10

11

12

13

14

15

16

17

18

19

20

21

Climate change and tree cover loss affect on the habitat suitability of Cedrela
angustifolia: Evaluating climate vulnerability and conservation in Andean Montane

Forests

Fressia N. Ames-Martinez!*, Ivan Capcha?, Anthony Guerra?, Janet Inga®, Harold Rusbelth

Quispe-Melgar*>, Esteban Galeano®, Ernesto C. Rodriguez-Ramirez’

Laboratorio de Biotecnologia y Biologia Molecular, Universidad Continental, Av. San

Carlos 1980, Huancayo, Junin, Peru.

’Facultad de Ciencias Forestales y del Ambiente, Universidad Nacional del Centro del

Pert, El Tambo, Huancayo, Junin, Peru.

3Laboratorio de la Anatomia e Identificacion de la Madera, Universidad Continental, Av.

San Carlos 1980, Huancayo, Junin, Peru.

“Programa de Ecologia y Diversidad, Asociacion ANDINUS, Sicaya, Huancayo, Junin,

Peru.

SFacultad de Ciencias de la Salud, Universidad Continental, Av. San Carlos 1980,

Huancayo, Junin, Peru.

Department of Forestry, College of Forest Resources, Mississippi State University,

Mississippi, United States

"Laboratorio de Dendrocronologia, Universidad Continental, Av. San Carlos 1980,

Huancayo, Peru
*Corresponding author:

Fressia N. Ames Martinez


Ellen Quinlan
This is not grammatically correct. Should remove “on” so that the title reads “Climate change and tree cover loss affect the habitat suitability…” 


22

23

24

25

26

27

28

29

30

Huancayo, Junin, Peru, CP: 12000

Email address: fames@continental.edu.pe

ORCID

Fressia N. Ames—Martinez: https://orcid.org/0000-0003-2840-3154

Anthony Guerra: https://orcid.org/0000-0002-9830-8550

Janet Inga: https://orcid.org/0000-0002-2321-8518

Harold R. Quispe Melgar: https://orcid.org/0000-0001-6676-0879

Esteban Galeano: https://orcid.org/0000-0002-8330-8240

Ernesto C. Rodriguez—Ramirez: https://orcid.org/0000-0001-6206-8615


mailto:fames@continental.edu.pe
https://orcid.org/0000-0001-6206-8615

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Abstract
Background

Because of illegal logging, habitat fragmentation, and high-value timber, Andean Montane
Forest Cedrela species (such as Cedrela angustifolia) are endangered in Central and South
America. Studying the effects of climate change and tree cover loss on the distribution of
C. angustifolia will help us understand the climatic and ecological sensitivity of this species

and suggest conservation and restoration strategies.
Methods

Using ecological niche modeling with two algorithms (MaxEnt and Random Forest) under
climatic variation approach, we generated 16,920 models with different combinations of
variables and parameters. We identified suitable areas for C. angustifolia trees under
present and future climate scenarios (2040, 2070, and 2100 with SSP 3-7.0 and SSP 5-8.5),

tree cover loss, and variables related to soil and topography.
Results

The potential present distribution was estimated to be 13,080 km? with tree cover loss and
16,148.5 km? without tree cover loss, and we demonstrated that from 2040 to 2100, the
species distribution will decrease (from -22.16% to -36.88% with tree cover loss variation).
The current habitat availability and climate change from the two algorithms combined were
estimated to range from -20.28% to -42.36%. Only 24.28% of the current potential
distribution is within PAs and is likely reduced to 25-30% by 2100. The results indicate
that Bolivia displayed greater habitat suitability than did Ecuador, Peru, and Argentina.

Finally, we recommend developing conservation management strategies that consider both
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protected and unprotected areas, as well as the impact of land-use changes, to improve the

persistence of C. angustifolia in the future.

Keywords

Cedrela species; climatic refugia; species distribution models; habitat suitability;

deforestation; ecological biogeography.

Introduction

Climate change has had a significant impact on reducing Andean tree populations and even
on the extinction of endemic species (Tejedor Garavito et al., 2015; Urrutia and Vuille,
2009). Similarly, anthropic activities such as habitat destruction and illegal logging, can
lead to the extinction of threatened species (Pievani, 2014). Climate variability influences
autecological processes and environmental fluctuations (Anderson and Song, 2020). For
example, temperature and precipitation oscillations influence specific wood anatomical
plasticity, phenology, climatic resilience, geographic range, productivity, and disruption of
inter- and intraspecific relationships in tree species (Aratijo and Rahbek, 2006; Fonti et al.,
2010; Piao et al., 2019). Therefore, understanding the fate of tree species in response to
climate change is necessary to provide viable conservation and management strategies for

endangered Andean montane tree species (Urrutia and Vuille, 2009).

Bioclimatic niche modeling shows various applications in this paradigm of climate
change in endangered areas, and researchers highly appreciate its anthropic use (Urrutia
and Vuille, 2009). Andean countries have increasingly sought to align their efforts in
climate change adaptation and mitigation since 2011, with a growing consensus and

demand for synergies (Llambi and Garcés, 2020). The integration of ecological information
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into niche modeling provides a relationship between ecological processes in response to
climate change. Understanding the montane ecological niche and its response to future
climate change will lead to greater recognition and prioritization of efforts in Andean
ecosystems. This knowledge will encourage sustainable resource management, particularly

in fragile ecosystems (Llambi and Garcés, 2020; Urrutia and Vuille, 2009).

Andean Montane Forests (AMFs; Bush et al., 2007) constitute a significant part of the
tropical Andes biodiversity hotspot (Myers et al., 2000). AMFs provide a stable balance
within communities of organisms in which genetic, species and ecosystem diversity remain
subject to gradual changes through natural succession, high species richness, and ecosystem
services to both the high- and lowland moisture areas of the Andes (Cuesta et al., 2009;
Mpyers et al., 2000). Forest fires, tree cover loss, and climate change have influenced major
changes in montane ecosystems over the past century, such as ecosystem fragmentation and
loss of diversity (Feeley and Silman, 2010; Gaglio et al., 2017; Rolando et al., 2017).
Hence, establishing sustainable management policies for threatened Andean Mountain tree
species is of multinational interest. Therefore, it is important to understand how climate

change affects these species.

The arboreal genus Cedrela L. (Meliaceae) is a protected tree species (CITES and
IUCN; Pennington and Muellner, 2010) comprising 19 species widely distributed from
North America to the South American Mountains, where it inhabits steep ravines (Kdcke et
al., 2015; Muellner et al., 2010; Palacios et al., 2019; Pennington and Muellner, 2010).
Cedrela angustifolia Moc. & Sessé ex DC. (VU; as indicated by Hills (2021) on the IUCN
Red List; www.iucnredlist.org/) is ecologically important as a pioneer and codominant

species associated with Oreopanax, Podocarpus, and Weinmania (Pennington and
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Muellner, 2010). Additionally, it plays a significant role in providing essential ecosystem
services, including firewood, timber, particleboards, furniture, flooring veneers, and

railway tires (Pennington and Muellner, 2010; SERFOR, 2020).

The species distribution model (SDM) is an important tool for identifying climatic
refugia in areas with changing environmental variables and abiotic conditions, such as
those of Cedrela species. Based occurrence and environmental data, SDMs are used as
tools to estimate the extent of a species’ range in the future or in the past (Peterson et al.,
2011). Similarly, tropical forests are susceptible to the pressures of logging, deforestation,
and tree cover loss, particularly in regions previously characterized by colder climates
(Gaglio et al., 2017; Sarmiento, 2002). The conversion of forests into agricultural lands,
particularly for livestock and crops such as avocado or granadilla, is an unregulated logging
activity that is often driven by global demands for timber, further exacerbating forest loss

(Bax and Francesconi, 2018; Cuenca et al., 2016).

These alterations are intrinsically linked to the acceleration of atmospheric CO2
concentrations on both regional and global scales, mainly caused by anthropogenic sources,
in particular the burning of fossil fuels and deforestation (Friedlingstein et al., 1999). At the
physiological level, elevated COz levels further influence climatic conditions by
modulating transpiration rates, this is attributed to enhanced water use efficiency, which
subsequently diminishes stomatal conductance while promoting plant growth (Kleidon et
al., 2000; Longobardi et al., 2016). It is therefore necessary to understand how climate

change and forest cover loss will affect the distribution of C. angustifolia.

In this study, we hypothesized that the most suitable habitats for C. angustifolia would

be negatively affected by climate change and tree cover loss by 2100; thus, enhancing the
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effectiveness of protected areas and suitable sites for restoration efforts and ecological
refugia to maintain viable populations in South America. The findings of this study may be
used to establish natural protected areas and conservation-based areas for C. angustifolia

and provide information relevant to the listing status in the [UCN Red List category.

Our objectives were to (1) identify the environmental variables responsible for the
present and future potential distribution of C. angustifolia; (2) assess the climate variation
and tree cover loss effect on C. angustifolia by comparing the present and future potential
distributions (2011-2040, 2041-2070, and 2071-2100; SSP 3-7.0, and 5-8.5 scenarios); (3)
assess the effect of tree cover loss on the potential distribution of C. angustifolia in present
and future scenarios up to 2100; and (4) determine the potential refugia for climate change
and conservation of C. angustifolia, relating natural protected areas (NPAs), land use
change, present, and future potential distribution data. This study aimed to evaluate the
response of Cedrela angustifolia to climate pressure and to provide recommendations and
conservation strategies that will significantly impact countries in mega-diverse tropical

regions.

1. Materials and Methods

1.1. Study area

The study area comprises the Andean Montane Forest region (Ecuador, Peru, Bolivia, and
Argentina; Fig. 1), with elevations ranging from 1,800 to 3,300 m asl (Pennington and
Muellner, 2010). The study was delimited by Tungurahua Province, Ecuador, in the north
(1°S), and Catamarca Province, Argentina, in the south (28° S), at approximately 3-900

km.
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1.2. Data sampling

Geographic distribution data for Cedrela angustifolia were obtained from the Tropicos
database (https://tropicos.org/home; Missouri Botanical Garden, 2022) and the Global
Biodiversity Information Facility database (https://gbif.org/; GBIF secretariat, 2022), and
scientific publications (i.e., Inza et al., 2012; Paredes-Villanueva et al., 2016; Pennington
and Muellner, 2010; Wong and Reynel, 2021) ebtained-310 occurrences. Additionally, we
checked and excluded outlier georeferenced points (records outside the study range and
habitat), and herbarium accessions with missing location data. Furthermore, we used
geographic distances to narrow our datasets while accounting for environmental variation.
Based on the environmental heterogeneity of the ecosystems in which C. angustifolia
occurs, such as montane forests and inter-Andean valleys, we selected differential distances
greater than ~1 km to filter the sites and avoid duplicate records of the species. In total, 104
records were retained from Ecuador, Peru, Bolivia, and Argentina (89 GBIF and

Tropicos.org and 15 scientific studies) (Fig. 2).
1.3. Data preparation

We used 37 environmental variables: 22 bioclimatic variables for present and future
conditions, elevation, 10 soil raster layers, one NDVI raster and three forest change data
rasters (Table 1). Under the assumption that it influences the climatic change scenario
(Peterson et al., 2011), the climate variation of Cedrela angustifolia is related to its present
and future distributions (2040, 2070, and 2100 mean periods). We obtained raster-model
bioclimatic data from the CHELSA database, with a spatial resolution of 1.0 km?

(https://chelsa-climate.org/; Karger et al., 2022) for present and future scenarios. In the

present and future models, we consider 19 raster-model bioclimatic variables and potential

8
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evapotranspiration (PET), climate moisture index (CMI), and near surface relative humidity

(HURS) (Table 1).

To evaluate the projection of bioclimatic variables to three different periods in the
future, we used the Coupled Model Intercomparison Project Phase 6 (CMIP6), which is
part of the Working Group on Coupled Modeling (WGCM) (Eyring et al., 2016). We
considered the model projections because the models are given a common set of future
concentrations of greenhouse gases, aerosols and other climate forcing to project what

might happen in the future (Eyring et al., 2016).

We selected two future climate scenarios (shared socioeconomic pathways; SSP 3-
7.0 and SSP 5-8.5) for the five models to derive future climate projections (Table S1). We
assume that SSP 3-7.0 is a less chaotic scenario because it represents a smaller reduction
than SSP 5-8.5 in global greenhouse gas concentrations by 2100, which is the highest
carbon emissions scenario and the most pessimistic view of the future. We considered a

digital elevation model (DEM) variable (Karger et al., 2022) to assess the elevation effects

(Fig. 2).

In addition, we obtained 11 soil raster layers from SoilGrid (https://soilgrids.org/;

Batjes et al., 2020), with a 250 m spatial resolution. Moreover, we obtained global forest
change data (from 2000 to 2022) from Global Forest Watch, with approximately 30 m per

pixel (https://www.globalforestwatch.org/map/; Hansen et al., 2013). Additionally, we used

the normalized difference vegetation index (NDVI), which indicates vegetation coverage
and spatial distribution of vegetation, calculated as the mean annual NDVI from 2000—
2020, using data provided by Earth Explorer with a 1 km? spatial resolution

(https://earthexplorer.usgs.gov/). Finally, the downloaded soil, topographic, and forest
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change layers were resampled to match the spatial resolution of the bioclimatic layers (1
km?) using the crop function (cropping the layer to the area of the 4 countries), mask
function (creating a new layer from the cropped layer with the same boundaries of the 4
countries) and resample function (projecting the values of the new layer to the same spatial
resolution of the bioclimatic layers) via the raster package (Hijmans, 2023) in R software v.

4.3.1 (R Core Team, 2022).
1.4. Data analysis

We determined the appropriate selection of bioclimatic variables to perform
statistical and ecological parameter analyses of suitable models according to Ames-
Martinez et al. (2022). We selected variables with multicollinearity based on measures such
as principal component analysis (PCA), inflation factor value (VIF), sampling bias, and
pairwise Pearson’s correlation (7), from this preview selection, we selected non-correlated
(Pearson <0.7) variables that made significant contributions and had greater biological
significance, according to the experience of the authors. Our approach involved the use of
the sdm (calibration function; Naimi and Aratjo, 2016), fuzzySim (corSelect function;
Barbosa, 2015), regclass (VIF function; Petrie, 2020), FactoMineR (PCA function; Husson

et al., 2023) and virtualspecies packages (removeCollinearity function; Leroy et al., 2019)
(Fig. 2).

Finally, after the process of variable selection, we selected 16 environmental
variables: isothermality (BIO3), temperature seasonality (BIO4), minimum temperature of
the cold month (BIO6), mean temperature of the warmest quarter (BIO10), precipitation
seasonality (BIO15), precipitation of the warmest quarter (BIO18), precipitation of the
coldest quarter (BIO19), climate moisture index (CMI), altitude (ALT), soil organic carbon

10
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stock (SOCS), organic carbon density (OCD), silt content (SILT), clay content (CC),
deforestation (DEF), forest loss (LF), and NDVI. For tree cover loss analysis, we used the
loss forest raster in some models and other models without this raster to compare forest loss
in present and future scenarios, given that the same current rate of tree cover loss will

continue into the future.

1.5. Modeling and validation

MaxEnt modeling assessment

MaxEnt was used to fit the complex responses to only the occurrence data (Phillips et al.,
2017). We generated bias files using the Gaussian kernel density of sampling localities
tools to increase the weight of presence data points using SDMToolbox in ArcGIS (Brown
et al., 2017). We used noncollinear variables and only occurrence data from MaxEnt v.
3.4.1 implemented in the kuenm package (kuenm_cal and cal eval functions; Cobos et al.,
2019; Phillips et al., 2017) to calibrate the parameter values, evaluate candidate models,
and make future projections. We tested 8,460 candidate models derived from all
combinations of three feature classes (linear, quadratic, and product), five regularization
multipliers (0.25, 0.50, 1.00, 1.50, and 2.00), and 564 sets of environmental variables (in
groups of 6-12 variables). We trained the model sets with 70% of the occurrence data and
evaluated them with the remaining 30%. The potential distribution of the best model was
obtained from the average of 30,000 background points using bootstrap replicates of 500

iterations each and allowed for free model extrapolation.

Finally, we selected the scenario and candidate models from the “best” variable set

using the selected parameters. To reduce the uncertainty, we generated 10 replicate runs of
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cross-validation, the last results are the average of these replicates, and finally, they were

used to build the present and future models (Fig. 2).

Random forest modeling assessment

We used the Random Forest (RF) regression algorithm to model species distributions with
discrimination capacity in the presence and absence of data (Liu et al., 2012). We obtained
10,000 pseudoabsence data points with the geographic distance method and assumed that

any points were located at least 10 km from the presence data to avoid pseudoabsence data

because of dispersal (Evans et al., 2011).

We examined the relative importance of each predictor by employing the
determination coefficient (R?) in conjunction with the mean squared error (MSE). We
implemented a 100-fold cross-validation procedure repeated 10 times to construct the RF
models with default settings. Notably, the number of trees (5000), sets of predictor
variables at each split (564), and minimum size of terminal nodes (50) were key parameters

influencing the performance of the RF models.

The dataset, which encompassed both presence and pseudoabsence data, was
randomly partitioned into ten equal subsets. Our modeling strategy involves training the RF
model on nine of these subsets and validating it on the remaining subset. It is essential to
highlight that we generated 100 RF models to cross-validation model, and the outcomes
were derived by aggregating the results from these models. We used the randomForest
package (randomForest function; Liaw and Wiener, 2022) to generate pseudoabsence data

and RF models (Fig. 2).

1.6. Comprehensive evaluation
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We derived the potential distribution from the best model and assessed the relative
importance of each variable using the average performance evaluation indicators
corresponding to the area under the curve (AUC), the partial receiver operating
characteristic (ROC) curve, the omission rate, the Akaike information criterion corrected
(AICc; as the optimal complexity parameter), the Akaike information criterion (W AICc),
and the Bayesian information criterion (BIC) (Hirzel et al., 2006; Peterson and Soberoén,
2012; Jiménez and Soberon, 2020). The partial ROC curve was used on 50% occurrence
data for bootstrap resampling, 100 iterations, and omission rate error (5%, maximum
permissible omission error) (Cobos et al., 2019). The success rate curve was further used to
assess the performance of the MaxEnt and RF models in predicting the species distribution
for validation of the models (Rahmati et al., 2016). Finally, Schoener’s D index was used to
compare the similarity of the suitable distribution maps between the MaxEnt and RF
models using the ENMTools package. (enmtools.maxent and enmtools.rf function; Warren

et al., 2021).

All distribution maps were converted to binary data (0-1) using a logistic threshold
for the presence of 10% of the data using the lowest distribution probability (Radosavljevic
and Anderson, 2014). The maps were averaged to generate spatial information on the
present and future presence probabilities across all Cedrela species. We followed the
ODMAP protocol for the modeling process (Overview, Data, Model, Assessment, and

Prediction; Table S1; Zurell et al., 2020).

We determined the surface area variation in each climatic model (km?) between the
present and future scenarios (Table 1). The final shapes were obtained using MaxEnt with

maps edited in QGIS v. 3.18.3 (QGIS.org, 2021). We analyzed the mean temperature,
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annual precipitation, and tree loss variation during the present and three future periods
using the ggdist (Kay and Wiernik, 2023), gghalves (Tiedemann, 2022), and ggplot2
packages (ggplot2 function; Wickham et al., 2021). We performed two-way ANOVA and
post hoc Tukey’s test to compare the means using the rstatix package (anova_test and

tukey hsd functions; Kassambara, 2023) (Fig. 2).

1.7. Predicted refuges to climate change

We linked the present and future potential of the Cedrela angustifolia distribution with
predicted refugia to climate change by identifying appropriate grids under the SSP3-7.0 and
SSP5-8.5 scenarios. We used the consensus model between the present and future models,
land cover (Hansen et al., 2013), and protected natural areas (PNA; UNEP-WCMC and
ITUCN, 2023) to recognize and estimate remnant patches outside the PNA. We performed a
spatial distribution bias correction to avoid overadjusting future projections. We included
10,000 bias files and bioclimatic variables to assess potential refuges for climate change
analysis. We implemented a Gaussian Kernel analysis using the kernel function in QGIS
software to avoid sampling bias and identify the greatest potential refuges for climate

change (Fig. 2).

2. Results

2.1. Model evaluation and contribution of predictor variables

All candidates for the MaxEnt and RF models were generated and compared, withonly a
single model of each period and algorithm meeting the criteria of significance, predictive
ability, fitting, and complexity (Table S2). Our results showed that the MaxEnt and RF

models both showed excellent performance, with average AUC ratio values and thresholds,
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which decreased when assessed using the independent testing dataset. Nonetheless, the
Maxent model demonstrated a greater AUC; however, RF displayed a better predictive

performance than Maxent (Table S2).

For the present and future models, the relative contribution of each predictor
variable to the SDMs was assessed by visualizing the percentage contribution and
permutation importance (Table 2). In our analysis of the present and future models, we
identified ten environmental variables as the most important factors for fitting the model.
These variables were precipitation seasonality (BIO15), soil organic carbon stock (SOCS),
normalized difference vegetation index (NDVI), temperature seasonality (BIO4), organic
carbon density (OCD), precipitation of the warmest quarter (BIO18), silt content (SILT),
clay content (CC), loss forest (LF), and isothermality (BIO3). These variables showed a
high percentage contribution to the model for both the present and future scenarios, as well

as for the three periods (Table 2).

2.2. Present potential distribution

The potential distribution area affected by tree cover loss in C. angustifolia was
approximately 13,080 km? (MaxEnt and RF values mean; SD + 671.75 km?), and
Schoener’s D index between the RF model and the MaxEnt model was 0.857. Nevertheless,
without the tree cover loss effect, the total distribution of 16,148.5 km? (+ 847.82 km?) was
16,148.5 km2, and Schoener’s D index was 0.749. Finally, areas in Peru and Bolivia were

suitable for C. angustifolia according to the current records (Fig. 3).

With respect to the tree cover loss effect, the distributions detected were 798 km? (&

59.4 km?) in Ecuador, 1,947 km? (£ 52.33 km?) in Peru, 9,591 km? (£ 579.83 km?) in

15
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Bolivia, and 744 km? (+ 84.85 km?) in Argentina. Without a tree cover loss effect, we
detected 948.5 km? (£ 130.81 km?) in Ecuador, 2,579 km? (+ 487.9 km?) in Peru, 11,400.5

km? (£ 427.79 km?) in Bolivia, and 1,220.5 km? (= 65.90 km?) in Argentina (Fig. 2).

We found that the presence of C. angustifolia probably mainly affected for this
environmental variables: BIO3 at 5.3-6 °C, BIO4 at 20 °C to 31 °C, BIO18 at 100-200
mm, BIO15 at 750-830 mm, SOCS at 0-5%, NDVI at 0.95-1.00 units, OCD at 0-5%, slit at

0-10%, CCF at 0-10%, and LF at 55%.

2.3. Future potential distribution

We detected a decrease in the distribution range of SSP 3-7.0 and 5-8.5 during the three
periods (Fig. 3). For 2040, we estimated an extension equivalent of 8,934 km? (+ 1,131.37
km?, SSP 3-7.0) and 9,094 km? (+ 851.36 km?, SSP 5-8.5), with a Schoener D index of
0.759 (Fig. 4A). Nevertheless, without the tree cover loss effect, we detected 11,424 km? (+
841.46 km?, SSP 3-7.0) and 11,078 km? (+ 744.58 km?, SSP 5-8.5), indicating 29.26% and

31.40% tree cover loss, respectively, with a Schoener D index of 0.786 (Fig. 4B).

During 2070, our models predicted decreases of 29.91% and 30.53% in SSP3-7.0
and SSP5-8.5, respectively, without the tree cover loss effect and 33.93% and 42.32%,
respectively, with the influence of tree cover loss, and Schoener’s D index was 0.846.
Finally, for the 2100 period, the area decreased by 30.43% (SSP 3-7.0) and 33.33% (SSP 5-
8.5) without the tree cover loss effect; however, the tree cover loss effect decreased by
27.40% and 38.47%, respectively, in the total distribution, with a Schoener D index of

0.872 (Fig. 4AB).
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The mean temperatures to 2040 in the SSP 3—7.0 and SSP 5-8.5 scenarios showed
no significant differences among countries (Fig. 5SA-D); however, Argentina and Bolivia
exhibited statistically significant differences during the 2070 . Similarly, both countries
displayed similar mean temperature values (~20.5 °C and ~18.7 °C, respectively) for the
period 2010-2040 (Fig. 5ab). Ecuador and Peru showed similar mean annual temperature
values (~15.2 °C and 16.3 °C, respectively) between the present and 2011-2040 periods
(Fig. 5c, d). In the four countries, 2100 year presented statistically significant differences
compared to the other periods (Fig. 5SA-D). In contrast, the annual precipitation did not

significantly differ among the four periods and countries (Fig. SE-H).

2.4.  Tree cover loss effect in the present and future

The relationships between the predictor and response variables show how tree cover loss
influences model predictions. Thus, we further analyzed how the predicted probability of
species occurrence changed with tree cover loss via the marginal responses of the
probability of presence suitability (Fig. 6A). We found that 30.59% of the total area was the
most suitable habitat without tree cover loss; nevertheless, Peru, Ecuador, and Argentina
showed variations in the increase in tree cover loss area in 2040, 2070, and 2100 (Fig. 6B).
For example, Ecuador and Argentina decreased by 51.25% and 14.08%, respectively, with
the influence of tree cover loss (Fig. 6B) or total distribution, and Bolivia increased by
more than 30% of the area distribution in all periods without tree cover loss. Finally, Peru

and Argentina will decrease by 70% by 2070.

2.5. Potential refuges to climate change
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Our analysis revealed variations in the habitat suitability distribution areas of C.
angustifolia (9,449 km? £ 574 km?) in the four countries. Ecuador (724 km?+ 123 km?),
Peru (1,784 km?+ 193 km?), and Argentina (683 km?+ 76 km?) exhibited high potential for
refuge from climate change; however, Bolivia (6,258 km?+ 456 km?) displayed decreasing
habitat (Fig. 7). Only 24.28% of the current potential distribution is within PAs and is

likely reduced to 25-30% by 2100.

The predictions of the core distribution regions obtained from the MaxEnt and RF
models showed greater heterogeneity and stronger gradients. In addition, our analysis
identified Azuay and Zamora Cinchipe as refugees to Ecuador; Cajamarca, Junin,
Apurimac, and Cusco as refugees to Peru; Cochabamba, Chuquisaca, and Tarija as refugees

to Bolivia; and Salta and Tucuman to Argentina as potential refuges to climate change.

3. Discussion

The impact of climate change and tree cover loss on Andean Montane Forests has been
acknowledged for a considerable period, but the precise influence of climate change on the
distribution of specific pioneer tree species remains unclear (Bax et al., 2021; Balthazar et
al., 2015; Bush et al., 2007). Our findings suggest that the distribution of C. angustifolia

will decrease in the future owing to climate change projections for 2040, 2070, and 2100.
3.1. Potential climate variation

In previous studies, the predictive effectiveness of random forest (RF) and maximum
entropy (MaxEnt) models was systematically evaluated through automated parameter
optimization (Cotrina et al., 2021; Mi et al., 2017; Zhao et al., 2022). While the RF model
typically provides robust and accurate predictions using default configurations (Freeman et
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al., 2015), the MaxEnt model often requires parameter refinement (Feng et al., 2019;
Jiménez and Soberoén, 2020). Therefore, in this investigation, we carefully selected optimal
feature class amalgamations and regularization parameters for MaxEnt and subsequently
compared the predictive ability of the fine-tuned MaxEnt model with that of the RF model.
Consistent with previous literature, both the RF and optimized MaxEnt models exhibited
commendable predictive accuracies; however, the RF model exhibited marginal superiority,
which was evident in both cross-validation and external dataset evaluations. This is
consistent with the findings of Mi et al. (2017) and Cengic¢ et al. (2020), who described the
improved performance of RF over standard MaxEnt configurations in species distribution

prediction.

The distribution of C. angustifolia was influenced by seasonal variations in
precipitation and temperature, and the model performance was excellent (AUC > 0.98),
indicating the efficiency and accuracy of the model (Warren and Seifert, 2011). These
populations exhibit tolerance to colder temperatures and higher humidity and maintain their
evolutionary climatic conditions, as detected by Muellner et al. (2010) and Koecke et al.
(2013). Our analysis suggested that Bolivian montane forests offer more favorable
conditions (81% present model) and ecosystem conservation for C. angustifolia
(Pennington and Muellner, 2010), with more than half of these species recorded within the

all NPAs.
3.2. Effect of future climate change

The distribution patterns of different species are influenced by various ecological and
evolutionary factors that enable them to survive in specific environments within varied
landscapes (Rahbek et al., 2019). Despite this, Tejedor Garavito et al. (2015) argued that
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land-use change, particularly deforestation of tropical montane ecosystems, would be more
detrimental to biodiversity than climate change and could lead to the loss of endemic tree

species worldwide (Feeley and Silman, 2010).

Based on the evaluated scenarios, an increase in mean annual temperature from 4.1
°C to 5 °C in the present temperature record is expected to 2100. This would result in a
significant reduction in suitable habitats in Bolivia (>20.26%) and Argentina (>28.99%).
By 2100, the Cedrela species will not be able to find optimal sites, as the thermal limit is

exceeded (~ 21.8 °C). However, Peru and Ecuador exhibit favorable climatic conditions

that allow C. angustifolia to migrate to warmer areas, which-suggests-that-these-speeies-ean
aceclimate-o-adapt-to-the-envirenment and persist through rapid changes in climate (Pearson,

20006). This confirms the climatic vulnerability of C. angustifolia (Cotrina et al., 2021;
Koecke et al., 2013; Rodriguez-Ramirez et al., 2022). Similar results have been reported for
C. odorata (Sampayo-Maldonado et al., 2023) and other Cedrela species (Cotrina et al.,

2021; Koecke et al., 2013).

We have demonstrated that tree cover loss will have an impact on more than 30% of
the range of C. angustifolia, which is a crucial factor contributing to the reduction in C.
angustifolia in the four countries. If the current rate of deforestation continues or increases,
it will result in a decrease in distribution (Hansen et al., 2013). This could be explained by
the fact that because of the low CO2 absorption that would be generated by the reduction of
trees by 2100, the greenhouse effect will intensify due to the increase in surface
temperature, decreased absorption of solar radiation, and evapotranspiration (Kleidon et al.,
2000; Longobardi et al., 2016). Similarly, tree cover loss increases the risk of soil erosion,

leading to reduced soil fertility and increased sedimentation in the water bodies of these
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forests (Bax and Francesconi, 2018; Cuenca et al., 2016; Tapia-Armijos et al., 2015).
Therefore, the climatic impact of deforestation on AMF weakens the relationship between

atmospheric circulation and the hydrological cycle (Longobardi et al., 2016).

3.3. Potential habitat suitability and refugia

Suitable habitats for C. angustifolia will be maintained in all four countries; however,
habitat suitability will decrease in all countries evaluated in the present and future models.
In Bolivia, there were higher rates of illegal logging and forest fires than in the other three
countries, making it more vulnerable to climate change and less likely to maintain a
suitable habitat for this species (Hansen et al., 2013). In contrast, Ecuador, Peru, and
Argentina exhibited areas with better habitat suitability than the present model, suggesting
that unexplored forests with similar climatic conditions allow the species to adapt through
natural or active restoration (i.e., C. angustifolia plantations in inter-Andean valleys;

SERFOR 2020).

Additionally, their presence increased in NPAs, as described by Pennington and
Muellner (2010). This shows that NPAs function as biodiversity reserves and buffers
against the effects of changing climatic conditions, allowing the formation of refugia and
providing ecological corridors for species to adapt to or migrate over the long term (Cuesta
et al., 2009; Geldmann et al., 2013). In contrast, 75.72% of habitat suitability was detected
outside the NPAs, indicating that it is necessary to develop forest management and
monitoring strategies to protect these forests because they are more susceptible to selective

logging and timber overexploitation, (Cotrina et al., 2021; SERFOR, 2020).

4. Conclusions
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Our study demonstrated that Cedrela angustifolia is susceptible to future climate change,
indicating variations in suitable habitats between Central and South America. Moreover, we
suggest designating a climate sanctuary for Cedrela species that is connected to NPAs to
buffer against land-use transformations. Consequently, it is crucial to collaborate with local
communities residing near forests to protect endangered and vulnerable CITES and [UCN

species, as well as their habitats, both within and outside NPAs.

Finally, why is C. angustifolia ecologically important? Because this tree has several
ecological implications, such as biodiversity support because it provides habitat and food
for various species, its root system helps prevent soil erosion, maintains soil structure and
fertility, and can influence the local microclimate by providing shade and reducing
temperature fluctuations, and its valuable timber can promote sustainable management

practices (Pennington and Muellner, 2010).

Nongovernmental organizations (NGOs), whieh and different environmental legacy
institutions, are recommended to use the findings and boundaries established by the species
distribution model (SDM) both currently and in the future to safeguard and preserve the
species under investigation. Therefore, it is crucial to emphasize the outcomes of our study,
considering the need to initiate conservation efforts for C. angustifolia (as an umbrella
species), including the establishment of new protected areas, habitat restoration, and the

creation of ecological corridors that benefit other related species.

A coordinated effort at the local, national, and international levels is needed to
combat deforestation and climate change in the Andes. The distinctive ecosystems of the
AMF and the well-being of its inhabitants must be preserved through the implementation of

conservation programs, sustainable land-use plans, and climate change mitigation
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initiatives. To ensure the effective regulation of Cedrela logging, development propagation,
and restoration programs, it is crucial to assist local authorities in comprehending the
ecological significance of these practices. Furthermore, we suggest conducting additional
research on other aspects, such as phenology, functional ecology, and spatiotemporal
patterns, to provide a more in-depth understanding of how tree species in the Andean-

Montane forest (AMF) respond to the impacts of climate change and human activities.
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