.jchromb.2015.05.037.
- 726 Zheng X, Wang H, Qiao X, Zha Y, Gao L. 2023. Development status of compound glutinous
- rice wine production technology. Liquor-Making **50(06)**: 26-32.
- 728 **Zhou Q, Yue S. 2013.** Analysis of the research status of *Osmanthus fragrans* Lour. In chemical
- constituents and Pharmacological actions based on literature. Journal of Henan University
- 730 (Medical Edition) **32(2):**139-142.
- 731 Zhao P, Wang J, Zhao W, Ma X, Sun H. 2018. Antifatigue and antiaging effects of Chinese
- rice wine in mice[J]. Food Science & Nutrition (8):172-180 DOI: 10.1002/fsn3.830.
- 733 Zhao X, Xiang F, Tang F, Cai W, Guo Z, Hou Q, Yang X, Song W, Shan C. 2022. Bacterial



| 734        | communities and prediction of microbial metabolic pathway in rice wine Koji from           |  |  |  |  |  |
|------------|--------------------------------------------------------------------------------------------|--|--|--|--|--|
| 735        | different regions in China. Frontiers in Microbiology 12,748779 DOI:                       |  |  |  |  |  |
| 736        | 10.3389/fmicb.2021.748779.                                                                 |  |  |  |  |  |
| 737        | Zhao G, Liu C, Hadiatullah H, Yao Y, Lu F. 2021. Effect of Hericium erinaceus on bacterial |  |  |  |  |  |
| 738        | diversity and volatile flavor changes of soy sauce. LWT-Food Science and Technology        |  |  |  |  |  |
| 739        | 139:110543 DOI: org/10.1016/j.lwt.2020.110543.                                             |  |  |  |  |  |
| 740        | Zhang Z, Gao Y, Zhao W, Wei Z, Liu X, Zhang H. 2022. Analysis of fungal dynamic changes    |  |  |  |  |  |
| 741        | in the natural fermentation broth of 'Hongyang' kiwifruit. PeerJ. Apr 19,10:e13286 DOI:    |  |  |  |  |  |
| 742        | org/10.7717/peerj.13286.                                                                   |  |  |  |  |  |
| 743        | Zhao WJ, Zhang Z, Gao Y, Liu X, Du C, Ma F, Wang S, Shi W, Yang Y, Deng, R, Zhang H.       |  |  |  |  |  |
| 744        | 2022. Fungal dynamic changes in naturally fermented 'Kyoho' grape juice. Archives of       |  |  |  |  |  |
| 745        | microbiology <b>204(9)</b> , 556 DOI: org/10.1007/s00203-022-03166-4.                      |  |  |  |  |  |
| 746        | Zou J, Chen X, Wang C, Liu Y, Li M, Pan X, Chang X. 2023. Microbial communities and        |  |  |  |  |  |
| 747        | correlation between microbiota and volatile compounds in fermentation starters of chinese  |  |  |  |  |  |
| 748        | sweet rice wine from different regions. Foods 12(15):2932 DOI: 10.3390/foods12152932.      |  |  |  |  |  |
| 749        | Zhang B, Liu H, Xue J, Tang C, Duan C, Yan G. 2022. Use of Torulaspora delbrueckii and     |  |  |  |  |  |
| 750        | Hanseniaspora vineae co-fermentation with Saccharomyces cerevisiae to improve aroma        |  |  |  |  |  |
| 751        | profiles and safety quality of Petit Manseng wines. LWT-Food Science and Technology 161    |  |  |  |  |  |
| 752        | 113360 DOI: org/10.1016/j.lwt.2022.113360.                                                 |  |  |  |  |  |
| 753<br>754 |                                                                                            |  |  |  |  |  |
| , ,,       |                                                                                            |  |  |  |  |  |



#### Table 1(on next page)

Table 1 Physicochemical properties of sweet rice wine produced from cinnamon osmanthus flower.



1 Table 1 Physicochemical properties of sweet rice wine produced from cinnamon *osmanthus* flower.

| Local flavor fermentation cycle | OFSRW        |              |              |       |
|---------------------------------|--------------|--------------|--------------|-------|
| Physical and chemical indicator | 0h           | 24h          | 36h          | 43h   |
| acidity                         | 0.03         | 0.14         | 0.25         | 0.35  |
| total sugar (g/250ml)           | not detected | 7.11         | 14.05        | 16.55 |
| alcoholic strength (v/vol,%)    | not detected | not detected | not detected | 2     |



Fig. 1. Classification level and abundance information of Krona diagram of sample species.

From the inside to the outside, the Krona circle represents the seven taxonomic levels of domain, phylum, class, order, family, genus, and species. The sector's size reflected the relative abundance of different taxa, and there were specific values.



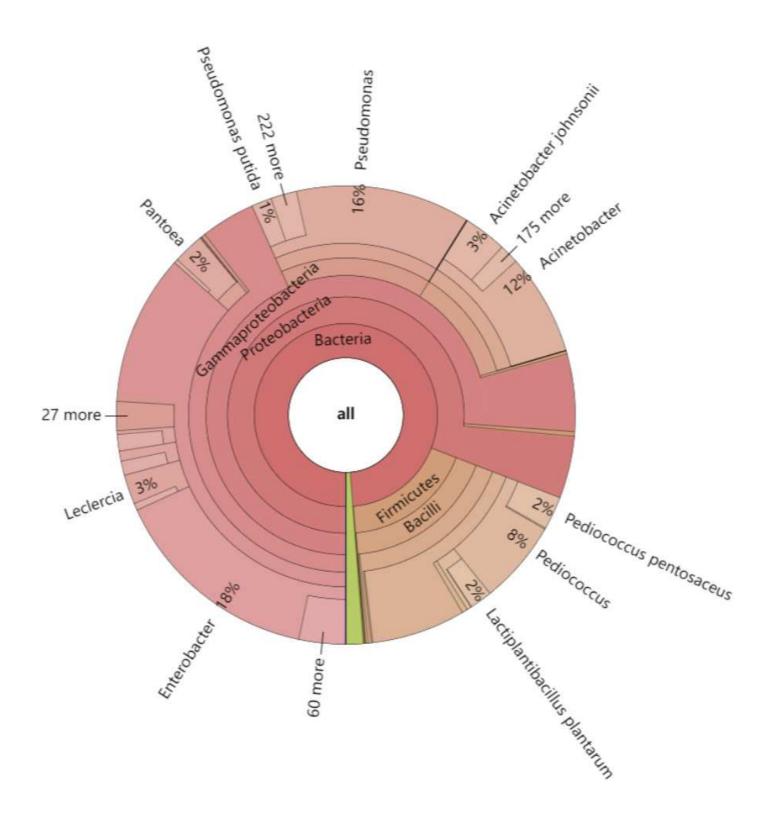





Fig. 2. Column diagram of the horizontal species composition of each sample species.

The abscissa is the name of each group of the grouping scheme, and the ordinate is the relative abundance of each taxon at a specific taxonomic level.



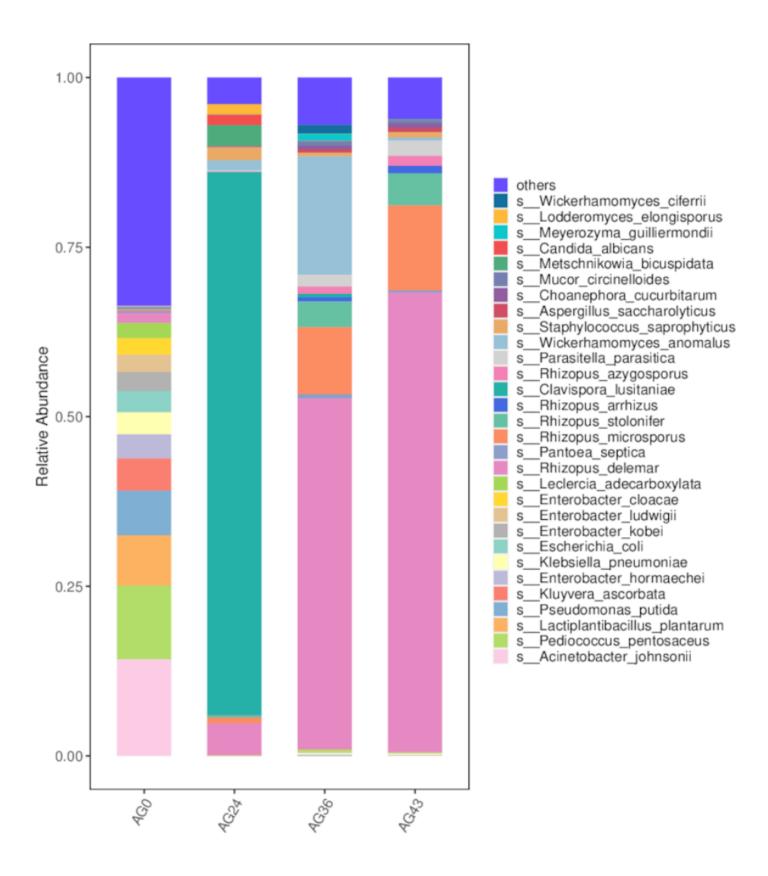



Fig. 3. Horizontal distribution heatmap of each sample species.

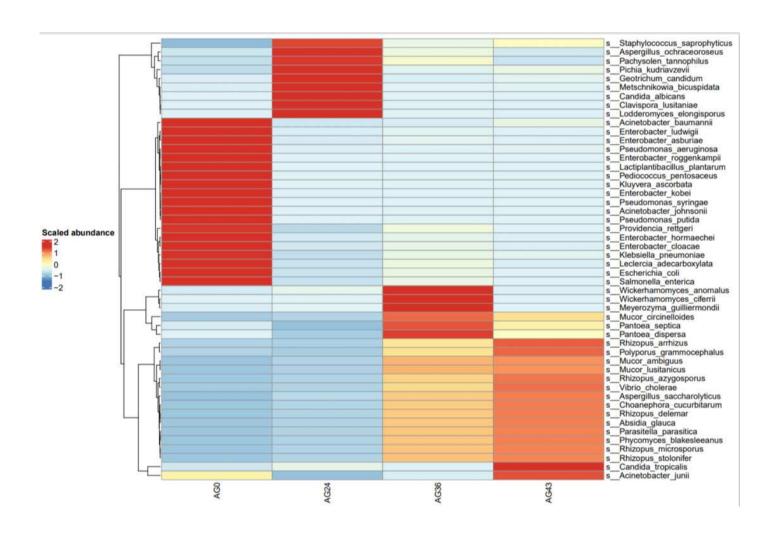



Fig. 4. Alpha diversity indices among the samples.

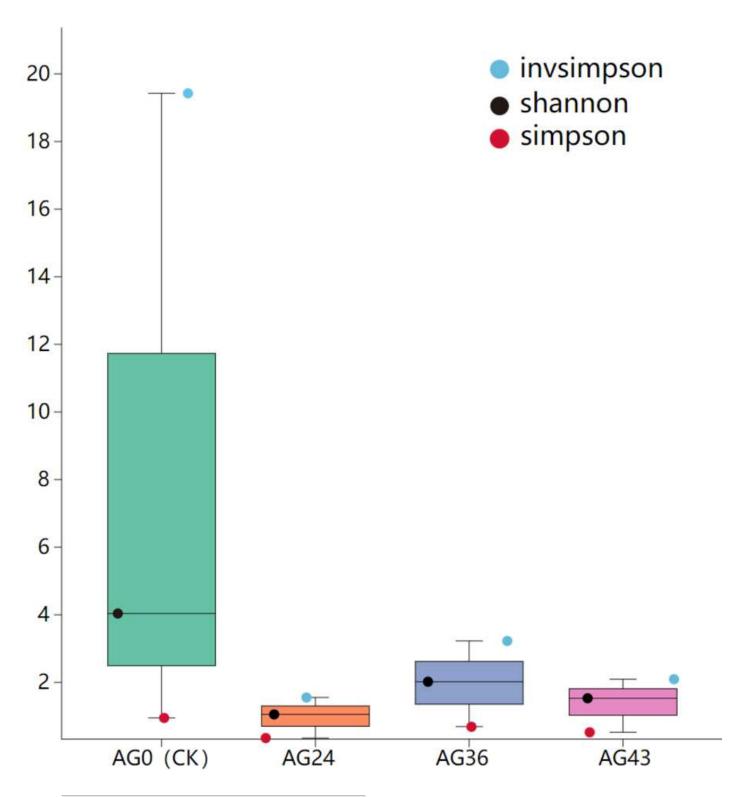





Fig. 5. PCoA and NMDS diagram.

Each dot in the figure represents a sample, and different colored dots indicate different samples (groups).



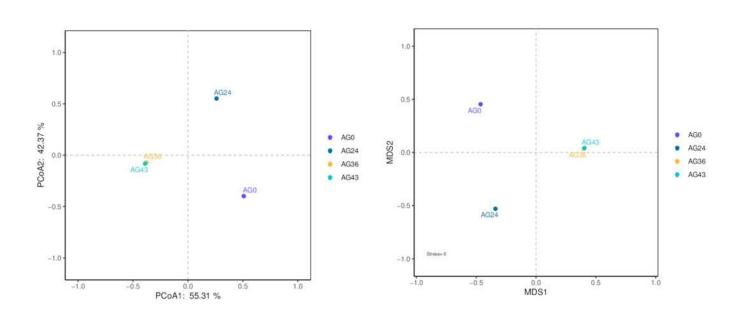



Fig. 6. Hierarchical cluster analysis among samples.

The upper panel shows a hierarchical clustering tree diagram in which the samples were clustered according to similarity. The shorter the branch length between the samples was, the more similar the samples were. The lower panel is a stacked histogram of the 30 most abundant species.

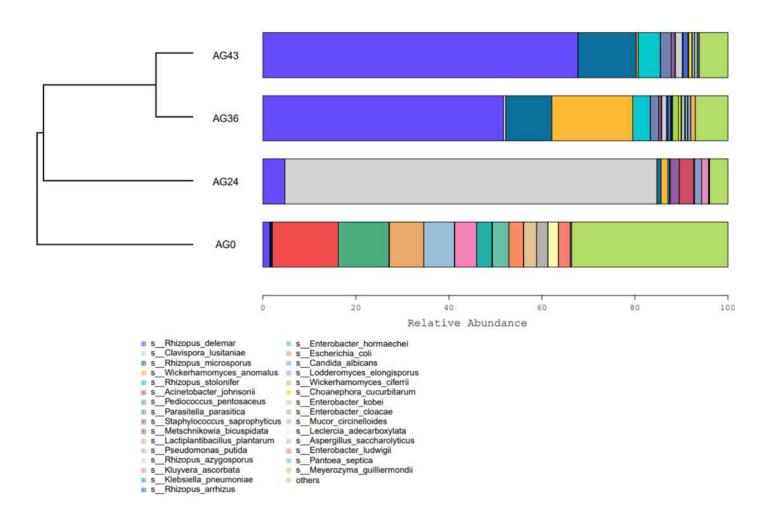





Fig. 7. Comparison of KEGG primary metabolic pathways.

The vertical coordinates are the mean values of the abundance of functional pathways in the selected samples, and the horizontal coordinates are the sample groupings. Different colors represent different metabolic pathways.



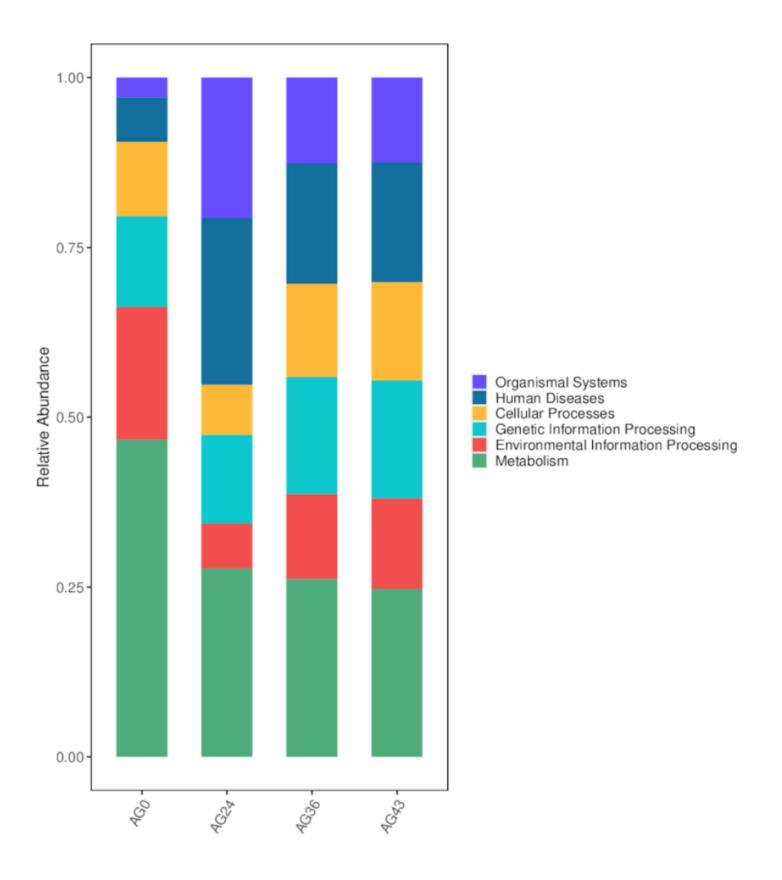
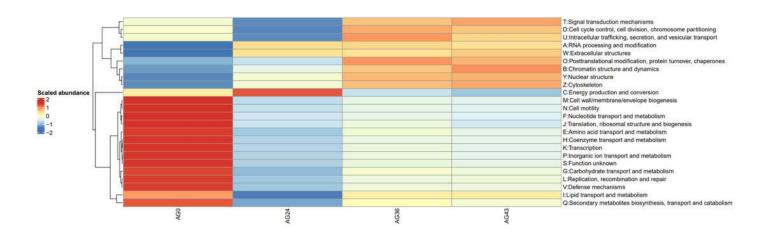






Fig. 8. Heatmap of the horizontal distribution of KEGG secondary metabolic pathways for each sample.

