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ABSTRACT
Plant responses to changes in temperature can be a key factor in predicting the
presence and managing invasive plant species while conserving resident native plant
species in dryland ecosystems. Climate can influence germination, establishment,
and seedling biomass of both native and invasive plant species. We tested the
hypothesis that common and widely distributed native and an invasive plant species
in dryland ecosystems in California respond differently to increasing temperatures.
To test this, we examined the effects of temperature variation on germination,
establishment, and per capita seedling biomass of three native and one invasive plant
species (Bromus rubens) in independent 6 week growth trial experiments in a
controlled greenhouse. Higher relative temperatures reduced the germination and
establishment of the tested invasive species and two tested native species, however,
per capita biomass was not significantly affected. Specifically, germination and
establishment of the invasive species B. rubens and the native species Phacelia
tanacetifolia was significantly reduced. This invasive species can often outcompete
natives, but increasing temperature could potentially shift the balance between the
germination and establishment of natives. A warming climate will likely have
negative impacts on native annual plant species in California tested here because
increasing temperatures can co-occur with drought. This study shows that our tested
native annual plant species tested here have some resilience to relatively significant
increases in temperature, and this can favor at least one native species relative to at
least one highly noxious invasive plant species.
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INTRODUCTION
Dryland ecosystems including shrublands, deserts, and grasslands are crucial to plant
communities globally as they support endemic species, thus influencing global biodiversity
(Sharafatmandrad & Khosravi Mashizi, 2021; Lucero et al., 2022). With increasing abiotic
stressors, including rising temperatures and prolonged periods of minimal precipitation,
these ecosystems are experiencing more frequent and severe degradation (King & Hobbs,
2006; Huang et al., 2020). It is imperative to determine the impacts these conditions will
have on dryland plant community composition and diversity. Increasing temperature
(Shah et al., 2011), drought events (Niu, Rodriguez & Wang, 2006; Verwijmeren et al.,
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2019), and other abiotic disturbances (Potts et al., 2012), have overall negative impacts on
many plant species, but can particularly create conditions more favorable for invasives
over natives in dryland ecosystems (Niu, Rodriguez & Wang, 2006; Cowles et al., 2018;
Moore, Stow & Kearney, 2018). Ecosystems, such as the Carrizo Plain National Monument
(35.11982, −119.62853) in Southern California are highly invaded by plant species, such as
Bromus rubens and Schismus barbatus (Lucero et al., 2019), and subject to extreme weather
conditions, including megadroughts (Westphal et al., 2016; Lortie et al., 2021). The mean
annual precipitation within this region can reach 250 mm, however this area can
experience extensive periods of extreme drought (Prugh et al., 2018). The variation in
temperatures across dryland ecosystems can have strong negative influences on plant
establishment, germination, and productivity in the form of biomass, fruiting, and
flowering (Rivas-Arancibia et al., 2006; Ebrahimi & Eslami, 2012; Hatfield & Prueger,
2015). For instance, plant species can experience thermoinhibition, defined as the inability
for seeds to germinate at relatively high temperatures (Vleeshouwers, Bouwmeester &
Karssen, 1995; Hills & van Staden, 2003; Toh et al., 2012), which can increase seed
dormancy, preventing the initial stages of germination. This thermoinhibition gives species
with larger temperature niches a significant advantage in terms of germination and
establishment by delaying germination of potential competitors (Toh et al., 2012; da Silva
et al., 2017). Some invasive plant species have developed mechanisms to bypass
thermoinhibition, giving them a potential competitive advantage over native plant species
because they germinate sooner (Baskin, 1998; Urbanova & Leubner-Metzger, 2018; Bhatt
et al., 2023). This can result in native species being outcompeted for space and resources at
some temperatures (Dukes & Mooney, 1999; Gioria, Pyšek & Moravcova, 2012). While
other factors can influence dryland plant species, temperature can be a key factor in
determining the outcome of native-invasive competition (Verlinden, De Boeck & Nijs,
2014; Lu et al., 2016). Understanding how these constantly changing dryland ecosystems
influence plant species composition provides key insights into the establishment of
different plant species. Temperature is but one key factor, but is highly variable in these
dryland systems, potentially shaping community composition (Bertrand et al., 2011).

The relative growth rate of plant species differs and responds uniquely to key
environmental factors that signal when to grow and at what rate (Bareke, 2018). There are
several early life-stage performance measures associated with plant species including:
germination—the appearance of an embryo through the surrounding structure (Nonogaki,
Bassel & Bewley, 2010), establishment—seedlings are established typically at 2–3 weeks for
most semi-arid annuals (Aronson et al., 1992; Pik et al., 2020), and seedling biomass—a
proxy for future individual performance (Proulx et al., 2015; Liczner et al., 2019; Pik et al.,
2020). These early-life stage performance measures can be used to predict species
distribution and abundance because they set the framework for plant-plant interactions
when individuals are established (Pyke & Archer, 1991; Theoharides & Dukes, 2007).
Knowledge on seed and seedling dynamics in particular will help managers optimize native
planting strategies and increase the understanding of how these species interact with
invasive species in the ecosystem (Costantini et al., 2016; James & Carrick, 2016).
Temperature can influence early-life stage measures, likely increasing all factors initially,
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provided there is sufficient soil moisture and nutrients. However, increasing temperatures
can become a stressor depending on a species’ climate niche (Vázquez-Ramírez & Venn,
2021). To ameliorate these high abiotic stressors, such as extreme temperatures, areas with
more favorable microclimatic conditions, such as shrub canopies and artificial structures
that provide shade, can positively influence plant association and establishment (Filazzola
et al., 2019; Roque Marca, López & Naoki, 2021; Zuliani et al., 2024a). Foundational shrubs
within these dryland ecosystems can buffer high temperatures, promoting plant species
associations in dryland ecosystems (Lortie et al., 2024). This suggests that plant species
within drylands favor conditions not directly exposed to high temperatures, such as the
microclimates underneath shrub canopies (Pugnaire, Armas & Valladares, 2004). These
opportunities for stress amelioration, through the provision of relatively more habitable
microclimates and increasing soil nutrient availability, are utilized by both native and
invasive plant species and can provide more favorable early-life stage growing conditions
for native species (Muñoz-Rojas et al., 2016; Lucero et al., 2019). Managers can leverage
these more favorable microclimatic conditions by focusing planting efforts in areas that are
potentially more favorable for native species, promoting their earlier establishment and
potentially allowing them to outcompete invasive plants (Bossard, Randall & Hoshovsky,
2000; Liczner et al., 2019).

Invasive plant species can influence the structure and composition of plant
communities in ecosystems globally (Laughlin & Abella, 2007; Flory & Clay, 2009; Pik
et al., 2020; Szuma�nska et al., 2021). These invasive plant species disrupt local communities
through the decline and degradation of biodiversity, while negatively impacting ecosystem
functions including soil fertility and water availability (Grice, 2006; Maestre et al., 2016;
Milanović et al., 2020). The negative impacts of invasive plants can also extend to animal
communities by displacing habitats (Beck et al., 2008), reducing foraging behavior of both
livestock and wildlife (Brunson & Tanaka, 2011), and impeding the movement of some
animal species (Stewart et al., 2021). Some invasive species are resilient to high
temperatures including many species in the genus Bromus (Abella et al., 2011; Clements &
Ditommaso, 2011). These brome species pose a significant threat to many dryland
ecosystems because they promote increased fire frequency and intensity (Monty, Brown &
Johnston, 2013; Fenesi et al., 2016), displace native vegetation reducing their overall
biodiversity and biomass (Gill et al., 2018; Palit & DeKeyser, 2022), and negatively
influence wildlife through habitat loss (Freeman et al., 2014; Germino et al., 2016). In
dryland ecosystems, invasive plants can be resilient to drought-like conditions, potentially
out-performing native species (Ali & Bucher, 2022). This extended climate envelope can
help invasive species outcompete natives, as they have a higher probability of establishing
successful populations (Bradley, Wilcove & Oppenheimer, 2010; Hou et al., 2014). Central
and Southern California drylands are both highly invaded by many exotic species,
including brome, and are resident to a high diversity of native annual plant species
(Seabloom et al., 2003; Fisher, Del Pinto & Fisher, 2020). Thus, the importance of variation
in temperature on these plant species and common communities is key to conservation
(Lucero et al., 2022). Temperature changes in semi-arid ecosystems, alongside increasing
drought frequency (Cherwin & Knapp, 2012), suggests that we need to better understand
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species-specificity in response to changes in temperature (Parmesan & Hanley, 2015). This
is important at local and regional sites in predicting if species will spread or invade into
other regions when temperatures increase (Wallingford et al., 2020; Ali & Bucher, 2022).
Further understanding how these invasive species are impacted by their climate will
provide valuable insight both for the management of these species and for predicting
potential scenarios for community assembly of native vs invasive with a changing climate.

The purpose of this study is to determine if increasing temperatures influence common
natives and an invasive plant species local to the arid/semi-arid ecosystems of Southern
California. To test this, we used a controlled greenhouse to conduct temperature trials on
three native and one highly invasive plant species independently. We examined the
hypothesis that temperature directly influences key early-life stage performance measures
in these semi-arid annual plant species, with their responses being highly species-specific.
We tested the following predictions:

1) Increasing long-term temperatures associated with GBIF observation for each species
negatively influences the species observations.

2) The invasive species Bromus rubens is most likely to benefit from increasing
experimental temperatures because this species has been reported to germinate and
establish at extreme temperatures (Bykova & Sage, 2012; Bykova, 2014).

3) Early-life stage measures for all native species will be negatively impacted by increasing
experimental temperatures.

Methods
A series of independent controlled temperature experiments were conducted to test the
impacts of increasing temperatures on early-life stage performances of Southern California
plant species. A total of three native and one highly invasive plant species were tested
independently for 6 weeks each to determine if increasing temperature would negatively
influence the germination, establishment, and mean per capita seedling biomass. Global
Biodiversity Information Facility (GBIF) data were also compiled for each species located
within the central drylands of Southern California to determine the climate envelope for
these species from reported occurrences (Fig. S1; Global Biodiversity Information Facility
(GBIF), 2023; Zuliani et al., 2024b).

Study species
Bromus madritensis rubens (hereafter referred to as Bromus rubens) is an annual grass
species native to regions of Southern Europe, Southeast Asia, and Northern Africa
(Rauber, Cipriotti & Collantes, 2014). Bromus rubens is a highly invasive species in
Southern California because it is rapidly invading large portions of the Mojave, Sonora,
and Great Basin Deserts, as well as semi-arid grasslands, such as the Carrizo Plain National
Monument (Ogle, Reiners & Gerow, 2003; Abella et al., 2012; Curtis & Bradley, 2015). This
invasive species has a blooming season between February and June, and can quickly
dominate local plant communities, outcompeting them for nutrients and light, while also
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altering microhabitats (Hamilton, Holzapfel & Mahall, 1999; Brooks, 2000; Gioria &
Osborne, 2014). Bromus rubens typically grow to heights of 16–40 cm tall with a red
coloration to the upper most seed-dense head and have a seed viability of approximately
95% (Wu& Jain, 1978; Jurand & Abella, 2013). This species germination rate is more rapid
than native annuals in dryland ecosystems, as a small amount of precipitation can awaken
seeds from dormancy (Salo, 2004). Bromus rubens can survive at temperature extremes
ranging from 10–36 �C (Bykova & Sage, 2012; Bykova, 2014).

Layia platyglossa (Fisch. & C.A. Mey.) (Asteraceae), Phacelia tanacetifolia Benth.
(Boraginaceae), and Salvia columbariae Benth. (Lamiaceae), are three native species
common in various arid and semi-arid regions within Southern California (Buck-Diaz &
Evens, 2011). Layia platyglossa, also known as tidy tips, ranges in size from 45–60 cm, and
has a blooming season ranging from March to June with temperatures ranging between
21–40 �C, with a potential seed viability of more than 80% (Hobbs & Mooney, 1985;
Christensen, 2000; Marty & BassiriRad, 2014). Phacelia tanacetifolia has an average plant
height of around 42 cm and can survive late spring and early summer temperatures, having
an optimal growth temperature of around 30 �C, and a blooming season between April to
June (Yıldız, 2022). Phacelia species typically display a seed viability of approximately 98%
(Cavieres & Arroyo, 2000). The height of S. columbariae ranges from 10–50 cm, can survive
temperatures ranging from 20–35 �C, have a blooming season between March and July,
with related Salvia species having a seed viability of approximately 98% (Adams, Wall &
Garcia, 2005; Al-Turki & Baskin, 2017; Grimes et al., 2020). These species commonly
co-occur with B. rubens in North America (Horn & St. Clair, 2017). They are of particular
interest as they have been disrupted by the invasion of B. rubens (Liczner et al., 2019;
Arroyo et al., 2021). Layia platyglossa, P. tanacetifolia, and S. columbariae, are essential
resources for both herbivorous species and native pollinators (Ferrero et al., 2013; Braun &
Lortie, 2019; Bishop et al., 2020) and may compete with B. rubens (Pik et al., 2020).

Bromus rubens seeds were collected in the field within Southern California at the Wind
Wolves Preserve (34.9929, −119.1832) within a 1.6 km radius. All native California seeds
were purchased through Outsidepride, where seeds are produced in a greenhouse setting.
All seeds were ordered as needed and received within 2 days of conducting each species’
seed trials. Seeds were stored in ziplock bags and boxed to avoid direct sunlight exposure
and reduce humidity exposure (Suma et al., 2013). Seeds were then kept at a constant
temperature of around 8 �C. While all species tested can be found in areas outside of the
drylands of Southern California, determining how increasing temperatures, in these
specific ecosystems, influence early-life stages can provide insight on these species’ ability
to establish in more arid conditions.

Experimental design
Temperature trials were done in a climate-controlled facility in Toronto, Canada. The
effects of increasing temperatures on the germination, establishment (the germination and
growth of an individual), and seedling biomass (the total weight of individual plants) of
three California Native plant species (S. columbariae, L. platyglossa, P. tanacetifolia) and
one invasive plant species (B. rubens) were tested for several key design reasons. Each
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species was tested independently to maximize replication with our experiments consisting
of 70 pots per treatment situated non-randomly (Rogers et al., 2021). Each species was also
tested separately to ensure independence between species and prevent interspecific
interactions (Morris et al., 2007; Abdala-Roberts & Moreira, 2024). Finally, even
temperature in a controlled environment can vary, and thus while there were variations in
temperature applied to each species, there was some overlap. Once a 6-week trial was
completed, the next trial commenced. Here, germination is defined as the visible
emergence of early-stage seed development of 0.1 mm (Porceddu et al., 2013). Species were
tested in 10 cm diameter pots (1,400 cm3 in soil volume). A total of 40 seeds for each
species were sown independently, per pot, approximately 5 cm below the soil surface
(Lortie, Ghazian & Zuliani, 2022). A total of 210 pots were utilized per trial with 70 pots
designated across three treatments. To approximate the soil of California arid/semi-arid
ecosystems, we mixed potting soil with coarse sand at a 1:1 ratio (Pik et al., 2020). Once
seeds were sown, approximately 75 mL of water was measured for each pot once every 2
weeks. Large heat lamps (Simple Deluxe, Duarte, CA, USA) and Garpsen 315 LED Plant
Lights (Kingbo, Guzhen, China) were positioned to fully cover the pots. Ambient
temperature in the greenhouse averaged 21 �C. Heat lamps with lower wattage bulbs (40
W) produced an average temperature of 23 �C, medium wattage bulbs (60W) produced an
average of 26 �C, while higher wattage bulbs (100 W) averaged 31 �C. Heat lamps
contained the same wattage bulbs per treatment to simulate areas of low, medium, and
high temperature. All temperature and heat lamps were set on a 12 h timer to simulate
light/dark cycles. An LI-250A light meter was used to measure the light intensity of all
lightbulbs in mmol/m2s. Local ambient temperature was recorded using a total of nine
OMEGA pendant loggers suspended 10 cm on a stake in a pot chosen at random (https://
www.omega.ca/en/data-acquisition/data-loggers/temperature-and-humidity-data-
loggers/om-90-series/p/OM-92; Omega, Michigan City, IN, USA). Germination
measurements were taken weekly to determine the number of seedlings that had emerged.
Proportion of germinated seeds were calculated as the number of germinated seeds divided
by the total number of sown seeds per pot (Pik et al., 2020). Establishment measurements
were recorded as the total number of individual seedlings present per pot at the end of 6
weeks. Proportion established was calculated as the number of established seedlings
divided by the total number of sown seeds per pot (Pik et al., 2020). All seedlings in each
pot were dried in a Yamato Mechanical Convection Oven DKN900 for 72 h at 62 �C and
subsequently weighed to measure total seedling dry biomass per pot. Per capita biomass
was calculated as the total biomass divided by the total number of established individuals
per pot (Pik et al., 2020). Any seeds that did not germinate during their 6 week trial were
not included in this biomass estimate.

Temperature validation
The temperatures used to conduct the greenhouse trials were selected based on the
temperatures associated with the reported occurrences for each species within the region of
Southern California. Global Biodiversity Information Facility (GBIF) was used to compile
the occurrence data for all four species tested in this study (Global Biodiversity Information
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Facility (GBIF), 2023). Climatic data were then gathered from WorldClim with a 0.5 min
resolution (~1 sq-km). The climatic data taken from WorldClim was cropped to
correspond to the GBIF data including the minimum and maximum observed latitudes
and longitudes reported for each species (Latitude: 35.28531–36.56198, Longitude:
−120.2184 to −116.7162). Climatic and occurrence data were then combined to both
validate the temperature used in the greenhouse trials to estimate the current climatic
niche of each species (Pender et al., 2019). Mean and max monthly temperatures were then
derived from the WorldClim data to match the extent of the spatial occurrences of each
species (Pearson et al., 2002). These estimates were used to infer the climate niche for each
species (https://github.com/RS-eco/climateNiche; Schweiger et al., 2014). These data were
used to generate distribution climate occurrences for each species independently.

Statistical analysis
All statistics and models were done using the programming language R version 4.2.1
(R Core Team, 2023). WorldClim and GBIF data were fitted to a linear regression with a
poisson distribution to estimate predicted values for climate envelopes of each plant
species independently (Alhajeri & Fourcade, 2019). The mean temperature of the warmest
quarter and the max temperature of the warmest month (Fick & Hijmans, 2017) associated
with reported observations for each species were tested with linear regressions. Each
species was experimentally tested independently, and the temperatures for each treatment
across trials varied slightly. Thus, meta-analyses were used to first test for the heterogeneity
between species in the global models for each response variable (Hardy & Thompson,
1998). The statistical significance of species and mean temperature as moderators was
tested as a non-random effect using the rma function in the ‘metafor’ package
(Viechtbauer, 2010). Significant heterogeneity suggests that independent analysis of each
species is a more appropriate approach (Hardy & Thompson, 1998). A significant
moderator further supports analyzing each species separately in a conventional linear post
hoc model such as a regression. This is in line with the experimental design of separate
trials. Linear regressions were thus used to test the effects of mean temperature tested per
species on the proportion germinated, proportion established, and per capita biomass.
Hence, a total of 12 linear regressions were conducted, three for each tested plant species.

RESULTS
The mean temperature of the warmest quarter and the maximum temperature of the
warmest month did not significantly predict the relative frequency of observation for any
of the species tested (Fig. 1; Table S1). In the meta-analyses between groups, heterogeneity
was significant for all three response variables tested (Table 1). Species and temperature
were significant moderators in the meta-analysis for all three response variables (Table 1).
Hence, regressions per species were done for each response since each species was tested
independently. The germination of B. rubens, P. tanacetifolia, and L. platyglossa was
negatively affected by increasing temperatures, while S. columbariae was not significantly
influenced by temperature (Table 2; Fig. 2). The establishment of B. rubens and
P. tanacetifolia were significantly reduced with increasing temperatures, while
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Figure 1 Linear regression analysis of three native and one invasive annual plant species. Max
temperature from the warmest month and mean temperature from the warmest quarter were acquired
from WorldClim and were combined with frequency of species observations from GBIF.

Full-size DOI: 10.7717/peerj.18794/fig-1
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L. platyglossa and S. columbariae were not significantly influenced (Table 2; Fig. 3).
Temperature did not significantly influence the per capita biomass of the tested plant
species (Table 2; Fig. 4).

DISCUSSION AND CONCLUSION
The effects of temperature on both native and invasive plant species will enhance both
current empirical models for community assembly and advance plant-interaction theory
in the context of a changing climate. Particularly in dryland ecosystems, temperature can
alter the composition of plant communities, creating conditions more favorable for exotic
plant invasions. We found support for the hypothesis that temperature directly influences
key early-life stage performance measures in common dryland plant species. The effects of
increasing temperature were species specific, significantly influencing their germination
and establishment. We found that B. rubens germination and establishment were
significantly reduced at higher temperatures, while only germination was negatively
impacted for the native species L. platyglossa and P. tanacetifolia. We also found that
increased temperature niches of these species within Southern California did not influence
the total number of reported GBIF observations. Thus, we did not find support for our first
prediction that increasing temperatures will negatively influence plant species observations
taken from GBIF. We did not find support for our second prediction that increasing
temperature negatively influenced all early-life stage performance measures of B. rubens.
Finally, we found mixed support for our third prediction as higher temperatures negatively
impacted germination and establishment of native plant species, while per capita biomass
was not significantly influenced by increasing temperature. These findings suggest that
increasing temperature can influence some key early-life stage measures or specific native
and invasive species, providing new insight into the management of these tested species.

Table 1 Meta-analyses testing species and temperature as moderators for germination,
establishment, and biomass of all tested plant species.

Factor Test Estimate df p-value

Germination Heterogeneity 211.53 31 <0.001

Moderator: Species 242.63 31 <0.001

Moderator: Temperature 28.42 31 <0.001

Moderators: Species*Temperature 373.06 31 <0.001

Establishment Heterogeneity 138.81 31 <0.001

Moderator: Species 285.11 31 <0.001

Moderator: Temperature 6.17 31 <0.001

Moderators: Species*Temperature 356.21 31 <0.001

Biomass Heterogeneity 94.76 31 <0.001

Moderator: Species 5.91 31 <0.001

Moderator: Temperature 4.39 31 <0.001

Moderators: Species*Temperature 33.32 31 <0.001

Note:
The heterogeneity of each model is reported and the interaction terms for species by temperature. All p-values that were
significant at p < 0.05 are indicated in bold.
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Increasing temperature is one critical component of a changing climate, particularly in
dryland ecosystems. In this study, we utilized increasing temperatures to simulate higher
abiotic stressors, as many dryland regions within Southern California are experiencing
increasingly harsh conditions (Renwick et al., 2018; Scholes, 2020). An increasing frequency
of these higher temperatures can result in more drought events, subsequently resulting in a
higher rate of water loss both at an ecosystem and species level (Reynolds et al., 1999;
Farooq et al., 2009). The negative impact of temperature on plant germination suggests
thermoinhibition can be an important part of the lifecycle of these species.
Thermoinhibition was not directly tested in this study, however it could be a possible
explanation as to why higher temperatures resulted in lower germinations of all tested
plant species. Thermoinhibition of ungerminated seeds can result in dormancy, reducing
the biodiversity of ecosystems (da Silva et al., 2017). However, this inhibition can be
reversed once more favorable conditions for the target species are reached (Guo, Shen &
Shi, 2020). In dryland ecosystems, such as the deserts of Southern California, the

Table 2 Regression analysis of mean experimental temperature on the germination, establishment, and biomass of all tested plant species.

Factor Species r2 Moderator estimate se df t value p-value

Germination Bromus rubens 0.6064 Mean temperature −0.1940 0.0659 6 −2.947 0.026

Mean temperature2 0.0494 0.0659 6 0.750 0.482

Layia platyglossa 0.7329 Mean temperature −0.2118 0.0549 6 −3.862 0.008

Mean temperature2 0.04959 0.0549 6 0.904 0.401

Phacelia tanacetifolia 0.6569 Mean temperature −0.1537 0.0469 6 −3.272 0.014

Mean temperature2 0.0417 0.0469 6 0.887 0.409

Salvia columbariae 0.5303 Mean temperature −0.0103 0.0072 6 −1.437 0.201

Mean temperature2 0.01555 0.0072 6 2.171 0.073

Establishment Bromus rubens 0.5860 Mean temperature −0.1615 0.0575 6 −2.812 0.031

Mean temperature2 0.0449 0.0575 6 0.766 0.473

Layia platyglossa 0.4868 Mean temperature 0.0720 0.0331 6 2.179 0.072

Mean temperature2 −0.0321 0.0331 6 −0.971 0.369

Phacelia tanacetifolia 0.6265 Mean temperature −0.1493 0.0486 6 −3.075 0.022

Mean temperature2 0.03791 0.0486 6 0.781 0.465

Salvia columbariae 0.5403 Mean temperature −0.0059 0.0044 6 −1.339 0.229

Mean temperature2 0.0102 0.0044 6 2.294 0.062

Biomass Bromus rubens 0.3983 Mean temperature −0.0163 0.0092 6 −1.786 0.124

Mean temperature2 0.0081 0.0092 6 −0.885 0.410

Layia platyglossa 0.6045 Mean temperature −0.0319 0.0144 6 −2.217 0.068

Mean temperature2 0.0296 0.0144 6 2.063 0.085

Phacelia tanacetifolia 0.4378 Mean temperature 0.0127 0.0073 6 1.730 0.134

Mean Temperature2 −0.0095 0.0073 6 −1.296 0.242

Salvia columbariae 0.1021 Mean temperature −0.0029 0.0216 6 −0.136 0.896

Mean temperature2 0.0176 0.0216 6 0.815 0.446

Note:
Regressions were run independently for each species and factor to account for heterogeneity between experimental trials. All p-values that were significant at p < 0.05 are
indicated in bold.
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conditions that induce thermoinhibition can become more common as increasing drought
events and temperature extremes become more frequent (Potts et al., 2012; Diffenbaugh,
Swain & Touma, 2015), making this an important strategy for the long-term persistence of
these species. It is possible that during our study, trials of higher temperature could have
reduced the overall availability of water within each pot, thus reducing plant species
germination, establishment, and seedling biomass. In addition, light intensity can have a
direct impact on the early-life stages of plant development and typically displays a positive
correlation with temperature (Forde, Whitehead & Rowley, 1975; Yan et al., 2013).
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However, for the premise of this experiment, we focused primarily on temperature
extremes that would more likely be experienced in drylands as all the tested species can
establish populations in these ecosystems. At the current rate of climate change, local plant
species may be greatly hindered in their ability to mitigate these increasing temperatures,
thus reducing their ability to establish in these ecosystems (Sosa, Vásquez-Cruz &
Villarreal-Quintanilla, 2020). These increasing temperatures influencing germination and
establishment in tandem with one another can impact the overall structure and
biodiversity of dryland ecosystems.
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Understanding key traits of invasive species in all ecosystems is crucial to inform
conservation and management. These invasive plant species can outcompete native species
as they possess key traits that help them quickly and effectively establish a population,
including rapid growth rate, high reproduction, high dispersal rate, and wide tolerance to
environmental conditions (Mathakutha et al., 2019). Here, we tested only temperature and
potential drought conditions as a proxy for a changing climate within dryland ecosystems.
The simple climate niche estimates we derived from the WorldClim data suggests that
there is a maximum temperature that will impact the ability of B. rubens to germinate and
establish in an ecosystem. If this invasive species was able to survive at temperatures higher
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than its estimated niche, then it may easily outcompete natives in these ecosystems.
However, our findings suggest that higher temperatures reduced the germination and
establishment of B. rubens. Despite the widespread distribution of B. rubens across
Southern California, this invasive species is not resistant to an increasingly warming
climate with our findings suggesting that they will be negatively impacted with increasing
temperatures. Since its introduction into North America, this species has rapidly invaded
and established populations in several arid ecosystems, negatively affecting the local
biodiversity of both plant and animal species through alterations in microhabitat,
increased nutrient competition, and altering fire regimens (Bossard, Randall & Hoshovsky,
2000; Hamilton, Holzapfel & Mahall, 1999; Brooks, 2000; Freeman et al., 2014). Within
these dryland ecosystems, invasive species may be reliant on facilitation from foundational
species to successfully establish their populations because of this increased temperature
sensitivity. These foundational shrub species facilitate local communities (Lortie et al.,
2020; Zuliani et al., 2021; Zuliani, Ghazian & Lortie, 2021), providing benefits to both plant
and animal species within Southern California through reducing heat stress by shading
and increasing soil moisture (Prieto, Kikvidze & Pugnaire, 2010; Filazzola et al., 2018,
2020). However, there is evidence which suggests that as the aridity of these ecosystems
further increases, invasive species will no longer be able to benefit from the facilitative
effects of shrubs due to global climate change and increased drought events, while native
plant species continue to experience these benefits (Lucero et al., 2022). In addition to
temperature, light intensity and density-dependent interactions can influence the overall
establishment of B. rubens (Pik et al., 2020). Our findings suggest that if increasing
temperatures reduce the overall germination and abundance of these invasive plant species
more so than native species, then native species may have a competitive advantage over
invasive species like B. rubens at high temperatures. Several studies have tested the
relationship between the native plant species and the invasive B. rubens species (Pik et al.,
2020; Ghazian et al., 2021; Braun et al., 2023). In studies that tested the impacts of light,
seed density, and water level, the native annual species P. tanacetifolia, outcompetes
B. rubens, reducing their germination, establishment, and per capita seedling biomass (Pik
et al., 2020; Ghazian et al., 2021; Braun et al., 2023). This suggests that the native annual
species P. tanacetifolia can be utilized for restoration, particularly in areas dominated by
B. rubens, as this species is more resilient in harsher abiotic conditions (Braun et al., 2023).
Hence, we suggest that studies focusing on the effects of abiotic conditions on dryland
plant communities assess the composition of these species and the relative impacts abiotic
factors can have on the germination, establishment, and seedling biomass of invasive and
native species. Nonetheless, this study shows that temperature can potentially become a
limitation to the early-life stage processes of B. rubens, suggesting relatively warmer sites
within a region might favor natives. Species-specific responses to increasing temperatures
can influence conservation methods as it can determine the timing and location of targeted
restoration practices (Zabin et al., 2022). By understanding how individual species respond
to temperature changes, managers can decide when and where to plant specific species to
maximize their establishment and growth success (Schwartz, 2012; Poland et al., 2021).
This can be further supported by the integration of long-term climate data and climate
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scenarios, which help predict favorable conditions for native species while minimizing the
risk of being outcompeted by invasive species (Harris et al., 2006; Hellmann et al., 2008).

As one of our tested native plant species demonstrated tolerance to increasing
temperatures, selecting specific temperature-resilient native species for mitigation projects
may help maintain and restore native plant communities (Galatowitsch, Frelich & Phillips-
Mao, 2009; Vitt et al., 2010). These native species could outcompete invasive plant species
in areas with rising temperatures by occupying ecological niches and utilizing resources
more effectively, thereby reducing opportunities for invasives to establish and spread
(Čuda et al., 2015; Fernández & Hamilton, 2015). Further emphasis should be placed on
temperature as a critical factor for restoration and conservation plans within these dryland
ecosystems.

With the increasing frequency of climatic events and invasions by exotic plant species,
understanding at least one component of climate change—temperature—can provide
valuable information for conservation in dryland systems. Previous studies focusing on
early-life performance of dryland native and invasive species have shown similar results.
Research conducted has tested the effects of light (Svriz et al., 2014; Pik et al., 2020;
Nakagawa-Lagisz & Lagisz, 2023), seed aggregation (Ghazian et al., 2021), and water level
(Braun et al., 2023) on early-life stage performances of both native and invasive plant
species. Our findings, as well as the findings from these previous studies, suggest that the
native species P. tanacetifolia and B. rubens suffer the most from increasing temperatures.
It is possible that some of the tested native species could outcompete B. rubens, as they did
not suffer as much as the invasive species did. However, there are other stressors that can
be tested, including water and nutrient availability, to further enhance the growing body of
literature to support better restoration practices, in the context of highly invasive plant
species in dryland ecosystems.

There are several caveats associated with the design of this experiment that could be
explored in future temperature experiments with native and invasive annual plant species.
Firstly, temperature variation, while significant across tested trials, could be more directly
controlled. For instance, alternative methods of heating pots or the use of growth chambers
could provide more precise control over daily and seasonal temperature cycles, which are
essential for understanding how temperature-driven shifts impact native and invasive
species at different life stages (Beveridge et al., 2024; Conneway et al., 2015). Understanding
how a greater and more variable range of temperatures influences plant species can provide
managers with insight on how specific abiotic factors impact plant communities, while also
influencing when, where, and what specific practices managers could use to promote the
restoration of native plant species (Adler, Dalgleish & Ellner, 2012). Secondly, the
non-random placing of pot could have confounding results on early-life stage measures of
all tested plant species. Non-random placing of pots may introduce microclimate
variability and edge effect where some pots experience variations in temperature,
humidity, and light exposure compared to individuals situated directly under each
temperature treatment (Hartung et al., 2019;Ma et al., 2019). Randomly relocating pots at
each treatment within a table weekly can act as a possible means of reducing microclimatic
variation and edge effects (Ma et al., 2019). Finally, temporal decoupling of species may
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have confounded results on the early-life stages of all tested plant species. Testing species at
different times could influence photoperiod sensitivity to germination and age of seeds
(Romano & Stevanato, 2020; Ettinger et al., 2021). Conducting all trials for tested native
and invasive species simultaneously under each treatment can reduce possible
confounding results, simulating more in-situ conditions (Anderson, 2016).

Further analysis of these species and the relative importance of temperature and other
drivers of change, such as timing of events and rainfall, can provide more robust predictive
models. We conducted independent 6 week trials to directly assess only early-stage
development measures of these plant species. However, many of these species can survive
for longer periods of time after germination and can germinate in ecosystems outside
drylands. Focusing on the effects of increasing temperatures on established seedlings could
provide more insight into their resilience and adaptation to their changing environment.
These species typically do not exist independently in nature and experience interspecific
interactions. For the purposes of this study, we chose to test temperature independently to
remove the effects of these interspecific interactions that could impact the early-life stages
of these plant species. Our findings can guide conservation through highlighting future
habitats that may be favored more by natives than invasive species. With the decline in
dryland ecosystem health and increase in global temperature and aridity, it is essential to
study abiotic factors that can impact plant community assembly—particularly with respect
to native vs invasive plant species.
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