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ABSTRACT
Arsenic (As) is a globally distributed metalloid that is emitted from natural sources,
including geothermal processes, as well as from anthropogenic activities. The village of
Araró, in the state of Michoacán, is located in the Trans-Mexico volcanic belt, which is
a highly active geothermal site in central Mexico. The aim of this study is to evaluate
the health risk to residents of the town from As exposure from dust through oral,
dermal and inhalation pathways, using Monte Carlo simulation. Forty dust samples
were randomly collected in Araró village, and these were analyzed using portable X-ray
fluoroscopy. The As levels obtained for dust samples ranged from 5.94 to 42.53 mg/kg.
Point estimation of hazard quotient (HQ) and its probability distribution was assessed
using U.S. Environmental Protection Agency (USEPA) formulas and Monte Carlo
simulation, respectively, for oral, dermal and inhalation pathways. Anthropometrical
data were obtained from the Health and Nutrition National Survey 2018. Mean average
daily dose (ADD) for all age groups (preschooler, Elementary (6–12), adolescent and
adult) were below safety limits. A total of 4 and 6% of preschooler and Elementary
dermal ADDs were above safety limits. For oral and dermal exposure in children,
HQ and hazard index (HI) mean values were higher than other age groups, despite
safety limits not being reached. Also, it was found that dermal carcinogenic risk (CR)
value for adults may represent a potential cancer risk. Despite a relatively low reported
concentration of As it is important that more As exposure routes be explored to
determine the severity of the problem because previous studies have shown high As
concentrations in drinking water.

Subjects Toxicology, Public Health, Ecotoxicology, Environmental Impacts, Environmental
Health
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INTRODUCTION
Arsenic (As) is a worldwide distributed metalloid, and its chronic exposure has been
highly related with numerous cancer and non-cancer diseases (Faita et al., 2013). Several
biochemical mechanisms of damage by As have been proposed (Table 1). Arsenic can
induce oxidative stress by decreasing activity from glutathione and antioxidant enzymes,
evenmitochondria become inefficient due to this process (Fatoki, 2019;Firdaus et al., 2018).
Also, As exposure is related to neurological damage by its ability to cross the blood–brain
barrier and causes decrease in brain intelligent quotient, alteration inmemory performance
and neurological transmitters concentration, reduction of synaptic plasticity, signaling,
signaling neurogenesis, altered sensory function, peripheral nerve neuropathy and reduced
conduction velocity (Alao et al., 2021; Martinez et al., 2008; Wang et al., 2013). Due to
its detoxification function, the liver is also affected by As; its presence can compromise
hepatic structural function and induce histo-hepatic changes, modifying specific liver
enzymes concentrations and functions (Zhang et al., 2013; Zhong et al., 2021). Renal cells
are also susceptible to damage by As; studies had demonstrated that As exposure can
increase plasmatic creatinine and urea concentration, that is a renal malfunction indicator
(Palma-Lara et al., 2020;Wang et al., 2021). The mechanism mentioned above can develop
symptoms and diseases such colitis, loss of reflexes, weight loss, weakness, anorexia, gastritis,
hyperpigmentation, circulatory disorders, lung, liver, renal and skin cancers (Ditzel et al.,
2016; Hall, 2002; Souza et al., 2018; Tokar, Qu &Waalkes, 2011).

Arsenic can be found in the environment as a result of anthropogenic activities or from
natural sources. This metalloid can be used by humans directly as wood preservatives,
pesticides and in the car industry, or can also be found as a byproduct from the mining
industry (Chen et al., 2016). However, not only industry can increase the presence of As;
extracting water from wells affects soil’s chemistry and can release As to aquifers (Benner,
2010). Also, geothermal activity can naturally increase As concentration in environment.
The usage of wells in human activities, changes their chemistry increasing metalloid’s
solubilization in aquifers and thus reaching superficial environment. Ground erosion can
also release and transport As that is not naturally available (Cumbal et al., 2008). Volcano
activity, continental collision zones and continental rifts enhance As concentrations in
the Pacific Coast of Latin America because this kind of movements can transport subsoil
materials like heavy metals and metalloids. A report in 2012 showed that the range of As
in geothermal fluids found in some places of México, Honduras, Guatemala, El Salvador,
Costa Rica, Ecuador, Bolivia and Chile was between 0.004–73.6 mg/l (López et al., 2012).
In México, the presence of As derived from geothermic activity is well documented. A
study conducted Near Chihuahua, México, found that rocks in area had around 14% of
As content, but they also found a substitution process in which phosphorous substitutes
As releasing it to aquifers (Ren, Rodr & Goodell, 2022). In other research carried out in
Juventino Rosas, Guanajuato,México,Morales-Arredondo et al. (2016) found a relationship
between high temperatures of aquifers and elevated concentrations of As, 46 µg/l at 48 ◦C.
Its authors also mentioned that, when high As water from aquifers reaches the surface,
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Table 1 As-induced toxicity proposed mechanisms (Fatoki & Badmus, 2022).

Cellular pathway affected Effect

Oxidative stress induction Mitochondria dysfunction, impaired ATP synthesis,
epigenetic changes, DNA damage genetic mutation,
resistance to apoptosis, organ toxicity, cancer induction.

Bone mineralization decreased Osteoporosis.
Nrf2-keap 1 activation Cancer cells proliferation and tumorigenesis.
Impaired male reproductive function Infertility.
Elevated blood pressure Cardiovascular disease
Hyperglycemia Diabetes.
Lipid metabolism perturbation Metabolic diseases, dyslipidemias.

it can also increase As concentration in different matrixes in the environment, like soils
(Morales-Arredondo et al., 2016).

The exposure to As by drinking water is a well-documented global health problem.
According to the World Health Organization (WHO) there are around 220 million people
in 50 countries exposed to As (Podgorski & Berg, 2020). Principal As exposure routes are
ingestion, dermal and inhalation, through contaminated drinking water, food and indoor
and outdoor dust (Arif et al., 2019). As-contaminated drinking water has been widely
studied and is considered a serious public health threat. In addition, recent investigations
demonstrated that ingestion of As in soil and dust through hand-to-mouth and object-to-
mouth, represent an increased factor of As exposure among children (Chung, Yu & Hong,
2014). In 2016 A research conducted in Hubei, China in 2016 authors found that ± 65%
of total soil and dust ingested by children came from schools and more than 50% of
carcinogenic risk was due to school indoor dust (Liu et al., 2016). In 2017 in Cornwall,
England, arsenic concentrations reported in dust and soil ranged from 1.7 to 29 mg/kg.
The authors also mentioned that arsenic found in these samples was highly bioaccessible
and must be widely investigated due to the fact that arsenic can access human cells through
dermal exposure, inhalation or ingestion. The last becomingmore important because it can
enhance As exposure through other sources, like drinking water (Middleton et al., 2017).

México has several places with geothermal activity. Michoacán is a state in México,
located in the named transverse volcanic system (Yarza, 2003). This mountain range
goes through Veracruz, Puebla, Michoacán, Tlaxcala, Hidalgo, México, Querétaro,
Guanajuato, Guerrero, Jalisco, Colima and Nayarit. In Michoacán these mountains
lead to the lakes of Zirahuen, Camecuaro, Chapala, Patzcuaro and Cuitzeo (Rafidah,
Al-Kathiri & Muhammad, 2014). Araró is located 1 mile away from Cuitzeo lake and 15
miles from Los Azufres geothermic field on the transverse volcanic system (Fig. 1). This is
a lacustrine area with thermal springs and agricultural soils (Suárez-Mota, Téllez-Valdés &
Meyer, 2014). Due to these geothermal characteristics, the surrounding areas in Araró have
high concentrations of As in sediments (72.8 mg/kg) and up to 19 g/l in brines (Birkle &
Merkel, 2002); these conditions increase As exposure and thus increasing health risks for
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Figure 1 Transverse volcanic system geographical location.
Full-size DOI: 10.7717/peerj.18805/fig-1

the population. In recent years Rodriguez-Cantú et al. (2022) found high As concentrations
(25.2 to 66.5 µ/L) in well drinking water of Araró village (Rodríguez-Cantú et al., 2022).

Around the world, health risk assessment for As exposure through soil has been widely
studied; and the way in which environmental and biological variables interact are shown
in Fig. 2. In 2021 in Ban, Iran, Toolabi et al. (2021) estimated health risk for children
and adults. Results showed that those people were highly exposed to As via underground
aquifers and dust (13.36± 1.51 µg/l); authors emphasize that children were more affected,
because of the average of As HI (sum of oral and dermal HQ) was 5.42 ± 0.61 (Toolabi et
al., 2021). A similar study, conducted in Cornwall, England, reported As concentrations
in dust between the range of 1.7 to 29 mg/Kg in dust, even though researchers did not
assess the health risk involved, they did conclude that further research is required, due
to the fact that home-grown vegetable consumption might increase As intake (Middleton
et al., 2017). A recent research carried out in San Antonio–El Triunfo mining district, in
South Baja California, México, reported HQ values for As via urban soil ranged from
0.61 up to 18.9 (Hernández-Mendiola et al., 2022). In 2005 a study conducted at Lunda,
Angola, reported the presence of heavy metals in urban dust, they mentioned that even
though As concentrations and HQ were low (5 µg/g and < 1 respectively) there is a
constant exposure to heavy metals, representing a yet unknown health risk specifically
for As (Ferreira-Baptista & De Miguel, 2005). In recent years (2021) in Zhengzhou, China,
heavy metals exposure through dust via inhalation and ingestion from different urban
areas (commercial, residential, industrial, parks and educational) reported an average
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Figure 2 Variable interaction in health risk assessment. Interactions between exposition pathways and
exposition routes.

Full-size DOI: 10.7717/peerj.18805/fig-2

of 11.53 mgAs/Kg. Authors mentioned that Zhengzhou is the 3rd most polluted city in
China by As, in industrial and commercial areas HI value increase significantly. In this
investigation, HQ and HI results presented were below one, however, researchers insist
that, more exposure sources need to be investigated in order to perform an integrated
health risk assessment (Faisal et al., 2021).

Although the deterministic USEPAmethod is widely used; usingMonte Carlo simulation
together enables the creation of many possible scenarios enhancing HQ results; this method
decrease results variability and increases its accuracy. Zuzolo et al. (2020) evaluated the
As distribution and the related probabilistic health risk from many sources, including
agricultural soil, grazing soil, stream sediment and water in a whole Italian territory. The
population with medium risk (HQ > 1 < 4) lived in Catanzaro (south–west region), Napoli
(center region), Trento, Torino, Genova, Bologna and Aosta (north) and high risk (HQ
> 4) in Viterbo and Roma (west region). Investigators also mentioned that despite of HQ
from ingested soil was relatively low, a significant health risk might be associated with
chronic exposure to As, the more susceptible groups, such as children and teenagers, may
present non-cancer effects during their lifespan (from birth to an average age of 70 years)
(Zuzolo et al., 2020). In 2021 a probabilistic multy-pathway health risk was assessed, in this
study authors explored exposure to different heavy metals (As, Cd, Cr, Cu, Ni, Pb and Zn)
in two possible scenarios (residential and recreational). In 10,000 simulated interactions,
they reported that in a residential scenario only 1% of children present HI (sum of HQs)
value above one. On the other hand in recreational scenarios, they indicated that 2.5% of
children presented a HI value higher than one (Jiménez-Oyola et al., 2021).

In Table 2 As concentrations found in different matrices in Michoacán, México are
shown. As previously mentioned, Araró is a village located in an active geothermal
site, recently performed studies reported high As concentrations in well water, well
overexploitation and ground erosion, suggesting chemical changes in subsoil as well as
metalloid solubilization and mobilization to surface environment. Also, it is important
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Table 2 As concentrations found in different matrices in Michoacán, México.

Autor, year Matrix Place Concentration

Rodríguez-Cantú et al. (2022) Drinking water Zinapecuaro, Michoacán, México. 41.0 µg/L
Birkle & Merkel (2000) Geothermal water Los Azufres, Michoacán, México. 5.1 to 24 mg/L
Rivas-Valdes et al. (2007) Dry lake soil Cuitzeo Lake, Michoacán, México. 30 to 40 mg/Kg
Villalobos-Castañeda et al. (2010) Sediment river Lerma river, Michoacán, México. 0.6 to 6.5 mg/Kg
Alarcón-Herrera et al. (2013) Drinking water Araró, Michoacán, México. 0.01 to 63 mg/Kg
Osuna-Martínez et al. (2021) Dry lake soil Cuitzeo Lake, Michoacán, México. 0.3–176.1 mg/Kg
Israde-Alcantara, Delgado & Chavez (2005) Municipal dump soil Morelia, Michoacán, México. 0.1–0.24 mg/Kg

to mention that this is the first research of this kind in this community. The aim of this
research is to evaluate the health risk of Araro’s population to arsenic exposure including
ingestion, dermal and inhalation through respiratory pathways, using USEPA formulas
and the probabilistic method Monte Carlo simulation.

MATERIALS & METHODS
Study area
Araró is a small community (±11,400 ha) belonging to Zinapecuaro municipality, located
in the northern region of the state of Michoacan, 40 km to the northeast of Morelia city
and 30 km to the northwest of geothermal hot springs ‘‘Los Azufres’’ (Sánchez-Núñez et
al., 2009). Araró has lacustrine and agricultural activity with only one water well source for
human comsumption. This small town has a lot tourist due to its thermal water springs
(Hiriart Le Bert et al., 2011).

Dust sampling and analysis
The number of samples required was calculated according to NMX-AA-132-SCFI-2016
current Mexican legislation, using the following formula.

n= 2.26xA0.31;
where:
n = Number of samples
A = Sampling area in hectares.
Once dust samples (n= 40) were estimated, they were randomly distributed within

a mapped area (Fig. 3) and later taken according current Mexican norm (NMX-AA-
132-SCFI-2016). Approximately 500 g of soil was sampled by superficially sweeping with
plastic broom and deposited inside of polystyrene bags. All samples were sieved using
a rotab equipment with 800, 600, 250, 75 and 45 µm mesh. It is important to mention
that after every sieved sample all meshes were cleaned according Mexican regulations.
Once obtained 45 µm fractions, samples were analyzed with a portable X-ray fluoroscopy
instrument (Thermo Scientific Niton XL3T Analyzer; Thermo Fisher Scientific, Waltham,
MA, USA). Analytical quality control (AQC) parameters are shown in Table 3. It is
important to mention that equipment calibration was performed by Thermo Scientific,
and operational performance was validated according 6200 USEPA method.
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Figure 3 Simulation of hazard index distribution in all age groups.
Full-size DOI: 10.7717/peerj.18805/fig-3

Table 3 Analytical quality control parameters used in current analysis.

Parameter Value

Variation coefficient (VC) 0.75%
Linearility (R2) 0.99
Accurancy 117%
Limit of detection 4 mg/Kg

Probabilistic health risk assessment
USEPA formulas were used to compute the risk of different enviromental pathways
(Table 4). To calculate average daily dose (ADD) body weight (BW) and age data were
obtained from Health and Nutrition National Survey (ENSANUT, 2018), and population
was divided by biological age groups (preschoolers, elementary, adolescents and adults) in
order to reduce BW and data variability, HQ calculations were performed by using USEPA
formulas shown in Table 4. As concentration in dust (AsC) was obtained by analyzing
samples. Slope factor (SF), exposure average time (AT), exposure frequency (EF), soil skin
adherence factor (AF), event frequency (EV), conversion factor (CF), skin surface area
(SA), inhalation rate (InhR), particles emission factor (PEF) and exposure duration (ED)
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Table 4 USEPA formulas used to calculate average daily dose (ADD) hazard quotient (HQ),
carcinogenic risk (CR), accumulate carcinogenic risk (aCR), and hazard index (HI).

Usage Formula

ADD Ingestion
(ADDig)

ADD= Cs∗IR∗EF∗ED
BW∗AT ∗CF

ADD Inhalation
(ADDih)

ADD= C∗InhR∗EF∗ED
PEF∗BW∗AT

ADD Dermal
(ADDd)

ADD= C∗AF∗ABS∗EV∗EF∗ED∗CF∗SA
BW astAT

1HQ HQ= ADD
RfD

2CR CR= cADD
SF

aCR aCR=
∑

CR
HI HI =

∑
HQ

Notes.
1A single exposition HQ were calculated used its respectively ADD formula.
2For carcinogenic ADD (cADD) same exposition formula is used, just AT variable is changed for cAT.

were obtained from USEPA data base. To perform Monte Carlo simulation, average and
range of As concentrations and BWwere considered sensitive variables in the calculation of
HQ. Risk analyzer add-in forMicrosoft Excel was used to performMonte Carlo simulation;
and proper statistical adjustment (as described above) was used for each variable.

Statistical analysis
Normality tests were performed for AsC in dust, BW, IR, ADD, carcinogenic risk (CR),
hazard quotient (HQ) and hazard index (HI). ANOVA method was used to establish
differences between means in AsC, utilizing NCSS statistical software V.20.0.8 (2020). Log
normal distributions were used in AsC and BW variables respectively, to calculate 10,000
scenarios. In Table 5 calculation parameters descriptions are shown.

RESULTS AND DISCUSSION
As concentration in n= 40 dust samples were in the range of 5.94–42.53 mg/Kg with an
average ± standard deviation (SD) of 15.21 ± 5.94 mg/Kg and a median of 12.33 mg/Kg.
Sampling sites with the lowest As concentrations were located north of the town. Besides,
13.51% of dust samples were above the values established by the Mexican regulation of 22
mg/Kg (NOM-147-SEMARNAT/SSA1-2004) and were situated south of Araró. Around
the world the presence of As in geothermal fluids have been reported, e.g., west USA
7.5 mg/L, México 2.01–6.7 mg/L, Costa Rica 29.13 mg/L, Japan 2.6–9.5 mg/L, Taiwan
4.32 mg/L, Philippines 34 mg/L (Baba, Uzelli & Sozbilir, 2021). Li et al. (2021) reported
18.84 mgAs/Kg in a district of China; they also collected their samples by sweeping with
plastic brooms in random sites around the community. Another finding reported in this
study was that in spite of geothermal activity presence themain source of As in dust samples
was anthropogenic.

In 2015 in Hermosillo city located in the northewestern region of México, similar
concentrations of As in playgrounds (16.4 ± 3.5 mg/Kg), roofs (15.1 ± 1.5 mg/Kg) and
roads (19.3± 4.3 mg/Kg) were found; this city is located in a natural As presence arid area
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Table 5 Exposure parameters used to calculate non-carcinogenic and carcinogenic risk according USEPA guideline.

Parameter Unit Parameter characteristics Reference

Arsenic concentration (AsC) mg/Kg Average
Min–max

15.6
5.94–42.53

This study

Exposure frequency (EF) day/year 350 USEPA (2009)
Exposure duration (ED) years Preschooler

Elementary
Adolescent
Adult

3.51
8.82
15.88
42.94

USEPA (2004)

Body weight (BW) kg Preschooler
Elementary
Adolescent
Adult

16.31
10–39
33.8
14–95.7
60.91
25.9–158.4
72.67
45–194.2

González-Block et al. (2017)

Non carcinogenic Average time (AT) days Preschooler
Elementary
Adolescent
Adult

1,229
3,087
5,558
15,029

U.S. Environmental Protection Agency (1988)

Reference dose ingestion (RfD) mg/kg/day 0.0003 Faisal et al. (2021)
Ingestion slope factor (SF) mg/kg/day 1.5
Exposed skin area (SA) cm2 Preschooler

Elementary
Adolescent
Adult

760
1,080
1,840
1,935

Department of Health and Aged Care (2012)

Dust to skin adherence factor (SL) mg/cm2 0.5 Department of Health and Aged Care (2012)
Dermal absorption factor (ABS) 0.03 USEPA (2001)
Conversion factor (CF) 1× 10−6 USEPA (2001)
Dermal contact factor (DFS) mg * year/kg/day 362.4 USEPA (2001)
Rate ingestion (Rign) mg/day Preschooler

Elementary
Adolescent
Adult

100
100
30
30

EPA & National Center for Environmental Assessment (2017)

Inhalation rate (InhR) m3/day Preschooler
Elementary
Adolescent
Adult

9.5
12
15.75
14.67

USEPA (2009)

Particles emission factor (PEF) m3/kg 1.36× 109 EPA (1995)

and they suggest that the difference in As concentrations was due to source apportionment
studies (García-Rico et al., 2016). Morales-Simfors et al. (2020), mentioned that México
has over 2,300 geothermal sites and almost 25 active volcanos. This geothermal activity
may cause interactions between fluids, ground water, rocks and sediments to increase
As concentrations in surrounding areas (Morales-Simfors et al., 2020). Recently, studies
have reported presence of As in sediment (2.24 mg/Kg), geothermal fluid (73.6 mg/L),
and groundwater (2.201–49.6 mg/L) through Transmexican Volcanic Belt (Baba, Uzelli
& Sozbilir, 2021; Bundschuh et al., 2021); likewise high As concentrations (3.8 mg/L) were
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reported in Araró’s hot springs located in northernMichoacán, México (Morales-Simfors et
al., 2020). This information shows evidence of how aquifers overexploitation and natural
geological processes can affect As presence in different regions.

Non-carcinogenic risk
Table 6 shows ADD data (mean, SD, median, min–max, and P95%) for dermal, oral
and inhalation arsenic exposure pathways for all age groups, demonstrating that neither
mean nor median exceed their respectively safety criteria (RfD). When maximum values
were analyzed individually, it was observed that dermal and oral exposure pathways for
4% of preschooler and dermal pathways for 6% of elementary age groups showed higher
values than their respectively background values of RfD. Oral exposure results did not
show a significant P95 percentile over than its RfD criteria. It is important to mention
that apparently low ADD values does not mean a non-significant arsenic exposure for this
population by other arsenic media, due to the fact that in our research we just explored
exposure through dust. However in a recent study that evaluated arsenic exposure through
drinking water in this same area, it was detected that for elementary age groups had an
average ADD ingestion value of 2.31 × 10−03 ± 8.59 × 10−04, which is higher than the
RfD criteria (Rodríguez-Cantú et al., 2022).

According USEPA, to obtain HQ value, every ADD pathway was divided between RfD
data. With this information HQ results are presented in Table 7. It was found that for every
single age group no mean or median of every exposure pathway was above safety criteria
(HQ= 1). Same behavior was observed with P 95% results. Although some results showed
HQ > 1, the amount of simulated data was below 0.001%. Nevertheless, it is important to
mention that the sum of all exposure routes for preschooler exhibited values near safety
criteria (P 97% = 1.0) In Fig. 4 HI data is shown. HI mean for all age groups were below
one, likewise, elementary, adolescent and adult groups didn’t present any value above
USEPA safety criteria (1). A sensibility variable plot reported by Rodríguez-Cantú et al.
(2022), showed that there are three variables that highly influence HI results, being 59%
for arsenic concentration, 25% for body weight and 17% for intake rate. This analysis
explains why preschooler age groups tend to have higher HI values, since their body weight
is lower than the other age groups, their intake rate is higher. Similar results were found
in Hubei province, China, where outdoor and indoor dust were analyzed; they found a
non-carcinogenic risk below one, even though they only evaluated oral exposure pathway
(Liu et al., 2016). Another mutly pathway study that was conducted in Northeast China,
conlcuded that children’s exposure to As was higher than that for adults, due to children
playing outdoors (Xu et al., 2013). Similarly, Ghanavati and his research group, reported
that ingestion is the main exposure pathway for both adults and children, likewise, they
reported HI values below one, nevertheless arsenic concentrations found were almost
half of what was reported in our investigation (Ghanavati, Nazarpour & De Vivo, 2019).
In México there has been reports that the main exposure pathway is through ingested
dust. A study made in San Luis Potosi, México concluded that HI for children’s exposure
to As via ingestion and inhalation of contaminated dust was above one (Pérez-Vázquez
et al., 2016). In recent years a highly arsenic contaminated dust site (1,374 mg/kg) was
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Table 6 Average daily dose (ADD) for preschooler, scholar, adolescent and adult (mg/kg/day) exposed to arsenic by dermal, oral and
inhalation through dust.

Age groups Pathways Mean± SD Median Min–Max P 95% Safety criteria
(RfD)

Dermal 6.58× 10−05 ± 2.83× 10−05 6.09× 10−05 1.19× 10−05 –2.56× 10−04 1.18× 10−04 1.23× 10−04

Oral 1.05× 10−04 ± 4.88× 10−05 9.59× 10−05 2.07× 10−05 –4.31× 10−04 1.95× 10−04 3.0× 10−04

Inhalation 7.24× 10−09 ± 3.35× 10−09 6.61× 10−09 1.46× 10−09 –3.88× 10−08 1.32× 10−08 3.0× 10−04
Preschooler

Sum 1.70× 10−04 ± 5.62× 10−05 1.61× 10−04 4.45× 10−05 –5.12× 10−04 2.75× 10−04

Dermal 6.75× 10−05 ± 3.52× 10−05 5.99× 10−05 1.29× 10−05 –3.61× 10−04 1.30× 10−04 1.23× 10−04

Oral 5.26× 10−05 ± 2.22× 10−05 4.89× 10−05 9.60× 10−06 –2.35× 10−04 9.39× 10−05 3.0× 10−04

Inhalation 4.63× 10−09 ± 2.39× 10−09 4.10× 10−09 9.35× 10−10 –2.56× 10−08 9.08× 10−09 3.0× 10−04
Schooler

Sum 1.20× 10−04 ± 4.18× 10−05 1.13× 10−04 3.23× 10−05 –4.34× 10−04 1.95× 10−04

Dermal 1.16× 10−05 ± 4.82× 10−06 1.07× 10−05 2.45× 10−06 –3.80× 10−05 2.06× 10−05 1.23× 10−04

Oral 8.34× 10−06 ± 4.85× 10−06 7.39× 10−06 4.81× 10−07 –5.05× 10−05 1.77× 10−05 3.0× 10−04

Inhalation 3.20× 10−09 ± 1.33× 10−09 2.97× 10−09 7.39× 10−10 –1.14× 10−08 5.74× 10−09 3.0× 10−04
Adolescent

Sum 1.99× 10−05 ± 6.84× 10−06 1.90× 10−05 4.40× 10−06 –6.13× 10−05 3.25× 10−05

Dermal 3.64× 10−05 ± 2.02× 10−05 3.21× 10−05 5.35× 10−06 –3.00× 10−05 7.30× 10−05 1.23× 10−04

Oral 7.36× 10−06 ± 5.12× 10−06 6.12× 10−06 2.17× 10−07 –7.66× 10−05 1.68× 10−05 3.0× 10−04

Inhalation 2.83× 10−09 ± 1.56× 10−09 2.49× 10−09 3.94× 10−10 –1.94× 10−08 5.69× 10−09 3.0× 10−04
Adult

Sum 4.38× 10−05 ± 2.08× 10−05 3.96× 10−05 8.23× 10−06 –3.06× 10−04 8.11× 10−05

compared with a reference site (5.2 mg/kg) in San Luis Potosi. TheMonte Carlo simulation
was used to evaluate health risk in children exposed to arsenic via this pathway in four
communities. It was found that non-carcinogenic data in the high arsenic contaminated
site were statistically superior. On the other hand, HQ and HI values found in the reference
site showed similar values as ours and HQ and HI results presented were lower, because
Fernández-Macías et al. (2020) just evaluated dust ingestion pathway.

According to carcinogenic risk through dust exposure (Table 8), it was found that neither
oral or inhalations pathways represent a risk, because they are below safety criteria (1 ×
10−05). However, it was observed that dermal exposure presented higher values compared
to other exposure routes. Elementary, adolescent and adult age groups P95% resulted with
CR dermal values above safety criteria for dermal exposure, this result can be attributed to
the calculation nature, because according to USEPA guidelines total exposed skin will be
lower in preschooler than in other age groups. Even though oral and inhalation pathways
alone did not represent a potential cancer risk (based on mean, median and P95%); dermal
exposure influence, can increase enough P 95% sum (dermal, oral and inhalation) to exceed
safety criteria. Similar results were found by Ali et al. (2021), where urban and rural As
exposure for adults and children was assessed. They reported a higher CR in adults (1.72×
10−05) than in children (8.77× 10−06); and even higher in rural adults (2.11× 10−05) and
children (1.07× 10−05) than in urban. Also, they highlight that these CR values can present
a potential risk to human health on long-term exposure (Ali et al., 2021). As carcinogenic
risk has also been reported in México; a study conducted in northern Mexican states,
found that women who were exposed to different sources of As (including dust), excreted
more As related metabolites, it is important to mention that authors did not calculate a

Mendoza-Lagunas et al. (2025), PeerJ, DOI 10.7717/peerj.18805 11/20

https://peerj.com
http://dx.doi.org/10.7717/peerj.18805


Table 7 Hazard quotient (HQ) for preschooler, schooler, adolescent and adult exposed to arsenic by
dust: dermal, oral and inhalation pathways.

Age groups Pathways Mean± SD Median Min–Max P 95% Safety
criteria

Dermal 0.2193± 0.0945 0.2029 0.0397–0.8533 0.3933 1
Oral 0.3485± 1625 0.3187 0.0689–1.4389 0.6508 1
Inhalation 0.0005± 0.0002 0.0004 0.0001–0.0026 0.0008 1

Preschooler

Sum 0.5682± 0.1875 0.5375 0.1489–1.7094 0.9174 1
Dermal 0.2251± 0.1172 0.1997 0.0432–1.2043 0.4338 1
Oral 0.1752± 0.0741 0.1629 0.0320–0.7847 0.3130 1
Inhalation 0.0003± 0.0002 0.0003 0.0001–0.0017 0.0006 1

Elementary

Sum 0.4005± 0.1391 0.3771 0.1079–1.4477 0.6487 1
Dermal 0.0386± 0.0161 0.0358 0.0082–0.1265 0.0687 1
Oral 0.0278± 0.0162 0.0246 0.0016–0.1685 0.0590 1
Inhalation 0.0002± 0.0001 0.0002 0.0001–0.0008 0.0003 1

Adolescent

Sum 0.0667± 0.0228 0.0634 0.0147–0.2043 0.1085 1
Dermal 0.1213± 0.0672 0.1071 0.0178–0.9992 0.2435 1
Oral 0.0245± 0.0171 0.0204 0.0007–0.2553 0.0561 1
Inhalation 0.0002± 0.0001 0.0002 0.0001–0.0013 0.0003 1

Adult

Sum 0.1461± 0.0693 0.1322 0.0277–1.0211 0.2704 1

Figure 4 Simulation for hazard index. Probabilistic distribution for hazard index in age groups. Safety
value= 1.

Full-size DOI: 10.7717/peerj.18805/fig-4
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Table 8 Carcinogenic risk for As exposure in all age groups.

Age groups Pathways Mean± SD Median Min–Max P 95% Safety criteria
(RfD)

Dermal 2.11× 10−06 ± 9.11× 10−07 1.96× 10−06 3.83× 10−07 –8.26× 10−06 3.79× 10−06 1× 10−05

Oral 3.36× 10−06 ± 1.57× 10−06 3.07× 10−06 6.64× 10−07 –1.39× 10−05 6.27× 10−06 1× 10−05

Inhalation 2.9× 10−11 ± 1.34× 10−11 2.65× 10−11 5.86× 10−12 –1.56× 10−10 5.29× 10−11 1× 10−05
Preschooler

Sum 5.47× 10−06 ± 1.81× 10−06 5.18× 10−06 1.43× 10−06 –5.18× 10−06 8.83× 10−06 1× 10−05

Dermal 5.45× 10−06 ± 2.84× 10−06 4.84× 10−06 1.04× 10−06 –2.92× 10−05 1.05× 10−05 1× 10−05

Oral 4.42× 10−06 ± 1.87× 10−06 4.11× 10−06 8.06× 10−07 –1.98× 10−05 7.89× 10−06 1× 10−05

Inhalation 4.66× 10−11 ± 2.41× 10−11 4.13× 10−11 9.42× 10−12 –2.57× 10−10 9.14× 10−11 1× 10−05
Elementary

Sum 9.86× 10−06 ± 3.41× 10−06 2.29× 10−06 2.65× 10−06 –3.54× 10−05 1.60× 10−05 1× 10−05

Dermal 5.20× 10−06 ± 2.16× 10−06 4.81× 10−06 1.10× 10−06 –1.70× 10−05 9.25× 10−06 1× 10−05

Oral 1.26× 10−06 ± 7.33× 10−07 1.12× 10−06 6.27× 10−08 –7.64× 10−06 2.68× 10−06 1× 10−05

Inhalation 5.80× 10−11 ± 2.41× 10−11 5.38× 10−11 1.34× 10−11 –2.07× 10−10 7.73× 10−11 1× 10−05
Adolescent

Sum 6.46× 10−06 ± 2.82× 10−06 6.10× 10−06 1.39× 10−06 –1.89× 10−05 1.07× 10−05 1× 10−05

Dermal 1.85× 10−05 ± 1.03× 10−05 1.63× 10−05 2.72× 10−06 –1.52× 10−04 3.71× 10−05 1× 10−05

Oral 3.09× 10−06 ± 2.15× 10−06 2.57× 10−06 9.13× 10−08 –3.22× 10−05 7.08× 10−06 1× 10−05

Inhalation 1.49× 10−10 ± 8.19× 10−11 1.31× 10−10 2.06× 10−11 –1.02× 10−09 2.99× 10−10 1× 10−05
Adult

Sum 2.16× 10−05 ± 1.05× 10−05 1.95× 10−05 4.14× 10−06 –1.55× 10−04 4.03× 10−05 1× 10−05

CR for study population, nevertheless, they mentioned that the increase in As metabolites
excretion (specially MMA) is associated with cancer incidence (Gamboa-Loira, Cebrián
& López-Carrillo, 2020). Around Mexican transverse volcanic system, similar results have
been reported. In 2017, Castro-Gonzalez and his research group assessed the health risk
in inhabitants from Tlaxcala and Puebla, México. Due to the low As concentration in soil,
they found a low HQ for both children and adults. In spite of this findings adults showed
higher values for CR than children, they even mentioned that dermic exposure pathway
increase CR in adults (Castro-González et al., 2017).

CONCLUSIONS
Arsenic concentrations found in dust samples from Araró, Michoacán, México were
below Mexican regulations. In addition, HQ and HI results obtained from Monte Carlo
probabilistic method did not show any health issues. This assumption is supported by P
95% reported in every single age group (preschooler, elementary, adolescent and adult).
Nevertheless, it was found that because of their lower body weight and higher As rate
intake for oral and dermal pathways, preschooler and elementary HQ and HI tend to be
higher than other age groups without reaching safety criteria. In addition, it was observed
that in spite of a relatively low As exposure through dust by dermal, ingested and inhaled
pathways, CR value showed potential cancer risk for adults in dermal exposure. As exposure
is a serious health problem in this area; previously, our research group reported out of
regulation As concentrations in drinking water in Zinapecuaro de Figueroa municipality,
this means that people who live in the surrounding areas are exposed to As via drinking
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water and dust. It is important to investigate more exposure routes, in order to visualize
the As problems in the Araró geothermal area.
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