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ABSTRACT
Background. Plasma membrane tension-related genes (MTRGs) are known to play a
crucial role in tumor progression by influencing cell migration and adhesion. However,
their specific mechanisms in bladder cancer (BLCA) remain unclear.
Methods. Transcriptomic, clinical and mutation data from BLCA patients were
collected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus
(GEO) databases. Clusters associated with MTRGs were identified by consensus
unsupervised cluster analysis. The genes of different clusters were analyzed by GO and
KEGG gene enrichment analysis. Differentially expressed genes (DEGs) were screened
fromdifferent clusters. Consensus cluster analysis of prognosticDEGswas performed to
identify gene subtypes. Patientswere then randomly divided into training and validation
groups, and MTRG scores were constructed by logistic minimum absolute contraction
and selection operator (LASSO) and Cox regression analysis. We assessed changes in
clinical outcomes and immune-related factors between different patient groups. The
single-cell RNA sequencing (scRNA-seq) dataset for BLCA was collected and analyzed
from the Tumor Immune Single-cell Hub (TISCH) database. Biological functions were
investigated using a series of experiments including quantitative reverse transcriptase
polymerase chain reaction (qRT-PCR), wound healing, transwell, etc.
Results. Our MTRG score is based on eight genes (HTRA1, GOLT1A, DCBLD2,
UGT1A1, FOSL1, DSC2, IGFBP3 and TAC3). Higher scores were characterized by
lower cancer stem cell (CSC) indices, as well as higher tumor microenvironment
(TME) stromal and immune scores, suggesting that high scores were associated with
poorer prognosis. In addition, some drugs such as cisplatin, paclitaxel, doxorubicin,
and docetaxel exhibited lower IC50 values in the high MTRG score group. Functional
experiments have demonstrated that downregulation of DCBLD2 affects tumor cell
migration, but not proliferation.
Conclusions. Our study sheds light on the prognostic significance of MTRGs within
the TME and their correlation with immune infiltration patterns, ultimately impacting
patient survival in BLCA. Notably, our findings highlight DCBLD2 as a promising
candidate for targeted therapeutic interventions in the clinical management of BLCA.
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INTRODUCTION
Bladder cancer (BLCA) is one of the most common urinary malignancies worldwide, with
more than 300,000 deaths worldwide each year, and the incidence rate is higher inmen than
in women (Bray et al., 2018). The pathogenesis of BLCA involvesmultiple factors. Genomic
studies have shown that some specific gene mutations are closely related to BLCA, such as
TP53, RB1, FGFR3, etc. (Knowles & Hurst, 2015). In addition, environmental and lifestyle
factors such as smoking, occupational exposure, and chemical exposure are also widely
believed to be associated with BLCA (Al-Zalabani et al., 2016). BLCA can be divided into
non-muscle-invasive BLCA (NMIBC) and muscle-invasive BLCA (MIBC). Approximately
80% of BLCA patients are NMIBC, with a 5-year survival rate of more than 85% (Berdik,
2017). However, NMIBC often progresses to MIBC and metastatic BLCA due to its
invasiveness, metastatic propensity, drug resistance, and high recurrence rate. Therefore,
it is important to elucidate the prognostic characteristics and underlying mechanisms of
BLCA development (Schneider, Chevalier & Derré, 2019).

Plasma membrane tension refers to the force per unit length exerted on the cell
membrane cross-section, resulting partly from the tension in the lipid bilayer and
partly from the adhesion between the membrane and the cytoskeleton (Chugh et
al., 2017). Membrane tension controls a plethora of biological processes intimately
intertwined with diseases, encompassing cell division, cellular mobility, endocytosis, and
exocytosis (Chronopoulos et al., 2020; Wirtz, Konstantopoulos & Searson, 2011). Studies
have compared tumor cells with normal cells to identify differences in membrane
tension and function (Zalba & Ten Hagen, 2017). For a long time, cell mechanics has
been considered to be related to the invasion and metastasis of tumor cells. Research has
shown that higher membrane tension can effectively inhibit the migration and invasion
of tumor cells (Gensbittel et al., 2021; Gossett et al., 2012). Disruption and reduction of cell
membrane tension have also been demonstrated to be essential features of malignant cells,
influencing tumor progression by regulating the rate of glycolysis (Diz-Muñoz, Fletcher &
Weiner, 2013; Du et al., 2022).

Membrane tension-related genes (MTRGs) exhibit distinct characteristics in cancer
due to tumor heterogeneity and the corresponding tumor microenvironment (TME).
This study seeks to extensively explore the function of MTRGs in the prognosis, TME
panorama, and immunotherapy of BLCA. We developed and validated a prognostic model
associated with MTRGs, effectively assessing immune cell infiltration and predicting drug
sensitivity in BLCA patients. Experiments show that DCBLD 2 is a key gene for bladder
cancer migration and invasion, and has potential application value in the treatment of
bladder cancer.
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METHODS
Data acquisition
After consulting relevant literature, we selected 41 MTRGs for analysis (Table S1)
(Diz-Muñoz, Fletcher & Weiner, 2013; Simunovic et al., 2019; Issa & Noureddine, 2017;
Ha & Chi, 2012). RNA sequencing data and clinical annotations for BLCA samples
were obtained from The Cancer Genome Atlas (TCGA) (TCGA-BLCA, https://www.
cancerimagingarchive.net/collection/tcga-blca/) and Gene Expression Omnibus (GEO)
repository (https://www.ncbi.nlm.nih.gov/gds). The TCGA database includes 19 normal
samples and 412 tumor samples, whereas the GEO (GSE13507) database contains 165
samples with clinical data (Kim et al., 2010). Combining the TCGA-BLCA dataset with the
GEO dataset, we eliminated batch effects using the Combat algorithm prior to subsequent
analysis. Somatic mutation data were downloaded from TCGA, which contained 407 BLCA
samples. Immunohistochemical (IHC) images of proteins taken fromHuman Protein Atlas
(https://www.proteinatlas.org/) (Uhlén et al., 2015).

Differential expression analysis of MTRGs and clinical correlation of
molecular subtypes
We examined the variance in expression among 41 MTRGs and explored the association
between overall survival (OS) and MTRGs. Using the R ‘‘Consensus Cluster Plus’’ software
package, we conducted consensus unsupervised cluster analysis based on the differentially
expressedMTRGs. Thismethod strengthens intra-group links while weakening inter-group
links. As a result, BLCApatientswere classified into differentmolecular subtypes. To explore
the clinical significance of these molecular subtypes, we utilized Kaplan–Meier curves to
examine their association with overall survival (OS) and clinicopathological characteristics.
Clinicopathological features included age, sex, grade, and TNM stage.

Gene set enrichment analysis and immune profiling analysis
To further investigate the pathways and biological processes ofMTRGsmolecular subtypes,
we conducted a series of enrichment analyses, including GSVA and GSEA analyses.
Gene set required for enrichment analysis obtained from MSigDB (https://www.gsea-
msigdb.org/gsea/msigdb/) (Liberzon et al., 2011). Additionally, we employed the R package
‘‘CIBERSORT’’ to calculate the differences in tumor immune cells (TICs) infiltration
between different molecular subtypes (Newman et al., 2015).

Gene subtypes and prognostic model construction
Differentially expressed genes (DEGs) between molecular subtypes based on MTRGs
were identified using the R package ‘‘limma’’ (Ritchie et al., 2015). A significance level
of P < 0.05 and |logFC|>1.5 was considered meaningful. Following that, we conducted
univariate Cox regression analysis to identify DEGs linked to prognosis. Based on consensus
cluster analysis of the expression of prognostic DEGs, patients were stratified into different
gene subtypes. We further investigated the clinical significance of these gene subtypes and
differences in MTRGs expression. The TCGA-BLCA and GSE13507 datasets were divided
into training and test sets at a ratio of 1:1 using the R package ‘‘caret’’. MTRG risk scores
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were constructed using logistic minimum absolute contraction and selection operator
(LASSO) and COX regression in the training set and validated in the test and merged sets.
The MTRG risk score was calculated as the sum of the product of the risk coefficient (coef)
and gene expression (Exp) for each prognostic model gene, where coef represents the risk
coefficient and Exp represents the expression of the prognostic model gene. We visualized
risk scores and prognostic outcomes usingmulberry graph in relation to differentmolecular
or gene subtypes. The training, test, and merged sets were all stratified into high-risk and
low-risk groups based on median risk scores. Survival analyses, heat maps, and receiver
operating characteristic (ROC) curves were generated for each group. Additionally, using
the R package ‘‘rms’’ and significant clinicopathological features (p< 0.05), we developed
a nomogram incorporating age, sex, TMN stage, and MTRGs risk score. This nomogram
was used to estimate short-, medium-, and long-term overall survival in patients with
BLCA. Calibration plot of the prognostic model was generated to verify the accuracy of the
model.

Tumor microenvironment (TME), tumor mutation burden (TMB) and
drug sensitivity analysis
We assessed the expression of MTRGs in high- and low-risk groups and calculated
differences in the TME across risk groups. Correlation analysis further revealed the
relationship between TICs and the eight scoring genes. Mutation frequencies in different
risk groups were assessed using the R package ‘‘maftools’’. To investigate differences in drug
susceptibility between risk groups, we calculated the half-inhibitory concentration (IC50)
values for common therapeutic drugs using the R package ‘‘pRRophetic’’. The method
uses drug sensitivity data of Cancer Cell Line Encyclopedia (CCLE) in combination with
gene expression data of BLCA samples to estimate 50% inhibitory concentration based on
prediction model.

Immunohistochemistry (IHC) and single cell analysis
Two genes (HTRA1 and DCBLD2, p< 0.05) were identified as being positively associated
with prognosis by analyzing the association between eight prognostic score genes and
overall survival (OS). Immunohistochemical (IHC) images from the Human Protein
Atlas database (HPA, https://www.proteinatlas.org/) were used to compare HTRA1 and
DCBLD2 expression levels between cancer tissues and adjacent tissues. The expression and
distribution of HTRA1 and DCBLD2 in various cell clusters were assessed in the BLCA-
GSE130001 single-cell dataset using the Tumor Immune Single-cell Hub (TISCH) database
(http://tisch.comp-genomics.org/).

Verification of DCBLD2 expression in BCLA tissue samples
On one hand, immunohistochemistry showed that HTRA1 was highly expressed in BLCA
tissues, although not significantly. On the other hand, considering relevant literature in
recent years, we ultimately selected DCBLD2 for further validation. Ten pairs of tumor
and adjacent tissues were obtained from BLCA patients who recently underwent radical
surgery at the First Affiliated Hospital of Nanchang University. All participants provided
written informed consent. Total RNA extraction was performed using TRIzol reagent,
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followed by cDNA synthesis using the Takara PrimeScript RT kit. Real-time quantitative
PCR was conducted using SYBR Green (Roche, Basel, Switzerland) reagent. Relative
gene expression levels were determined using the 2̂-11Ct method, with β-actin as the
endogenous reference. The primer sequences used were as follows:

DCBLD2_F: CCTGCAAAAGCAGTGGACCATG.
DCBLD2_R: CTCCTACCAGTGGCTGAGCATA.

Cellular cultivation and transfection
Human BLCA cell lines BIU and T24 were cultured in RPMI-1640 and DMEM media,
respectively. All cells were incubated in media supplemented with 10% fetal bovine serum
(FBS) and 1% penicillin-streptomycin in a humidified incubator at 37 ◦C and 5% CO2.
These cell lines were obtained from Procell Life Science & Technology Co., Ltd (Wuhan,
China) and authenticated by the cell bank of the Chinese Academy of Sciences Type
Culture Collection Center (Shanghai, China). siRNA targeting DCBLD2 and controls
were synthesized by GenePharma, Ltd (Shanghai, China). Cells were seeded into 6-well
plates at 50%–60% density per the manufacturer’s instructions, and siRNA was transiently
transfected using Lipofectamine 2000 (Invitrogen). The siRNA sequences used were as
follows:

DCBLD2 siRNA-1 (5′-GUUCCUCCUGCUCUUACUUTT-3′)
DCBLD2 siRNA-2 (5′-GGCCUCAUACUCUGUUAUATT-3′)

Wound healing and transwell assay
T24 and BIU cells were seeded into six-well plates at 50% density and allowed to grow to
near confluence after transfection with siRNA. A cross was scratched onto the dish using a
200 µl pipette tip, and the debris was washed away with PBS. After changing the medium
to serum-free medium, images were captured at 0 h under a microscope. The six-well plate
was then placed in the incubator for an additional 24 h, and images were taken again after
24 h. The wound healing rate was quantified using ImageJ software.

For the Transwell assay, 40,000 transfected T24 and BIU cells were mixed with 200-µl
of serum-free medium and evenly inoculated into the upper chamber. The lower chamber
contained 800µl of medium containing 20% FBS. After incubation for 24 h, cells were fixed
with 4% paraformaldehyde and stained with 1% crystal violet. Cells on the lower surface
of the chamber were photographed under a light microscope and counted to measure the
extent of cell migration.

Plate cloning and EDU experiments
T24 and BIU cells transfected with siRNAs targeting DCBLD2 and controls were incubated
for 24 h, seeded at 1,000 per well into 6-well plates, and cultured in medium containing
10% FBS. After 14 days, they were removed and fixed with 4% paraformaldehyde for
30 min and stained with 1% crystal violet for 30 min. Transfected cells were inoculated into
96-well plates at 5,000 cells per well and incubated for 24 h, then the medium was replaced
with EDU reagent and incubated for another 2 h. Subsequent staining was then performed
according to the instructions provided in the Edu assay kit (C10310-1; RiboBio), and
images were taken under a fluorescence microscope after all staining.
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Statistical analysis
All bioinformatics results were analyzed using R 4.3.2 software, and experimental data were
visualized using GraphPad Prism 9.5.1. Student t -test was used to compare means between
groups, while one-way/two-way ANOVA was used to compare means between groups. For
multiple hypothesis testing, the Benjamini–Hochberg (BH) method was used to adjust the
p-value to control for false discovery rate (FDR). Adjusted p-values <0.05 were considered
statistically significant.

Ethics approval and consent to participate
All organizations included in this study obtained ethical approval from the Ethics
Committee of the First Affiliated Hospital of Nanchang University (Approval ID: (2024)
CDYFYYLK (08-040)), and patient participation was contingent upon informed consent.

RESULTS
Differentially expressed MTRGs and molecular subtypes
To determine changes in the expression of MTRGs in BLCA patients, we analyzed the
differences in the expression of 41 MTRGs in the TCGA-BLCA dataset. Among them, 24
MTRGs showed different expression levels between tumor and normal tissues (p< 0.05,
Fig. 1A). The TCGA-BLCA dataset wasmerged with the GSE13507 dataset, and the Combat
algorithm was utilized to eliminate batch effects. Subsequent analyses were conducted on
the merged dataset. Survival analysis revealed that 23 MTRGs were significantly associated
with overall survival (OS) in BLCA patients (Figs. S1 and S2). Following this, one-way
COX regression analysis indicated that 9 MTRGs were associated with survival in BLCA
patients (Table S2). Crossover analysis of survival and univariate Cox regression showed
that all 9 genes were significantly associated with prognosis in BLCA patients. Next, a
plasma membrane tension network was performed to fully demonstrate the association
between MTRGs and their prognostic value in BLCA patients. The thickness of the link
between two genes represents the strength of the correlation. The results show that there
are close and universal interactions between MTRGs.

To further verify the association of MTRGs with the disease, we employed a consensus
clustering algorithm and found that K = 2 was the optimal choice (high within-group
correlation, low between-group correlation, Figs. 1C–1D). Consequently, BLCA patients
were classified into two molecular subtypes, with patients in subtype B showing a better
prognosis than those in subtype A (p< 0.05, Fig. 1E). Principal component analysis (PCA)
unveiled substantial disparities between subtypes A and B (Fig. S3A). Additionally, we
analyzed the association of MTRGs with clinicopathological characteristics according to
different subtypes, including gender, age, TNM stage, grade, and dataset origin (Fig. 2A,
clustering details: Rows and columns were hierarchically clustered using the Euclidean
distance and complete linkage method.).

Association between TME and molecular subtypes
To explore the characteristics of different subtypes of the TME, we conducted enrichment
analyses using KEGG GSVA and GSEA methods. KEGG GSVA analysis revealed that

Wang et al. (2025), PeerJ, DOI 10.7717/peerj.18816 6/24

https://peerj.com
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13507
http://dx.doi.org/10.7717/peerj.18816#supp-1
http://dx.doi.org/10.7717/peerj.18816#supp-2
http://dx.doi.org/10.7717/peerj.18816#supp-6
http://dx.doi.org/10.7717/peerj.18816#supp-3
http://dx.doi.org/10.7717/peerj.18816


AMPH

SH3GL1

SH3GL2

SH3GL3

SH3GLB1

SH3GLB2

SH3GL1P2
FCHO1

FCHO2SNX9
PACSIN1

PACSIN2

PACSIN3

PSTPIP1

PSTPIP2

PICK1

ARFIP1

ARFIP2

BAIAP2

FNBP1L

SRGAP1

SRGAP2

SRGAP3

NOSTRIN
SNX1

SNX2 SNX4
SNX5

SNX6

PABPC4

XPNPEP2

BIN1

TRIP10

ACAP2

 Plasma membrane
 tension 

Risk factors
Favorable factors

Postive correlation with P<0.0001
Negative correlation with P<0.0001

Cox test, pvalue
1e−04 0.001 0.01 0.05 1

+++++++++++
+++++++++++

++++++++++++++++++++++++++++++++++++++ +++++++ ++++++++++++++++++ +++++++++ + + + + ++++++ + +++

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++ + +++ +++++++++

+p=0.003

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Time(years)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

MTRGcluster

+
+

A

B

221 155 85 61 51 34 24 17 13 11 8 4 3 3 0 0
310 243 147 101 81 65 44 32 22 15 9 2 0 0 0 0B

A

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Time(years)

M
TR

G
cl

us
te

r

Number at risk

A

B C

D E

*** *** *** * ** *** *** ** *** ** ** ** * ** * *** *** *** *** *** *** * *** ***

0

4

8

SH
3G

L1
SH

3G
L2

SH
3G

L3
SH

3G
LB

1
SH

3G
L1

P2
SH

3G
L1

P1
FC

HO
1

FC
HO

2
SN

X9
PA

CS
IN

1
PA

CS
IN

2
PA

CS
IN

3
PS

TP
IP

2
PI

CK
1

FN
BP

1L
SR

GA
P2

NO
ST

RI
N

SN
X1

SN
X2

SN
X4

SN
X5

PA
BP
C4

XP
NP

EP
2

BI
N1

G
en

e 
ex

pr
es

si
on

Type Normal Tumor

consensus matrix k=2

A
B

Figure 1 Differentially expressedMTRGs andmolecular subtypes. (A) Expression level of MTRGs be-
tween tumor and normal tissues. (B) Network diagram showing correlation between MTRGs. (C–D) The
consensus clustering in BLCA samples with k = 2. (E) Kaplan–Meier (KM) survival analysis of two sub-
groups.

Full-size DOI: 10.7717/peerj.18816/fig-1

Wang et al. (2025), PeerJ, DOI 10.7717/peerj.18816 7/24

https://peerj.com
https://doi.org/10.7717/peerj.18816/fig-1
http://dx.doi.org/10.7717/peerj.18816


Project
MTRGcluster MTRGcluster

A
B

Project
GSE13507
TCGA

−2

−1

0

1

2

A B

*** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***

0.00

0.25

0.50

0.75

1.00

Acti
va

ted
.B

.ce
lln

a

Acti
va

ted
.C

D4.T
.ce

lln
a

Acti
va

ted
.C

D8.T
.ce

lln
a

Acti
va

ted
.de

nd
riti

c.c
ell

na

CD56
br

igh
t.n

atu
ral

.ki
lle

r.c
ell

na

CD56
dim

.na
tur

al.
kil

ler
.ce

lln
a

Eos
ino

ph
iln

a

Gam
ma.d

elt
a.T

.ce
lln

a

Im
matu

re.
.B

.ce
lln

a

Im
matu

re.
de

nd
riti

c.c
ell

na
MDSCna

Mac
rop

ha
ge

na
Mas

t.c
ell

na
Mon

oc
yte

na

Natu
ral

.ki
lle

r.T
.ce

lln
a

Natu
ral

.ki
lle

r.c
ell

na
Neu

tro
ph

iln
a

Plas
mac

yto
id.

de
nd

riti
c.c

ell
na

Reg
ula

tor
y.T

.ce
lln

a

T.f
oll

icu
lar

.he
lpe

r.c
ell

na

Ty
pe

.1.
T.h

elp
er.

ce
lln

a

Ty
pe

.17
.T.

he
lpe

r.c
ell

na

Ty
pe

.2.
T.h

elp
er.

ce
lln

a

Im
m

un
e 

in
fil

tra
tio

n

MTRGcluster A B

E

BP
C

C
M

F

0.025 0.050 0.075 0.100 0.125

granulocyte chemotaxis

granulocyte migration

leukocyte chemotaxis

myeloid leukocyte migration

extracellular structure
organization

extracellular matrix
organization

external encapsulating
structure organization

leukocyte cell−cell adhesion

leukocyte migration

chemotaxis

complex of collagen trimers

basement membrane

collagen trimer

membrane microdomain

membrane raft

focal adhesion

cell−substrate junction

external side of plasma
membrane

endoplasmic reticulum lumen

collagen−containing
extracellular matrix

chemokine activity

extracellular matrix
structural constituent

conferring tensile strength

chemokine receptor binding

collagen binding

growth factor binding

heparin binding

peptidase regulator activity

cytokine activity

glycosaminoglycan binding

extracellular matrix
structural constituent

GeneRatio

qvalue

1e−08

2e−08

3e−08

4e−08

Count
30

60

90

Bladder cancer

Asthma

Intestinal immune network
for IgA production

Type I diabetes mellitus

Allograft rejection

Inflammatory bowel disease

Autoimmune thyroid disease

Graft−versus−host disease

ECM−receptor interaction

Th1 and Th2 cell
differentiation

Viral myocarditis

NF−kappa B signaling pathway

IL−17 signaling pathway

Pertussis

Leishmaniasis

Complement and coagulation
cascades

Osteoclast differentiation

Protein digestion and
absorption

Amoebiasis

Chemokine signaling pathway

Viral protein interaction
with cytokine and cytokine

receptor

Human T−cell leukemia virus
1 infection

Tuberculosis

Hematopoietic cell lineage

Rheumatoid arthritis

Focal adhesion

Cell adhesion molecules

Staphylococcus aureus
infection

Phagosome

Cytokine−cytokine receptor
interaction

0.02 0.04 0.06 0.08 0.10
GeneRatio

qvalue

2e−04

4e−04

6e−04

Count
10

20

30

40

C D

Figure 2 Association between TME andmolecular subtypes. (A) Correlation between MTRGs and clin-
icopathological features. (B) KEGG GSVA enrichment assay. (C) Difference in expression of immune cells
between subtypes A and B. (D) GO GEVA enrichment analysis. (E) KEGG GEVA enrichment analysis.

Full-size DOI: 10.7717/peerj.18816/fig-2

Wang et al. (2025), PeerJ, DOI 10.7717/peerj.18816 8/24

https://peerj.com
https://doi.org/10.7717/peerj.18816/fig-2
http://dx.doi.org/10.7717/peerj.18816


subtype B was significantly enriched in peroxidase and glycerolphospholipid metabolic
pathways (Fig. 2B). Conversely, subtype A exhibited significant enrichment in multiple
pathways, including natural killer cell-mediated cytotoxicity, JAK-STAT signaling, T
cell receptor signaling, MAPK signaling, actin cytoskeletal regulation, and focal adhesion
(Fig. 2B). Additionally, employing the R package ‘‘CIBERSORT’’, we assessed differences in
the expression of immune cells between different subtypes. Our analysis indicated notable
infiltration differences between subtype A and B, with Activated B cells, Activated CD4 T
cells, macrophages, and Regulatory T cells showing higher expression levels in subtype A
compared to subtype B (Fig. 2C).

Identification of MTRGs associated gene subtypes
Using the R ‘‘limma’’ software package, we identified 952 DEGs between subtypes A and B
(Table S3) and performed GEVA enrichment analysis of the DEGs. GO GEVA enrichment
analysis showed that the pathways were mainly concentrated in extracellular matrix
components, leukocyte chemotaxis, endoplasmic reticulum lumen, cell adhesion and
collagen binding. The KEGG GEVA enrichment assay revealed more cytokine receptors,
chemokines, and cell adhesion-related pathways. In conclusion, we hypothesize that DEGs
play an important role in the regulation of cell structure and adhesion. Further univariate
COX regression analysis of DEGs was used to determine which DEGs were associated with
prognosis. Finally, we screened out 447 DEGs (Table S4). Subsequently, we performed
consensus cluster analysis of 447 prognostic relevant DEGs (Fig. 3A, Fig. S3B). Based on
the results of the analysis, we reclassified the patients into two gene subtypes (gene subtype
A, gene subtype B). Similarly, OS differed between gene subtypes, with patients with gene
subtypes B having a better prognosis than those with gene subtypes A (p< 0.05, Fig. 3B).
We reassessed the association of the three (gene subtype, clinicopathological features, and
molecular subtype) as shown in the heat map (Fig. 3C). We also assessed the differences
in MTRGs expression across gene subtypes and showed that a total of 29 MTRGs showed
differences across gene subtypes (p< 0.05, Fig. 3D).

Identification of MTRG scoring system and nomogram
The combined TCGA-BLCA and GSE13507 dataset (n= 531) was split into a training
dataset (n= 266) and a test dataset (n= 265) at a 1:1 ratio using the R package ‘‘caret’’.
Subsequently, LASSO and multivariate COX regression (Figs. 3E–3F) were performed
on the 447 prognosis-related DEGs in the training set. Consequently, eight risk score
genes (HTRA1, GOLT1A, DCBLD2, UGT1A1, FOSL1, DSC2, IGFBP3, and TAC3) were
obtained. Based on the risk scores of these eight genes, we constructed the MTRG risk
scoring system as follows:

MTRG Risk Score=
n∑

i=1

Expiβi. (1)

In the given equation, ‘‘Exp’’ and ‘‘β’’ denote the adjusted expression value and regression
coefficient of gene i, respectively. Utilizing patient clinical data, we constructed a mulberry
graph to depict the correlation between molecular subtype , gene subtype , risk group, and
final outcome (Fig. 3G).
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Similarly, we calculated risk scores for each BLCA sample for different molecular
subtypes and gene subtypes. The risk scores of molecular subtype A and gene subtype A
were significantly higher than those of molecular subtype B and gene subtype B (Fig. S3C),
respectively, consistent with the previous Kaplan–Meier (KM) curve (Figs. 1E and 3B).
Examining the expression of MTRGs between the high-score and low-score groups, we
noted that 11 MTRGs were upregulated in the low-score group, while 18 MTRGs were
upregulated in the high-score group (Fig. 4A).

To validate the accuracy of the scoring system, we employed K–M curves, ROC curves,
heat maps, risk score distributions, and survival scatter plots. Validation was performed
separately in the merged set, training set, and test set. The Kaplan–Meier curves showed
that patients with lower scores showed better OS (Figs. 4B–4D). ROC curves indicated
that the MTRG risk score predicted 1-, 3-, and 5-year survival with high sensitivity and
specificity (Figs. 4E–4G). Heatmaps depict differences in scoring genes among different
scoring groups, with HTRA1 and DCBLD2 significantly expressed in the high-risk group
(Figs. 4H–4J). Scatter plots of risk score distribution and survival showed that higher risk
scores corresponded to shorter survival times (Fig. S3D).

Consistent results across the merged set, training set, and test set validated the scoring
system’s high accuracy. By combining relevant clinical characteristics and the risk scoring
system, we constructed a nomogram (Fig. 4K) to assess OS at 1, 3, and 5 years in BLCA
patients. Through calibration curve analysis (Fig. 4L), we confirmed the predictive ability
of our constructed nomogram credible.

Correlation analysis of MTRG risk score with TME and TMB
To further explore the relationship between the MTRG risk score system and TME, We
identified eight risk score genes associated with TIC abundance. As shown in Fig. 5A,
eight genes are strongly associated with most TICs, especially T cells regulatory (Tregs).
Immunocyte correlation analysis showed that macrophages M0, activated mast cells
and neutrophils were positively correlated with risk score, while monocytes, T cells
CD8 and regulatory T cells (Treg) were negatively correlated with risk score (p< 0.05,
Fig. S3E). The high score group showed higher levels of StromalScore, ImmuneScore,
and ESTIMATEScore than the low score group (p 0.001, Fig. 5B). Hence, we speculate
that the MTRG risk score could be linked to the TME of BLCA. Some studies have
shown that tumor stem cells (CSC) are the fundamental factors of tumorigenesis, drug
resistance, recurrence and metastasis, and also an important reason for tumor treatment
failure (Patel, Oh & Galsky, 2020; Dobruch et al., 2016). Therefore, we further explored the
correlation between the MTRG scoring system and the CSC index. The results showed
a negative correlation between score and CSC index (R = − 0.13, P < 0.001, Fig. 5C).
Mutation frequencies in different risk groups were analyzed by the R ‘‘maftools’’ program.
The analysis revealed that the mutation frequencies of TP53, KMT2D, MUC16, SYNE1,
STAG2, ELF3, RB1, RYR2, KMT2C, MACF1, OBSCN, and CSMD3 were elevated in the
high-score group (Figs. 5D–5E). However, further analysis of TMB reflecting the number
of tumor mutations found no clinically significant difference in TMB between the high
and low scoring groups (R= 0.039, p= 0.46, Figs. S4B–S4C).
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Figure 4 Construction of nomograms. (A) Expression levels of MTRGs in different scoring groups.
(continued on next page. . . )

Full-size DOI: 10.7717/peerj.18816/fig-4

Wang et al. (2025), PeerJ, DOI 10.7717/peerj.18816 12/24

https://peerj.com
https://doi.org/10.7717/peerj.18816/fig-4
http://dx.doi.org/10.7717/peerj.18816


Figure 4 (. . .continued)
(B–D) KM curves corresponding to different scoring groups in the combined set, training set and test set
are shown respectively. (E–G) ROC curves corresponding to different scoring groups in the pooled set,
training set and test set. (H–J) The expression of eight risk score genes in different score groups of pooled
set, training set and test set were shown respectively. (K) Nomograms used to assess the 1-, 3-, and 5-year
OS in patients with BLCA. (L) Calibration curve for nomograms.

Identification of drug susceptibility and scoring gene expression
levels
Using the R ‘‘pRRophetic’’ software package, we computed IC50 values for several common
drugs utilized in BLCA treatment. A lower IC50 value indicates that the sample is more
sensitive to a particular drug. We combined this information with the results of the
high-risk and low-risk groups to assess the potential therapeutic effect of different drugs
in each risk group. The findings indicated that certain drugs such as cisplatin, paclitaxel,
doxorubicin, and docetaxel exhibited lower IC50 values in the high-scoring group (Figs. 5F–
5I), suggesting lower drug resistance in the high-risk group. To delve deeper into the
biological function of risk score genes, we individually analyzed the association of the eight
score genes with OS. The analysis revealed a negative correlation between DCBLD2 and
HTRA1 expression and prognosis (p< 0.05, Figs. 5J–5K, Fig. S4A). The remaining six
genes showed no clinically significant impact on OS and were therefore excluded from
subsequent analyses. BLCA samples were queried in the Human Protein Profile (HPA)
database to access immunohistochemical images of DCBLD2 and HTRA1 (Fig. 6A). The
results indicated that DCBLD2 exhibited moderate to high expression in BLCA compared
to normal bladder tissue, whereas HTRA1 showed lower expression levels in BLCA relative
to DCBLD2. To further validate the distinct expression of DCBLD2 and HTRA1 at the
single-cell level, we utilized a single-cell dataset (BLCA-GSE130001) from the TISCH
database to explore gene expression differences among different subtypes. The analysis
revealed that DCBLD2 was predominantly expressed in fibroblasts and myofibroblasts,
while HTRA1 was primarily upregulated in endothelial cells and fibroblasts (Figs. 6B–6D).
Figure 6E shows the composition of various cell types, and the correlation betweenDCBLD2
and HTRA1 is shown in Fig. S3D.

Cell identification in vitro
PCR analysis of DCBLD2 using 10 tissue pairs confirmed its significant expression in BLCA
tissues (Fig. 7A). Also, using PCR, we verified the knockdown efficiency of Si1-DCBLD2
and Si2-DCBLD2 in T24 and BIU cell lines (Fig. 7B). Through wound healing experiments
and Transwell assays, we found that decreased DCBLD2 levels was associated with reduced
migration and invasion of T24 and BIU cells (Figs. 7C–7D). However, colony formation
and EDU experiments showed contrasting results. The findings indicated that decreased
DCBLD2 expression did not affect the proliferation of T24 and BIU cells (Figs. 7E–7F).
Therefore, based on the results of in vitro cell experiments, we can infer that DCBLD2
is pivotal in facilitating BLCA cell migration and invasion but does not notably impact
proliferation.
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Figure 5 Correlation analysis of MTRG risk score with TME, TMB and drug susceptibility. (A)
Correlation between 8 risk score genes and TIC abundance. (B) Expression levels of StromalScore,
ImmuneScore and ESTIMATEScore in different scoring groups. (C) Relationship between MTRG scoring
system and CSC index. (continued on next page. . . )

Full-size DOI: 10.7717/peerj.18816/fig-5
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Figure 5 (. . .continued)
(D–E) Waterfall plot of somatic mutation characteristics in different scoring groups. (F–I) IC50 values of
common drugs (cisplatin, paclitaxel, doxorubicin and docetaxel) in different scoring groups. (J) Correla-
tion between expression of DCBLD2 and prognosis. (K) Correlation between expression of HTRA1 and
prognosis.

Figure 6 Immunohistochemical differences and single cell analysis. (A) Immunohistochemical dif-
ferences between DCBLD2 and HTRA1 in tumor and normal tissues. (B) Expression of DCBLD2 and
HTRA1 in bladder cancer single-cell dataset (GSE130001). (C) Marker gene expression. (D) Expression of
DCBLD 2 and HTRA 1 in different cell types. (E) Statistics of different cell types.

Full-size DOI: 10.7717/peerj.18816/fig-6

DISCUSSION
Bladder cancer, as the most common malignant tumor worldwide, has maintained
persistent incidence and mortality rates for a long time (Patel, Oh & Galsky, 2020). Some
studies have shown that family inheritance, smoking, and occupational exposure to
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Figure 7 Functional validation of DCBLD2 in vitro. (A) PCR was used to detect DCBLD2 expression
in 10 pairs of BLCA tissues. (B) Knockdown efficiency of small interfering RNA (SiRNA) in T24 and BIU
cell lines. (C) Wound healing experiments. (D) The Transwell experiment. (E) Colony formation experi-
ments. (F) EDU experiment.

Full-size DOI: 10.7717/peerj.18816/fig-7
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chemicals are closely related to the occurrence of bladder cancer (Dobruch et al., 2016).
With the development of molecular biology and genomics, more molecular markers have
been found to be closely related to the pathogenesis and therapeutic response of bladder
cancer. Therefore, finding new molecular biomarkers for the prognosis of BLCA patients
is crucial.

In recent years, many studies have demonstrated that plasmamembrane tension proteins
related to cell mechanics are associated with tumor cell migration and invasion (Vogel &
Sheetz, 2006; Wang, Butler & Ingber, 1993). The ERM protein is a molecule that maintains
membrane-actin adhesion on cell membranes. Disruption of the ERM protein results in
decreased cell membrane tension. In metastatic cells, tumor invasion and metastasis are
inhibited by manipulating membrane-to-cortex attachment to increase plasma membrane
tension and by impairing BAR membrane-mediated mechanical signaling (Tsujita et al.,
2021).

In this study, 41 MTRGs were identified after reviewing previously published literature.
Using transcriptome and clinical information from BLCA samples obtained from TCGA
and GEO databases, we assessed the differential expression of MTRGs in normal and
tumor tissues. Analysis of these differentially expressed genes for correlation and clinical
prognostic value revealed that most of the genes were closely associated with prognosis.
BLCA samples were classified into two molecular subtypes (A, B) based on MTRGs, with
the B molecular subtype having a higher survival rate than the A molecular subtype.
Therefore, we conclude that MTRGs may be potential targets for BLCA therapy.

Similarly, different molecular subtypes were significantly associated with clinical
characteristics such as gender, age, TNM stage, and OS. GSVA enrichment analysis
showed that subtype A was significantly enriched in signal transduction-related pathways,
while subtype B was mainly enriched in metabolism-related pathways. It is well known that
immunotherapy plays an important role in the treatment of bladder cancer. Therefore, in
the immune-related analysis, we used the R ‘‘CIBERSOFT’’ software package to map the
differences in immune cell infiltration among the different molecular subtypes. We found
that most of the immune cells had higher infiltration in subtype A.

Based on molecular subtypes A and B, we obtained 952 DEGs. Further GO and KEGG
analysis of these differential genes showed that these DEGs play an important role in the
regulation of cell structure and adhesion. Based on univariate COX regression analysis of
952 DEGs, we obtained 447 DEGs associated with prognosis. Based on the expression and
consensus cluster analysis of the DEGs associated with prognosis, we classify patients into
different gene subtypes. The expression of MTRGs varied significantly among different
gene subtypes. Clinical characteristics such as gender, age, TNM stage, and OS were also
significantly different between different gene subtypes.

After the data set of TCGA and GEO was divided into a training set and a test set in a
ratio of 1:1 by the R ‘‘caret’’ software package, LASSO and multivariate COX regression
analysis were performed on 447 prognostic DEGs in the training set. Finally, we obtained
eight genes associated with risk scores (HTRA1, GOLT1A, DCBLD2, UGT1A1, FOSL1,
DSC2, IGFBP3, and TAC3).
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HTRA1 is a serine protease that plays important roles in cell proliferation, migration,
and apoptosis. Studies have shown that HTRA1 expression is associated with immune cell
infiltration and survival in breast cancer and promotes the transdifferentiation of normal
fibroblasts into cancer-associated fibroblasts by activating the NF-κB/bFGF signaling
pathway in gastric cancer (Wu et al., 2019). GOLT1A is a Golgi transporter protein.
Circ_PDZD8 has been shown to alleviate lidocaine’s inhibitory effect on malignant tumor
cells by regulating the miR-516b-5p/GOLT1A axis (Zi, Chen & Ruan, 2022). DCBLD2 is a
key protein that activates the AKT pathway and affects the emergence and development
of many diseases (Kikuta et al., 2017; He et al., 2020; Coppo et al., 2021). For example,
DCBLD2 can promote tumor metastasis by stimulating EMT (He et al., 2020; Chen et al.,
2021). The UGT 1A1 gene is an important component in the metabolism and nucleation
of glucose of certain drugs, including irinotecan and govitecan. Thus, various UGT 1A1
polymorphisms that result in decreasedUGT 1A1 enzyme functionmay lead to an increased
risk of treatment-related side effects (Nelson et al., 2021). In bladder cancer, HOXA10 may
accelerate metastasis by regulating FOSL1 expression (Cui et al., 2020). In gastric cancer,
DSC 2 inhibits tumor growth by inhibiting the nuclear translocation of γ -catenin and
the PTEN/PI3K/AKT signaling pathway (Sun et al., 2023). In prostate cancer cells, DSC2
expression was increased. Inhibition of DSC2 promotes proliferation, colony formation,
migration, and invasion of LNCaP cells and PC-3 cells, and inhibits apoptosis of LNCaP
cells and PC-3 cells, which provides a basis for the treatment of prostate cancer (Jiang
& Wu, 2020). CDK12 inhibits insulin-like growth factor binding protein 3 (IGFBP 3) in
regulating angiogenesis in advanced prostate cancer (Zhong et al., 2024). Tachykinin 3
(TAC3) has been shown to affect gingival oral squamous cell carcinoma cells possibly
through tachykinin receptor 3 (TACR3) in bone matrix (Obata et al., 2016).

The accuracy of the risk scoring system was verified using KM curves, ROC curves, heat
maps, risk score distributions, and survival plots, and was verified in the merged set and test
set, respectively. Combining relevant clinical characteristics and risk scoring systems, we
constructed a nomogram to assess 1-, 3-, and 5-year OS in BLCA patients. The calibration
curve further verifies that the predictive power of the nomograms we construct is credible.
Based on predictive models, we extrapolated that the higher the risk score, the lower the
survival rate for patients. Subsequently, we further analyzed the association between risk
scores and TME. The results showed that the high-scoring group exhibited higher levels of
StromalScore, ImmuneScore, and ESTIMATEScore than the low-scoring group. Eight of
these genes were strongly associated with most TICs, especially T cells regulatory (Tregs).
CCL2 inhibition in mouse models of bladder cancer in situ has been shown to inhibit
tumor growth, reduce MDSCs and TPCs, and promote tumor immunosuppression (Liang
et al., 2023). Therefore, we hypothesized that the MTRG risk score was closely related to
the TME of BLCA. A negative correlation between the MTRG scoring system and the
CSC index indicates that higher risk scores have lower cell stemness. However, further
analysis of TMB reflecting the number of tumor mutations revealed that MTRGs were
not statistically significant with TMB, which requires further exploration in the future. By
drug sensitivity analysis, we found that cisplatin, paclitaxel, doxorubicin, and docetaxel
had IC50 values lower in the high-scoring group and higher in the low-scoring group.

Wang et al. (2025), PeerJ, DOI 10.7717/peerj.18816 18/24

https://peerj.com
http://dx.doi.org/10.7717/peerj.18816


Therefore, the high score group has higher sensitivity to these drugs, which also provides
important reference for clinical use. Eight risk score genes were analyzed separately
for their association with OS, and we further screened two prognostic genes (HTRA1
and DCBLD2). HPA and TISCH databases were used to further analyze the expression
differences of the two genes in normal tissues and tumor tissues. The results showed that
DCBLD2 and HTRA1 were highly expressed in tumor tissues, and DCBLD2 was mainly
expressed in fibroblasts and myofibroblasts, HTRA1 was mainly upregulated in endothelial
cells and fibroblasts. Looking at the published literature in recent years, we found that
the exploration of DCBLD2 in BLCA is still limited. Therefore, we aim to elucidate the
specific role of DCBLD2 in BLCA. Our results show that DCBLD2mRNA is upregulated in
BLCA tissues, and knockdown experiments indicate that BLCA cell migration and invasion
are significantly inhibited, while cell proliferation is not inhibited. Our study revealed
significant differences in TME between scoring groups, and this difference was also evident
in immunotherapy response. This is consistent with previous studies showing that TME
plays an important predictive role in immunotherapy outcomes.

However, our study still has some limitations. First of all, this is a retrospective study
based on a large public database, and further validation through large-scale clinical studies
is necessary. Second, we lacked further studies to investigate the mechanisms by which
DCBLD2 affects tumor cell migration and invasion. In addition, retrospective and indirect
predictions of immunotherapy response highlight the need for prospective trials involving
larger patient cohorts to enhance the reliability of scoring systems.

CONCLUSION
In this study, we explored the characteristics ofMTRGs in BLCA and developed a prognostic
model related to plasma membrane tension. The model showed excellent performance in
predicting prognosis and immunotherapy response, and was able to evaluate the sensitivity
of patients to chemotherapy drugs, providing a reference basis for individualized treatment.
In addition, we revealed the specific role of DCBLD2 in the tumor microenvironment
and its critical impact on BLCA progression by regulating cell migration and invasion
mechanisms, highlighting its potential as a therapeutic target for BLCA. These findings
provide new theoretical basis and application prospect for optimizing treatment strategy
of BLCA patients.
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