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ABSTRACT

Background. The primary purpose of this study was to detect the pathogen species
using targeted next-generation sequencing (tNGS) to investigate the characteristics of
community-acquired pneumonia (CAP)-related pathogens in children in Xiantao city,
Hubei province, China.

Methods. A total of 1,527 children with CAP were prospectively recruited from our
hospital between May 2022 and February 2023. Information on age and sex was
collected from the medical records. Pathogen detection was performed using standard
detection methods and tNGS.

Results. The positive coincidence rate of standard detection methods and tNGS were
61.95% (946/1,527) and 97.05% (1,482/1,527), respectively. Among the 1,482 children
with CAP, the numbers of bacteria, virus, chlamydia, and mycoplasma infection were
1,188, 975, 321, and 1, respectively. Co-existing species showed high prevalence in
CAP, and the prevalence of children infected with only one pathogen was 20.31%.
The numbers of children infected with two and three pathogens were the highest,
accounting for 29.22% and 25.17%, respectively. Among the 44 pathogens detected
using tNGS, 17 species of bacteria, 25 species of viruses, one species of chlamydia, and
one species of mycoplasma were documented. Among all infectious pathogens, the top
five were Haemophilus influenzae, Acinetobacter baumannii, Streptococcus pneumoniae,
human herpes virus type 5 (HHV-5), and Mycoplasma pneumoniae. The results showed
that pathogenic infections in children with CAP were related to age but not to gender.
Conclusion. The infection pathogens in children with CAP were complex and the
incidence of co-existence was observed to be high. The pathogens involved in CAP
were closely related to the age of the child. In addition, tNGS was shown to better
identify pathogens than the standard detection method, which is crucial for improving
the accuracy of early CAP diagnosis and initiating appropriate treatment in a timely
manner, ultimately enhancing treatment outcomes.
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INTRODUCTION

Respiratory infections are the primary cause of admission to pediatric intensive care
units (ICU) and death, therefore placing a significant burden on families and the social
healthcare service system worldwide (Du er al., 2023; El Bcheraoui et al., 2018; Ye et al.,
2023). Diseases of the respiratory system can lead to infant mortality, especially acute
respiratory infections such as community-acquired pneumonia (CAP) (Mebrahtom,
Worku & Gage, 2022). The pathogens that cause CAP are widespread and diverse and
include bacteria, viruses, chlamydia, and mycoplasma (Liu et al., 2023). In clinical practice,
bacterial, fungal, viral, and mycoplasma infections often occur simultaneously, making
it difficult to identify the specific pathogens (Cilloniz et al., 2011). The gold standard for
diagnosing infectious pathogens in clinical settings has poor sensitivity and is too slow to
guide early and targeted antimicrobial therapy (Zhang, Yang ¢ Makam, 2019). Owing to
the similarity in infection symptoms among different pathogens, doctors typically initiate
broad-spectrum antibacterial treatment in the early stages, which often result in antibiotic
abuse and increased drug-resistant bacteria. Therefore, rapid and accurate identification of
pathogens can improve the detection efficiency of infectious diseases and avoid the overuse
of antibiotics.

Recently, quantitative polymerase chain reaction (qPCR) has been used to detect
respiratory viruses in children. Compared to standard detection methods, qPCR-based
rapid pathogen arrays, such as the TagMan Array Card and nested multiplex PCR, can
promptly detect infected pathogens and increase the number of species identified through
microbial detection, thus reducing the use of inappropriate antibacterial therapy, which
is important for infection control and treatment (Cavallazzi ¢» Ramirez, 2018; Clark et al.,
2023; Yen et al., 2023). Combined with standard detection methods, qPCR can increase
the positivity rate of CAP pathogen detection to 80% (Yen et al., 2023). However, the
number of pathogenic species that can be detected simultaneously using gPCR are limited.
Another rapid detection method is metagenomic next-generation sequencing (mNGS),
which can detect and analyze all potential pathogens in a sample (Shahrajabian Hesam ¢
Sun, 2023). Compared to standard detection methods, mNGS can identify more species of
infectious pathogens, co-existence pathogens overlooked when using standard detection,
and pathogenic pathogens beyond the scope of standard detection in bronchoalveolar
lavage fluid (BALF) samples from children with CAP. In addition, mNGS can identify
pathogens that are resistant to antibiotics (Chen et al., 2023; Gao et al., 2022; Yang et al.,
2022). Overall, mNGS detection can improve the sensitivity of pathogen detection and
yield results from oropharyngeal swab samples from patients with severe non-responding
pneumonia within 24 h (Wang et al., 2020). However, mNGS has the following limitations
in clinical applications: its high sensitivity leads to false positives, relatively high cost,
inability to fully detect drug resistance, long testing period, and subjective interpretation
of results (Charalampous et al., 2019; Zheng et al., 2021). In addition, mNGS detects host
and pathogen gene profiles simultaneously, resulting in a large amount of mNGS detection
data that requires experienced data analysts to assess (Guo et al., 2022).
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Targeted next-generation sequencing (tNGS) detection can purposefully perform
parallel sequencing of thousands of short DNA sequences in a single test and is a low-cost
method that can detect multiple target genes with a minimum amount of DNA. tNGS has
the advantages of a short processing time, multiple detection species (typically > 200), and
less generated and processed data (Fontanges et al., 2016). In addition, tNGS has a high
detection accuracy for central nervous system infections, drug-resistant Mycobacterium
tuberculosis, and hearing loss variant gene screening in children undergoing neurosurgery
(Lietal., 2023; Luo et al., 2022; Wu et al., 2022). tNGS is also used to detect pathogens
in adults with pneumonia and respiratory pathogens in bronchoalveolar lavage fluid
samples, and exhibits high sensitivity and specificity (Gaston et al., 2022; Li et al., 2022).
tNGS detection combines the advantages of qPCR and mNGS and compensates for their
disadvantages. First, the detection target of tNGS only includes preset pathogens; therefore,
it is not affected by human host genes or pathogens from other sources. Second, this
method can be used to identify the subtypes and drug resistance of pathogens. Third, tNGS
can achieve true quantitative detection of pathogens by obtaining the accurate number of
copies of each detected pathogen in the sample. Finally, the amount of sequencing data
for tNGS samples is approximately 1,000-fold that of mNGS; thus, so the cost of tNGS
detection is low and the detection cycle is short compared with that of other methods
(Fontanges et al., 2016). However, the usefulness of tNGS for detecting the pathogens
associated with CAP in infants and young children remains unclear.

The primary purpose of this study was to analyze and compare the effectiveness of
standard and tNGS diagnoses and investigate the epidemiological characteristics and mixed
infection characteristics of CAP-related pathogens in children in Hubei province, China.
First, tNGS was performed to detect pathogens related to CAP in deep sputum samples
from children, then the effectiveness of standard and tNGS diagnoses was analyzed. Next,
the epidemiological and mixed characteristics of CAP-related pathogenic infection in
children were analyzed based on the results. In addition, the relationship between the
characteristics of CAP-related pathogens and age and gender were analyzed.

MATERIALS AND METHODS
Study design

This is a prospective cohort study in which the similarities and differences between tNGS
and standard detection methods of pathogens were analyzed and the primary infectious
pathogens in children with CAP in our hospital were clarified. Written informed consent
was obtained from the legal guardians of all participants. This study was approved by the
Ethics Committee of Xiantao Maternity and Child Healthcare Hospital (2022/04/09). The
children were prospectively recruited from our hospital between May 2022 and February
2023. The inclusion criteria were as follows: (1) all patients were diagnosed with CAP,
and (2) their ages ranged from 1 month to 18 years. The diagnostic criteria for CAP is
based on the Guidelines for the Management of Community-Acquired Pneumonia in
Children (Revised in 2013) (Part I). Based on these guidelines, the following conditions
should be present: (1) respiratory symptoms such as fever and cough; (2) primary signs
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include increased respiratory rate, respiratory distress, rales, or bronchial breath soundin
the lungs, as well as other respiratory manifestations; and (3) radiographic findings may
show parenchymal or interstitial abnormalities in the lungs, with or without the occurrence
of pulmonary complications. The exclusion criteria were as follows: (1) patients with CAP
who have also been diagnosed with tuberculosis, lung tumors, or other lung diseases;
(2) patients who received antibiotic treatment before testing; (3) those with incomplete
clinical data; (4) those with pneumonia that occurred after 48 h of hospitalization; and (5)
disagreement with tNGS detection. A total of 1,527 patients were included is this study.
Patient information, including age and gender, was collected from the medical records.

Deep sputum collection

Sterile collection containers and water were prepared, and guidance was provided to the
patient for collecting morning sputum for examination. Generally, the natural coughing
method is used to collect sputum. In brief, the mouth was repeatedly rinsed with water
to remove foreign objects before collecting sputum, then two to three deep breaths were
taken and the first and second mouthfuls of sputum were forcefully coughed out from the
trachea into a sterile collection container. For patients who experience difficulty coughing
up sputum, nebulized steam inhalation of 3-5% sodium chloride solution was used to
help induce sputum production. For patients with little or no sputum, bronchoscopy or
tracheal puncture was used to obtain sputum from the trachea. When sputum collection
was difficult for young children, a disinfection cotton swab was used to stimulate the throat
and induce cough reflex, and the collected sputum specimen was obtained using the throat
swab. The sputum was evaluated through microscopy.

Clinical composite diagnosis

Pathogen diagnosis requires a comprehensive judgment of clinical symptoms, laboratory
examination, imaging, and standard methods (including bacterial culture, antibody tests,
and PCR detection). The specific types of standard methods are listed in Table 1.

tNGS testing

The tNGS sequencing reaction general kit (Kingcreate, Guangzhou, China) can detect
71 pathogens (Table 1) and four drug-resistant mutation sites of the 23S rRNA gene of
M. pneumoniae: A2063G, A2064G, A2067G, and C2617G. The detection steps were as
follows: Briefly, deep sputum samples were digested at 25 °C for 30 min using sputum
digestion solution. Next, 1.3 mL of eluent was processed through high-speed centrifugation
(4,000 g, 5 min) to enrich pathogens. The supernatant was removed and retained until
a 250-pnL sample was obtained. Nucleic acid extraction was performed automatically
using this sample and nucleic acid extraction reagent (IVD5412-F-96; Guangzhou Magen
Biotechnology Co., Ltd., Guangzhou, China) with an automated extraction workstation
(KingFisher flex; Thermo Fisher Scientific, Waltham, MA, USA). Nuclease free water
(250 nL) was used as the quality control. The library was prepared according to the
manufacturer’s instructions (Multiple Joint Detection Kit for Pathogenic Microorganisms,
Kingcreate, Guangzhou, China). The target pathogens were detected using the tNGS
sequencing reaction general kit, according to the manufacturer’s instructions, and a Gene
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Table 1

Seventy-one pathogens detected by tNGS.

Bacteria
(24)

DNA
viruses
(n=11)

Corynebacterium diphtheriae
Bordetella pertussis
Acinetobacter baumannii
Klebsiella pneumoniae
Streptococcus pneumoniae
Enterococcus faecalis
Streptococcus pyogenes
Fusobacterium necrophorum
Staphylococcus aureus
Katamorella

Neisseria gonorrhoeae
Haemophilus influenzae
Neisseria meningitidis
Arcanobacterium haemolyticum
Enterococcus faecium RNA

viruses
(n=32)

Legionella pneumophila
Stenotrophomonas maltophilia
Streptococcus dysgalactiae
Pseudomonas aeruginosa
Streptococcus agalactiae
Streptococcus constellatus
Streptococcus pharyngitis
Serratia marcescens
Streptococcus intermedius
Human herpesvirus type 1
Human herpesvirus type 2
Human herpesvirus type 3
Human herpesvirus type 4
Human herpesvirus type 5
Human Boca virus type 1
Human Parvovirus B19
Human Adenovirus

Human Adenovirus Group B )
Chlamydia

Human Adenovirus Group C (n=3)

Human Adenovirus Group E

Rhinovirus

Rhinovirus type A

Rhinovirus type B

Rhinovirus type C

Influenza C virus

Enterovirus

Enterovirus Group 71

Enterovirus Group A

Enterovirus Group B

Enterovirus Group C

Enterovirus Group D

Rubella virus

Influenza A virus

Influenza A virus HIN1

Influenza A virus HIN12009
Influenza A virus H3N2

Influenza A virus H5N1

Influenza A virus H7N9

Measles virus

Human parainfluenza virus type 1
Human parainfluenza virus type 2
Human parainfluenza virus type 3
Human parainfluenza virus type 4
Human respiratory syncytial virus type A
Human respiratory syncytial virus type B
Human coronavirus 229E
Human coronavirus HKU1
Human coronavirus NL63
Human coronavirus OC43
Human metapneumovirus
Mumps virus

Influenza B virus

Chlamydia trachomatis
Chlamydia psittaci

Chlamydia pneumoniae

Mycoplasma Mycoplasma pneumoniae

(n=1)

Sequencer (Model: KM MiniSeqDx-CN; Kingcreate). The Pathogenic Microbial Data
Analysis and Management System (v1.0) was used for automatic data analysis (Kingcreate).

The data quality requirements were as follows: Q30 > 75%, minimum original reads >

50k, and internal reference gene amplification reads > 200.
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Figure 1 Age distribution of 1,527 children with CAP. (A) Sex distribution of 1,527 children with CAP.
(B) Age distribution of 1,527 children with CAP. (C) Sex distribution of 1,527 children with CAP after
tNGS detection. (D) Age distribution of 1,527 children with CAP after tNGS detection.

Full-size & DOI: 10.7717/peerj.18810/fig-1

Statistical analysis

Data analysis was performed using the SPSS software (v.19.0; IBM SPSS Inc., Chicago,
IL, USA). Statistical significance was set at P < 0.05, and two-tailed tests were used for
hypotheses. Frequency counts and percentages were used to present the results. Categorical
data were analyzed using the chi-square test or Fisher’s exact test (frequency, <5) method
to examine the differences between the detection results of tNGS and standard detection
methods. Consistency between tNGS and standard detection was analyzed using the kappa
test. Differences between the diagnostic efficiency of tNGS and standard detection was

analyzed using the paired McNemar chi-square test.

RESULTS

Clinical characteristics
A total of 1,527 children with CAP (907 boys and 620 girls; Fig. 1A) were enrolled in this
study. The age distribution of the patients is shown in Fig. 1B.
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Table 2 Comparison of consistency between tNGS detection and standard detection.

tNGS detection Standard detection Total
Positive Negative

Positive 941 541 1,482

Negative 5 40 45

Total 946 581 1,527

Differences between tNGS and standard detection methods

Using the final clinical diagnosis as a reference, we evaluated the performance of tNGS and
standard detection methods for pathogen identification. Based on the clinical results, the
positive coincidence rates of the standard detection and tNGS methods were 61.95%
(946/1,527) and 97.05% (1,482/1,527), respectively. The comparison of consistency
between tNGS and standard detection is shown in Table 2. The results showed that

the consistency between the two detection methods is poor (Kappa = 0.077). Positive and
negative coincidence rates of sex and age distribution in the 1,527 children with CAP after
tNGS detection are shown in Fig. 1Cand 1D. Therefore, the clinical detection effect of tINGS
was better than that of the standard detection methods (P < 0.001). The standard detection
method and tNGS identified 11 and 44 pathogens, respectively. Standard detection methods
only identified three instances of pathogen co-existence, whereas tNGS detected eight such
instances.

Characteristics of pathogenic infections

The species of pathogens that co-existed in the 1,482 children detected through tNGS are
presented in Fig. 2. Among the 1,482 children with CAP, 1,188 had bacterial infection, 975
had viral infection, 321 had chlamydia, and one had chlamydia infection (Fig. 2A). The
number of children infected with only one pathogen was 301 (20.31%). The number of
children infected with two pathogens was the highest at 433(29.22%), followed by children
infected with three pathogens at 373(25.17%) (Fig. 2B). In addition, 570 (38.46%) children
with CAP were infected only with mycoplasma (82), Chlamydia (1), bacteria (331), or
viruses (156) (Fig. 2C). Among children with CAP who were infected with only bacteria,
children with only one bacterial species present were 113 (34.14%) (Fig. 2D). Among
children with CAP who were infected with only viruses, children with only one viral species
present were 106 (67.95%) (Fig. 2E).

Pathogenis species

Among the 44 pathogens which had identified by tNGS, there were 17 species of bacteria,
25 species of viruses, one species of chlamydia, and one species of mycoplasma. The
most common bacteria were H. influenzae (419/1,482, 28.27%), A. baumannii (403/1,482,
27.19%), and S. pneumoniae (399/1,482, 26.92%) (Fig. 3A). The most common viruses
(including DNA and RNA viruses) were human herpes virus type 5 (HHV-5, 343/1,482,
23.14%), human rhinovirus type A (HRV-A, 132/1,482, 8.91%), and Influenza A virus
(IFV-A, 129/1,482, 8.70%) (Figs. 3B—3C). In addition, the infected children included M.
pneumoniae (321/1,482, 21.66%) infection and Chlamydia trachomatis (1/1,482, 0.07%)
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Figure 2 Infection distribution among 1,482 children infected with pathogens. (A) The distribution of
bacteria, viruses, chlamydia, and mycoplasma. (B) The distribution of the types of co-infected pathogens.
(C) The distribution of the co-infected mycoplasma-bacterial-viruses. (D) The distribution of bacteria in-
fected types in 331 children with only bacterial infections was shown. (E) The distribution of infected-viral
types in 156 children with only viral infections was shown.

Full-size & DOTI: 10.7717/peer;j.18810/fig-2

infection (Fig. 3D). Among the 321 children with M. pneumoniae infections, 302 had drug-

resistant M. pneumoniae infections. The top five infectious pathogens were H. influenza,

A. baumannii, S. pneumoniae, HHV-5, and M. pneumoniae (Fig. 3).

Differences in pathogenic infection between different genders and

age groups

Next, the 1,482 children were divided into male and female groups. No significant

differences in the infection rates of bacteria, mycoplasma, chlamydia, or viruses were
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observed between the two groups (Fig. 4A). No significant differences in the rate of
pathogen co-existence were noted between the genders (Fig. 4B). In addition, no significant
differences in the co-existence rates of bacteria, viruses, chlamydia, and mycoplasma were
observed between the genders (Fig. 4C). Furthermore, the 1,482 children were divided into
three groups: 0—4, 4-7, and 7-18-year-old groups. The viral infection rate was higher in the
0—4-year-old group than in the other two groups (P < 0.001), whereas the infection rates
of mycoplasma/chlamydia were higher in the 7-18-year-old group than in the other two
groups (P =0.011). The bacterial infection rate in the 4-7-year-old group was higher than
that in in the other two groups (P < 0.001) (Fig. 4A). The infection rate of one pathogen was
the highest in the 0—4-year-old group, that of two to five pathogens was the highest in the
4-5-year-old group, and that of four to six pathogens was the highest in the 7—18-year-old
group (Fig. 4B). The highest rates of single-virus infection and bacterial-virus co-existence
were found in the 0—4-year-old group, the highest rates of bacterial-virus-mycoplasma
co-existence were observed in the 4-6-year-old group, and the highest rates of mycoplasma
infection and mycoplasma-bacterial co-existence were found in the 7-18-year-old group
(Fig. 4C). However, no significant difference was observed among the three groups of
bacterial infection alone and co-existence with the chlamydia virus (Fig. 4C).
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DISCUSSION

Complex infections by pathogens have synergistic effects that exacerbate the severity of
CAP in children (Yun et al., 2019). Therefore, a novel detection method that can sensitively
and specifically distinguish between the species of pathogenic infections is required to treat
pediatric CAP in a timely and targeted manner. In the present study, tNGS was used to
detect CAP related pathogens and the results suggested that the positive coincidence rates
and the species of pathogens detected simultaneously of tNGS were higher than that of
standard detection methods.

We analyzed the species of pathogens in children with CAP. The results showed that
bacterial infection was the most common, followed by viral and mycoplasma infections,
whereas chlamydia infection was the least common. Further results indicated that mixed
bacterial and viral infections were the most common in children with pneumonia, followed
by simple bacterial and viral infections. In children with CAP, mixed infections of bacteria
and mycoplasma, as well as viral and mycoplasma infections, were also present, with
6.96% having mixed infections of bacteria, viruses, and mycoplasma. Compared to adults
with CAP, children with CAP have more mixed viral or bacterial pathogens. Previous
studies have shown that the coinfection rate of viruses and bacteria is as high as 68%,
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which is an inducing factor of CAP and a risk factor for ICU admission, disease severity,
and mortality (Cawcutt ¢ Kalil, 2017). Viral and bacterial co-existences often lead to
worse prognoses than bacterial or viral infections alone (Kim ¢ Kim, 2022). This study
also showed that the bacteria and viral co-existences reached 44.07%, not including the
bacteria, viruses, and mycoplasma co-existence. Furthermore, we analyzed the species
of infectious pathogens and determined that 77.34% were infected with two or more
pathogens. Some children with CAP, even those infected with bacteria or viruses, often
experience co-existence with several cells or viruses. In addition, in children with CAP
infected solely with bacteria and viruses, bacterial infections usually involve multiple
bacteria simultaneously, whereas viruses typically exist as a single species. These complex
modes of infection seriously affect the timely diagnosis and treatment of CAP in children.
Particularly, the co-infection phenomenon observed in this study suggests that clinicians
should conduct more comprehensive assessments and interventions for complex cases in
order to reduce the incidence of severe illness.

S. pneumoniae, H. parainfluenzae, Staphylococcus aureus, Pseudomonas aeruginosa, and
Klebsiella pneumoniae are common bacteria in children with severe CAP (Mclntosh, 2002).
In addition, S. pneumoniae, H. influenzae, Streptococcus pyogenes, Staphylococcus aureus,
and Moraxella catarrhalis are common bacteria that cause CAP in children younger than five
years (Leung, Wong ¢» Hon, 2018). S. pneumoniae accounts for approximately 25.00% of
CAP cases in children (Yang et al., 2022). In addition, S. pneumoniae can be detected in the
sputum of CAP patients (Miyazaki et al., 2024). The most common bacteria, H. influenza
(28.27%), A. baumannii (27.19%), and S. pneumoniae (26.92%), were detected in children
with CAP. Respiratory syncytial virus (RSV), human parainfluenza virus (HPIVs), IFV-
A/IFV-B, HRV, human metapneumovirus (HMVP), and human bocavirus (HBoVs) were
the most common viruses in children with CAP (Leung, Wong ¢ Hon, 2018; Pratt et al.,
2022; Wetzke et al., 2023). In contrast, the proportions of RSV, HPIVs, HMVP, and HBoV
were 0.46%, 4.19%, 1.77%, and 3.14%, respectively. The most common viruses were
HHV-5 (22.46%), HRV-A (8.64%), and IFV-A (8.45%). These results indicate regional
differences in viral infection species. Therefore, diagnosis and treatment should be based
on the characteristics of the area during the treatment process. In addition, chlamydia
and mycoplasmas are associated with CAP in children. M. pneumoniae and C. trachomatis
were the most common chlamydia and species of mycoplasma, respectively, in children
with CAP. The infection rate of M. pneumoniae is 26.4%, which can cause longer periods
of fever and cough than bacterial or viral infections (Kuo et al., 2022; Yi et al., 2022). In
this study, the infected children included 321 cases of M. pneumoniae infection and one
C. trachomatis infection. Notably, the proportion of drug-resistant M. pneumoniae was
94.08% in M. pneumoniae infection. These findings provide important information for
clinicians, helping them develop more personalized strategies for diagnosing and treating
children CAP, thereby improving treatment outcomes and patient prognosis.

The type of infectious pathogen is closely related to the age of the patients with CAP.
Infection patterns and species of pathogens differ between patients with severe and
non-severe CAP in an age-dependent manner (Liu et al., 2023). Age is a primary factor
in predicting viral infection in children with CAP (Chang et al., 2023). M. pneumoniae
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infection is related to age, mainly affecting children over five years old, and is age-dependent
(Smyrnaios et al., 2023; Yi et al., 2022). In this study, the most common age range for viral
infection, bacterial infection, and mycoplasma infection was before the age of 4 years, 4-7
years old, and 7 and 18 years old, respectively. The infection rate of one pathogen was
highest in children younger than 4 years of age, whereas the infection rate of more than
one pathogen was highest after the age of three. The reason may be that the children had
not attended school before the age of 3 years, and the activity environment was primarily
at home, with a single pathogen; after the age of three years, the main environment for
children to engage in activities was school, with complex personnel and pathogens, so they
may have been infected with more than one pathogen. Our study also suggests that the
type of infectious pathogen is closely related to the age of the patients with CAP, similar
with previous study (Deng et al., 2023). Therefore, combining the age characteristics of
pathogenic infections can help clinicians develop more personalized treatment plans,
thereby improving the diagnosis and treatment outcomes of children CAP.

This study has several limitations. This is a single center study and cannot fully represent
the characteristics of CAP pathogenic infection in the entire Hubei Province. Second, there
are no data comparing performance of tNGS and other detection platforms including
mNGS and qPCR. Owing to the small number of children with CAP after the age of 12,
children aged 7-18 were not further divided into the aged 7-12 (primary grades) group
and the aged 12-18 (the high junior middle school) group. The study did not include a
healthy control group for tNGS testing, so the specificity of the method remains unclear.
A. baumannii is a Gram-negative, aerobic rod that primarily causes hospital-acquired
pneumonia. However, its association with CAP is rare (Garnacho-Montero & Timsit,
2019). In this study, the detection rate of A. baumannii in CAP cases was found to be
27.19%, so whether false positives exist remains to be further investigated. In summary,
improving the sensitivity and specificity of tNGS testing requires further investigation.

CONCLUSION

The etiology of pediatric CAP can be complex, as multiple bacteria, viruses, or other
pathogens as well as age may play a role. In cases where a wide variety of pathogens are
present or when they are difficult to identify using conventional detection methods, tNGS
technology can simultaneously detect multiple pathogens and allows for early identification
of potential pathogens, thereby aiding clinicians in identifying mixed infections. This helps
to avoid overlooking potential pathogenic microorganisms, particularly those that are
highly pathogenic or have low colonization rates. This is crucial for improving the accuracy
of early diagnosis and initiating appropriate treatment in a timely manner, ultimately
enhancing treatment outcomes. This study provides a theoretical basis for the clinical
application of tNGS. However, further studies with larger sample sizes are required to
further assess the accuracy of tNGS detection.
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