
1 
 

Climate change and tree cover loss affect on the habitat suitability of Cedrela 1 

angustifolia: Evaluating climate vulnerability and conservation in Andean Montane 2 

Forests 3 

Fressia N. Ames-Martínez1*, Ivan Capcha2, Anthony Guerra2, Janet Inga3, Harold Rusbelth 4 

Quispe-Melgar4,5, Esteban Galeano6, Ernesto C. Rodríguez-Ramírez7 5 

1Laboratorio de Biotecnología y Biología Molecular, Universidad Continental, Av. San 6 

Carlos 1980, Huancayo, Junín, Peru. 7 

2Facultad de Ciencias Forestales y del Ambiente, Universidad Nacional del Centro del 8 

Perú, El Tambo, Huancayo, Junín, Peru. 9 

3Laboratorio de la Anatomía e Identificación de la Madera, Universidad Continental, Av. 10 

San Carlos 1980, Huancayo, Junín, Peru. 11 

4Programa de Ecología y Diversidad, Asociación ANDINUS, Sicaya, Huancayo, Junín, 12 

Peru. 13 

5Facultad de Ciencias de la Salud, Universidad Continental, Av. San Carlos 1980, 14 

Huancayo, Junín, Peru. 15 

6Department of Forestry, College of Forest Resources, Mississippi State University, 16 

Mississippi, United States 17 

7Laboratorio de Dendrocronología, Universidad Continental, Av. San Carlos 1980, 18 

Huancayo, Peru 19 

*Corresponding author: 20 

Fressia N. Ames Martínez 21 

Ellen Quinlan
This is not grammatically correct. Should remove “on” so that the title reads “Climate change and tree cover loss affect the habitat suitability…” 



2 
 

Huancayo, Junin, Peru, CP: 12000 22 

Email address: fames@continental.edu.pe 23 

ORCID 24 

Fressia N. Ames‒Martínez: https://orcid.org/0000-0003-2840-3154 25 

Anthony Guerra: https://orcid.org/0000-0002-9830-8550 26 

Janet Inga: https://orcid.org/0000-0002-2321-8518 27 

Harold R. Quispe Melgar: https://orcid.org/0000-0001-6676-0879 28 

Esteban Galeano: https://orcid.org/0000-0002-8330-8240 29 

Ernesto C. Rodríguez‒Ramírez: https://orcid.org/0000-0001-6206-8615  30 

mailto:fames@continental.edu.pe
https://orcid.org/0000-0001-6206-8615


3 
 

Abstract 31 

Background 32 

Because of illegal logging, habitat fragmentation, and high-value timber, Andean Montane 33 

Forest Cedrela species (such as Cedrela angustifolia) are endangered in Central and South 34 

America. Studying the effects of climate change and tree cover loss on the distribution of 35 

C. angustifolia will help us understand the climatic and ecological sensitivity of this species 36 

and suggest conservation and restoration strategies. 37 

Methods 38 

Using ecological niche modeling with two algorithms (MaxEnt and Random Forest) under 39 

climatic variation approach, we generated 16,920 models with different combinations of 40 

variables and parameters. We identified suitable areas for C. angustifolia trees under 41 

present and future climate scenarios (2040, 2070, and 2100 with SSP 3-7.0 and SSP 5-8.5), 42 

tree cover loss, and variables related to soil and topography. 43 

Results 44 

The potential present distribution was estimated to be 13,080 km2 with tree cover loss and 45 

16,148.5 km2 without tree cover loss, and we demonstrated that from 2040 to 2100, the 46 

species distribution will decrease (from -22.16% to -36.88% with tree cover loss variation). 47 

The current habitat availability and climate change from the two algorithms combined were 48 

estimated to range from -20.28% to -42.36%. Only 24.28% of the current potential 49 

distribution is within PAs and is likely reduced to 25-30% by 2100. The results indicate 50 

that Bolivia displayed greater habitat suitability than did Ecuador, Peru, and Argentina. 51 

Finally, we recommend developing conservation management strategies that consider both 52 

Ellen Quinlan
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protected and unprotected areas, as well as the impact of land-use changes, to improve the 53 

persistence of C. angustifolia in the future. 54 

Keywords 55 

Cedrela species; climatic refugia; species distribution models; habitat suitability; 56 

deforestation; ecological biogeography. 57 

Introduction 58 

Climate change has had a significant impact on reducing Andean tree populations and even 59 

on the extinction of endemic species (Tejedor Garavito et al., 2015; Urrutia and Vuille, 60 

2009). Similarly, anthropic activities such as habitat destruction and illegal logging, can 61 

lead to the extinction of threatened species (Pievani, 2014). Climate variability influences 62 

autecological processes and environmental fluctuations (Anderson and Song, 2020). For 63 

example, temperature and precipitation oscillations influence specific wood anatomical 64 

plasticity, phenology, climatic resilience, geographic range, productivity, and disruption of 65 

inter- and intraspecific relationships in tree species (Araújo and Rahbek, 2006; Fonti et al., 66 

2010; Piao et al., 2019). Therefore, understanding the fate of tree species in response to 67 

climate change is necessary to provide viable conservation and management strategies for 68 

endangered Andean montane tree species (Urrutia and Vuille, 2009). 69 

Bioclimatic niche modeling shows various applications in this paradigm of climate 70 

change in endangered areas, and researchers highly appreciate its anthropic use (Urrutia 71 

and Vuille, 2009). Andean countries have increasingly sought to align their efforts in 72 

climate change adaptation and mitigation since 2011, with a growing consensus and 73 

demand for synergies (Llambí and Garcés, 2020). The integration of ecological information 74 

Ellen Quinlan
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into niche modeling provides a relationship between ecological processes in response to 75 

climate change. Understanding the montane ecological niche and its response to future 76 

climate change will lead to greater recognition and prioritization of efforts in Andean 77 

ecosystems. This knowledge will encourage sustainable resource management, particularly 78 

in fragile ecosystems (Llambí and Garcés, 2020; Urrutia and Vuille, 2009). 79 

Andean Montane Forests (AMFs; Bush et al., 2007) constitute a significant part of the 80 

tropical Andes biodiversity hotspot (Myers et al., 2000). AMFs provide a stable balance 81 

within communities of organisms in which genetic, species and ecosystem diversity remain 82 

subject to gradual changes through natural succession, high species richness, and ecosystem 83 

services to both the high- and lowland moisture areas of the Andes (Cuesta et al., 2009; 84 

Myers et al., 2000). Forest fires, tree cover loss, and climate change have influenced major 85 

changes in montane ecosystems over the past century, such as ecosystem fragmentation and 86 

loss of diversity (Feeley and Silman, 2010; Gaglio et al., 2017; Rolando et al., 2017). 87 

Hence, establishing sustainable management policies for threatened Andean Mountain tree 88 

species is of multinational interest. Therefore, it is important to understand how climate 89 

change affects these species. 90 

The arboreal genus Cedrela L. (Meliaceae) is a protected tree species (CITES and 91 

IUCN; Pennington and Muellner, 2010) comprising 19 species widely distributed from 92 

North America to the South American Mountains, where it inhabits steep ravines (Köcke et 93 

al., 2015; Muellner et al., 2010; Palacios et al., 2019; Pennington and Muellner, 2010). 94 

Cedrela angustifolia Moc. & Sessé ex DC. (VU; as indicated by Hills (2021) on the IUCN 95 

Red List; www.iucnredlist.org/) is ecologically important as a pioneer and codominant 96 

species associated with Oreopanax, Podocarpus, and Weinmania (Pennington and 97 

Ellen Quinlan
This wording is vague/unclear. Can you provide stronger reasoning for incorporating ecological information into niche modeling? 
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Muellner, 2010). Additionally, it plays a significant role in providing essential ecosystem 98 

services, including firewood, timber, particleboards, furniture, flooring veneers, and 99 

railway tires (Pennington and Muellner, 2010; SERFOR, 2020). 100 

The species distribution model (SDM) is an important tool for identifying climatic 101 

refugia in areas with changing environmental variables and abiotic conditions, such as 102 

those of Cedrela species. Based occurrence and environmental data, SDMs are used as 103 

tools to estimate the extent of a species’ range in the future or in the past (Peterson et al., 104 

2011). Similarly, tropical forests are susceptible to the pressures of logging, deforestation, 105 

and tree cover loss, particularly in regions previously characterized by colder climates 106 

(Gaglio et al., 2017; Sarmiento, 2002). The conversion of forests into agricultural lands, 107 

particularly for livestock and crops such as avocado or granadilla, is an unregulated logging 108 

activity that is often driven by global demands for timber, further exacerbating forest loss 109 

(Bax and Francesconi, 2018; Cuenca et al., 2016).  110 

These alterations are intrinsically linked to the acceleration of atmospheric CO2 111 

concentrations on both regional and global scales, mainly caused by anthropogenic sources, 112 

in particular the burning of fossil fuels and deforestation (Friedlingstein et al., 1999). At the 113 

physiological level, elevated CO2 levels further influence climatic conditions by 114 

modulating transpiration rates, this is attributed to enhanced water use efficiency, which 115 

subsequently diminishes stomatal conductance while promoting plant growth (Kleidon et 116 

al., 2000; Longobardi et al., 2016). It is therefore necessary to understand how climate 117 

change and forest cover loss will affect the distribution of C. angustifolia. 118 

In this study, we hypothesized that the most suitable habitats for C. angustifolia would 119 

be negatively affected by climate change and tree cover loss by 2100; thus, enhancing the 120 

Ellen Quinlan
Can you add more here about the role of C. angustifolia in the ecosystem? What are its pollinators? Does it provide any important benefits to animals or indigenous people? Why should we care if it goes extinct other than providing timber products? 
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effectiveness of protected areas and suitable sites for restoration efforts and ecological 121 

refugia to maintain viable populations in South America. The findings of this study may be 122 

used to establish natural protected areas and conservation-based areas for C. angustifolia 123 

and provide information relevant to the listing status in the IUCN Red List category.  124 

Our objectives were to (1) identify the environmental variables responsible for the 125 

present and future potential distribution of C. angustifolia; (2) assess the climate variation 126 

and tree cover loss effect on C. angustifolia by comparing the present and future potential 127 

distributions (2011-2040, 2041-2070, and 2071-2100; SSP 3-7.0, and 5-8.5 scenarios); (3) 128 

assess the effect of tree cover loss on the potential distribution of C. angustifolia in present 129 

and future scenarios up to 2100; and (4) determine the potential refugia for climate change 130 

and conservation of C. angustifolia, relating natural protected areas (NPAs), land use 131 

change, present, and future potential distribution data. This study aimed to evaluate the 132 

response of Cedrela angustifolia to climate pressure and to provide recommendations and 133 

conservation strategies that will significantly impact countries in mega-diverse tropical 134 

regions. 135 

1. Materials and Methods 136 

1.1. Study area 137 

The study area comprises the Andean Montane Forest region (Ecuador, Peru, Bolivia, and 138 

Argentina; Fig. 1), with elevations ranging from 1,800 to 3,300 m asl (Pennington and 139 

Muellner, 2010). The study was delimited by Tungurahua Province, Ecuador, in the north 140 

(1° S), and Catamarca Province, Argentina, in the south (28° S), at approximately 3–900 141 

km. 142 

Ellen Quinlan
I don’t think this sentence about the physiological changes is necessary. I would keep the first and last sentences and integrate them into the paragraph above. 
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1.2. Data sampling 143 

Geographic distribution data for Cedrela angustifolia were obtained from the Tropicos 144 

database (https://tropicos.org/home; Missouri Botanical Garden, 2022) and the Global 145 

Biodiversity Information Facility database (https://gbif.org/; GBIF secretariat, 2022), and 146 

scientific publications (i.e., Inza et al., 2012; Paredes-Villanueva et al., 2016; Pennington 147 

and Muellner, 2010; Wong and Reynel, 2021) obtained 310 occurrences. Additionally, we 148 

checked and excluded outlier georeferenced points (records outside the study range and 149 

habitat), and herbarium accessions with missing location data. Furthermore, we used 150 

geographic distances to narrow our datasets while accounting for environmental variation. 151 

Based on the environmental heterogeneity of the ecosystems in which C. angustifolia 152 

occurs, such as montane forests and inter-Andean valleys, we selected differential distances 153 

greater than ~1 km to filter the sites and avoid duplicate records of the species. In total, 104 154 

records were retained from Ecuador, Peru, Bolivia, and Argentina (89 GBIF and 155 

Tropicos.org and 15 scientific studies) (Fig. 2). 156 

1.3. Data preparation 157 

We used 37 environmental variables: 22 bioclimatic variables for present and future 158 

conditions, elevation, 10 soil raster layers, one NDVI raster and three forest change data 159 

rasters (Table 1). Under the assumption that it influences the climatic change scenario 160 

(Peterson et al., 2011), the climate variation of Cedrela angustifolia is related to its present 161 

and future distributions (2040, 2070, and 2100 mean periods). We obtained raster-model 162 

bioclimatic data from the CHELSA database, with a spatial resolution of 1.0 km2 163 

(https://chelsa-climate.org/; Karger et al., 2022) for present and future scenarios. In the 164 

present and future models, we consider 19 raster-model bioclimatic variables and potential 165 

https://gbif.org/
https://chelsa-climate.org/
Ellen Quinlan
Can you specify here why this elevation range was selected (as you did in your response comments?)? 
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evapotranspiration (PET), climate moisture index (CMI), and near surface relative humidity 166 

(HURS) (Table 1). 167 

To evaluate the projection of bioclimatic variables to three different periods in the 168 

future, we used the Coupled Model Intercomparison Project Phase 6 (CMIP6), which is 169 

part of the Working Group on Coupled Modeling (WGCM) (Eyring et al., 2016).  We 170 

considered the model projections because the models are given a common set of future 171 

concentrations of greenhouse gases, aerosols and other climate forcing to project what 172 

might happen in the future (Eyring et al., 2016). 173 

We selected two future climate scenarios (shared socioeconomic pathways; SSP 3-174 

7.0 and SSP 5-8.5) for the five models to derive future climate projections (Table S1). We 175 

assume that SSP 3-7.0 is a less chaotic scenario because it represents a smaller reduction 176 

than SSP 5-8.5 in global greenhouse gas concentrations by 2100, which is the highest 177 

carbon emissions scenario and the most pessimistic view of the future. We considered a 178 

digital elevation model (DEM) variable (Karger et al., 2022) to assess the elevation effects 179 

(Fig. 2). 180 

In addition, we obtained 11 soil raster layers from SoilGrid (https://soilgrids.org/; 181 

Batjes et al., 2020), with a 250 m spatial resolution. Moreover, we obtained global forest 182 

change data (from 2000 to 2022) from Global Forest Watch, with approximately 30 m per 183 

pixel (https://www.globalforestwatch.org/map/; Hansen et al., 2013). Additionally, we used 184 

the normalized difference vegetation index (NDVI), which indicates vegetation coverage 185 

and spatial distribution of vegetation, calculated as the mean annual NDVI from 2000–186 

2020, using data provided by Earth Explorer with a 1 km2 spatial resolution 187 

(https://earthexplorer.usgs.gov/). Finally, the downloaded soil, topographic, and forest 188 

https://soilgrids.org/
https://www.globalforestwatch.org/map/
Ellen Quinlan
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change layers were resampled to match the spatial resolution of the bioclimatic layers (1 189 

km2) using the crop function (cropping the layer to the area of the 4 countries), mask 190 

function (creating a new layer from the cropped layer with the same boundaries of the 4 191 

countries) and resample function (projecting the values of the new layer to the same spatial 192 

resolution of the bioclimatic layers) via the raster package (Hijmans, 2023) in R software v. 193 

4.3.1 (R Core Team, 2022). 194 

1.4. Data analysis 195 

We determined the appropriate selection of bioclimatic variables to perform 196 

statistical and ecological parameter analyses of suitable models according to Ames-197 

Martínez et al. (2022). We selected variables with multicollinearity based on measures such 198 

as principal component analysis (PCA), inflation factor value (VIF), sampling bias, and 199 

pairwise Pearson’s correlation (r), from this preview selection, we selected non-correlated 200 

(Pearson <0.7) variables that made significant contributions and had greater biological 201 

significance, according to the experience of the authors. Our approach involved the use of 202 

the sdm (calibration function; Naimi and Araújo, 2016), fuzzySim (corSelect function; 203 

Barbosa, 2015), regclass (VIF function; Petrie, 2020), FactoMineR (PCA function; Husson 204 

et al., 2023) and virtualspecies packages (removeCollinearity function; Leroy et al., 2019) 205 

(Fig. 2). 206 

Finally, after the process of variable selection, we selected 16 environmental 207 

variables: isothermality (BIO3), temperature seasonality (BIO4), minimum temperature of 208 

the cold month (BIO6), mean temperature of the warmest quarter (BIO10), precipitation 209 

seasonality (BIO15), precipitation of the warmest quarter (BIO18), precipitation of the 210 

coldest quarter (BIO19), climate moisture index (CMI), altitude (ALT), soil organic carbon 211 
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stock (SOCS), organic carbon density (OCD), silt content (SILT), clay content (CC), 212 

deforestation (DEF), forest loss (LF), and NDVI. For tree cover loss analysis, we used the 213 

loss forest raster in some models and other models without this raster to compare forest loss 214 

in present and future scenarios, given that the same current rate of tree cover loss will 215 

continue into the future. 216 

1.5. Modeling and validation 217 

MaxEnt modeling assessment 218 

MaxEnt was used to fit the complex responses to only the occurrence data (Phillips et al., 219 

2017). We generated bias files using the Gaussian kernel density of sampling localities 220 

tools to increase the weight of presence data points using SDMToolbox in ArcGIS (Brown 221 

et al., 2017). We used noncollinear variables and only occurrence data from MaxEnt v. 222 

3.4.1 implemented in the kuenm package (kuenm_cal and cal_eval functions; Cobos et al., 223 

2019; Phillips et al., 2017) to calibrate the parameter values, evaluate candidate models, 224 

and make future projections. We tested 8,460 candidate models derived from all 225 

combinations of three feature classes (linear, quadratic, and product), five regularization 226 

multipliers (0.25, 0.50, 1.00, 1.50, and 2.00), and 564 sets of environmental variables (in 227 

groups of 6-12 variables). We trained the model sets with 70% of the occurrence data and 228 

evaluated them with the remaining 30%. The potential distribution of the best model was 229 

obtained from the average of 30,000 background points using bootstrap replicates of 500 230 

iterations each and allowed for free model extrapolation. 231 

Finally, we selected the scenario and candidate models from the “best” variable set 232 

using the selected parameters. To reduce the uncertainty, we generated 10 replicate runs of 233 
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cross-validation, the last results are the average of these replicates, and finally, they were 234 

used to build the present and future models (Fig. 2). 235 

Random forest modeling assessment 236 

We used the Random Forest (RF) regression algorithm to model species distributions with 237 

discrimination capacity in the presence and absence of data (Liu et al., 2012). We obtained 238 

10,000 pseudoabsence data points with the geographic distance method and assumed that 239 

any points were located at least 10 km from the presence data to avoid pseudoabsence data 240 

because of dispersal (Evans et al., 2011). 241 

We examined the relative importance of each predictor by employing the 242 

determination coefficient (R²) in conjunction with the mean squared error (MSE). We 243 

implemented a 100-fold cross-validation procedure repeated 10 times to construct the RF 244 

models with default settings. Notably, the number of trees (5000), sets of predictor 245 

variables at each split (564), and minimum size of terminal nodes (50) were key parameters 246 

influencing the performance of the RF models. 247 

The dataset, which encompassed both presence and pseudoabsence data, was 248 

randomly partitioned into ten equal subsets. Our modeling strategy involves training the RF 249 

model on nine of these subsets and validating it on the remaining subset. It is essential to 250 

highlight that we generated 100 RF models to cross-validation model, and the outcomes 251 

were derived by aggregating the results from these models. We used the randomForest 252 

package (randomForest function; Liaw and Wiener, 2022) to generate pseudoabsence data 253 

and RF models (Fig. 2). 254 

1.6. Comprehensive evaluation 255 
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We derived the potential distribution from the best model and assessed the relative 256 

importance of each variable using the average performance evaluation indicators 257 

corresponding to the area under the curve (AUC), the partial receiver operating 258 

characteristic (ROC) curve, the omission rate, the Akaike information criterion corrected 259 

(AICc; as the optimal complexity parameter), the Akaike information criterion (W AICc), 260 

and the Bayesian information criterion (BIC) (Hirzel et al., 2006; Peterson and Soberón, 261 

2012; Jiménez and Soberón, 2020). The partial ROC curve was used on 50% occurrence 262 

data for bootstrap resampling, 100 iterations, and omission rate error (5%, maximum 263 

permissible omission error) (Cobos et al., 2019). The success rate curve was further used to 264 

assess the performance of the MaxEnt and RF models in predicting the species distribution 265 

for validation of the models (Rahmati et al., 2016). Finally, Schoener’s D index was used to 266 

compare the similarity of the suitable distribution maps between the MaxEnt and RF 267 

models using the ENMTools package. (enmtools.maxent and  enmtools.rf function; Warren 268 

et al., 2021). 269 

All distribution maps were converted to binary data (0-1) using a logistic threshold 270 

for the presence of 10% of the data using the lowest distribution probability (Radosavljevic 271 

and Anderson, 2014). The maps were averaged to generate spatial information on the 272 

present and future presence probabilities across all Cedrela species. We followed the 273 

ODMAP protocol for the modeling process (Overview, Data, Model, Assessment, and 274 

Prediction; Table S1; Zurell et al., 2020). 275 

We determined the surface area variation in each climatic model (km2) between the 276 

present and future scenarios (Table 1). The final shapes were obtained using MaxEnt with 277 

maps edited in QGIS v. 3.18.3 (QGIS.org, 2021). We analyzed the mean temperature, 278 
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annual precipitation, and tree loss variation during the present and three future periods 279 

using the ggdist (Kay and Wiernik, 2023), gghalves (Tiedemann, 2022), and ggplot2 280 

packages (ggplot2 function; Wickham et al., 2021). We performed two-way ANOVA and 281 

post hoc Tukey’s test to compare the means using the rstatix package (anova_test and 282 

tukey_hsd functions; Kassambara, 2023) (Fig. 2). 283 

1.7. Predicted refuges to climate change 284 

We linked the present and future potential of the Cedrela angustifolia distribution with 285 

predicted refugia to climate change by identifying appropriate grids under the SSP3-7.0 and 286 

SSP5-8.5 scenarios. We used the consensus model between the present and future models, 287 

land cover (Hansen et al., 2013), and protected natural areas (PNA; UNEP-WCMC and 288 

IUCN, 2023) to recognize and estimate remnant patches outside the PNA. We performed a 289 

spatial distribution bias correction to avoid overadjusting future projections. We included 290 

10,000 bias files and bioclimatic variables to assess potential refuges for climate change 291 

analysis. We implemented a Gaussian Kernel analysis using the kernel function in QGIS 292 

software to avoid sampling bias and identify the greatest potential refuges for climate 293 

change (Fig. 2). 294 

2. Results 295 

2.1. Model evaluation and contribution of predictor variables 296 

All candidates for the MaxEnt and RF models were generated and compared, withonly a 297 

single model of each period and algorithm meeting the criteria of significance, predictive 298 

ability, fitting, and complexity (Table S2). Our results showed that the MaxEnt and RF 299 

models both showed excellent performance, with average AUC ratio values and thresholds, 300 
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which decreased when assessed using the independent testing dataset. Nonetheless, the 301 

Maxent model demonstrated a greater AUC; however, RF displayed a better predictive 302 

performance than Maxent (Table S2). 303 

For the present and future models, the relative contribution of each predictor 304 

variable to the SDMs was assessed by visualizing the percentage contribution and 305 

permutation importance (Table 2). In our analysis of the present and future models, we 306 

identified ten environmental variables as the most important factors for fitting the model. 307 

These variables were precipitation seasonality (BIO15), soil organic carbon stock (SOCS), 308 

normalized difference vegetation index (NDVI), temperature seasonality (BIO4), organic 309 

carbon density (OCD), precipitation of the warmest quarter (BIO18), silt content (SILT), 310 

clay content (CC), loss forest (LF), and isothermality (BIO3). These variables showed a 311 

high percentage contribution to the model for both the present and future scenarios, as well 312 

as for the three periods (Table 2). 313 

2.2. Present potential distribution 314 

The potential distribution area affected by tree cover loss in C. angustifolia was 315 

approximately 13,080 km2 (MaxEnt and RF values mean; SD ± 671.75 km2), and 316 

Schoener’s D index between the RF model and the MaxEnt model was 0.857. Nevertheless, 317 

without the tree cover loss effect, the total distribution of 16,148.5 km2 (± 847.82 km2) was 318 

16,148.5 km2, and Schoener’s D index was 0.749. Finally, areas in Peru and Bolivia were 319 

suitable for C. angustifolia according to the current records (Fig. 3). 320 

With respect to the tree cover loss effect, the distributions detected were 798 km2 (± 321 

59.4 km2) in Ecuador, 1,947 km2 (± 52.33 km2) in Peru, 9,591 km2 (± 579.83 km2) in 322 

Ellen Quinlan
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Bolivia, and 744 km2 (± 84.85 km2) in Argentina. Without a tree cover loss effect, we 323 

detected 948.5 km2 (± 130.81 km2) in Ecuador, 2,579 km2 (± 487.9 km2) in Peru, 11,400.5 324 

km2 (± 427.79 km2) in Bolivia, and 1,220.5 km2 (± 65.90 km2) in Argentina (Fig. 2). 325 

We found that the presence of C. angustifolia probably mainly affected for this 326 

environmental variables: BIO3 at 5.3-6 °C, BIO4 at 20 °C to 31 °C, BIO18 at 100–200 327 

mm, BIO15 at 750-830 mm, SOCS at 0-5%, NDVI at 0.95-1.00 units, OCD at 0-5%, slit at 328 

0-10%, CCF at 0-10%, and LF at 55%. 329 

2.3. Future potential distribution 330 

We detected a decrease in the distribution range of SSP 3-7.0 and 5-8.5 during the three 331 

periods (Fig. 3). For 2040, we estimated an extension equivalent of 8,934 km2 (± 1,131.37 332 

km2, SSP 3-7.0) and 9,094 km2 (± 851.36 km2, SSP 5-8.5), with a Schoener D index of 333 

0.759 (Fig. 4A). Nevertheless, without the tree cover loss effect, we detected 11,424 km2 (± 334 

841.46 km2, SSP 3-7.0) and 11,078 km2 (± 744.58 km2, SSP 5-8.5), indicating 29.26% and 335 

31.40% tree cover loss, respectively, with a Schoener D index of 0.786 (Fig. 4B). 336 

During 2070, our models predicted decreases of 29.91% and 30.53% in SSP3-7.0 337 

and SSP5-8.5, respectively, without the tree cover loss effect and 33.93% and 42.32%, 338 

respectively, with the influence of tree cover loss, and Schoener’s D index was 0.846. 339 

Finally, for the 2100 period, the area decreased by 30.43% (SSP 3-7.0) and 33.33% (SSP 5-340 

8.5) without the tree cover loss effect; however, the tree cover loss effect decreased by 341 

27.40% and 38.47%, respectively, in the total distribution, with a Schoener D index of 342 

0.872 (Fig. 4AB). 343 

Ellen Quinlan
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The mean temperatures to 2040 in the SSP 3–7.0 and SSP 5–8.5 scenarios showed 344 

no significant differences among countries (Fig. 5A-D); however, Argentina and Bolivia 345 

exhibited statistically significant differences during the 2070 . Similarly, both countries 346 

displayed similar mean temperature values (~20.5 °C and ~18.7 °C, respectively) for the 347 

period 2010–2040 (Fig. 5ab). Ecuador and Peru showed similar mean annual temperature 348 

values (~15.2 °C and 16.3 °C, respectively) between the present and 2011–2040 periods 349 

(Fig. 5c, d). In the four countries, 2100 year presented statistically significant differences 350 

compared to the other periods (Fig. 5A-D). In contrast, the annual precipitation did not 351 

significantly differ among the four periods and countries (Fig. 5E-H). 352 

2.4. Tree cover loss effect in the present and future 353 

The relationships between the predictor and response variables show how tree cover loss 354 

influences model predictions. Thus, we further analyzed how the predicted probability of 355 

species occurrence changed with tree cover loss via the marginal responses of the 356 

probability of presence suitability (Fig. 6A). We found that 30.59% of the total area was the 357 

most suitable habitat without tree cover loss; nevertheless, Peru, Ecuador, and Argentina 358 

showed variations in the increase in tree cover loss area in 2040, 2070, and 2100 (Fig. 6B). 359 

For example, Ecuador and Argentina decreased by 51.25% and 14.08%, respectively, with 360 

the influence of tree cover loss (Fig. 6B) or total distribution, and Bolivia increased by 361 

more than 30% of the area distribution in all periods without tree cover loss. Finally, Peru 362 

and Argentina will decrease by 70% by 2070. 363 

2.5. Potential refuges to climate change 364 
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Our analysis revealed variations in the habitat suitability distribution areas of C. 365 

angustifolia (9,449 km2 ± 574 km2) in the four countries. Ecuador (724 km2 ± 123 km2), 366 

Peru (1,784 km2 ± 193 km2), and Argentina (683 km2 ± 76 km2) exhibited high potential for 367 

refuge from climate change; however, Bolivia (6,258 km2 ± 456 km2) displayed decreasing 368 

habitat (Fig. 7). Only 24.28% of the current potential distribution is within PAs and is 369 

likely reduced to 25-30% by 2100. 370 

The predictions of the core distribution regions obtained from the MaxEnt and RF 371 

models showed greater heterogeneity and stronger gradients. In addition, our analysis 372 

identified Azuay and Zamora Cinchipe as refugees to Ecuador; Cajamarca, Junín, 373 

Apurimac, and Cusco as refugees to Peru; Cochabamba, Chuquisaca, and Tarija as refugees 374 

to Bolivia; and Salta and Tucumán to Argentina as potential refuges to climate change. 375 

3. Discussion 376 

The impact of climate change and tree cover loss on Andean Montane Forests has been 377 

acknowledged for a considerable period, but the precise influence of climate change on the 378 

distribution of specific pioneer tree species remains unclear (Bax et al., 2021; Balthazar et 379 

al., 2015; Bush et al., 2007). Our findings suggest that the distribution of C. angustifolia 380 

will decrease in the future owing to climate change projections for 2040, 2070, and 2100.  381 

3.1. Potential climate variation 382 

In previous studies, the predictive effectiveness of random forest (RF) and maximum 383 

entropy (MaxEnt) models was systematically evaluated through automated parameter 384 

optimization (Cotrina et al., 2021; Mi et al., 2017; Zhao et al., 2022). While the RF model 385 

typically provides robust and accurate predictions using default configurations (Freeman et 386 



19 
 

al., 2015), the MaxEnt model often requires parameter refinement (Feng et al., 2019; 387 

Jiménez and Soberón, 2020). Therefore, in this investigation, we carefully selected optimal 388 

feature class amalgamations and regularization parameters for MaxEnt and subsequently 389 

compared the predictive ability of the fine-tuned MaxEnt model with that of the RF model. 390 

Consistent with previous literature, both the RF and optimized MaxEnt models exhibited 391 

commendable predictive accuracies; however, the RF model exhibited marginal superiority, 392 

which was evident in both cross-validation and external dataset evaluations. This is 393 

consistent with the findings of Mi et al. (2017) and Čengić et al. (2020), who described the 394 

improved performance of RF over standard MaxEnt configurations in species distribution 395 

prediction. 396 

The distribution of C. angustifolia was influenced by seasonal variations in 397 

precipitation and temperature, and the model performance was excellent (AUC > 0.98), 398 

indicating the efficiency and accuracy of the model (Warren and Seifert, 2011). These 399 

populations exhibit tolerance to colder temperatures and higher humidity and maintain their 400 

evolutionary climatic conditions, as detected by Muellner et al. (2010) and Koecke et al. 401 

(2013). Our analysis suggested that Bolivian montane forests offer more favorable 402 

conditions (81% present model) and ecosystem conservation for C. angustifolia 403 

(Pennington and Muellner, 2010), with more than half of these species recorded within the 404 

all NPAs. 405 

3.2. Effect of future climate change 406 

The distribution patterns of different species are influenced by various ecological and 407 

evolutionary factors that enable them to survive in specific environments within varied 408 

landscapes (Rahbek et al., 2019). Despite this, Tejedor Garavito et al. (2015) argued that 409 
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land-use change, particularly deforestation of tropical montane ecosystems, would be more 410 

detrimental to biodiversity than climate change and could lead to the loss of endemic tree 411 

species worldwide (Feeley and Silman, 2010). 412 

Based on the evaluated scenarios, an increase in mean annual temperature from 4.1 413 

°C to 5 °C in the present temperature record is expected to 2100. This would result in a 414 

significant reduction in suitable habitats in Bolivia (>20.26%) and Argentina (>28.99%). 415 

By 2100, the Cedrela species will not be able to find optimal sites, as the thermal limit is 416 

exceeded (~ 21.8 °C). However, Peru and Ecuador exhibit favorable climatic conditions 417 

that allow C. angustifolia to migrate to warmer areas, which suggests that these species can 418 

acclimate o adapt to the environment and persist through rapid changes in climate (Pearson, 419 

2006). This confirms the climatic vulnerability of C. angustifolia (Cotrina et al., 2021; 420 

Koecke et al., 2013; Rodríguez-Ramírez et al., 2022). Similar results have been reported for 421 

C. odorata (Sampayo-Maldonado et al., 2023) and other Cedrela species (Cotrina et al., 422 

2021; Koecke et al., 2013). 423 

We have demonstrated that tree cover loss will have an impact on more than 30% of 424 

the range of C. angustifolia, which is a crucial factor contributing to the reduction in C. 425 

angustifolia in the four countries. If the current rate of deforestation continues or increases, 426 

it will result in a decrease in distribution (Hansen et al., 2013). This could be explained by 427 

the fact that because of the low CO2 absorption that would be generated by the reduction of 428 

trees by 2100, the greenhouse effect will intensify due to the increase in surface 429 

temperature, decreased absorption of solar radiation, and evapotranspiration (Kleidon et al., 430 

2000; Longobardi et al., 2016). Similarly, tree cover loss increases the risk of soil erosion, 431 

leading to reduced soil fertility and increased sedimentation in the water bodies of these 432 
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forests (Bax and Francesconi, 2018; Cuenca et al., 2016; Tapia-Armijos et al., 2015). 433 

Therefore, the climatic impact of deforestation on AMF weakens the relationship between 434 

atmospheric circulation and the hydrological cycle (Longobardi et al., 2016). 435 

3.3. Potential habitat suitability and refugia 436 

Suitable habitats for C. angustifolia will be maintained in all four countries; however, 437 

habitat suitability will decrease in all countries evaluated in the present and future models. 438 

In Bolivia, there were higher rates of illegal logging and forest fires than in the other three 439 

countries, making it more vulnerable to climate change and less likely to maintain a 440 

suitable habitat for this species (Hansen et al., 2013). In contrast, Ecuador, Peru, and 441 

Argentina exhibited areas with better habitat suitability than the present model, suggesting 442 

that unexplored forests with similar climatic conditions allow the species to adapt through 443 

natural or active restoration (i.e., C. angustifolia plantations in inter-Andean valleys; 444 

SERFOR 2020). 445 

Additionally, their presence increased in NPAs, as described by Pennington and 446 

Muellner (2010). This shows that NPAs function as biodiversity reserves and buffers 447 

against the effects of changing climatic conditions, allowing the formation of refugia and 448 

providing ecological corridors for species to adapt to or migrate over the long term (Cuesta 449 

et al., 2009; Geldmann et al., 2013). In contrast, 75.72% of habitat suitability was detected 450 

outside the NPAs, indicating that it is necessary to develop forest management and 451 

monitoring strategies to protect these forests because they are more susceptible to selective 452 

logging and timber overexploitation, (Cotrina et al., 2021; SERFOR, 2020). 453 

4. Conclusions 454 
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Our study demonstrated that Cedrela angustifolia is susceptible to future climate change, 455 

indicating variations in suitable habitats between Central and South America. Moreover, we 456 

suggest designating a climate sanctuary for Cedrela species that is connected to NPAs to 457 

buffer against land-use transformations. Consequently, it is crucial to collaborate with local 458 

communities residing near forests to protect endangered and vulnerable CITES and IUCN 459 

species, as well as their habitats, both within and outside NPAs. 460 

 Finally, why is C. angustifolia ecologically important? Because this tree has several 461 

ecological implications, such as biodiversity support because it provides habitat and food 462 

for various species, its root system helps prevent soil erosion, maintains soil structure and 463 

fertility, and can influence the local microclimate by providing shade and reducing 464 

temperature fluctuations, and its valuable timber can promote sustainable management 465 

practices (Pennington and Muellner, 2010). 466 

Nongovernmental organizations (NGOs), which and different environmental legacy 467 

institutions, are recommended to use the findings and boundaries established by the species 468 

distribution model (SDM) both currently and in the future to safeguard and preserve the 469 

species under investigation. Therefore, it is crucial to emphasize the outcomes of our study, 470 

considering the need to initiate conservation efforts for C. angustifolia (as an umbrella 471 

species), including the establishment of new protected areas, habitat restoration, and the 472 

creation of ecological corridors that benefit other related species. 473 

A coordinated effort at the local, national, and international levels is needed to 474 

combat deforestation and climate change in the Andes. The distinctive ecosystems of the 475 

AMF and the well-being of its inhabitants must be preserved through the implementation of 476 

conservation programs, sustainable land-use plans, and climate change mitigation 477 
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initiatives. To ensure the effective regulation of Cedrela logging, development propagation, 478 

and restoration programs, it is crucial to assist local authorities in comprehending the 479 

ecological significance of these practices. Furthermore, we suggest conducting additional 480 

research on other aspects, such as phenology, functional ecology, and spatiotemporal 481 

patterns, to provide a more in-depth understanding of how tree species in the Andean-482 

Montane forest (AMF) respond to the impacts of climate change and human activities. 483 
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