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ABSTRACT
Background. Because of illegal logging, habitat fragmentation, and high value timber
Andean montane forest Cedrela species (such as Cedrela angustifolia), is endangered
in Central and South America. Studying the effects of climate change and tree cover
loss on the distribution of C. angustifolia will help us to understand the climatic and
ecological sensitivity of this species and suggest conservation and restoration strategies.
Methods. Using ecological niche modeling with two algorithms (maximum entropy
(MaxEnt) and Random Forest) under the ecological niche conservatism approach,
we generated 16,920 models with different combinations of variables and parameters.
We identified suitable areas for C. angustifolia trees under present and future climate
scenarios (2040, 2070, and 2100 with SSP 3-7.0 and SSP 5-8.5), tree cover loss, and
variables linked to soil and topography.
Results. Our results demonstrated 10 environmental variables with high percentage
contributions and permutation importance; for example, precipitation seasonality
exhibited the highest contribution to the current and future distribution of Cedrela
angustifolia. The potential present distribution was estimated as 13,080 km2 with tree
cover loss and 16,148.5 km2 without tree cover loss. From 2040 to 2100 the species
distribution will decrease (from 22.16% to 36.88% with tree cover loss variation). The
results indicated that Bolivia displayed higher habitat suitability than Ecuador, Peru,
andArgentina. Finally, we recommend developing conservationmanagement strategies
that consider both protected and unprotected areas as well as the impact of land-use
changes to improve the persistence of C. angustifolia in the future.
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INTRODUCTION
Climate change displays a significant impact on the decline of Andean tree populations, and
even on the extinction of range-restricted species (Tejedor Garavito et al., 2015; Urrutia
& Vuille, 2009). Likewise, anthropic activities such as habitat destruction and illegal
logging can lead to the extinction of threatened species (Pievani, 2014). Climate variability
influences autecological processes and environmental fluctuations (Anderson & Song,
2020). For example, variations in temperature and precipitation affect the wood anatomical
plasticity, phenology, climatic resilience, geographic range, productivity, and disruption of
inter- and intraspecific relationships (Araújo & Rahbek, 2006; Fonti et al., 2010; Piao et al.,
2019). Therefore, understanding the fate of tree species in response to climate change is
essential for formulating effective strategies to acclimate or mitigate the impacts of climate
change on both natural and anthropic activities (Urrutia & Vuille, 2009).

Bioclimatic niche modeling shows various applications in the paradigm of climate
change in vulnerable areas, and researchers appreciate its anthropic use (Urrutia & Vuille,
2009). The incorporation of ecological data into niche modeling highlights the links
between ecological processes and climate change dynamics. A thorough understanding
of the montane ecological niche, and its adaptive responses to projected climate change
scenarios will improve the identification and prioritization of conservation strategies within
Andean ecosystems. This will encourage sustainable resource management, particularly in
fragile ecosystems (Llambí & Garcés, 2020; Urrutia & Vuille, 2009).

Andean montane forests (AMFs; Bush, Hanselman & Hooghiemstra, 2007) constitute
a significant part of the tropical Andean biodiversity hotspot (Myers et al., 2000). AMFs
provide a stable balance within the community of organisms in which genetic, species
and ecosystem diversity remain subject to gradual change through natural succession,
high species richness, and ecosystem services to both the high- and low moisture areas
of the Andes (Cuesta, Peralvo & Valarezo, 2009; Myers et al., 2000). Forest fires, tree cover
loss, and climate change have influenced major changes in montane ecosystems over the
last century, including ecosystem fragmentation and loss of diversity (Feeley & Silman,
2010; Gaglio et al., 2017; Rolando et al., 2017). Hence, the establishment of sustainable
management strategies for threatened AMF tree species is of multinational interest. It is
therefore important to understand the effects of climate change on these species.

The arboreal genus Cedrela L. (Meliaceae) is a protected tree species (Convention
on International Trade in Endangered Species (CITES) and International Union for
Conservation of Nature (IUCN); Pennington & Muellner, 2010), comprising 19 species
widely distributed from North America to the tropical mountains of South America,
where it inhabits steep ravines (Köcke et al., 2015; Muellner et al., 2010; Palacios, Santiana
& Iglesias, 2019; Pennington & Muellner, 2010). Cedrela angustifolia Moc. & Sessé ex DC.
(VU; as indicated by Hills (2021) in the IUCN Red List; http://www.iucnredlist.org/). This

Ames-Martínez et al. (2025), PeerJ, DOI 10.7717/peerj.18799 2/26

https://peerj.com
http://www.iucnredlist.org/
http://dx.doi.org/10.7717/peerj.18799


species is ecologically important as it is a pioneer and co-dominant species associated with
Oreopanax, Podocarpus, and Weinmania (Pennington & Muellner, 2010). Additionally,
they play a key role in providing essential ecosystem services, including firewood, timber,
particle boards, furniture, flooring veneer, and railway tires (Pennington & Muellner, 2010;
SERFOR, 2020).

C. angustifolia is a pioneer species, that thrives in disturbed areas and contributes to
AMF regeneration by providing shade and habitat for other plants, fungi and animals
(Reynel & Pennington, 1989). Likewise, these trees enhance biodiversity by supporting
various organisms within tropical and subtropical ecosystems, and the flowers are visited
by small bees and butterflies, although it is not yet clear whether these insects are legitimate
pollinators, and the seeds are dispersed by the wind (SERFOR, 2020). Nevertheless, their
populations are threatened by overexploitation and habitat loss, and conservation efforts
are needed. Finally, human communities that rely on C. angustifolia for construction and
furniture face reduced income because of dwindling supplies, as overexploitation has
resulted in fewer mature trees available for harvest (Reynel & Pennington, 1989; SERFOR,
2020).

Species distribution models (SDM) are an essential tool for identifying climatic refugia
in areas with changing abiotic conditions, which is crucial for understanding the species’
ecological niches and identifying potential habitats, especially in the context of changing
environments. Using occurrence and environmental data, they frequently used SDMs as
tools to estimate the extent of a species’ range in the future or past (Peterson et al., 2011).
Likewise, tropical forests are vulnerable to logging, deforestation, and loss of tree cover,
particularly in regions previously characterized by colder climates (Gaglio et al., 2017;
Sarmiento, 2002).

Conversion of forests to agricultural land, particularly for livestock and avocado or
granadilla crops, is a poorly regulated logging activity, often driven by global demand for
timber, which further exacerbates forest loss (Bax & Francesconi, 2018; Cuenca, Arriagada
& Echeverría, 2016). These changes are linked to the acceleration of atmospheric CO2

concentrations due to changes in energy, mass and momentum exchange (Friedlingstein
et al., 1999). Therefore, it is necessary to understand how climate change and forest cover
loss affect the distribution of C. angustifolia.

In this study, we hypothesized that the most suitable habitat for C. angustifolia would be
negatively affected by climate change and tree cover loss by 2100. Therefore, it is necessary
to determine the effectiveness of protected areas and suitable sites for restoration efforts
and ecological refugia tomaintain viable populations in South America. The findings of this
study can be used to establish natural reserves and conservation areas for C. angustifolia
and to provide information relevant to IUCN Red List status. Our main aims were to:
(1) identify the environmental variables responsible for the present and future potential
distribution of C. angustifolia; (2) assess the effect of climate sensitivity and tree cover loss
on C. angustifolia by comparing the present and future potential distribution; (3) evaluate
the effect of tree cover loss on the potential distribution of C. angustifolia in present and
future scenarios up to 2100; and (4) determine the potential refugia for climate change and
conservation of C. angustifolia, relating natural protected areas (NPAs), land use change,
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Figure 1 Study area for Cedrela angustifolia climate sensitivity analysis in the Andeanmontane
forests. (A) Current distribution of C. angustifolia forest in Ecuador, Peru, Bolivia, and Argentina
(realized by Fressia Nathalie Ames Martínez); (B) C. angustifolia dasometric features: 1= tree, 2= leaves,
3= fruit; and (C) tree cover loss of this species categorized by country, corresponding to the year 2021
(Hansen et al., 2013; Harris et al., 2021). Photos by Fressia Nathalie Ames Martínez and base map for
countries was obtained from DIVA-GIS (2017).

Full-size DOI: 10.7717/peerj.18799/fig-1

present, and future potential distribution data. This study aimed to evaluate the response
of C. angustifolia to climate pressures and to provide recommendations and conservation
strategies that will have significant impact on countries in a mega-diverse tropical region.

MATERIAL AND METHODS
Study area
The study area covered the Andean montane forest region (Ecuador, Peru, Bolivia, and
Argentina; Fig. 1), with elevations ranging from ≈1,800 to 3,300 m asl, as recorded by
Pennington & Muellner (2010). The study was delimited by Tungurahua Province, Ecuador,
in the north (1◦S), and Catamarca Province, Argentina, in the south (28◦S). The Servicio
Nacional Forestal y de Fauna Silvestre-SERFOR approved the research outside Protected
Natural Areas through the General Management Resolution RDG 007-2020-MINAGRI-
SERFOR-DGGSPFFS.
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Data sampling
We obtained occurrence data for Cedrela angustifolia from the Tropicos database
(https://tropicos.org/home; Missouri Botanical Garden, 2022), the Global Biodiversity
Information Facility database (https://gbif.org/; GBIF Secretariat, 2022), and scientific
publications (i.e., Inza et al., 2012; Paredes-Villanueva, López & Navarro Cerrillo, 2016;
Pennington & Muellner, 2010;Wong & Reynel, 2021) totaling 310 occurrences. In addition,
we checked and excluded incorrectly georeferenced points, outliers and herbarium
accessions with missing location data. We also used geographical distances to narrow our
datasets. We clustered occurrences to a grid size of ∼one km2 based on the environmental
heterogeneity of the ecosystems in which C. angustifolia occurs, such as montane forests
and inter-Andean valleys, to filter out closely duplicated records. Finally, 104 records were
obtained from Ecuador, Peru, Bolivia, and Argentina (89 GBIF and Tropicos.org and 15
scientific studies).

Data preparation
We used 39 environmental variables: 22 bioclimatic variables for the present and future
periods, elevation, 11 soil raster layers, one NDVI raster, and four forest change data
rasters (Table S1). Under the assumption that it influences niche conservatism (Peterson
et al., 2011), the climate sensitivity of C. angustifolia is related to its present and future
distributions (2011–2040, 2041–2070, and 2071–2100 years). We obtained raster model
bioclimatic data from the CHELSA database with a spatial resolution of 1.0 km2

(https://chelsa-climate.org/; Karger et al., 2022) for the present and future periods. In
the present and future models, we included 19 raster model bioclimatic variables and
potential evapotranspiration (PET), climate moisture index (CMI), and near-surface
relative humidity (HURS) (Table 1).

We used ‘Coupled Model Intercomparison Project Phase 6’ (CMIP6), which is part of
the ‘Working Group on Coupled Modelling’ (WGCM), to assess projections of bioclimatic
variables to three different times in the future (Eyring et al., 2016). We considered the
model projections because the models are given a common set of future concentrations of
greenhouse gases, aerosols, and other climate forcing to project what might happen in the
future (Eyring et al., 2016).

We selected two future climate scenarios (shared socioeconomic pathways; SSP 3-7.0
and 5-8.5) for the five models to derive future climate projections (Table S1). We assume
that SSP 3-7.0 is a less chaotic scenario because it represents a smaller reduction in
global greenhouse gas concentrations by 2100 than SSP 5-8.5, which is the highest carbon
emissions scenario and the most pessimistic view of the future. We considered a digital
elevation model (DEM) variable (Karger et al., 2022) to assess the elevation effects.

In addition, we obtained 11 soil raster layers from SoilGrid (https://soilgrids.org/;
Batjes, Ribeiro & Van Oostrum, 2020) with a spatial resolution of 250 m. Moreover, we
obtained global forest change data (land cover, tree cover loss, loss and gain of forest raster
layers from 2000 to 2022) from Global Forest Watch, with approximately 30 m per pixel
(https://www.globalforestwatch.org/map/; Hansen et al., 2013). Furthermore, we used the
Normalized Difference Vegetation Index (NDVI), which indicates the vegetation coverage
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Table 1 Information about the all environmental variables of present and future models. The table shows the type variables, time, model names, spatial resolutions,
periods, and variables, literature sources. The bold type face indicates that they are selected for the ensemble model.

Type Time Model name Spatial
resolution

Period Variables Source

BIO1 Annual mean temperature
Present Present 1980–2010

BIO2 Mean diurnal range
BIO3 Isothermality
BIO4 Temperature seasonality
BIO5 Max temperature of warmest month

GFDL-ESM4

BIO6 Min temperature of coldest month
BIO7 Temperature annual range
BIO8 Mean Temperature of wettest quarter
BIO9 Mean temperature of driest quarter

IPSL-CM6A-
LR

BIO10 Mean temperature of warmest quarter
BIO11 Mean temperature of coldest quarter
BIO12 Annual precipitation
BIO13 Precipitation of wettest month

MPI-ESM1-2-
HR

BIO14 Precipitation of driest month
BIO15 Precipitation seasonality
BIO16 Precipitation of wettest quarter
BIO17 Precipitation of driest quarter

MRI-ESM2-0

BIO18 Precipitation of warmest quarter
BIO19 Precipitation of coldest quarter
PET potential evapotranspiration
CMI climate moisture index

Climatic

HURS near surface relative humidity
Topographic

Future (SSP 3-7.0
and 5-8.5 scenar-
ios)

UKESM1-0-LL

1 km2
2011–2040
2041–2070
2071–2100

ALT Altitude

CHELSA (Karger et
al., 2022)

(continued on next page)
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Table 1 (continued)

Type Time Model name Spatial
resolution

Period Variables Source

BD Bulk density
CEC Cation exchange capacity
CC Clay content
CF Coarse Fragment
N Nitrogen
OCD Organic carbon density
PH pH water
S Sand
SILT Silt
SOC Soil organic carbon

Edaphic Soil 250 m 2000–2022

SOCS Soil organic carbon stock

Batjes, Ribeiro &
Van Oostrum (2020)

LC Land cover
TCL Tree cover loss
LF Forest loss

Tree forest
change

Global forest
change 30 m 2000–2022

GF Gain forest

Hansen et al. (2013)

Vegetal

Present

NDVI 1 km2 2000–2022 NDVI Normalized Difference Vegetation Index Earth explorer
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and spatial distribution of vegetation, calculated as the annual mean NDVI for 2000–2020,
using Earth Explorer data with one km2 spatial resolution (https://earthexplorer.usgs.gov/).

For present and future models, we assumed that the forest loss, soil and NDVI layers
were constant to determine the climate effect on vegetation loss and soil characteristics.
Finally, we used the resample function so that all environmental variables had a resolution
of ∼one km2, so we used the bioclimatic variables as reference values (Y) and the soil,
topography, and forest change layers as the layers to be resampled (X) considering a bilinear
interpolation, which were included in the raster package (Hijmans, 2023) in R software v.
4.3.1 (R Core Team, 2022).

Data analysis
We determined the appropriate selection of environmental variables to perform statistical
and ecological parameter analyses of suitable models, according to Ames-Martínez et al.
(2022) (Fig. 2). We selected variables with multicollinearity based on measures, such as
principal component analysis (PCA), to identify climatic variables potentially important in
the geographic distribution of C. angustifolia. We utilized the entire environmental matrix
and we selected the variables that were present in the first two principal components
(Estrada-Peña et al., 2013) with eigenvalues > 1 and percentage of variance explained
53% and 31% of the variation respectively, for a total of 84%. In addition, we assessed
the collinearity of the covariates with the variance inflation factor (VIF) in the pre-
selected matrix of the PCA analysis, we sequentially excluded the one with the greatest VIF
sequentially until all remaining predictors hadVIFs < 10 (Cobos et al., 2019a). Furthermore,
we selected variables with pairwise Pearson’s correlation < 0.7 from the VIF analysis matrix
to be used for the species distribution model. Our approach involves the use of sdm
(calibration function; Naimi & Araújo, 2016), fuzzySim (corSelect function; Barbosa, 2015),
regclass (VIF function; Petrie, 2020), FactoMineR (PCA function; Husson et al., 2023), and
virtual species packages (removeCollinearity function; Leroy et al., 2019).

Finally, after variable selection, we selected 16 environmental variables: isothermality
(BIO3), temperature seasonality (BIO4), minimum temperature of the coldest month
(BIO6), mean temperature of the warmest quarter (BIO10), precipitation seasonality
(BIO15), precipitation of the warmest quarter (BIO18), precipitation of the coldest quarter
(BIO19), climate moisture index (CMI), altitude (ALT), soil organic carbon stock (SOCS),
organic carbon density (OCD), silt content (SILT), clay content (CC), deforestation (DEF),
forest loss (LF), and NDVI. For the analysis of tree cover loss, we used the forest loss raster
in some models and other models without this raster to compare forest loss in the present
and future periods, assuming that the same current rate of forest loss will continue into the
future.

Modeling and validation
Assessment of MaxEnt modeling
Maximum entropy (MaxEnt) was used to fit the complex responses to the occurrence
data only. Bias files were generated using the Gaussian kernel density of sampling localities
tool to increase the weight of presence data points using the SDMToolbox in ArcGIS
(Brown, Bennett & French, 2017). We used the selected environmental variables and only
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Figure 2 Flowchart of the methodology used for the MaxEnt and Random Forest modeling.Modified
from Liao et al. (2022).

Full-size DOI: 10.7717/peerj.18799/fig-2
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the occurrence dataset from MaxEnt v. 3.4.1, implemented in the kuenm package (Cobos
et al., 2019b; Phillips et al., 2017) to calibrate the parameter values, evaluate the candidate
models, and make future projections. We tested 8,460 candidate models derived from all
combinations of three feature classes (linear, quadratic, and product), five regularization
multipliers (0.25, 0.50, 1.00, 1.50, and 2.00), and 564 sets of environmental variables (in
groups of 6–12 variables). The model sets were trained on 70% of the occurrence data and
evaluated on the remaining 30%. The potential distribution of the best model was obtained
from the average of 30,000 background points using bootstrap replicates of 500 iterations
each, and allowed for free model extrapolation.

Finally, we selected the scenario and candidate models from the ‘‘best’’ set of variables
using the selected parameters. To reduce the uncertainty, 10 replicate cross-validation
runs were generated to assess the performance of the best model, which was calibrated
on a random sample of 70% of the occurrence data and evaluated on the remaining 30%
(Ramos et al., 2019). The final result was the average of these replicates, and they were used
to build the present and future models.

Random forest modeling assessment
We used the Random Forest (RF) regression algorithm to model the species distribution
with discriminatory capacity in the presence and absence of data. We used 10,000 pseudo-
absence data with the geographic distance method, assuming that all points were at least
10 km from the presence data to avoid pseudo-absence data because of the dispersal
capacity (Evans et al., 2011).

We examined the relative importance of each predictor employing the coefficient of
determination (R2) in conjunction with the mean squared error (MSE). We implemented
a 10-fold cross-validation procedure repeated 10 times to construct RF models with
default settings. Notably, the number of trees (5,000), the number of predictor variables
at each split (564), and the minimum size of terminal nodes (50) were the key parameters
influencing the performance of the RF models.

The dataset, which encompassed both presence and pseudo-absence data, was randomly
divided into ten equal subsets. Our modeling strategy involved training the RF model on
nine of these subsets and validating it on the remaining subset. It is essential to highlight
that we generated 100 RF models and the outcomes were derived by aggregating the results
of these models. We used the randomForest package (randomForest function; Liaw &
Wiener, 2022) to generate pseudo-absence data and RF models with the selected variables.

Comprehensive evaluation
We derived the potential distribution from the best model and assessed the relative
importance of each variable using the average performance evaluation indicators
corresponding to the ‘area under curve’ (selectedmodels with range of 0.97 <AUC<1), and
the partial receiver operating characteristic (partial ROC, selected models with a range of
0.90 < ROC < 1); to determine which of multiple models is most likely to be the best model
we used Akaike Information Criterion corrected (AICc; as optimal complexity parameter),
and Bayesian Information Criteria (BIC) (Hirzel et al., 2006; Peterson & Soberón, 2012;
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Jiménez & Soberón, 2020). A partial ROC was used on 50% occurrence data for bootstrap
resampling, 100 iterations, and omission rate error (5%, maximum permissible omission
error) (Cobos et al., 2019b). Success rate curve were further used to assess the performance
of the MaxEnt and RF models in predicting species distributions for model validation
(Rahmati, Pourghasemi & Melesse, 2016).

Finally, we used Schoener’s D index (Warren, Glor & Turelli, 2008) to compare the
similarity of suitable distribution maps between the MaxEnt and RF models using the
ENMTools package (Warren et al., 2021); this method calculates the random permutation
by 100 times the occurrence of C. angustifolia in both models. If Schoener’s D index is
lower (0, no overlap) or higher (1, complete overlap) than 95% of the simulated D values,
both models were more dissimilar (or similar) from the suitable distribution than expected
by chance (Sillero, Ribeiro-Silva & Arenas-Castro, 2022). Maps were averaged to generate
spatial information on present and future presence probabilities across all C. angustifolia.
We followed the ODMAP protocol for the modeling process (Overview, Data, Model,
Assessment, and Prediction; Table S1; Zurell et al., 2020).

We determined the surface area variation in each climate model (km2) between present
and future scenarios (Table 1). The final shapes were obtained using MaxEnt with maps
processed using QGIS v. 3.18.3 (QGIS.org, 2021). We compared the variation in mean
temperature, annual precipitation, and tree loss variation between the present and three
future periods using raincloud plots from the packages ggdist (Kay & Wiernik, 2023),
gghalves (Tiedemann, 2022), and ggplot2 (Wickham et al., 2021). Two-way ANOVA and
post-hoc Tukey’s test were used to compare the means of these variables using the rstatix
package (Kassambara, 2023).

Predicted refugges to climate change
We concatenated the present and future potential of Cedrela angustifolia distribution with
predicted refuges to climate change, recognizing appropriate grids in scenarios SSP 3-7.0
and SSP 5-8.5. We used the consensus model between the present and future models, land
cover (Hansen et al., 2013), and protected natural areas (PNA; IUCN, 2023) to recognize
and estimate remnant patches outside the PNA. We performed a spatial distribution
bias correction to avoid over-adjusting of future projections. We included 10,000 bias
files and bioclimatic variables to assess potential refugees for climate change analysis. We
implemented a Gaussian kernel analysis using the kernel function with QGIS software to
avoid sampling bias and identify the highest potential refuges for climate change.

RESULTS
Model evaluation and contribution of predictor variables
We generated and compared all candidate MaxEnt and RF models and selected one model
from each period that met the criteria of significance, predictive ability, fit and complexity
(Table S2). Our results showed excellent performance for both the MaxEnt and RF models
when assessed against the independent test dataset. Nonetheless, the MaxEnt model
demonstrated a higher AUC ratio; however, RF exhibited better predictive performance
than MaxEnt (Table S2).
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Table 2 Percent contribution and permutation importance for present and future models in the two scenarios. The table shows the periods of
time, model names, variables, percent contribution, and permutation importance.

Variables Percent contribution inMaxEnt (%) Increment of node purity in RF

PR 2040 2070 2100 PR 2040 2070 2100

a b a b a b a b a b a b

BIO15 26.3 11.3 12.6 24.6 14.6 16.4 24.6 46.1 23.9 33.4 28.6 24.6 26.5 24.5
SOCS 20.3 21.6 15.8 15.3 15.8 17.9 26.7 40.6 36.1 29.4 34.3 37.4 37.6 32.4
NDVI 11.7 15.3 24.3 29.3 11.3 12.3 15.9 36.8 32.2 35.7 35.7 29.4 30.5 29.1
BIO4 8.5 4.6 13.4 14.6 16.3 6.2 11.3 34.8 34.8 35.3 29.7 40.4 37.2 29.9
OCD 7.4 7.10 8.9 11.6 15.9 4.6 14.2 28.9 20.9 21.1 20.8 19.6 21.1 18.9
BIO18 6.2 24.7 7.6 4.9 7.6 7.6 8.4 25.1 18.3 18.4 17.9 16.6 26.9 21.9
SILT 4.8 11.3 4.3 5.8 2.4 4.9 9.5 24.3 26.6 26.3 25.2 24.9 27.3 28.1
CC 3.7 2.8 5.6 6.7 6.4 3.8 7.6 18.1 19.3 19.7 19.1 17.1 17.6 19.4
DEF 2.4 7.6 4.9 12.6 3.9 6.4 9.3 19.1 14.3 15.3 15.6 13.7 12.7 14.3
BIO3 2.3 4.9 2.6 7.3 6.9 3.7 6.7 14.7 20.6 18.7 19.6 21.3 17.4 18.2

Notes.
PR, present model; a, SSP 3-7.0 scenario of future model; b, SSP 5-8.5 scenario of future model.

For the present and future models, the relative contribution of each predictor variable
to the SDMs was assessed by visualizing the percentage contribution and permutation
importance (Table 2). In our analysis of the present and future models, we identified ten
environmental variables as the most important factors in the model fit. These variables
were precipitation seasonality (BIO15), soil organic carbon stock (SOCS), normalized
difference vegetation index (NDVI), temperature seasonality (BIO4), organic carbon
density (OCD), precipitation of the warmest quarter (BIO18), silt content (SILT), clay
content (CC), loss forest (LF), and isothermality (BIO3). These variables showed a high
percentage contribution to the model for both the present and future scenarios, as well as
for the three periods (Table 2).

Present potential distribution
The potential distribution with the tree cover loss effect ofC. angustifoliawas approximately
13,080 km2 (mean ofMaxEnt and Random Forest values), and Schoener’s D index between
the RF and MaxEnt models was 0.857. Nevertheless, excluding the effect of tree cover loss,
the total distribution was 16,148.5 km2, with a Schoener’s D index of 0.749. Notably, the
areas in Peru and Bolivia were suitable for C. angustifolia according to the current records
(Fig. 3).

With the loss forest effect, the distribution detected was 798 km2 in Ecuador, 1,947 km2in
Peru, 9,591 km2 in Bolivia, and 744 km2 in Argentina. Notwithstanding, without loss forest
effect, we detected that in Ecuador exhibited 948.5 km2, Peru with 2,579 km2, Bolivia with
11,400.5 km2, and Argentina 1,220.5 km2 (Fig. 2).

We found that the presence of C. angustifolia was mainly influenced by these
environmental variables: BIO3 (from 5.3 to 6 ◦C), BIO4 (20 ◦C to 31 ◦C), BIO18 (100 to
200 mm), BIO15 (750 to 830 mm), SOCS (0–5%), NDVI (0.95−1.00 units), OCD (0–5%),
slit (0–10%), CCF (0–10%), LF (30–55%).
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without tree cover loss raster in the model. Realized by Fressia Nathalie Ames Martínez; and base map for
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Full-size DOI: 10.7717/peerj.18799/fig-3

Future potential distribution
Under two scenarios, we detected a decrease in the distribution range of SSP 3-7.0 and
5-8.5 during the three periods (Fig. 3). For 2040, we estimated an extension equivalent
to 8,934 km2 (SSP 3-7.0) and 9,094 km2 (SSP 5-8.5), with Schoener’s D index of 0.759
(Fig. 4A). Nevertheless, without the effect of tree cover loss, we detected 11,424 km2 (SSP
3-7.0) and 11,078 km2 (SSP 5-8.5), indicating 29.26% and 31.40% loss forest, respectively,
with a Schoener’s D index of 0.786 (Fig. 4B).

For 2070, our models predicted a decrease in area from 29.91% (SSP 3-7.0) to 30.53%
(SSP 5-8.5) without the loss forest effect, and from 33.93% (SSP 3-7.0) to 42.32% (SSP
5-8.5) with the influence of tree-cover loss, and Schoener’s D index was 0.846. Finally, for
2100, the area decreased by 30.43% (SSP 3-7.0) to 33.33% (SSP 5-8.5) without the loss
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forest effect; however, the loss forest effect decreased by 27.40% (SSP 3-7.0) and 38.47%
(SSP 5-8.5) in the whole distribution, with Schoener’s D index of 0.872 (Figs. 4A, 4B).

Themean temperatures up to 2040 in the two scenarios showed no significant differences
among the countries (Figs. 5A–5D). However, Argentina and Bolivia exhibit statistically
significant differences by 2070. Similarly, both countries displayed similar annual mean
temperature values (∼20.5 ◦C and∼18.7 ◦C, respectively) for 2040 (Figs. 5A–5B). Ecuador
and Peru showed similar annual mean temperature values (∼15.2 ◦C and 16.3 ◦C,
respectively) between the present and 2040 (Figs. 5C–5D). In the four countries, 2100
presented statistically significant differences compared to the other periods (Figs. 5A–5D).
In contrast, the annual precipitation showed no significant differences among the four
periods or countries (Figs. 5E–5H).

Effect of forest cover loss in the present and future
The relationships between the predictor and response variables show how forest cover loss
affect model predictions. Therefore, we further analyzed how the predicted probability of
species occurrence changed with the forest cover loss effect using the marginal responses of
the probability of presence suitability (Fig. 6A). We found that 30.59% of the total area was
themost suitable habitat without the forest loss; nevertheless, Peru, Ecuador, and Argentina
showed variations in the gain of forest loss area in 2040, 2070, and 2100 (Fig. 6B). For
example, Ecuador and Argentina decreased by 51.25% and 14.08%, respectively, under the
influence of the forest loss effect (Fig. 6B) or the total distribution, and Bolivia increased
by more than 30% of the area distribution in all periods, without the forest loss effect.
Nevertheless, Peru and Argentina are expected to decrease by 70% by 2070.

Potential refuges to climate change
Our analysis revealed variations in the habitat suitability distribution areas ofC. angustifolia
(9,449 km2) across the four countries. Nonetheless, Ecuador (724 km2), Peru (1,784 km2),
and Argentina (683 km2) exhibited a high potential for refuge from climate change; whereas
Bolivia (6,258 km2) displayed a decreasing habitat (Fig. 7). Only 24.28% of the current
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potential distribution is within protected areas, and this is expected to decrease to 25–30%
by 2100.

Predictions of the core distribution regions from the MaxEnt and RF models showed
a higher heterogeneity and stronger gradients. In addition, our analysis identified Azuay
and Zamora Cinchipe as refugees in Ecuador; Cajamarca, Junín, Apurimac, and Cusco as
refugees in Peru; Cochabamba, Chuquisaca, and Tarija as refugees in Bolivia; and Salta and
Tucumán in Argentina as potential refugees to climate change.
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DISCUSSIONS
The effects of climate change on Andean montane forests are well-known, but the effects
on specific pioneer relict tree species are unclear. Our findings suggest that the distribution
of C. angustifolia will decrease in the future owing to climate change projections for 2040,
2070, and 2100. During these time periods, high temperatures, low precipitation and
high CO2 concentrations significantly affected the distribution of the species (Eyring et al.,
2016).

Present potential climate sensitivity
Previous studies have systematically evaluated the predictive effectiveness of RF and
MaxEnt models through automated parameter optimization (Cotrina et al., 2021; Mi et
al., 2017; Zhao et al., 2022). Although the RF models typically provide robust and accurate
predictions using default configurations (Freeman et al., 2015), MaxEnt models often
require parameter refinement (Feng et al., 2019; Jiménez & Soberón, 2020). We selected the
best feature classes and regularization parameters for MaxEnt and compared them with
the RF model. Consistent with previous literature, both the RF and optimized MaxEnt
models exhibited commendable predictions accuracies; however, the RF model showed
a marginal superiority, which was evident in both cross-validation and external dataset
evaluations. This is consistent with the findings ofMi et al. (2017) and Čengić et al. (2020),
who described the improved performance of RF over standard MaxEnt configurations for
species distribution prediction.
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The distribution of Cedrela angustifolia is influenced by seasonal variations in
precipitation and temperature, and the model performance is excellent (AUC > 0.98),
demonstrating the efficiency and accuracy of the model (Warren & Seifert, 2011). These
populations exhibit tolerance to colder temperatures and higher moisture conditions,
maintaining their evolutionary climatic conditions, as detected by Muellner et al. (2010)
and Koecke et al. (2013). Our analysis suggests that Bolivian montane forests provide a
suitable ecological assemblage (81% present model), and ecosystem conservation for
C. angustifolia (Pennington & Muellner, 2010), with more than half of the records of this
species within the NPAs.

Effect of climate change in the future
The distribution patterns of different species are influenced by different ecological and
evolutionary factors that allow them to survive in specific environments within diverse
landscapes (Rahbek et al., 2019). Despite this,Tejedor Garavito et al. (2015) argued that land
use change, particularly deforestation of AMFs, would be more detrimental to biodiversity
than climate change, leading to the loss of relict-endemic tree species worldwide (Feeley &
Silman, 2010).

Based on the evaluated scenarios, a temperature increase of 4.1 ◦C to 5 ◦C is expected
compared the present temperature record. This would result in a significant reduction in
suitable habitat in Bolivia (>20.26%) and Argentina (>28.99%). By 2100, C. angustifolia
will not be able to find optimal sites, because the thermal limit will be exceeded (∼21.8 ◦C).
However, Peru and Ecuador offer favorable climatic conditions that would allow
C. angustifolia to migrate to cooler areas and persist through rapid changes in climate
(Pearson, 2006). This confirms the climatic impact of C. angustifolia (Cotrina et al., 2021;
Koecke et al., 2013; Rodríguez-Ramírez et al., 2022). Similar results have been reported for
C. odorata (Sampayo-Maldonado et al., 2023) and other Cedrela species (Cotrina et al.,
2021; Koecke et al., 2013).

We demonstrated that tree cover loss affects more than 30% of the range of
C. angustifolia, which is a critical factor contributing to the reduction in C. angustifolia in
the four countries. If the current rates of deforestation continue or increase, this will lead
to reduction in distribution (Hansen et al., 2013). Similarly, the loss of tree cover increases
the risk of soil erosion, leading to reduced soil fertility and increased sedimentation in the
water bodies in these forests (Bax & Francesconi, 2018; Cuenca, Arriagada & Echeverría,
2016; Tapia-Armijos et al., 2015). Therefore, the climatic impact of deforestation on AMF
weakens the relationship between atmospheric circulation and the hydrological cycle
(Longobardi et al., 2016).

Potential habitat suitability and refugees
Suitable habitat for C. angustifolia will be maintained in all four countries; however,
habitat suitability will decrease in all countries in contrast to the present and future
models evaluated. Bolivia exhibited more illegal logging and forest fires than the other
three countries, making it more vulnerable to climate change (Hansen et al., 2013). In
contrast, Ecuador, Peru, and Argentina had areas with better habitat suitability than the
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present model, suggesting that unexplored forests with similar climatic conditions allow
the species to adapt through natural or active restoration (i.e., C. angustifolia plantations
in inter-Andean valleys; SERFOR, 2020).

Furthermore, their presence increases in NPAs, as described by Pennington & Muellner
(2010), which shows that NPAs function as biodiversity reserves and buffers against the
effects of changing climatic conditions, allowing the formation of refugia and providing
ecological corridors for species to acclimate or migrate over the long term (Cuesta,
Peralvo & Valarezo, 2009; Geldmann et al., 2013). In contrast, 75.72% of habitat suitability
was detected outside the NPAs, indicating the need to develop forest management and
monitoring strategies to protect these forests as they are more susceptible to selective
logging and timber overexploitation, as we demonstrated by our results (Cotrina et al.,
2021; SERFOR, 2020).

CONCLUSIONS
Our study demonstrated that Cedrela angustifolia is vulnerable to future climate change,
indicating differences in suitable habitats between Central and South America. Moreover,
we propose the designation of a climate sanctuary for C. angustifolia associated with NPAs
and land-use changes. It is therefore crucial to collaborate with local communities living
near forests to protect endangered and vulnerable CITES and IUCN species and their
habitats, both inside and outside NPAs.

C. angustifolia is ecologically important because it provides habitat and food for species,
prevents soil erosion and promotes sustainable management. In addition to its value as
timber, the extinction of C. angustifolia also has a profound impact on the environment. Its
loss would lead to reduction in biodiversity, as many organisms depend on it for food and
habitat. The disruption of these relationships can destabilise ecosystems, affecting other
species and leading to cascading effects. Moreover, the disappearance of C. angustifolia
could undermine the cultural heritage of indigenous communities who depend on it
for their livelihoods and traditions. Trees also play a role in carbon sequestration and
contribute to climate regulation. Therefore, preserving C. angustifolia is crucial not only
for ecological balance, but also for maintaining cultural diversity and combating climate
change.

Non-governmental organizations (NGOs) and several environmental legacy institutions
are using the essential findings and boundaries established by the Species Distribution
Model (SDM), both now and in the future, to safeguard and preserve the species under
investigation. Therefore, it is crucial to emphasize the outcomes of our study, and consider
the need to initiate conservation efforts for C. angustifolia (as an umbrella species),
including the establishment of new protected areas, habitat restoration, and the creation
of ecological corridors that benefit other related species.

Combating deforestation and climate change in the Andes requires coordinated efforts
at local, national and international levels. The distinctive ecosystems of the AMF and the
well-being of its inhabitantsmust be preserved through the implementation of conservation
programs, sustainable land-use plans and climate change mitigation initiatives. To ensure
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the effective regulation of C. angustifolia logging, propagation and restoration programs,
it is crucial to help local authorities in understand the ecological significance of these
practices. Furthermore, we suggest that additional research on other aspects, such as
phenology, functional ecology and spatio-temporal patterns, be conducted to gain a deeper
understanding of how tree species in the Andean montane forest (AMF) are responding to
the impacts of climate change and human activities.
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