

Unveiling the complex double-edged sword role of exosomes in nasopharyngeal carcinoma

Xueyan Huang and Yuedi Tang

Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital of Sichuan University, Chengdu, China

ABSTRACT

Nasopharyngeal carcinoma (NPC) is a malignancy arising from the epithelium of the nasopharynx. Given its late diagnosis, NPC raises serious considerations in Southeast Asia. In addition to resistance to conventional treatment that combines chemotherapy and radiation, NPC has high rates of metastasis and frequent recurrence. Exosomes are small membrane vesicles at the nanoscale that transport physiologically active compounds from their source cell and have a crucial function in signal transmission and intercellular message exchange. The exosomes detected in the tissues of NPC patients have recently emerged as a potential non-invasive liquid biopsy biomarker that plays a role in controlling the tumor pathophysiology. Here, we take a look back at what we know so far about the complex double-edged sword role of exosomes in NPC. Exosomes could serve as biomarkers and therapeutic agents, as well as the molecular mechanisms by which they promote cell growth, angiogenesis, metastasis, immunosuppression, radiation resistance, and chemotherapy resistance in NPC. Furthermore, we go over some of the difficulties and restrictions associated with exosome use. It is anticipated that this article would provide the reference for the apply of exosomes in clinical practice.

Subjects Biochemistry, Cell Biology, Molecular Biology, Oncology, Pharmacology

Keywords Nasopharyngeal carcinoma, Exosomes, Pathogenesis, Diagnosis, Treatment

INTRODUCTION

Nasopharyngeal carcinoma (NPC) is a malignancy arising from the epithelium of the nasopharynx. The International Agency for Research on Cancer reports that in 2018, there were approximately 129,000 new cases of nasopharyngeal carcinoma (Bray *et al.*, 2018). The global distribution is highly uneven, with over 70% of cases occurring in East and Southeast Asia (Bray *et al.*, 2018). Globally, the incidence of nasopharyngeal carcinoma has been gradually declining, with significant reductions in South and East Asia, North America, and the Nordic countries, ranging from 1% to 5% annually (Tang *et al.*, 2016; Wei *et al.*, 2017). In endemic areas like Hong Kong, the incidence rate has decreased steadily since the 1980s, with a total reduction of about 30% over 20 years (Lee *et al.*, 2003). Guangzhou has seen average annual decreases of about 3% for men and 5% for women from 2000 to 2011 (Li *et al.*, 2014), possibly due to lifestyle and environmental changes. Males have a higher incidence of nasopharyngeal carcinoma than females, with a ratio of

Submitted 17 September 2024

Accepted 9 December 2024

Published 13 January 2025

Corresponding author

Yuedi Tang, tangyd@hotmail.com

Academic editor

Hilal Ozdag Sevgili

Additional Information and
Declarations can be found on
page 15

DOI 10.7717/peerj.18783

© Copyright

2025 Huang and Tang

Distributed under

Creative Commons CC-BY 4.0

OPEN ACCESS

about 2.5 in China in 2015 ([Chen et al., 2016](#)). Notably, individuals from southern China maintain a high incidence even after migrating to non-endemic areas, although the second generation shows a reduced incidence. The farther the population migrates, the lower the incidence becomes ([Yu & Hussain, 2009](#)). This distinct geographical distribution has led to research on risk factors, which suggests that multiple factors, including EBV infection, host genetics, and environmental factors, contribute to the development of nasopharyngeal carcinoma ([Chua et al., 2016](#); [Bei et al., 2016](#); [Guo et al., 2009](#); [Liu et al., 2016, 2017](#); [Chang et al., 2017](#)). Although the present treatment strategy with a combination of chemotherapy and radiation is effective, the problems of therapeutic resistance and metastatic recurrence persist as major obstacles in the management of NPC ([Chen et al., 2022](#)). As a result of its distinct position and lack of particular first symptoms, NPC is usually detected at the later stage, which further affects prognosis ([Bossi et al., 2021](#)). Hence, it is necessary to investigate appropriate pharmaceuticals and innovative biomarkers to improve the prevention, identification, and treatment of NPC.

Many different kinds of cells are able to fuse with the plasma membrane and produce vesicles called exosomes, which have a diameter of 40–100 nm. The composition of exosomes include a diverse array of compounds, such as lipids, nucleic acids, and proteins. Exosomes serve as messengers to facilitate cell-cell communication and effectively transport components to between cells for essential functions ([Wortzel et al., 2019](#); [Matarredona & Pastor, 2019](#); [Whiteside, 2018](#)). The process of exosome absorption is not haphazard but rather reliant on the receiving cells' interactions with the exosome surface proteins. To fully understand the role of exosomes in NPC, it is crucial to isolate and characterize these nanovesicles. Various techniques, such as ultracentrifugation, size-exclusion chromatography, and commercial kits, are employed to isolate exosomes from biological fluids ([Yang et al., 2019](#)). Once isolated, exosomes are characterized using a combination of methods, including nanoparticle tracking analysis (NTA) to determine size distribution, transmission electron microscopy (TEM) to visualize morphology, and Western blotting to identify specific protein markers like CD9, CD63, and CD81 ([Théry et al., 2018](#)). These techniques are essential for ensuring the purity and quality of exosomes, which is crucial for their subsequent analysis and utilization in both basic research and clinical applications.

In several malignancies, exosomes function as key players. Their potential as biomarkers is based on their ability to transport pathogenic cargos, alter tumor microenvironments, encourage angiogenesis, and assist metastasis in NPC, etc. The objective of this study is to investigate the pathogenic processes, possible therapeutic uses, and pertinent research on exosomes in NPC. The aim of the article is to offer a thorough analysis of important clinical features of exosome in NPC. Additionally, the therapeutic potential of exosomes as NPC diagnostic and prognostic biomarkers, and treatment targets are discussed. Lastly, we will go over the limits and potential future research areas regarding exosomes in NPC.

AUDIENCE

This review is intended for researchers in the field of nasopharyngeal carcinoma.

SURVEY METHODOLOGY

PubMed database was used for related literature search using the keyword “nasopharyngeal carcinoma” “exosomes” “pathogenesis” “diagnosis” and “treatment”. All types of articles are included.

OVERVIEW OF EXOSOMES

Exosomes biogenesis and secretion

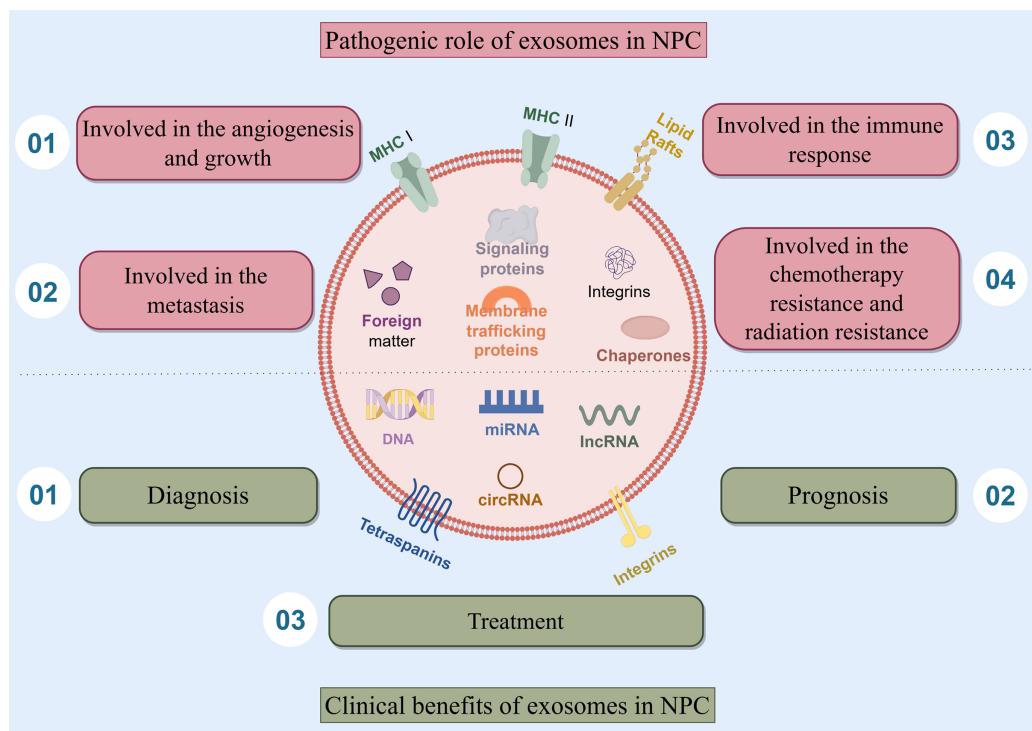
Based on their size and place of origin, three main types of extracellular vesicles have been recognized: exosomes, microvesicles (MVs), and apoptotic bodies. Typically, microvesicles (MVs) with a diameter ranging from 100 to 1,000 nm are produced by budding off the plasma membrane (Raposo & Stoorvogel, 2013; Yáñez-Mó *et al.*, 2015). The plasma membrane of dying cells produces apoptotic bodies, which may be anywhere from 100 to 2,000 nm in diameter. Since phagocytic cells sometimes absorb them, they are not usually involved in cellular communication (Battistelli & Falcieri, 2020). The tiniest extracellular vesicles produced by endocytosis are known as exosomes, and their diameters usually fall between 40 and 160 nanometers (Ha, Yang & Nadithe, 2016). The process of endocytosis results in the formation of endosomes, which facilitate the engulfment and absorption of various substances by cells (Elkin, Lakoduk & Schmid, 2016; Malm, Loppi & Kanninen, 2016). The process of intracellular endocytosis begins with an early endosome that incorporates the plasma membrane and extracellular cargoes. When early endosomes are forming, the trans-Golgi network and the endoplasmic reticulum are all involved. At some point during its development, the early endosome becomes the late endosome. The process of endosomes undergoing additional invagination lead to the formation of multivesicular bodies (MVBs) and intraluminal vesicles (ILVs) (Huotari & Helenius, 2011). Exosomes are formed when MVBs combine with the plasma membrane to release ILVs (van Niel, D'Angelo & Raposo, 2018; Janas *et al.*, 2016). On the other hand, lysosomes or autophagosomes may combine directly with MVBs.

Exosomes isolation

Kandimalla *et al.* (2021) provided a comprehensive overview of the methods currently in use for separating exosomes and similar vesicles from plants and animals. Alternative techniques for isolating exosomes include ultracentrifugation, isoelectric precipitation, ultra-filtration, polymer-based precipitation, size-exclusion chromatography, and microfluidic operations (Munagala *et al.*, 2016). Due to its simplicity and cost-effectiveness, ultracentrifugation (UC) has emerged as the preferred technique for separation and purification. Although it enhances purity, the procedure decreases the quantity of separated exosomes (Li *et al.*, 2017). In order to address this limitation, an effort was undertaken to enhance the effectiveness of the exosomes separation technique and maintaining superior degree of purity and yield. In order to increase the production of exosomes, the rate of UC was reduced by employing ultrafiltration, a process that segregates biomolecules based on their sizes. Incorporating an additional step in this procedure, however, increases its vulnerability to contamination and escalates production expenses (Li *et al.*, 2017; Lobb *et al.*, 2015). Size-exclusion liquid chromatography (SEC) is

a valuable technique for effectively segregating exosomes based on their sizes. By eliminating the need to rapidly pellet exosomes, this method produces a very pure product and is effective for purifying serum or plasma (Lobb & Möller, 2017).

EXOSOMES: A DOUBLE-EDGED SWORD IN NASOPHARYNGEAL CARCINOMA

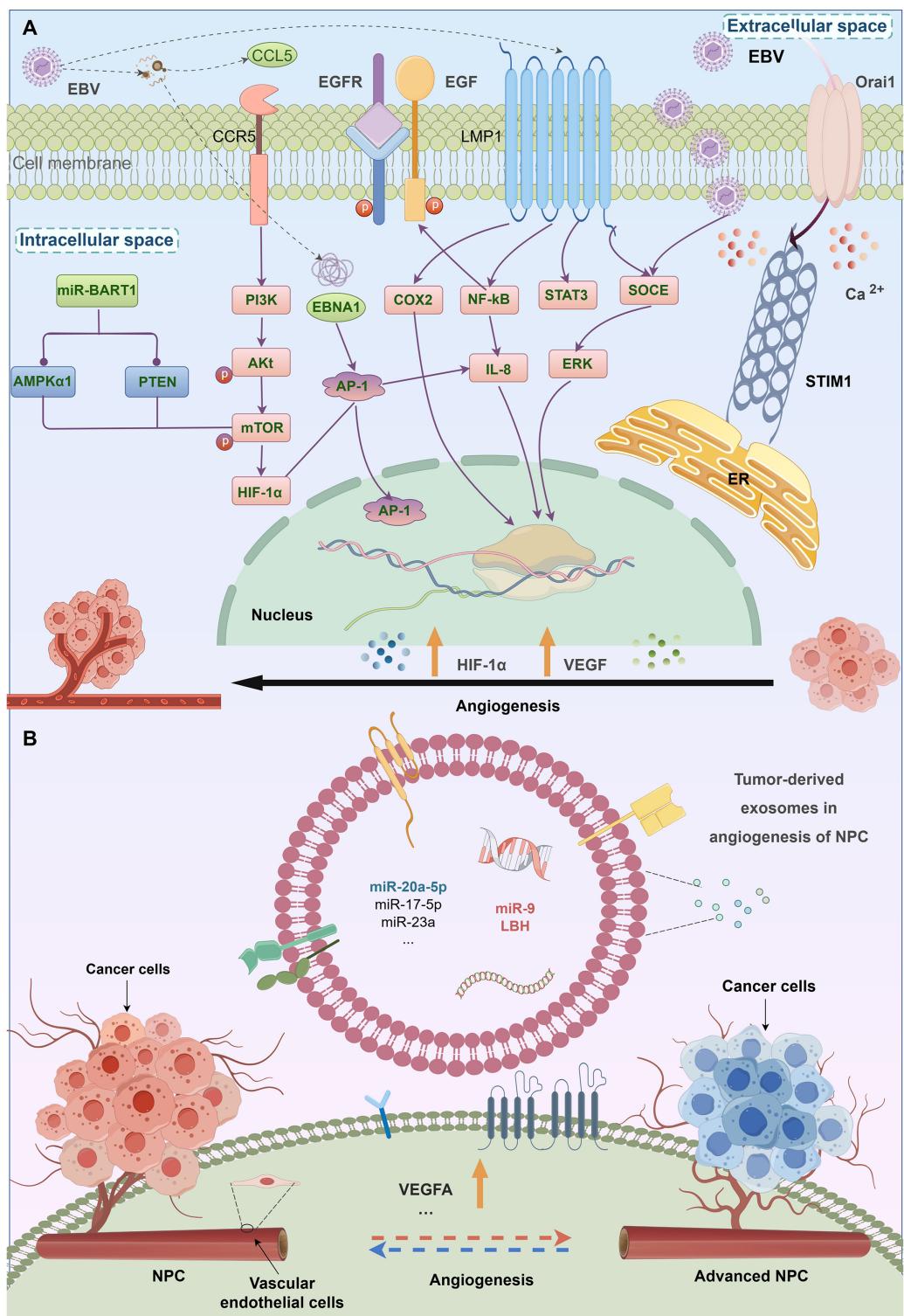

Exosomes play a complex double-edged sword role of in nasopharyngeal carcinoma, they are involved in the angiogenesis and growth of NPC, the metastasis of NPC, the immune response of NPC, the chemotherapy resistance and radiation resistance of NPC. Besides, exosomes also have clinical benefits and play an important role in the diagnosis, prognosis, and treatment of NPC (Fig. 1).

The pathogenic role of exosomes in nasopharyngeal carcinoma

Exosomes are involved in the angiogenesis and growth of nasopharyngeal carcinoma

EBV infection is causally linked to the initiation of NPC pathogenesis. The development of EBV latent infection is regarded as an initial phase of tumorigenesis. During the latent phase of infection, several viral products are produced, such as EB virus nuclear antigen (EBNA) 1, EB virus-encoded latent membrane proteins (LMP) 1 and 2, and assorted incubation period mRNA. These products coexist with EBV-related exosomes (Gallo et al., 2017; Canitano et al., 2013). LMP1 is primarily synthesised during EBV infection and is strongly related to the activation and proliferation of NPC. *In vitro* studies have shown that it has many roles, including stimulating cell proliferation, and shielding cells from apoptosis (Yoshizaki et al., 2013). The activation of normal fibroblasts into cancer-related fibroblasts may be facilitated by the LMP1 packed by exosomes *via* the critical NF-κB pathway (Wu et al., 2020). Research findings indicate that LMP1 in NPC exosomes increases the expression of syndecan-2 (SDC2) and synaptotagmin-like-4 (SYTL4) through NF-κB signaling. This stimulates cell proliferation and tumor growth by activating ERK and AKT signal pathways, and induces the expression of vascular endothelial growth factor (VEGF) receptors (Meckes et al., 2010; Liao et al., 2020). The BART1 miRNAs are believed to suppress the expression of LMP1, which might promote the development of NPC malignancy (Yoshizaki et al., 2013). Upon integration into exosomes, LMP2 may be subsequently released into the cells (Teow et al., 2017). Expressed in sera and exosomes, the levels of miR-24-3p, miR-891a, miR-106a-5p, etc. in NPC patients vary considerably from those in healthy controls. These microRNAs affect the formation and specialization of NPC cells by suppressing the MARK1 signaling pathway. In the tumor microenvironment, exosomes play a crucial role in facilitating cell-to-cell contact. These exosomes not only promote tumor progression but also contribute to the aggravation of NPC (Sun et al., 2018).

Tumor angiogenesis is a vital mechanism by which tumors form a new blood vessel formation. A higher density of microvessels has been linked to an advanced stage of tumor and a negative prognosis in NPC. Numerous exosomal processes stimulate the development of blood vessels in NPC. Firstly, exosomes produced by NPC are a main

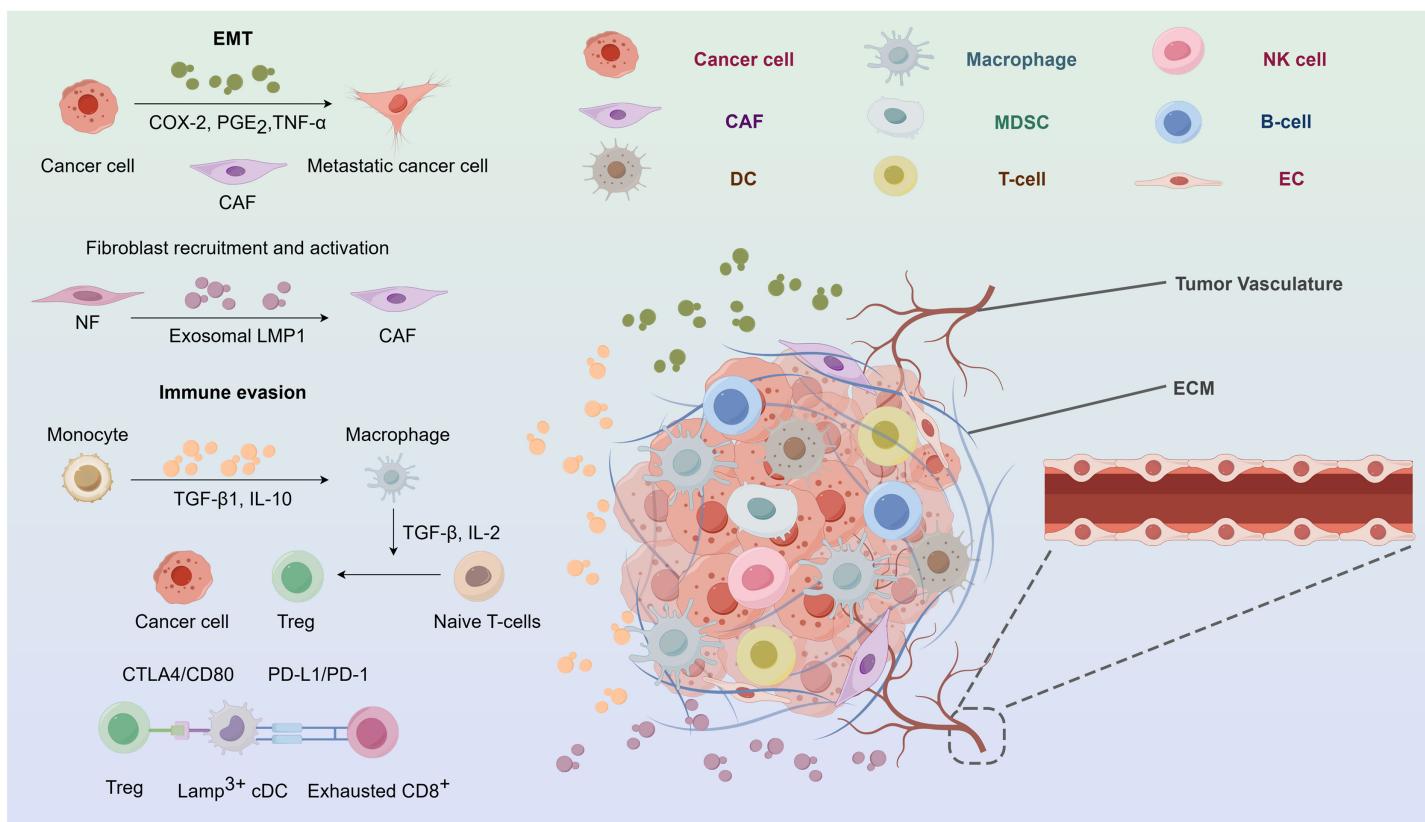

Figure 1 The double-edged sword role of exosomes in NPC. This article presents the main subjects addressed, which include the four pathogenic role of exosomes in NPC. Exosomes are involved in the angiogenesis and growth of NPC, the metastasis of NPC, the immune response of NPC, the chemotherapy resistance and radiation resistance of NPC. Besides, exosomes also have clinical benefits and play an important role in the diagnosis, prognosis, and treatment of NPC.

[Full-size](#) DOI: 10.7717/peerj.18783/fig-1

processes in stimulating the development of blood vessels. Exosomes produced from the C666-1 cell line greatly enhance the formation of tubules, movement, and invasion of HUVECs by increasing the expression of intercellular adhesion molecule-1 (ICAM-1), CD44 variant isoform 5 (CD44v5), and decreasing the expression of thrombospondin-1 (TSP-1), a protein that inhibits blood vascularization (Chan *et al.*, 2015). Exosomes produced from NPC include a high concentration of HAX-1, which is positively associated with lymph node metastasis, clinical stage, M classification, unfavorable prognosis, and enhances the growth, migration, and angiogenesis. Furthermore, miRNAs may act as oncogenes inducing genetic and epigenetic alterations. MicroRNA miR17-5p released from CNE-2 cells stimulates the growth, multiplication, and movement of cancer (Duan *et al.*, 2019). Survivorship in NPC patients is favorably associated with exosomal miR-9 (Lu *et al.*, 2018). Endothelial tube formation and migration are inhibited *via* exosomal miR-9 *via* controlling PDK/AKT pathway and suppressing MDK (Lu *et al.*, 2018) (Fig. 2).

Exosomes are involved in the metastasis of nasopharyngeal carcinoma

Metastasis is a distinctive characteristic of cancerous tumors, characterised by a complex series of stages including cancer cells, the tumor microenvironment (TME), stromal cells, cytokines, and immune cells. Metastasis is induced by exosomes *via* several pathways. In


Figure 2 The relationship between EBV infection, exosomes, and angiogenesis in NPC. Angiogenic factors related with EBV-induced NPCs. Virus and some genes expressed by virus may stimulate angiogenesis in NPC.

Full-size DOI: 10.7717/peerj.18783/fig-2

the first instance, exosomes may stimulate inflammatory milieu by suppressing the immune system. Profound leukocyte infiltration and contacts between cancer and other cells are typical features (Huang *et al.*, 1999). Epidermal cell carcinoma (ECV)-infected NPC cells facilitate metastasis *via* the release of cytokines and chemokines, as well as tumor exosomes, which establish communication with stromal cells and promote metastasis (Aga *et al.*, 2014; Ye *et al.*, 2016, 2014; Mrizak *et al.*, 2015; Whiteside, 2015). Furthermore, exosomes facilitate metastasis by specifically targeting receptors and ECM, hence inducing EMT, which is a process characterized by the acquisition of invasive and migratory capabilities by polarized epithelial cells, accompanied by the loss of adhesive polarity due to various stimuli. Furthermore, EMT is linked to tumor stemness, metastasis, and resistance to treatment, and takes place *via* certain intermediary phases (Pastushenko *et al.*, 2018). Malignant metalloproteinases (MMPs) may be stimulated by exos that carry HIF-1 α (Shan *et al.*, 2018). MMP-13 is strongly expressed in the plasma of NPC patients (You *et al.*, 2015). Metastasis is facilitated by exosomes that deliver MMP-13 (You *et al.*, 2015). Internalisation of exosomes produced by MSCs leads to morphological modifications and modified EMT markers *via* the activation of the FGF19/FGFR4 dependent ERK signalling pathway. Internalisation of exosomes produced by MSCs leads to morphological modifications and modified EMT markers *via* activation of the FGF19/FGFR4 dependent ERK signalling pathway (Shi *et al.*, 2016). A new proposal suggests that the expression of epithelial markers is terminated in the first EMT progression (Pastushenko *et al.*, 2018). EVB LMP1 may decrease E-cadherin levels *via* DNA methyl transferase or transcriptal suppression, therefore facilitating EMT (Horikawa *et al.*, 2007; Tsai *et al.*, 2002; Martin *et al.*, 2005; Horikawa *et al.*, 2011). Moreover, exosomes have regulatory influence on many cellular pathways that enhance the process of metastasis. Genetic suppression of exosome release significantly reduces both multidirectional cell migration in living organisms and chemotaxis in laboratory settings (Sung *et al.*, 2015) (Fig. 3).

Exosomes are involved in the immune response of nasopharyngeal carcinoma

A significant characteristic of NPC is the invasion of a substantial quantity of non-malignant white blood cells, mostly T lymphocytes with a minor presence of B cells, macrophages, and dendritic cells. Nevertheless, the infiltration of leukocytes has been seen to vanish throughout the course of metastasis, and instead, they are substituted by quickly and extensively multiplying malignant cells that possess a clear defense mechanism against tumors (Kapetanakis, Baloche & Busson, 2017). Cytokines and chemical compounds produced by exosomes may cause local buildup of regulatory T cells and enhance the aggressiveness of NPC (Gourzones, Barjon & Busson, 2012). Galactin-9, an immunomodulatory protein found in EBV-infected NPC exosomes initiating apoptosis in fully developed CD4+ cells (Klibi *et al.*, 2009). The expression of LMP1 may stimulate the production of galectin-9, leading to the liberation of exosomes that contain both LMP1 and galectin-9. The combination of them can powerfully inhibit T cells growth, unlike the synergistic effect of galectin-9 without LMP1 (Keryer-Bibens *et al.*, 2006). Additionally, it can induce the suppression of Tregs by suppressing FGF11 (Ye *et al.*, 2016). Interleukin-6

Figure 3 The nasopharyngeal carcinoma tumor microenvironment. CAF, cancer-associated fibroblast; COX-2, cyclooxygenase-2; CTLA4, cytotoxic lymphocyte associated protein 4; DC, dendritic cell; EC, endothelial cell; ECM, extracellular matrix; EMT, epithelialmesenchymal transition; Exo-LMP, exosome packaged latent membrane protein; IL, interleukin; MDSCs, myeloid-derived suppressor cells; NF, normal fibroblast; NK, natural killer; PD-1, programmed cell death protein 1; PD-L1, programmed death-ligand 1; PGE2, prostaglandin E2; TGF, tumor growth factor; TNF, tumor necrosis factor; Treg, regulatory T-cell.

Full-size DOI: 10.7717/peerj.18783/fig-3

(IL-6) is a proliferation initiator for many types of cancer. Tregs, as the key molecules responsible for immune suppression, may serve as facilitators of tumor immune evasion. Reports indicate that the exosomal chemokine CCL20 may attract Tregs, stimulate T cells convert into inhibitory Tregs, strengthen the suppression of Tregs (Mrizak *et al.*, 2015). Furthermore, infection with gamma herpesvirus may alter the protein composition of exosomes in B cells (Meckes *et al.*, 2013). Collectively, exosomal chemicals have the ability to impact T cell function, sustain ongoing EBV infection, and trigger immunosuppression (Fig. 3).

Exosomes are involved in the chemotherapy resistance and radiation resistance of nasopharyngeal carcinoma

NPC recurrence rates vary from 15% to 58% after first chemoradiotherapy. The responsiveness to radiation or chemotherapy in relapsed tumors reduced. Hence, the chemoradioresistance and recurrence of NPC emerged as the most complex challenges faced by doctors. Exosomes may enhance treatment resistance by disseminating proteins, miRNAs, and lncRNAs that promote resistance phenotype into susceptible cancer cells (Kalluri, 2016). The exosome contents produced by fibroblast or mesenchymal stem cells

associated with NPC can be transported from the donor to recipient cells. These exosomes regulate several pathways related to drug resistance by inhibition of immune surveillance, and elimination of chemotherapeutic drugs and radiation (Chen *et al.*, 2014; Zheng, 2017). MSC exosomes may stimulate resistance to 5-FU by counteracting 5-FU-induced cell death and enhancing the production of MDR, MRP, and LRP-related proteins (Ji *et al.*, 2015). Furthermore, the EBNA1 found in exosomes associated to EBV may disrupt miR-200a and miR-200b, therefore facilitating resistance to drugs (Wang *et al.*, 2014). LMP1 in exosomes generated from EBV infection may activate the PI3K/AKT pathway to promote the stemness and resistance to chemotherapy of NPC (Yang *et al.*, 2013, 2016). Exosomes regulate EMT *via* interacting with and depositing exosomal cargo (such as DNAs, mRNAs, miRNAs) into the cells they target (Henderson & Azorsa, 2012; Steinbichler *et al.*, 2017). For instance, NPC-Exo facilitates Erythropoiesis of cells by transmitting mitotic cytokines (such as TGF- β), resulting in resistance to chemotherapy (Dongre & Weinberg, 2019; Andarawewa *et al.*, 2012). EBV-BART-miRNAs transported by exosomes drive EMT by specifically targeting the key tumor suppressor, phosphatase, and PTEN (Cai *et al.*, 2015). Furthermore, NPC-associated exosomes may also stimulate the proliferation of fibroblasts, leading to a desmoplastic reaction that hampers the effective administration of anti-cancer medications and thereby contributes to drug resistance (Quail & Joyce, 2013). Chemoresistance is linked to dysregulation of miRNAs in cancer-associated fibroblasts (CAFs), which could be transferred from cancer cells to the microenvironment by exosomal transport (Santos *et al.*, 2016). Exosomes produced by fibroblasts may activate cancer stem cells, which aid in the development of resistance to chemotherapy (Hu *et al.*, 2017). By inhibiting AKT pathway, LMP-1 in exosomes increase CD44 level and result in radiation resistance (Yang *et al.*, 2014; Mei *et al.*, 2014). The function of exosomes in the development of resistance to cancer drugs is multifaceted and requires more investigation.

Clinical benefits of exosomes for nasopharyngeal carcinoma


The role of exosomes in the diagnosis and prognosis of nasopharyngeal carcinoma

While there has been a relative decrease in the occurrence of NPC, the early identification of this condition remains difficult because of its unusual symptoms and concealed site. A considerable number of individuals with NPC are already at an advanced stage when they are diagnosed, which exacerbates the overall prognosis. Timely detection and intervention are crucial for the prognosis of NPC. Owing to the significant impact of EBV on NPC, many EBV assays targeting EBV-DNA have been produced. However, their sensitivity and specificity are insufficient to meet the requirements of clinical use (AbuSalah *et al.*, 2020; Tan *et al.*, 2020). Therefore, investigating new biomarkers and techniques for early non-proliferative cell carcinoma detection becomes urgent. The use of exosomes in diagnosis has garnered much interest at present (Jalalian *et al.*, 2019; Vaidyanathan *et al.*, 2018). The distinctive biogenesis of exosomes provides them with the capacity to freely move in physiological fluids as carriers of numerous molecules (Whiteside, 2018). Recent studies highlight the potential of biomolecules found in NPC exosomes as innovative diagnostic tumor biomarkers, leveraging sophisticated technological platforms that

specifically target nanoparticle detection. Intracellular long non-coding RNA (lncRNA) expression in infected cells, exosomes, and tumors may be differentially induced by EBV infection in NPC, indicating the possible therapeutic use of lncRNA as a biomarker (Zhang *et al.*, 2020). Exosomal circularity the correlation between MYC and radiation tolerance has been established, and ROC analysis indicates that MYC has the capability to differentiate radiation tolerant NPC patients from those that are sensitive (Luo *et al.*, 2020). Exosomal molecules may be evaluated in conjunction with the current means of detecting EBV. Kadriyan *et al.* (2021) investigated the types of p53 carried by nasopharyngeal cancer (NPC)-derived exosomes (NPC-Exo) in NPC patients. It was found that NPC-Exo could potentially carry not only wild-type but also mutant-type p53. By isolating exosomes from serum samples of eight NPC patients, followed by RT-PCR and sequencing analysis, the study detected p53 mutation in one patient sample. This discovery provides important insights into the role of p53 in NPC and has significant implications for the future utilization of exosomes in NPC diagnosis and treatment, although further research is required to explore the clinical impact of mutant-type p53 as an exosome cargo. In the diagnosis of NPC, it has been shown that cyclophilin A (CYPA) in exosomes is much greater than that in entire sera (Liu *et al.*, 2019). Furthermore, exosomes have been utilized as biomarkers and as a contrast agent for H2O2-responsive catalytic photoacoustic imaging (PAI) in NPC (Ding *et al.*, 2019). Significantly, the molecules present on the surface of exosomes have been used to mark the exosome system in order to identify its release for the purpose of tumor surveillance.

Comprising tumor-derived exosomes, the liquid biopsy platform enables molecular and genetic profiling of parent tumor cells, as well as providing information on tumor state, monitoring treatment responses, assessing prognosis, and evaluating the immunological cells' capacity to induce anticancer action. Furthermore, there is a strong correlation between the concentration of exosomes in circulation and a negative prognosis for patients (Ye *et al.*, 2014). Elevated levels of peripheral exosomes in individuals with NPC patients are associated with worse lymphatic metastasis and prognosis (Ye *et al.*, 2014).

Furthermore, exosomal miR-9 is strongly related to the negative prognosis in patients (Lu *et al.*, 2018). A significant correlation exists between exosomal HMGB3 and NPC metastasis, suggesting a potential new foundation for treatment in metastatic patients (Zhang *et al.*, 2021). The reduced lifespan of mice with xenografts were associated with exosomes rich in EGFRs produced by highly metastatic NPC cells. These exosomes may increase the ability to metastasize and decrease levels of intracellular ROS *via* the PI3K/AKT pathway (Li *et al.*, 2020). Cancer cells generate very immunosuppressive exosomes that have a propensity to reprogramme immune cells, therefore influencing the prognosis. Exosomes produced from TW03 elevate the activity of the proinflammatory cytokines (Ye *et al.*, 2014). Exosomal miR-24-3p levels regulate NPC *via* suppressing FGF11, and thus are strongly associated with reduced disease-free lifespan (Ye *et al.*, 2016). Exosomes carrying EBV products may function as diagnostic indicators and treatments for NPC. Significantly elevated levels of circulating exosomal circMYC are seen in NPC. It has a positive correlation with cell survival and a negative correlation with susceptibility to radiation (Luo *et al.*, 2020). Decreased plasma miR-9 levels are strongly linked to more advanced

Figure 4 Clinical application of exosomes for nasopharyngeal carcinoma.

Full-size DOI: 10.7717/peerj.18783/fig-4

stages of TNM (Lu *et al.*, 2014). The sensitivity and specificity of miR-9 in differentiating locoregional from metastatic NPC patients are well-established (Choo *et al.*, 2018). Moreover, plasma miR-9 are markedly increased after therapy (Lu *et al.*, 2014) (Fig. 4).

The role of exosomes in the treatment of nasopharyngeal carcinoma and insights from other tumors

Exploiting naturally existing exosomes produced by the immune cells of the host also offers a promising opportunity for immunomodulation. Previous research has extensively investigated the possible apply of exosomes produced from M1 macrophages (M1-EX) as supplementary agents in therapy. The concurrent use M1-EX and PD-L1 inhibitors shown a substantial decrease in tumor growth compared to the exclusive administration of either drug (Choo *et al.*, 2018). Moreover, the research revealed that the combination of M1-EX with vaccination resulted in a more robust response of particular CTLs to the antigen (Zhu *et al.*, 2018). This response also shown superiority over other vaccination potentiators (Zhu *et al.*, 2018). Furthermore, M1-EX could augment the effectiveness of other therapies such as cancer vaccines, as well as chemotherapy. Another area of focus in this discipline is on exosomes produced by NK cells (NEX). The first demonstration by Zhu *et al.* (2019) showed that NEX inherently includes chemicals such as TNF- α , which allow them to trigger apoptosis. The researchers then designed nanovesicles that imitate NEX by directing NK cells with increasingly reduced hole diameters, resulting in entities referred to as NK-EM (Di Pace *et al.*, 2020; Kang *et al.*, 2021). Significantly, NK-EM demonstrated

superior cytotoxicity compared to NEX in trials against glioblastoma, and hepatic carcinoma (Wang *et al.*, 2022). Subsequent investigations revealed that introducing IL-15 to the NK cells prior to NEX extraction might further improve the ability of NEX to target tumors and stimulate cell death, hence broadening its potential applications in immunotherapy (Zhu *et al.*, 2019). These method has the potential to improve the responsiveness of NPC to adoptive cytotoxic T-cell based treatment as well as other types of immunotherapy (Wang *et al.*, 2022).

The following paragraphs will explore the current progress in exosome-based therapy in different types of cancer and the possibility of including them into NPC therapy. Based on the similarity of the tumor-infiltrating microenvironment (TIME) of NPC to the cancer types described before (Chen *et al.*, 2020; Gong *et al.*, 2021), with the exception of some small subgroups such double negative B cells (Chung *et al.*, 2023), we propose the possibility of developing comparable treatment approaches for NPC. Here, we provide a concise overview of the existing exosomal approaches realized for the treatment of NPC, in order to demonstrate the feasibility of this approach.

An ongoing approach to enhance anti-tumor immunity using exosomes is their incorporation into cancer vaccines. A cancer vaccination is a therapeutic intervention that administers tumor-associated antigens (TAAs) to patients in order to instruct the immune system to selectively identify and eliminate cancerous cells (Lin *et al.*, 2022). Exosomes produced by dendritic cells (DCs) have the potential to transport the MHC-antigen complex to additional inactive DCs in peripheral lymph nodes. Therefore, they could enhance the capacity of stimulation of T lymphocytes (Taieb, Chaput & Zitvogel, 2005). Accordingly, a clinical experiment was conducted to investigate the efficacy of DEX in augmenting an immune response against cancer. Advanced patients had good tolerance to the vaccination, and half of them showed significantly enhanced NK lytic activity (Morse *et al.*, 2005).

Due to the intrinsic existence of TAAs in TEX, they may potentially serve as cancer vaccines, in addition to DEX (Gu *et al.*, 2015; Zhang & Yu, 2019). Enhanced production of IL-12 in colon cancer TEX resulted in greater effectiveness in inhibiting tumor development and activating the immune system, when combined with a DC-based vaccine (Rossowska *et al.*, 2019). Moreover, subsequent studies have shown that the augmentation of DCs by the use of TEX would ultimately lead to the revitalization of T cells (Asadirad *et al.*, 2019; Zuo *et al.*, 2020). In order to improve the capacity of dendritic cells to acquire and deliver tumor-associated antigens (TAAs), TEX may be bioengineered and used as cancer vaccines. Transmission electron transfer (TEX) transports a range of protumour and immunosuppressive compounds. Erroneously targeted cells may lead to severe outcomes, particularly in the case of NPC-TEX, which also contains EBV oncogenic proteins. Presently, there is a lack of specialized bioengineering methods for the elimination of certain TEX content (Zhang *et al.*, 2023). Notably, it has been shown that DEX has a greater capacity to stimulate CTLs in comparison to TEX as cancer vaccines (Rossowska *et al.*, 2019; Zuo *et al.*, 2020; Morishita *et al.*, 2017). Hence, DEX may be a more auspicious avenue than TEX in the future development of NPC therapies.

The stability and cancer-cell targeting effectiveness of exosomes make them suitable for use as a medication or chemical delivery mechanism to directly reverse immunosuppression. A dual delivery strategy for pancreatic cancer was created using exosomes produced from bone marrow mesenchymal stem cells (BM-MSCs) (Zhou *et al.*, 2021). Electroporation was used to load galectin-9 siRNA into the exosomes, which were then modified with oxaliplatin prodrug (Zhou *et al.*, 2021). While using of bioengineering for the development of immunotherapeutic drugs in NPC is still in its early stages, the growing body of data from related research is drawing attention. STING is a transmembrane protein found in the endoplasmic reticulum that may be expressed as TEX. The STING-rich targeted exosomes have the ability to attract TBK1 in order to stimulate IRF3 in the cells (Gao *et al.*, 2022). This stimulates the synthesis of many cytokines, among which type I interferons (IFNs) are prominent. Experimental evidence has shown that activated STING, delivered *via* TEX, may stimulate the synthesis of IFN β in macrophages. This, in turn, can attract CD3+ and CD8+ T lymphocytes to the TME (Gao *et al.*, 2022). Induction of miR-6750 by manual means resulted in an elevation of its expression in TEX. TEX with high levels of miR-6750 have shown anti-tumor activity by stimulating M1 polarization in macrophages and suppressing angiogenesis (Zhang *et al.*, 2023). From a therapeutic perspective, bioengineered exosomes saturated with miR-6750 have the potential to be used as an adjunct to immunotherapy due to their capacity to counteract immunosuppressive effects of tumor-associated macrophages. Nevertheless, more endeavors are necessary to determine the efficacy of these medicines in NPC, as well as to discover alternative candidate compounds that might be used in exosome delivery methods for NPC therapy. These innovative approach highlights the potential of exosome-based immunotherapy and, presumably, offers meaningful information that future studies in NPC might use (Fig. 4).

CONCLUSIONS, LIMITATIONS, AND FUTURE PERSPECTIVES

Potential of exosomes as biomarkers in NPC

In NPC, exosomes exert influence on the TME, contribute to resistance to chemotherapy and radiation, trigger immunological suppression, stimulate abnormal angiogenesis, and facilitate dissemination. Consequently, they have the potential to serve as valuable biomarkers. The possibility exists for their development into liquid nano-biopsy platforms based on exosomes, which may be used for cancer detection, prognosis, and appraisal of therapy responses.

Challenges in exosome extraction for clinical applications

However, the shift from the bench to the bedside encounters some obstacles. An inherent constraint of exosomes in clinical applications is the challenges associated with their extraction. In order to fully exploit the capabilities of liquid biopsies based on exosomes, superior purity exosome isolation from patient physiological fluids, including blood, must be achieved, and there must be efficient and cost-effective methods for this.

Current methods and limitations of exosome isolation

The goal is to produce DEX/TEX for use in cancer vaccines or to grow drug-delivering pure exosomes from mesenchymal stem cells. On the other hand, how to isolate and purify tumor exosomes from whole exosomes is the primary challenge in using exosomes for surveilling tumor progression. It will be necessary to develop cost-effective techniques for isolating exosomes from the source. Recommendations from the International Society for Extracellular Vesicles indicate that currently, there is not a highly efficient method for separating exosomes that works everywhere (Théry *et al.*, 2018). Both SEC and differential UC are categorized as having “intermediate recovery, intermediate specificity,” and ISEV reports that the majority of published studies have used both methods. Due to their limitations, intermediate techniques are often associated with low yields and the risk of sample contamination from other free particles.

Emerging techniques for exosome separation

While SEC is a time-consuming method (Takov, Yellon & Davidson, 2019), recent studies have shown that exosomes in UC are susceptible to physical manipulation and shear stress during the multistep centrifugation procedure (Mol *et al.*, 2017). The expansion of exosome therapeutic application in NPC and other cancer types requires improvements in separation methods and the integration of analytical tools into devices like microfluidic chips. Acoustic-based separation, a technique that differentiates particles of various sizes by applying different acoustic stresses, has shown potential as an innovative approach (Wu *et al.*, 2017). Though less complex techniques like ultrafiltration also have promise, it is important to enhance their productivity (Shu *et al.*, 2020).

Safety considerations and potential hazards of exosome treatment

Another constraint is the safety considerations associated with exosome-based treatment. Thus, the potential hazards linked to exosome treatment remain mostly unidentified. A potential issue that may arise is contamination. The majority of exosome delivery methods now under development use MSCs as their base. Kalluri (2016) created a bioreactor to continuously generate high-quality exosomes (Mendt *et al.*, 2018), but if the exosomes being used are not well isolated and sterilised, they may retain genetic material derived from the MSCs of origin, which may be hazardous.

Immunosuppressive effects and purity concerns

Exosomes derived from MSCs have the potential to modulate the activities of several immune cell types by reducing the secretion of cytokines that promote inflammation (Zhang *et al.*, 2014; Chen *et al.*, 2016). In addition, MSC-derived exosomes may impair Th1 or Th17 cell proliferation and promoting CD4+ T cell growth into Tregs and Th2 (Del Fattore *et al.*, 2015; Duffy *et al.*, 2011). Within the framework of cancer therapy, these immunosuppressive effects might have adverse consequences. Moreover, the surfaces of exosomes are often altered to enable preferential fusion with target cells. Although the targeted distribution of exosomes has shown efficacy (Alvarez-Erviti *et al.*, 2011), their specificity may be compromised by unforeseen events such as surface peptide breakdown,

leading to adverse consequences (*Hung & Leonard, 2015*). The existence of microRNAs and cargos within TEX that might cause cancer or promote the growth of pre-existing cancer cells makes the purity and specificity problem much the more concerning when this material is used in treatments like cancer vaccinations (*Ghamloush et al., 2019; Yin et al., 2021*).

Unexplored facets of tumor immunity and non-tumor-derived exosomes

Insufficient knowledge of exosome-cellular interactions is another significant constraint. The role of exosomes in a yet unexplored facet of tumor immunity is one area within NPC that deserves particular attention. Research on various types of cancer has expanded its focus to include NK cells, MDSCs, etc. In contrast to early studies on NPC that mostly focused on T cells and macrophages and how TEX affects them (*Olejarz et al., 2020; Hao et al., 2022; Li et al., 2021; Salimu et al., 2017*). Non-tumor-derived exosomes not produced by tumors also have a substantial impact on the advancement of tumors and their ability to evade the immune system, a factor that has been neglected in the study of NPC. In different malignancies, exosomes produced from tumor may contribute to tumor immune evasion (*Marar, Starich & Wirtz, 2021; Xie et al., 2022*), non-tumor-derived exosomes may potentially impact tumor growth and metastasis (*Dai et al., 2020; Sun et al., 2020*). Future investigations of NPC should aim to broaden these avenues and refrain from an undue emphasis just on TEX.

Future directions and prospects for exosome-based therapies

While the detection and use of exosomes encounter difficulties with sensitivity and specificity, the ongoing development of valuable tools and procedures for exosome detection and identification may provide potential solutions to these issues. Furthermore, such novel technologies are very simple and cost-effective. Given the advancements in technology, it is reasonable to anticipate the extensive use of exosomes in the diagnosis and treatment of NPC. In order to establish a standard protocol for assessing diagnosis and disease prognosis, it is necessary to gather preclinical data and conduct preclinical investigations. Those comprehensive investigations may aid in the development and refinement of a novel diagnostic and therapeutic instrument for the management of NPC. Given the growing focus, future advancements on exosome-based therapeutic approaches are anticipated to enhance the clinical treatment of NPC. Future efforts must solve concerns related to efficiency, purity, complexity, costs, and scalability in order to enable the widespread use of exosome-based liquid biopsy.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

The authors received no funding for this work.

Competing Interests

The authors declare that they have no competing interests.

Author Contributions

- Xueyan Huang conceived and designed the experiments, performed the experiments, analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the article, and approved the final draft.
- Yuedi Tang conceived and designed the experiments, performed the experiments, analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the article, and approved the final draft.

Data Availability

The following information was supplied regarding data availability:

This is a literature review.

REFERENCES

AbuSalah MAH, Gan SH, Al-Hatamleh MAI, Irekeola AA, Shueb RH, Yean Yean C. 2020. Recent advances in diagnostic approaches for epstein-barr virus. *Pathogens* 9(3):226 DOI 10.3390/pathogens9030226.

Aga M, Bentz GL, Raffa S, Torrisi MR, Kondo S, Wakisaka N, Yoshizaki T, Pagano JS, Shackelford J. 2014. Exosomal HIF1 α supports invasive potential of nasopharyngeal carcinoma-associated LMP1-positive exosomes. *Oncogene* 33(37):4613–4622 DOI 10.1038/onc.2014.66.

Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhai S, Wood MJ. 2011. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. *Nature Biotechnology* 29(4):341–345 DOI 10.1038/nbt.1807.

Andarawewa KL, Erickson AC, Chou WS, Costes SV, Gascard P, Mott JD, Bissell MJ, Barcellos-Hoff MH. 2012. Ionizing radiation predisposes nonmalignant human mammary epithelial cells to undergo transforming growth factor β -induced epithelial to mesenchymal transition. *Journal of Urology* 7(11):1423–1437 DOI 10.1158/0008-5472.CAN-07-1294.

Asadirad A, Hashemi SM, Baghæi K, Ghanbarian H, Mortaz E, Zali MR, Amani D. 2019. Phenotypical and functional evaluation of dendritic cells after exosomal delivery of miRNA-155. *Life Sciences* 219(11):152–162 DOI 10.1016/j.lfs.2019.01.005.

Battistelli M, Falcieri E. 2020. Apoptotic bodies: particular extracellular vesicles involved in intercellular communication. *Biology* 9(1):21 DOI 10.3390/biology9010021.

Bei JX, Zuo XY, Liu WS, Guo YM, Zeng YX. 2016. Genetic susceptibility to the endemic form of NPC. *Chinese Clinical Oncology* 5(2):15 DOI 10.21037/cco.2016.03.11.

Bossi P, Chan AT, Licitra L, Trama A, Orlandi E, Hui EP, Halámková J, Mattheis S, Baujat B, Hardillo J, Smeele L, van Herpen C, Castro A, Machiels JP, ESMO Guidelines Committee. 2021. Nasopharyngeal carcinoma: ESMO-EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up[†]. *Annals of Oncology* 32(4):452–465 DOI 10.1016/j.annonc.2020.12.007.

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. 2018. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA: A Cancer Journal for Clinicians* 68(6):394–424 DOI 10.3322/caac.21492.

Cai L, Ye Y, Jiang Q, Chen Y, Lyu X, Li J, Wang S, Liu T, Cai H, Yao K, Li JL, Li X. 2015. Epstein-Barr virus-encoded microRNA BART1 induces tumour metastasis by regulating PTEN-dependent pathways in nasopharyngeal carcinoma. *Nature Communications* 6(1):7353 DOI 10.1038/ncomms8353.

Canitano A, Venturi G, Borghi M, Ammendolia MG, Fais S. 2013. Exosomes released in vitro from Epstein-barr virus (EBV)-infected cells contain EBV-encoded latent phase mRNAs. *Cancer Letters* **337**(2):193–199 DOI [10.1016/j.canlet.2013.05.012](https://doi.org/10.1016/j.canlet.2013.05.012).

Chan YK, Zhang H, Liu P, Tsao SW, Lung ML, Mak NK, Ngok-Shun Wong R, Ying-Kit Yue P. 2015. Proteomic analysis of exosomes from nasopharyngeal carcinoma cell identifies intercellular transfer of angiogenic proteins. *International Journal of Cancer* **137**(8):1830–1841 DOI [10.1002/ijc.29562](https://doi.org/10.1002/ijc.29562).

Chang ET, Liu Z, Hildesheim A, Liu Q, Cai Y, Zhang Z, Chen G, Xie SH, Cao SM, Shao JY, Jia WH, Zheng Y, Liao J, Chen Y, Lin L, Ernberg I, Vaughan TL, Adami HO, Huang G, Zeng Y, Zeng YX, Ye W. 2017. Active and passive smoking and risk of nasopharyngeal carcinoma: a population-based case-control study in Southern China. *American Journal of Epidemiology* **185**(12):1272–1280 DOI [10.1093/aje/kwx018](https://doi.org/10.1093/aje/kwx018).

Chen W, Huang Y, Han J, Yu L, Li Y, Lu Z, Li H, Liu Z, Shi C, Duan F, Xiao Y. 2016. Immunomodulatory effects of mesenchymal stromal cells-derived exosome. *Immunologic Research* **64**(4):831–840 DOI [10.1007/s12026-016-8798-6](https://doi.org/10.1007/s12026-016-8798-6).

Chen WX, Liu XM, Lv MM, Chen L, Zhao JH, Zhong SL, Ji MH, Hu Q, Luo Z, Wu JZ, Tang JH. 2014. Exosomes from drug-resistant breast cancer cells transmit chemoresistance by a horizontal transfer of MicroRNAs. *PLOS ONE* **19**(4):e95240 DOI [10.1371/journal.pone.0095240](https://doi.org/10.1371/journal.pone.0095240).

Chen S, Yang D, Liao X, Lu Y, Yu B, Xu M, Bin Y, Zhou P, Yang Z, Liu K, Wang R, Zhao T, Kang M. 2022. Failure patterns of recurrence and metastasis after intensity-modulated radiotherapy in patients with nasopharyngeal carcinoma: results of a multicentric clinical study. *Frontiers in Oncology* **11**:693199 DOI [10.3389/fonc.2021.693199](https://doi.org/10.3389/fonc.2021.693199).

Chen YP, Yin JH, Li WF, Li HJ, Chen DP, Zhang CJ, Lv JW, Wang YQ, Li XM, Li JY, Zhang PP, Li YQ, He QM, Yang XJ, Lei Y, Tang LL, Zhou GQ, Mao YP, Wei C, Xiong KX, Zhang HB, Zhu SD, Hou Y, Sun Y, Dean M, Amit I, Wu K, Kuang DM, Li GB, Liu N, Ma J. 2020. Single-cell transcriptomics reveals regulators underlying immune cell diversity and immune subtypes associated with prognosis in nasopharyngeal carcinoma. *Cell Research* **30**(11):1024–1042 DOI [10.1038/s41422-020-0374-x](https://doi.org/10.1038/s41422-020-0374-x).

Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ, He J. 2016. Cancer statistics in China, 2015. *CA: A Cancer Journal for Clinicians* **66**(2):115–132 DOI [10.3322/caac.21338](https://doi.org/10.3322/caac.21338).

Choo YW, Kang M, Kim HY, Han J, Kang S, Lee JR, Jeong GJ, Kwon SP, Song SY, Go S, Jung M, Hong J, Kim BS. 2018. M1 macrophage-derived nanovesicles potentiate the anticancer efficacy of immune checkpoint inhibitors. *ACS Nano* **12**(9):8977–8993 DOI [10.1021/acsnano.8b02446](https://doi.org/10.1021/acsnano.8b02446).

Chua MLK, Wee JTS, Hui EP, Chan ATC. 2016. Nasopharyngeal carcinoma. *The Lancet* **387**(10022):1012–1024 DOI [10.1016/S0140-6736\(15\)00055-0](https://doi.org/10.1016/S0140-6736(15)00055-0).

Chung MKY, Gong L, Kwong DL, Lee VH, Lee AW, Guan XY, Kam NW, Dai W. 2023. Functions of double-negative B cells in autoimmune diseases, infections, and cancers. *EMBO Molecular Medicine* **15**(9):e17341 DOI [10.15252/emmm.202217341](https://doi.org/10.15252/emmm.202217341).

Dai J, Su Y, Zhong S, Cong L, Liu B, Yang J, Tao Y, He Z, Chen C, Jiang Y. 2020. Exosomes: key players in cancer and potential therapeutic strategy. *Signal Transduction and Targeted Therapy* **5**(1):145 DOI [10.1038/s41392-020-00261-0](https://doi.org/10.1038/s41392-020-00261-0).

Del Fattore A, Luciano R, Pascucci L, Goffredo BM, Giorda E, Scapaticci M, Fierabracci A, Muraca M. 2015. Immunoregulatory effects of mesenchymal stem cell-derived extracellular

vesicles on T lymphocytes. *Cell Transplantation* **24**(12):2615–2627
DOI [10.3727/096368915X687543](https://doi.org/10.3727/096368915X687543).

Di Pace AL, Tumino N, Besi F, Alicata C, Conti LA, Munari E, Maggi E, Vacca P, Moretta L. 2020. Characterization of human NK cell-derived exosomes: role of DNAM1 receptor in exosome-mediated cytotoxicity against tumor. *Cancers* **12**(3):661
DOI [10.3390/cancers12030661](https://doi.org/10.3390/cancers12030661).

Ding H, Cai Y, Gao L, Liang M, Miao B, Wu H, Liu Y, Xie N, Tang A, Fan K, Yan X, Nie G. 2019. Exosome-like nanozyme vesicles for H₂O₂-responsive catalytic photoacoustic imaging of xenograft nasopharyngeal carcinoma. *Nano Letters* **19**(1):203–209
DOI [10.1021/acs.nanolett.8b03709](https://doi.org/10.1021/acs.nanolett.8b03709).

Dongre A, Weinberg RA. 2019. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. *Nature Reviews Molecular Cell Biology* **20**(2):69–84
DOI [10.1038/s41580-018-0080-4](https://doi.org/10.1038/s41580-018-0080-4).

Duan B, Shi S, Yue H, You B, Shan Y, Zhu Z, Bao L, You Y. 2019. Exosomal miR-17-5p promotes angiogenesis in nasopharyngeal carcinoma via targeting BAMBI. *Journal of Cancer* **10**(26):6681–6692 DOI [10.7150/jca.30757](https://doi.org/10.7150/jca.30757).

Duffy MM, Ritter T, Ceredig R, Griffin MD. 2011. Mesenchymal stem cell effects on T-cell effector pathways. *Stem Cell Research & Therapy* **2**(4):34 DOI [10.1186/scrt75](https://doi.org/10.1186/scrt75).

Elkin SR, Lakoduk AM, Schmid SL. 2016. Endocytic pathways and endosomal trafficking: a primer. *Wiener Medizinische Wochenschrift* **166**(7–8):196–204
DOI [10.1007/s10354-016-0432-7](https://doi.org/10.1007/s10354-016-0432-7).

Gallo A, Vella S, Miele M, Timoneri F, Di Bella M, Bosi S, Sciveres M, Conaldi PG. 2017. Global profiling of viral and cellular non-coding RNAs in Epstein-Barr virus-induced lymphoblastoid cell lines and released exosome cargos. *Cancer Letters* **388**(Pt 4):334–343
DOI [10.1016/j.canlet.2016.12.003](https://doi.org/10.1016/j.canlet.2016.12.003).

Gao Y, Zheng X, Chang B, Lin Y, Huang X, Wang W, Ding S, Zhan W, Wang S, Xiao B, Huo L, Yu Y, Chen Y, Gong R, Wu Y, Zhang R, Zhong L, Wang X, Chen Q, Gao S, Jiang Z, Wei D, Kang T. 2022. Intercellular transfer of activated STING triggered by RAB22A-mediated non-canonical autophagy promotes antitumor immunity. *Cell Research* **32**(12):1086–1104
DOI [10.1038/s41422-022-00731-w](https://doi.org/10.1038/s41422-022-00731-w).

Ghamloush F, Ghayad SE, Rammal G, Fahs A, Ayoub AJ, Merabi Z, Harajly M, Zalzali H, Saab R. 2019. The PAX3-FOXO1 oncogene alters exosome miRNA content and leads to paracrine effects mediated by exosomal miR-486. *Scientific Reports* **9**(1):14242
DOI [10.1038/s41598-019-50592-4](https://doi.org/10.1038/s41598-019-50592-4).

Gong L, Kwong DL, Dai W, Wu P, Li S, Yan Q, Zhang Y, Zhang B, Fang X, Liu L, Luo M, Liu B, Chow LK, Chen Q, Huang J, Lee VH, Lam KO, Lo AW, Chen Z, Wang Y, Lee AW, Guan XY. 2021. Comprehensive single-cell sequencing reveals the stromal dynamics and tumor-specific characteristics in the microenvironment of nasopharyngeal carcinoma. *Nature Communications* **12**(1):1540 DOI [10.1038/s41467-021-21795-z](https://doi.org/10.1038/s41467-021-21795-z).

Gourzones C, Barjon C, Busson P. 2012. Host-tumor interactions in nasopharyngeal carcinomas. *Seminars in Cancer Biology* **22**(2):127–136 DOI [10.1016/j.semcaner.2012.01.002](https://doi.org/10.1016/j.semcaner.2012.01.002).

Gu X, Erb U, Büchler MW, Zöller M. 2015. Improved vaccine efficacy of tumor exosome compared to tumor lysate loaded dendritic cells in mice. *International Journal of Cancer* **136**(4):E74–E84 DOI [10.1002/ijc.29100](https://doi.org/10.1002/ijc.29100).

Guo X, Johnson RC, Deng H, Liao J, Guan L, Nelson GW, Tang M, Zheng Y, de The G, O'Brien SJ, Winkler CA, Zeng Y. 2009. Evaluation of nonviral risk factors for nasopharyngeal

carcinoma in a high-risk population of Southern China. *International Journal of Cancer* **124**(12):2942–2947 DOI [10.1002/ijc.24293](https://doi.org/10.1002/ijc.24293).

Ha D, Yang N, Nadithe V. 2016. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. *Acta Pharmaceutica Sinica B* **6**(4):287–296 DOI [10.1016/j.apsb.2016.02.001](https://doi.org/10.1016/j.apsb.2016.02.001).

Hao Q, Wu Y, Wu Y, Wang P, Vadgama JV. 2022. Tumor-derived exosomes in tumor-induced immune suppression. *International Journal of Molecular Sciences* **23**(3):1461 DOI [10.3390/ijms23031461](https://doi.org/10.3390/ijms23031461).

Henderson MC, Azorsa DO. 2012. The genomic and proteomic content of cancer cell-derived exosomes. *Frontiers in Oncology* **2**:38 DOI [10.3389/fonc.2012.00038](https://doi.org/10.3389/fonc.2012.00038).

Horikawa T, Yang J, Kondo S, Yoshizaki T, Joab I, Furukawa M, Pagano JS. 2007. Twist and epithelial-mesenchymal transition are induced by the EBV oncoprotein latent membrane protein 1 and are associated with metastatic nasopharyngeal carcinoma. *Cancer Research* **67**(5):1970–1978 DOI [10.1158/0008-5472.CAN-06-3933](https://doi.org/10.1158/0008-5472.CAN-06-3933).

Horikawa T, Yoshizaki T, Kondo S, Furukawa M, Kaizaki Y, Pagano JS. 2011. Epstein-Barr Virus latent membrane protein 1 induces Snail and epithelial-mesenchymal transition in metastatic nasopharyngeal carcinoma. *British Journal of Cancer* **104**(7):1160–1167 DOI [10.1038/bjc.2011.38](https://doi.org/10.1038/bjc.2011.38).

Hu Y, Yan C, Mu L, Huang K, Li X, Tao D, Wu Y, Qin J. 2017. Fibroblast-derived exosomes contribute to chemoresistance through priming cancer stem cells in colorectal cancer. *PLOS ONE* **10**:e0125625 DOI [10.1371/journal.pone.0125625](https://doi.org/10.1371/journal.pone.0125625).

Huang YT, Sheen TS, Chen CL, Lu J, Chang Y, Chen JY, Tsai CH. 1999. Profile of cytokine expression in nasopharyngeal carcinomas: a distinct expression of interleukin 1 in tumor and CD4+ T cells. *Cancer Research* **59**(7):1599–1605.

Hung ME, Leonard JN. 2015. Stabilization of exosome-targeting peptides via engineered glycosylation. *Journal of Biological Chemistry* **290**(13):8166–8172 DOI [10.1074/jbc.M114.621383](https://doi.org/10.1074/jbc.M114.621383).

Huotari J, Helenius A. 2011. Endosome maturation. *The EMBO Journal* **30**(17):3481–3500 DOI [10.1038/emboj.2011.286](https://doi.org/10.1038/emboj.2011.286).

Jalalian SH, Ramezani M, Jalalian SA, Abnous K, Taghdisi SM. 2019. Exosomes, new biomarkers in early cancer detection. *Analytical Biochemistry* **571**(6):1–13 DOI [10.1016/j.ab.2019.02.013](https://doi.org/10.1016/j.ab.2019.02.013).

Janas AM, Sapoń K, Janas T, Stowell MH, Janas T. 2016. Exosomes and other extracellular vesicles in neural cells and neurodegenerative diseases. *Biochimica et Biophysica Acta* **1858**(6):1139–1151 DOI [10.1016/j.bbamem.2016.02.011](https://doi.org/10.1016/j.bbamem.2016.02.011).

Ji R, Zhang B, Zhang X, Xue J, Yuan X, Yan Y, Wang M, Zhu W, Qian H, Xu W. 2015. Exosomes derived from human mesenchymal stem cells confer drug resistance in gastric cancer. *Cell Cycle* **14**(15):2473–2483 DOI [10.1080/15384101.2015.1005530](https://doi.org/10.1080/15384101.2015.1005530).

Kadriyan H, Prasedya ES, Pieter NAL, Gaffar M, Akil A, Bukhari A, Budu B, Zainuddin AA, Masadah R, Romdhoni A. 2021. NPC-exosome carry wild and mutant-type p53 among nasopharyngeal cancer patients. *The Indonesian Biomedical Journal* **13**(4):403–408 DOI [10.18585/inabj.v13i4.1718](https://doi.org/10.18585/inabj.v13i4.1718).

Kalluri R. 2016. The biology and function of exosomes in cancer. *Journal of Clinical Investigation* **126**(4):1208–1215 DOI [10.1172/JCI81135](https://doi.org/10.1172/JCI81135).

Kandimalla R, Aqil F, Tyagi N, Gupta R. 2021. Milk exosomes: a biogenic nanocarrier for small molecules and macromolecules to combat cancer. *American Journal of Reproductive Immunology* **85**(2):e13349 DOI [10.1111/aji.13349](https://doi.org/10.1111/aji.13349).

Kang YT, Niu Z, Hadlock T, Purcell E, Lo TW, Zeinali M, Owen S, Keshamouni VG, Reddy R, Ramnath N, Nagrath S. 2021. On-chip biogenesis of circulating NK cell-derived exosomes in non-small cell lung cancer exhibits antitumoral activity. *Advanced Science* 8(6):2003747 DOI 10.1002/advs.202003747.

Kapetanakis NI, Baloche V, Busson P. 2017. Tumor exosomal microRNAs thwarting anti-tumor immune responses in nasopharyngeal carcinomas. *Annals of Translational Medicine* 5(7):164 DOI 10.21037/atm.2017.03.57.

Keryer-Bibens C, Pioche-Durieu C, Villemant C, Souquère S, Nishi N, Hirashima M, Middeldorp J, Busson P. 2006. Exosomes released by EBV-infected nasopharyngeal carcinoma cells convey the viral Latent Membrane Protein 1 and the immunomodulatory protein galectin 9. *BMC Cancer* 6(1):283 DOI 10.1186/1471-2407-6-283.

Klibi J, Niki T, Riedel A, Pioche-Durieu C, Souquère S, Rubinstein E, Le Moulec S, Guigay J, Hirashima M, Guemira F, Adhikary D, Mautner J, Busson P. 2009. Blood diffusion and Th1-suppressive effects of galectin-9-containing exosomes released by Epstein-Barr virus-infected nasopharyngeal carcinoma cells. *Blood* 113(9):1957–1966 DOI 10.1182/blood-2008-02-142596.

Lee AW, Foo W, Mang O, Sze WM, Chappell R, Lau WH, Ko WM. 2003. Changing epidemiology of nasopharyngeal carcinoma in Hong Kong over a 20-year period (1980-99): an encouraging reduction in both incidence and mortality. *International Journal of Cancer* 103(5):680–685 DOI 10.1002/ijc.10894.

Li Q, Cai S, Li M, Salma KI, Zhou X, Han F, Chen J, Huyan T. 2021. Tumor-derived extracellular vesicles: their role in immune cells and immunotherapy. *International Journal of Nanomedicine* 16:5395–5409 DOI 10.2147/IJN.S313912.

Li P, Kaslan M, Lee SH, Yao J, Gao Z. 2017. Progress in exosome isolation techniques. *Theranostics* 7(3):789–804 DOI 10.7150/thno.18133.

Li K, Lin GZ, Shen JC, Zhou Q. 2014. Time trends of nasopharyngeal carcinoma in urban guangzhou over a 12-Year Period (2000-2011): declines in both incidence and mortality. *Asian Pacific Journal of Cancer Prevention* 15(22):9899–9903 DOI 10.7314/APJCP.2014.15.22.9899.

Li F, Zhao X, Sun R, Ou J, Huang J, Yang N, Xu T, Li J, He X, Li C, Yang M, Zhang Q. 2020. EGFR-rich extracellular vesicles derived from highly metastatic nasopharyngeal carcinoma cells accelerate tumour metastasis through PI3K/AKT pathway-suppressed ROS. *Journal of Extracellular Vesicles* 10(1):e12003 DOI 10.1002/jev2.12003.

Liao C, Zhou Q, Zhang Z, Wu X, Zhou Z, Li B, Peng J, Shen L, Li D, Luo X, Yang L. 2020. Epstein-Barr virus-encoded latent membrane protein 1 promotes extracellular vesicle secretion through syndecan-2 and synaptotagmin-like-4 in nasopharyngeal carcinoma cells. *Cancer Science* 111(3):857–868 DOI 10.1111/cas.14305.

Lin MJ, Svensson-Arvelund J, Lubitz GS, Marabelle A, Melero I, Brown BD, Brody JD. 2022. Cancer vaccines: the next immunotherapy frontier. *Nature Cancer* 3(8):911–926 DOI 10.1038/s43018-022-00418-6.

Liu Z, Chang ET, Liu Q, Cai Y, Zhang Z, Chen G, Huang QH, Xie SH, Cao SM, Shao JY, Jia WH, Zheng Y, Liao J, Chen Y, Lin L, Liang L, Ernberg I, Vaughan TL, Adami HO, Huang G, Zeng Y, Zeng YX, Ye W. 2017. Quantification of familial risk of nasopharyngeal carcinoma in a high-incidence area. *Cancer* 123(14):2716–2725 DOI 10.1002/cncr.30643.

Liu Z, Chang ET, Liu Q, Cai Y, Zhang Z, Chen G, Xie SH, Cao SM, Shao JY, Jia WH, Zheng Y, Liao J, Chen Y, Ernberg I, Vaughan TL, Adami HO, Huang G, Zeng Y, Zeng YX, Ye W. 2016. Oral hygiene and risk of nasopharyngeal carcinoma—a population-based case-control study in China. *Cancer Epidemiology, Biomarkers & Prevention* 25(8):1201–1207 DOI 10.1158/1055-9965.EPI-16-0149.

Liu L, Zuo L, Yang J, Xin S, Zhang J, Zhou J, Li G, Tang J, Lu J. 2019. Exosomal cyclophilin A as a novel noninvasive biomarker for Epstein-Barr virus associated nasopharyngeal carcinoma. *Cancer Medicine* **8**(6):3142–3151 DOI [10.1002/cam4.2185](https://doi.org/10.1002/cam4.2185).

Lobb RJ, Becker M, Wen SW, Wong CS, Wiegmans AP, Leimgruber A, Möller A. 2015. Optimized exosome isolation protocol for cell culture supernatant and human plasma. *Journal of Extracellular Vesicles* **4**(1):27031 DOI [10.3402/jev.v4.27031](https://doi.org/10.3402/jev.v4.27031).

Lobb R, Möller A. 2017. Size exclusion chromatography: a simple and reliable method for exosome purification. *Methods in Molecular Biology* **1660**:105–110 DOI [10.1007/978-1-4939-7253-1](https://doi.org/10.1007/978-1-4939-7253-1).

Lu J, Liu QH, Wang F, Tan JJ, Deng YQ, Peng XH, Liu X, Zhang B, Xu X, Li XP. 2018. Exosomal miR-9 inhibits angiogenesis by targeting MDK and regulating PDK/AKT pathway in nasopharyngeal carcinoma. *Journal of Experimental & Clinical Cancer Research* **37**(1):147 DOI [10.1186/s13046-018-0814-3](https://doi.org/10.1186/s13046-018-0814-3).

Lu J, Xu X, Liu X, Peng Y, Zhang B, Wang L, Luo H, Peng X, Li G, Tian W, He M, Li X. 2014. Predictive value of miR-9 as a potential biomarker for nasopharyngeal carcinoma metastasis. *British Journal of Cancer* **110**(2):392–398 DOI [10.1038/bjc.2013.751](https://doi.org/10.1038/bjc.2013.751).

Luo Y, Ma J, Liu F, Guo J, Gui R. 2020. Diagnostic value of exosomal circMYC in radioresistant nasopharyngeal carcinoma. *Head & Neck* **42**(12):3702–3711 DOI [10.1002/hed.26441](https://doi.org/10.1002/hed.26441).

Malm T, Loppi S, Kanninen KM. 2016. Exosomes in Alzheimer's disease. *Neurochemistry International* **97**(6):193–199 DOI [10.1016/j.neuint.2016.04.011](https://doi.org/10.1016/j.neuint.2016.04.011).

Marar C, Starich B, Wirtz D. 2021. Extracellular vesicles in immunomodulation and tumor progression. *Nature Immunology* **22**(5):560–570 DOI [10.1038/s41590-021-00899-0](https://doi.org/10.1038/s41590-021-00899-0).

Martin TA, Goyal A, Watkins G, Jiang WG. 2005. Expression of the transcription factors snail, slug, and twist and their clinical significance in human breast cancer. *Annals of Surgical Oncology* **12**(6):488–496 DOI [10.1245/ASO.2005.04.010](https://doi.org/10.1245/ASO.2005.04.010).

Matarredona ER, Pastor AM. 2019. Extracellular vesicle-mediated communication between the glioblastoma and its microenvironment. *Cells* **9**(1):96 DOI [10.3390/cells9010096](https://doi.org/10.3390/cells9010096).

Meckes DG Jr, Gunawardena HP, Dekroon RM, Heaton PR, Edwards RH, Ozgur S, Griffith JD, Damania B, Raab-Traub N. 2013. Modulation of B-cell exosome proteins by gamma herpesvirus infection. *Proceedings of the National Academy of Sciences* **110**(31):E2925–E2933 DOI [10.1073/pnas.1303906110](https://doi.org/10.1073/pnas.1303906110).

Meckes DG Jr, Shair KH, Marquitz AR, Kung CP, Edwards RH, Raab-Traub N. 2010. Human tumor virus utilizes exosomes for intercellular communication. *Proceedings of the National Academy of Sciences* **107**(47):20370–20375 DOI [10.1073/pnas.1014194107](https://doi.org/10.1073/pnas.1014194107).

Mei YP, Zhou JM, Wang Y, Huang H, Deng R, Feng GK, Zeng YX, Zhu XF. 2014. Silencing of LMP1 induces cell cycle arrest and enhances chemosensitivity through inhibition of AKT signaling pathway in EBV-positive nasopharyngeal carcinoma cells. *Journal of Urology* **19**(4):50–56 DOI [10.4161/cc.6.11.4274](https://doi.org/10.4161/cc.6.11.4274).

Mendt M, Kamerkar S, Sugimoto H, McAndrews KM, Wu CC, Gagea M, Yang S, Blanko EVR, Peng Q, Ma X, Marszalek JR, Maitra A, Yee C, Rezvani K, Shpall E, LeBleu VS, Kalluri R. 2018. Generation and testing of clinical-grade exosomes for pancreatic cancer. *Journal of Clinical Investigation Insight* **3**(8):e99263 DOI [10.1172/jci.insight.99263](https://doi.org/10.1172/jci.insight.99263).

Mol EA, Goumans MJ, Doevedans PA, Sluijter JPG, Vader P. 2017. Higher functionality of extracellular vesicles isolated using size-exclusion chromatography compared to ultracentrifugation. *Nanomedicine: Nanotechnology, Biology and Medicine* **13**(6):2061–2065 DOI [10.1016/j.nano.2017.03.011](https://doi.org/10.1016/j.nano.2017.03.011).

Morishita M, Takahashi Y, Nishikawa M, Ariizumi R, Takakura Y. 2017. Enhanced class I tumor antigen presentation via cytosolic delivery of exosomal cargos by tumor-cell-derived exosomes

displaying a pH-sensitive fusogenic peptide. *Molecular Pharmaceutics* **14**(11):4079–4086
DOI [10.1021/acs.molpharmaceut.7b00760](https://doi.org/10.1021/acs.molpharmaceut.7b00760).

Morse MA, Garst J, Osada T, Khan S, Hobeika A, Clay TM, Valente N, Shreenivas R, Sutton MA, Delcayre A, Hsu DH, Le Pecq JB, Lyerly HK. 2005. A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. *Journal of Translational Medicine* **3**(1):9 DOI [10.1186/1479-5876-3-9](https://doi.org/10.1186/1479-5876-3-9).

Mrizak D, Martin N, Barjon C, Jimenez-Pailhes AS, Mustapha R, Niki T, Guigay J, Pancré V, de Launoit Y, Busson P, Moralès O, Delhem N. 2015. Effect of nasopharyngeal carcinoma-derived exosomes on human regulatory T cells. *JNCI: Journal of the National Cancer Institute* **107**:363 DOI [10.1093/jnci/dju363](https://doi.org/10.1093/jnci/dju363).

Munagala R, Aqil F, Jeyabalan J, Gupta RC. 2016. Bovine milk-derived exosomes for drug delivery. *Cancer Letters* **371**(1):48–61 DOI [10.1016/j.canlet.2015.10.020](https://doi.org/10.1016/j.canlet.2015.10.020).

Olejarz W, Dominik A, Żołnierzak A, Kubiak-Tomaszewska G, Lorenc T. 2020. Tumor-derived exosomes in immunosuppression and immunotherapy. *Journal of Immunology Research* **2020**:1–11 DOI [10.1155/2020/6272498](https://doi.org/10.1155/2020/6272498).

Pastushenko I, Brisebarre A, Sifrim A, Fioramonti M, Revenco T, Boumahdi S, Van Keymeulen A, Brown D, Moers V, Lemaire S, De Clercq S, Minguijón E, Balsat C, Sokolow Y, Dubois C, De Cock F, Scozzaro S, Sopena F, Lanas A, D'Haene N, Salmon I, Marine JC, Voet T, Sotiropoulou PA, Blanpain C. 2018. Identification of the tumour transition states occurring during EMT. *Nature* **556**(7702):463–468 DOI [10.1038/s41586-018-0040-3](https://doi.org/10.1038/s41586-018-0040-3).

Quail DF, Joyce JA. 2013. Microenvironmental regulation of tumor progression and metastasis. *Nature Medicine* **19**(11):1423–1437 DOI [10.1038/nm.3394](https://doi.org/10.1038/nm.3394).

Raposo G, Stoorvogel W. 2013. Extracellular vesicles: exosomes, microvesicles, and friends. *Journal of Cell Biology* **200**(4):373–383 DOI [10.1083/jcb.201211138](https://doi.org/10.1083/jcb.201211138).

Rossowska J, Anger N, Wegierek K, Szczygieł A, Mierzejewska J, Milczarek M, Szermer-Olearnik B, Pajtasz-Piasecka E. 2019. Antitumor potential of extracellular vesicles released by genetically modified murine colon carcinoma cells with overexpression of interleukin-12 and shRNA for TGF-β1. *Frontiers in Immunology* **10**:211 DOI [10.3389/fimmu.2019.00211](https://doi.org/10.3389/fimmu.2019.00211).

Salimu J, Webber J, Gurney M, Al-Taei S, Clayton A, Tabi Z. 2017. Dominant immunosuppression of dendritic cell function by prostate-cancer-derived exosomes. *Journal of Extracellular Vesicles* **6**(1):1368823 DOI [10.1080/20013078.2017.1368823](https://doi.org/10.1080/20013078.2017.1368823).

Santos JC, Ribeiro ML, Sarian LO, Ortega MM, Derchain SF. 2016. Exosomes-mediate microRNAs transfer in breast cancer chemoresistance regulation. *American Journal of Cancer Research* **6**(10):2129–2139.

Shan Y, You B, Shi S, Shi W, Zhang Z, Zhang Q, Gu M, Chen J, Bao L, Liu D, You Y. 2018. Hypoxia-induced matrix metalloproteinase-13 expression in exosomes from nasopharyngeal carcinoma enhances metastases. *Cell Death & Disease* **9**(3):382 DOI [10.1038/s41419-018-0425-0](https://doi.org/10.1038/s41419-018-0425-0).

Shi S, Zhang Q, Xia Y, You B, Shan Y, Bao L, Li L, You Y, Gu Z. 2016. Mesenchymal stem cell-derived exosomes facilitate nasopharyngeal carcinoma progression. *American Journal of Cancer Research* **6**(2):459–472.

Shu S, Yang Y, Allen CL, Hurley E, Tung KH, Minderman H, Wu Y, Ernstoff MS. 2020. Purity and yield of melanoma exosomes are dependent on isolation method. *Journal of Extracellular Vesicles* **9**(1):1692401 DOI [10.1080/20013078.2019.1692401](https://doi.org/10.1080/20013078.2019.1692401).

Steinbichler TB, Dudás J, Riechelmann H, Skvortsova II. 2017. The role of exosomes in cancer metastasis. *Seminars in Cancer Biology* **44**:170–181 DOI [10.1016/j.semcan.2017.02.006](https://doi.org/10.1016/j.semcan.2017.02.006).

Sun W, Ren Y, Lu Z, Zhao X. 2020. The potential roles of exosomes in pancreatic cancer initiation and metastasis. *Molecular Cancer* 19(1):135 DOI 10.1186/s12943-020-01255-w.

Sun Z, Yang S, Zhou Q, Wang G, Song J, Li Z, Zhang Z, Xu J, Xia K, Chang Y, Liu J, Yuan W. 2018. Emerging role of exosome-derived long non-coding RNAs in tumor microenvironment. *Molecular Cancer* 17(1):82 DOI 10.1186/s12943-018-0831-z.

Sung BH, Ketova T, Hoshino D, Zijlstra A, Weaver AM. 2015. Directional cell movement through tissues is controlled by exosome secretion. *Nature Communications* 6(1):7164 DOI 10.1038/ncomms8164.

Taieb J, Chaput N, Zitvogel L. 2005. Dendritic cell-derived exosomes as cell-free peptide-based vaccines. *Critical Reviews in Immunology* 25(3):215–223 DOI 10.1615/CritRevImmunol.v25.i3.30.

Takov K, Yellon DM, Davidson SM. 2019. Comparison of small extracellular vesicles isolated from plasma by ultracentrifugation or size-exclusion chromatography: yield, purity and functional potential. *Journal of Extracellular Vesicles* 8(1):1560809 DOI 10.1080/20013078.2018.1560809.

Tan R, Phua SKA, Soong YL, Oon LLE, Chan KS, Lucky SS, Mong J, Tan MH, Lim CM. 2020. Clinical utility of Epstein-Barr virus DNA and other liquid biopsy markers in nasopharyngeal carcinoma. *Cancer Communications* 40(11):564–585 DOI 10.1002/cac2.12100.

Tang LL, Chen WQ, Xue WQ, He YQ, Zheng RS, Zeng YX, Jia WH. 2016. Global trends in incidence and mortality of nasopharyngeal carcinoma. *Cancer Letters* 374(1):22–30 DOI 10.1016/j.canlet.2016.01.040.

Teow SY, Liew K, Khoo AS, Peh SC. 2017. Pathogenic role of exosomes in Epstein-Barr virus (EBV)-associated cancers. *International Journal of Biological Sciences* 13(10):1276–1286 DOI 10.7150/ijbs.19531.

Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, Atkin-Smith GK, Ayre DC, Bach JM, Bachurski D, Baharvand H, Balaj L, Baldacchino S, Bauer NN, Baxter AA, Bebawy M, Beckham C, Bedina Zavec A, Benmoussa A, Berardi AC, Bergese P, Bielska E, Blenkiron C, Bobis-Wozowicz S, Boilard E, Boireau W, Bongiovanni A, Borràs FE, Bosch S, Boulanger CM, Breakefield X, Breglio AM, Brennan MÁ, Brigstock DR, Brisson A, Broekman MLD, Bromberg JF, Bryl-Górecka P, Buch S, Buck AH, Burger D, Busatto S, Buschmann D, Bussolati B, Buzás EI, Byrd JB, Camussi G, Carter DRF, Caruso S, Chamley LW, Chang Y-T, Chen C, Chen S, Cheng L, Chin AR, Clayton A, Clerici SP, Cocks A, Cocucci E, Coffey RJ, Cordeiro-da-Silva A, Couch Y, Coumans FAW, Coyle B, Crescitelli R, Criado MF, D'Souza-Schorey C, Das S, Datta Chaudhuri A, de Candia P, De Santana EF Junior, De Wever O, del Portillo HA, Demaret T, Deville S, Devitt A, Dhondt B, Di Vizio D, Dieterich LC, Dolo V, Dominguez Rubio AP, Dominici M, Dourado MR, Driedonks TAP, Duarte FV, Duncan HM, Eichenberger RM, Ekström K, EL Andaloussi S, Elie-Caille C, Erdbrügger U, Falcón-Pérez JM, Fatima F, Fish JE, Flores-Bellver M, Försonits Aás, Frelet-Barrand A, Fricke F, Fuhrmann G, Gabrielsson S, Gámez-Valero A, Gardiner C, Gärtner K, Gaudin R, Gho YS, Giebel B, Gilbert C, Gimona M, Giusti I, Goberdhan DCI, Görgens Aé, Gorski SM, Greening DW, Gross JC, Gualerzi A, Gupta GN, Gustafson D, Handberg A, Haraszti RA, Harrison P, Hegyesi H, Hendrix A, Hill AF, Hochberg FH, Hoffmann KF, Holder B, Holthofer H, Hosseinkhani B, Hu G, Huang Y, Huber V, Hunt S, Ibrahim AG-E, Ikezu T, Inal JM, Isin M, Ivanova A, Jackson HK, Jacobsen S, Jay SM, Jayachandran M, Jenster G, Jiang L, Johnson SM, Jones JC, Jong A, Jovanovic-Talisman T, Jung S, Kalluri R, Kano S, Kaur S, Kawamura Y, Keller ET, Khamari D, Khomyakova E, Khvorova A, Kierulf P, Kim KP, Kislinger T, Klingeborn M, Klinke DJ II, Kornek M, Kosanović MM, Kovács ÁF,

Krämer-Albers EM, Krasemann S, Krause M, Kurochkin IV, Kusuma GD, Kuypers S, Laitinen S, Langevin SM, Languino LR, Lannigan J, Lässer C, Laurent LC, Lavieu G, Lázaro-Ibáñez E, Le Lay S, Lee MS, Lee YXF, Lemos DS, Lenassi M, Leszczynska A, Li ITS, Liao K, Libregts SF, Ligeti E, Lim R, Lim SK, Liné A, Linnemannstöns K, Llorente A, Lombard CA, Lorenowicz MJ, Lörincz ÁM, Lötvall J, et al. 2018. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. *Journal of Extracellular Vesicles* 7(1):1535750 DOI [10.1080/20013078.2018.1535750](https://doi.org/10.1080/20013078.2018.1535750).

Tsai CN, Tsai CL, Tse KP, Chang HY, Chang YS. 2002. The Epstein-Barr virus oncogene product, latent membrane protein 1, induces the downregulation of E-cadherin gene expression via activation of DNA methyltransferases. *Proceedings of the National Academy of Sciences* 99(15):10084–10089 DOI [10.1073/pnas.152059399](https://doi.org/10.1073/pnas.152059399).

Vaidyanathan R, Soon RH, Zhang P, Jiang K, Lim CT. 2018. Cancer diagnosis: from tumor to liquid biopsy and beyond. *Lab on a Chip* 19:11–34 DOI [10.1039/C8LC00684A](https://doi.org/10.1039/C8LC00684A).

van Niel G, D'Angelo G, Raposo G. 2018. Shedding light on the cell biology of extracellular vesicles. *Nature Reviews Molecular Cell Biology* 19(4):213–228 DOI [10.1038/nrm.2017.125](https://doi.org/10.1038/nrm.2017.125).

Wang L, Tian WD, Xu X, Nie B, Lu J, Liu X, Zhang B, Dong Q, Sunwoo JB, Li G, Li XP. 2014. Epstein-Barr virus nuclear antigen 1 (EBNA1) protein induction of epithelial-mesenchymal transition in nasopharyngeal carcinoma cells. *Cancer* 120(3):363–372 DOI [10.1002/cncr.28418](https://doi.org/10.1002/cncr.28418).

Wang X, Zhang Y, Mu X, Tu CR, Chung Y, Tsao SW, Chan GC, Leung WH, Lau YL, Liu Y, Tu W. 2022. Exosomes derived from $\gamma\delta$ -T cells synergize with radiotherapy and preserve antitumor activities against nasopharyngeal carcinoma in immunosuppressive microenvironment. *Journal for ImmunoTherapy of Cancer* 10(2):e003832 DOI [10.1136/jitc-2021-003832](https://doi.org/10.1136/jitc-2021-003832).

Wei KR, Zheng RS, Zhang SW, Liang ZH, Li ZM, Chen WQ. 2017. Nasopharyngeal carcinoma incidence and mortality in China, 2013. *Chinese Journal of Cancer* 36(1):90 DOI [10.1186/s40880-017-0257-9](https://doi.org/10.1186/s40880-017-0257-9).

Whiteside TL. 2015. RE: effect of nasopharyngeal carcinoma-derived exosomes on human regulatory T cells. *Journal of the National Cancer Institute* 107(12):djv276 DOI [10.1093/jnci/djv276](https://doi.org/10.1093/jnci/djv276).

Whiteside TL. 2018. Exosome and mesenchymal stem cell cross-talk in the tumor microenvironment. *Seminars in Immunology* 35(6):69–79 DOI [10.1016/j.smim.2017.12.003](https://doi.org/10.1016/j.smim.2017.12.003).

Whiteside TL. 2018. The potential of tumor-derived exosomes for noninvasive cancer monitoring: an update. *Expert Review of Molecular Diagnostics* 18(12):1029–1040 DOI [10.1080/14737159.2018.1544494](https://doi.org/10.1080/14737159.2018.1544494).

Wortzel I, Dror S, Kenific CM, Lyden D. 2019. Exosome-mediated metastasis: communication from a distance. *Developmental Cell* 49(3):347–360 DOI [10.1016/j.devcel.2019.04.011](https://doi.org/10.1016/j.devcel.2019.04.011).

Wu M, Ouyang Y, Wang Z, Zhang R, Huang PH, Chen C, Li H, Li P, Quinn D, Dao M, Suresh S, Sadovsky Y, Huang TJ. 2017. Isolation of exosomes from whole blood by integrating acoustics and microfluidics. *Proceedings of the National Academy of Sciences of the United States of America* 114(40):10584–10589 DOI [10.1073/pnas.1709210114](https://doi.org/10.1073/pnas.1709210114).

Wu X, Zhou Z, Xu S, Liao C, Chen X, Li B, Peng J, Li D, Yang L. 2020. Extracellular vesicle packaged LMP1-activated fibroblasts promote tumor progression via autophagy and stroma-tumor metabolism coupling. *Cancer Letters* 478:93–106 DOI [10.1016/j.canlet.2020.03.004](https://doi.org/10.1016/j.canlet.2020.03.004).

Xie QH, Zheng JQ, Ding JY, Wu YF, Liu L, Yu ZL, Chen G. 2022. Exosome-mediated immunosuppression in tumor microenvironments. *Cells* 11(12):1946 DOI 10.3390/cells11121946.

Yang GD, Huang TJ, Peng LX, Yang CF, Liu RY, Huang HB, Chu QQ, Yang HJ, Huang JL, Zhu ZY, Qian CN, Huang BJ. 2013. Epstein-Barr Virus_Encoded LMP1 upregulates MicroRNA-21 to promote the resistance of nasopharyngeal carcinoma cells to cisplatin-induced apoptosis by suppressing PDCD4 and fas-L. *PLOS ONE* 8(10):e78355 DOI 10.1371/journal.pone.0078355.

Yang CF, Peng LX, Huang TJ, Yang GD, Chu QQ, Liang YY, Cao X, Xie P, Zheng LS, Huang HB, Cai MD, Huang JL, Liu RY, Zhu ZY, Qian CN, Huang BJ. 2014. Cancer stem-like cell characteristics induced by EB virus-encoded LMP1 contribute to radioresistance in nasopharyngeal carcinoma by suppressing the p53-mediated apoptosis pathway. *Nature* 344(2):260–271 DOI 10.1016/j.canlet.2013.11.006.

Yang XX, Sun C, Wang L, Guo XL. 2019. New insight into isolation, identification techniques and medical applications of exosomes. *Journal of Controlled Release* 308(8):119–129 DOI 10.1016/j.jconrel.2019.07.021.

Yang CF, Yang GD, Huang TJ, Li R, Chu QQ, Xu L, Wang MS, Cai MD, Zhong L, Wei HJ, Huang HB, Huang JL, Qian CN, Huang BJ. 2016. EB-virus latent membrane protein 1 potentiates the stemness of nasopharyngeal carcinoma via preferential activation of PI3K/AKT pathway by a positive feedback loop. *Oncogene* 35(26):3419–3431 DOI 10.1038/onc.2015.402.

Ye SB, Li ZL, Luo DH, Huang BJ, Chen YS, Zhang XS, Cui J, Zeng YX, Li J. 2014. Tumor-derived exosomes promote tumor progression and T-cell dysfunction through the regulation of enriched exosomal microRNAs in human nasopharyngeal carcinoma. *Oncotarget* 5(14):5439–5452 DOI 10.18632/oncotarget.2118.

Ye SB, Zhang H, Cai TT, Liu YN, Ni JJ, He J, Peng JY, Chen QY, Mo HY, Jun-Cui, Zhang XS, Zeng YX, Li J. 2016. Exosomal miR-24-3p impedes T-cell function by targeting FGF11 and serves as a potential prognostic biomarker for nasopharyngeal carcinoma. *The Journal of Pathology* 240(3):329–340 DOI 10.1002/path.4781.

Yin H, Hu J, Ye Z, Chen S, Chen Y. 2021. Serum long non-coding RNA NNT-AS1 protected by exosome is a potential biomarker and functions as an oncogene via the miR-496/RAP2C axis in colorectal cancer. *Molecular Medicine Reports* 24(2):585 DOI 10.3892/mmr.2021.12224.

Yoshizaki T, Kondo S, Wakisaka N, Murono S, Endo K, Sugimoto H, Nakanishi S, Tsuji A, Ito M. 2013. Pathogenic role of Epstein-Barr virus latent membrane protein-1 in the development of nasopharyngeal carcinoma. *Cancer Letters* 337(1):1–7 DOI 10.1016/j.canlet.2013.05.018.

You Y, Shan Y, Chen J, Yue H, You B, Shi S, Li X, Cao X. 2015. Matrix metalloproteinase 13-containing exosomes promote nasopharyngeal carcinoma metastasis. *Cancer Science* 106(12):1669–1677 DOI 10.1111/cas.12818.

Yu WM, Hussain SSM. 2009. Incidence of nasopharyngeal carcinoma in Chinese immigrants, compared with Chinese in China and South East Asia: review. *The Journal of Laryngology & Otology* 123(10):1067–1074 DOI 10.1017/S0022215109005623.

Yáñez-Mó M, Siljander PR, Andreu Z, Zavec AB, Borràs FE, Buzas EI, Buzas K, Casal E, Cappello F, Carvalho J, Colás E, Cordeiro-da Silva A, Fais S, Falcon-Perez JM, Ghobrial IM, Giebel B, Gimona M, Graner M, Gursel I, Gursel M, Heegaard NH, Hendrix A, Kierulf P, Kokubun K, Kosanovic M, Kralj-Iglc V, Krämer-Albers EM, Laitinen S, Lässer C, Lener T, Ligeti E, Liné A, Lipps G, Llorente A, Lötvall J, Manček-Keber M, Marcilla A, Mittelbrunn M, Nazarenko I, Nolte-’t Hoen EN, Nyman TA, O’Driscoll L, Olivan M,

Oliveira C, Pállinger É, Del Portillo HA, Reventós J, Rigau M, Rohde E, Sammar M, Sánchez-Madrid F, Santarém N, Schallmoser K, Ostenfeld MS, Stoorvogel W, Stukelj R, Van der Grein SG, Vasconcelos MH, Wauben MH, De Wever O. 2015. Biological properties of extracellular vesicles and their physiological functions. *Journal of Extracellular Vesicles* 4(1):27066 DOI 10.3402/jev.v4.27066.

Zhang C, Chen W, Pan S, Zhang S, Xie H, Zhang Z, Lei W, Bao L, You Y. 2023. SEVs-mediated miR-6750 transfer inhibits pre-metastatic niche formation in nasopharyngeal carcinoma by targeting M6PR. *Cell Death Discovery* 9(1):2 DOI 10.1038/s41420-022-01262-4.

Zhang M, Hu S, Liu L, Dang P, Liu Y, Sun Z, Qiao B, Wang C. 2023. Engineered exosomes from different sources for cancer-targeted therapy. *Signal Transduction and Targeted Therapy* 8(1):124 DOI 10.1038/s41392-023-01382-y.

Zhang J, Li X, Hu J, Cao P, Yan Q, Zhang S, Dang W, Lu J. 2020. Long noncoding RNAs involvement in Epstein-Barr virus infection and tumorigenesis. *Virology Journal* 17(1):51 DOI 10.1186/s12985-020-01308-y.

Zhang K, Liu D, Zhao J, Shi S, He X, Da P, You Y, You B. 2021. Nuclear exosome HMGB3 secreted by nasopharyngeal carcinoma cells promotes tumour metastasis by inducing angiogenesis. *Cell Death & Disease* 12(6):554 DOI 10.1038/s41419-021-03845-y.

Zhang B, Yin Y, Lai RC, Tan SS, Choo AB, Lim SK. 2014. Mesenchymal stem cells secrete immunologically active exosomes. *Stem Cells and Development* 23(11):1233–1244 DOI 10.1089/scd.2013.0479.

Zhang L, Yu D. 2019. Exosomes in cancer development, metastasis, and immunity. *Biochimica et Biophysica Acta (BBA)—Reviews on Cancer* 1871(2):455–468 DOI 10.1016/j.bbcan.2019.04.004.

Zheng HC. 2017. The molecular mechanisms of chemoresistance in cancers. *Oncotarget* 8(35):59950–59964 DOI 10.18632/oncotarget.19048.

Zhou W, Zhou Y, Chen X, Ning T, Chen H, Guo Q, Zhang Y, Liu P, Zhang Y, Li C, Chu Y, Sun T, Jiang C. 2021. Pancreatic cancer-targeting exosomes for enhancing immunotherapy and reprogramming tumor microenvironment. *Biomaterials* 268(11):120546 DOI 10.1016/j.biomaterials.2020.120546.

Zhu L, Gangadaran P, Kalimuthu S, Oh JM, Baek SH, Jeong SY, Lee SW, Lee J, Ahn BC. 2018. Novel alternatives to extracellular vesicle-based immunotherapy—exosome mimetics derived from natural killer cells. *Artificial Cells, Nanomedicine, and Biotechnology* 46(sup3):166–179 DOI 10.1080/21691401.2018.1489824.

Zhu L, Kalimuthu S, Oh JM, Gangadaran P, Baek SH, Jeong SY, Lee SW, Lee J, Ahn BC. 2019. Enhancement of antitumor potency of extracellular vesicles derived from natural killer cells by IL-15 priming. *Biomaterials* 190–191(7):38–50 DOI 10.1016/j.biomaterials.2018.10.034.

Zuo B, Qi H, Lu Z, Chen L, Sun B, Yang R, Zhang Y, Liu Z, Gao X, You A, Wu L, Jing R, Zhou Q, Yin H. 2020. Alarmin-painted exosomes elicit persistent antitumor immunity in large established tumors in mice. *Nature Communications* 11(1):1790 DOI 10.1038/s41467-020-15569-2.