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Herein, we describe three new species of the spider genus Naphrys Edwards, 2003 from
Mexico: Naphrys echeri sp. nov., Naphrys tecoxquin sp. nov., and Naphrys tuuca sp.
nov. An integrative taxonomic approach was applied, utilizing data from morphology,
ultra-morphology, molecular data (distance-based and tree-based), and distribution
records. Four molecular methods for species delimitation were implemented under the
corrected p-distance Neighbor-Joining (NJ) criteria: 1) Assemble Species by Automatic
Partitioning (ASAP); 2) General Mixed Yule Coalescent (GMYC); 3) Bayesian Poisson Tree
Process (bPTP); and 4) Multi-rate Poisson Tree Process (mPTP). Both morphological and
molecular data supported the delimitation and recognition of the three new species. The
average interspeciûc genetic distance (p-distance) within the genus Naphrys is 14%, while
the intraspeciûc genetic distances (p-distance) is <2% for most species. We demonstrate
that the natural distribution of Naphrys is not restricted to the Nearctic region.
Furthermore, the reported localities herein represent the ûrst with precise locations in the
country for Naphrys acerba. In addition, a taxonomic identiûcation key is provided for the
species in the genus.
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20 Abstract

21 Herein, we describe three new species of the spider genus Naphrys Edwards, 2003 from Mexico: 
22 Naphrys echeri sp. nov., Naphrys tecoxquin sp. nov., and Naphrys tuuca sp. nov. An integrative 
23 taxonomic approach was applied, utilizing data from morphology, ultra-morphology, molecular 
24 data (distance-based and tree-based), and distribution records. Four molecular methods for 
25 species delimitation were implemented under the corrected p-distance Neighbor-Joining (NJ) 
26 criteria: 1) Assemble Species by Automatic Partitioning (ASAP); 2) General Mixed Yule 
27 Coalescent (GMYC); 3) Bayesian Poisson Tree Process (bPTP); and 4) Multi-rate Poisson Tree 
28 Process (mPTP). Both morphological and molecular data supported the delimitation and 
29 recognition of the three new species. The average interspecific genetic distance (p-distance) 
30 within the genus Naphrys is 14%, while the intraspecific genetic distances (p-distance) is < 2% 
31 for most species. We demonstrate that the natural distribution of Naphrys is not restricted to the 
32 Nearctic region. Furthermore, the reported localities herein represent the first with precise 
33 locations in the country for Naphrys acerba. In addition, a taxonomic identification key is 
34 provided for the species in the genus.
35

36 Introduction

37 The spider family Salticidae, comprised of 6,689 described species (WSC, 2024), 
38 represents the most diverse spider family worldwide. One of the largest groups within this family 
39 is the Euophryini tribe, containing over 1,000 species within 116 genera (Edwards, 2003; 
40 Maddison, 2015; Zhang & Maddison, 2015). Euophryini species have a global distribution, 
41 primarily found in tropical regions except for Africa (Zhang & Maddison, 2015; Maddison, 
42 2015). They exhibit a remarkable uniformity in body shape, with elongate or ant-like forms 
43 uncommon. Their genitalia also share some particular characteristics: the male palp typically has 
44 a simple spiral embolus, and the epigynum has windows framed by circular folds, presumably 
45 guiding the embolus during mating (Maddison, 2015).
46 According to Edwards (2003), most Euophryini species in the Nearctic region are small 
47 (less than 5 mm long) with compact bodies. These species often exhibit cryptic coloration 
48 (browns or grays) and possess a moderate number of setae on their bodies. The genus Naphrys 
49 Edwards, 2003 is as a clear representative of this group. Naphrys currently includes four 
50 described species restricted to North America: Naphrys acerba (G. W. Peckham & E. G. 
51 Peckham, 1909), Naphrys bufoides (Chamberlin & Ivie, 1944), Naphrys pulex (Hentz, 1846), 
52 and Naphrys xerophila (Richman, 1981) are all found in the United States. Additionally, N. pulex 
53 extends into Canada, and N. acerba has been reported in Mexico (Richman, 1981; Edwards, 
54 2003; WSC, 2024).
55 In Mexico, the distribution of N. acerba is reported in the northeastern region, but precise 
56 locations remain unclear (Richman, 1981). Nevertheless, diverse sources (Ibarra-Núñez, Maya-
57 Morales & Chamé-Vázquez, 2011; Maddison, 2015; Maldonado-Carrizales & Ponce-Saavedra, 
58 2017) mention the presence of the genus in different parts of Mexico without assigning known 
59 species. This highlights the limited taxonomic knowledge about this genus in the country.
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60 The taxonomy of the tribe is encumbered by common morphological convergences and 
61 reversals, despite attempts at species delimitation using both morphological and molecular data. 
62 This taxonomic confusion is further compounded by the relative simplicity of Euophryini 
63 genitalia, which exhibit limited interspecific variation and hinder even genus-level identification 
64 (Zhang & Maddison, 2015).
65 Modern taxonomy enlists a wide variety of methods and different lines of evidence to 
66 analyze and delimit lineages, as morphological evidence alone can be extremely difficult or 
67 impossible to delimit species in some cases (Carstens et al., 2013, Luo et al., 2018; Nolasco & 
68 Valdez-Mondragón, 2022). This approach recognizes the limitations of relying solely on 
69 morphology.
70 DNA analysis has become a crucial tool in species delimitation due to its objectivity. 
71 Unlike morphology that can be subjective and influenced by the environment, DNA offers a 
72 standardized and quantifiable measure of evolutionary divergence (Fujita et al., 2012). 
73 Nevertheless, delineating or delimiting spider species based only on molecular data is 
74 insufficient and incorrect (Hamilton, Formanowicz & Bond, 2011).
75 The combined use of morphological and molecular data is becoming increasingly 
76 important for species delimitation in spiders. This approach is particularly valuable in families 
77 like Salticidae, where similar appearances and sexual characteristics make traditional 
78 classification methods challenging  et al., 2021; Cala-Riquelme, Bustamante & 
79 Salgado, 2022; Maddison et al., 2022; Courtial et al, 2023; Kumar, Gupta & Sharma, 2024; Lin 
80 et al., 2024; Phung et al., 2024). Similar successes have been achieved in other spider groups 
81 such as Mygalomorphae (Hamilton et al., 2014; Ortiz & Francke, 2016; Candia-Ramírez & 
82 Francke 2021; Ferretti, Nicoletta & Soresi, 2024) and Synspermiata (Valdez-Mondragón et al., 
83 2019; Navarro-Rodríguez & Valdez-Mondragón 2020; Navarro-Rodríguez & Valdez-
84 Mondragón, 2024). The combined use of methods has resulted in robust characterizations of 
85 species boundaries.
86 The integrative taxonomy approach has emerged to address shortcomings of each method 
87 individually, using multiple data sources and disciplines in a complementary way to identify and 
88 delimit species or lineages. In other words, integrative taxonomy is the criterion that aims to 
89 delimit species, the fundamental units of biodiversity, from different and complementary 
90 perspectives (Dayrat, 2005; DeSalle, Egan & Siddall, 2005; Padial et al., 2010; Padial & de la 
91 Riva, 2010). 
92 While integrative taxonomy has been applied in various biological groups, its use in 
93 spider research remains limited (Bond et al., 2021). This highlights the potential for further 
94 exploration of integrative taxonomy within spider systematics.
95 In this study, we employ integrative taxonomy to describe three new species of the genus 
96 Naphrys. This approach utilizes morphological characters, ultra-morphology, and molecular data 
97 analyzed using both genetic-distance and tree-based methods for species delimitation. As there is 
98 no single species concept, in this work we employ the unified species concept, which is a flexible 
99 framework that incorporates elements from various species concepts such as the biological, 
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100 ecological, evolutionary, and phylogenetic concepts, to delimit species based on their status as 
101 separately evolving metapopulation lineages (De Queiroz, 2007; Schlick-Steiner et al., 2010). 
102 We also consider the biogeographical distribution records of the new species. Finally, we 
103 provide a taxonomic identification key for the species of the genus and accurate distribution data 
104 for N. acerba in northeastern Mexico.
105

106 Materials & Methods

107 The specimens were collected and preserved in both 96% ethanol for molecular analyses 
108 and 80% ethanol with complete field data labels for morphological studies. Type specimens are 
109 deposited at two biological collections: Colección de Arácnidos e Insectos, Centro de 
110 Investigaciones Biológicas del Noroeste, S.C. (CARCIB), La Paz, Baja California Sur, Mexico, 
111 and Colección Aracnológica de la Facultad de Biología de la Universidad Michoacana 
112 (CAFBUM), Morelia, Michoacán, Mexico. The specimens were collected under the document 
113 SPARN/DGVS/074492/24, Scientific Collector Permit from the Secretaría de Medio Ambiente y 
114 Recursos Naturales (SEMARNAT), Mexico, provided to Margarita Vargas Sandoval (Director 
115 and Head curator of the CAFBUM, Faculty of Biology, Entomology Laboratory, Universidad 
116 Michoacana de San Nicolás de Hidalgo). For morphological descriptions, specimens were 
117 observed using an Amscope SM1TZ-RL-10MA stereomicroscope. All measurements are in 
118 millimeters (mm). Epigyna were dissected, manually cleaned, and temporarily cleared with clove 
119 oil following the method described by Levi (1965), after digesting the internal epigynal soft 
120 tissues with KOH 10%. Left male palps were dissected and cleaned manually using hypodermic 
121 needles and a small brush. Both genitalia were observed under a transmitted light microscope 
122 Axiostar Plus Carl Zeiss. Habitus and genitalia photographs were obtained using separate setups, 
123 an Amscope MU1000 camera attached to an Amscope SM1TZ-RL-10MA stereomicroscope for 
124 habitus images, and a transmitted light microscope (Axiostar Plus Carl Zeiss) for genitalia. 
125 Photographs were processed with the Helicon focus v8.2.2 program and edited using Adobe 
126 Photoshop CS6. The distribution map was created using QGIS v3.32 �Lima�. Biogeographic 
127 province data (.shp) were obtained from the proposed boundaries by Morrone, Escalante & 
128 Rodríguez-Tapia (2017), and Escalante, Rodríguez-Tapia & Morrone (2021). Boundary data 
129 (.shp files) were sourced from USGS (2021). Finally, the topographic base layer used was �ESRI 
130 Topo� via the subprogram XYZ Tiles in QGIS. For scanning electron microscopy (SEM), 
131 morphological structures were dissected, cleaned manually, dehydrated in absolute ethanol, 
132 critical-point dried with samdri-PVT-3B equipment, and then covered with gold:palladium in a 
133 60:40 proportion. The structures were examined under low vacuum in a Hitachi S-3000N SEM. 
134 Measurements on electron micrographs are in micrometers  Morphological nomenclature 
135 mostly follows Ramirez (2014) and Zhang & Maddison (2015), with abbreviations used in the 
136 description and figures as follows: AER, anterior eyes row; PER, posterior eyes row; ALE, 
137 anterior lateral eye; AME, anterior median eye; PLE, posterior lateral eye; PME, posterior 
138 median eye; OQ, ocular quadrangle; S, spermatheca; CD, copulatory duct; W, window of 
139 epigynum; CO, copulatory openings; FD, fertilization duct; MS, median septum; RTA, 
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140 retrolateral tibial apophysis; E, embolus; ED, embolic disc; SP, sperm pore; T, tegulum; TL, 
141 tegular lobe; RSDL, retrolateral sperm duct loop; VTA, ventral tibial apophysis; PED, process 
142 on embolic disc.
143

144 Taxon sampling

145 The molecular analyses were carried out with a total of 110 specimens, including one 
146 undescribed species of Naphrys and three new Naphrys species described herein. Because this 
147 study it is not a phylogenetic analysis, we use only one outgroup taxon to root the trees, Corticattus 

148 latus Zhang & Maddison, which represents the closely related genus to Naphrys according with 
149 Zhang & Maddison (2015) (Table 1).
150

151 DNA extraction, amplification, and sequencing

152 The DNA was isolated from legs using proteinase K/phenol/chloroform following the 
153 protocol by Hillis et al. (1996). Briefly, at least 1  of tissue was incubated at 60°C for 24 hours 
154 with a digestion buffer containing 400  saline solution, 45  of 1% SDS solution, and 5uL of 
155 proteinase K. After digestion, 200  of Phenol and 200  of isoamyl chloroform was added 
156 and shaken vigorously. Afterwards, samples were centrifuged at 12,000 rpm for 10 minutes. 
157 Once finished, 400  of upper aqueous phase was recovered, repeating the phenol/chloroform 
158 washes once more. Once the phenol/chloroform washes were done, 200  of phenol was added 
159 to the mixture, shaken gently, and then centrifuged immediately at 12,000 rpm for 10 minutes. 
160 300  of upper aqueous phase was recovered and 750  of cold (-20°C) absolute ethanol was 
161 added. The mixture was then shaken gently and incubated for 12 hours at -20°C. Once incubated, 
162 it was centrifuged at 13,000 rpm for 20 minutes, and the ethanol was decanted by inversion, 
163 avoiding losing the bottom pellet. 600  of cold 70% ethanol (-20°C) was then added and 
164 centrifuged at 13,000 rpm for 20 minutes, with ethanol decanting by inversion while avoiding 
165 losing the bottom pellet. Finally, drying in a vacuum centrifuge was performed at 60°C for 10 
166 minutes. Once the vial is dry, DNA is suspended in 50  of distilled water and stored at -20°C. 
167 After DNA extraction, the mitochondrial gene Cytochrome Oxidase subunit 1 (COI), proposed 
168 by Folmer et al (1994), was amplified (LCO1498 and HCO2198).  were carried 
169 out in a GeneAmp PCR System 2700 thermal cycler, in a total volume of 25.9  1.66  
170 Buffer (5X), 1.5  MgCl2 (50 mM), 1.25  LCOI1498 (10  1.25  HCOI2198 (10  
171 0.23  Taq  0.875  dNTP�s (10 mM), 1  BSA (1.25  16.135  H2O, 2 
172  DNA. The PCR was set up as follows: an initial step for 1 min 30 sec at 95 °C; 35 
173 amplification cycles of 30 sec at 94 °C (denaturation), 30 sec at 50 °C (annealing), 45 sec at 72 
174 °C (elongation), and final elongation of 10 min at 72 °C. PCR products were checked via gel 
175 electrophoresis to analyze length and purity on 1% agarose gels with a molecular marker of 100 
176 bp.
177 DNA extractions were carried out at the Laboratorio de Biología Acuática �J. Javier 
178 Alvarado Díaz,� while PCR amplifications were carried out at the Centro Multidiciplinario de 
179 Estudios en Biotecnología (CMEB), both at the Universidad Michoacana de San Nicolás de 
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180 Hidalgo (UMSNH) in Morelia, Michoacán, Mexico. Sequencing was carried out in Psomagen, 
181 Maryland, United States.
182

183 Sequence editing and alignment

184 The sequences were visualized in Geneious Prime v.2023.2.1 (Geneious Prime, 2023) 
185 and then manually edited using the BioEdit v. 7.7.1 program (Hall, 1999). After saving in 
186 FASTA format (.fas), the sequences were aligned using MAFFT v. 7 (Katoh & Toh 2008) with 
187 default parameters on the MAFFT online server (https://mafft.cbrc.jp/alignment/server/).
188

189 Molecular analysis and species delimitation

190 Four different molecular delimitation methods were employed using the corrected p-
191 distances Neighbor-Joining (NJ) as initial criteria: 1) ASAP (Assemble Species by Automatic 
192 Partitioning) (Puillandre, Brouillet & Achaz, 2021), 2) GMYC (General Mixed Yule Coalescent) 
193 (Pons et al., 2006), 3) bPTP (Bayesian Poisson Tree Process) (Zhang et al., 2013), and 4) mPTP 
194 (multi-rate Poisson tree processes) (Kapli et al., 2017).
195

196 p-distances Neighbor-Joining (NJ) criteria

197 MEGA v.10.0.5 (Kumar et al., 2018) was used to construct the genetic distance tree, 
198 using the following parameters: number of replicates = 1000, bootstrap support values = 1000 
199 (significant values  50%), substitution type = nucleotide, model = p-distance, substitutions to 
200 include = d: transitions + transversions, rates among sites = gamma distributed with invariant 
201 sites (G+I), missing data treatment = pairwise deletion.
202

203 Assemble Species by Automatic Partitioning (ASAP)

204 This method is an ascending hierarchical clustering algorithm that analyzes single-locus 
205 DNA barcode datasets. It iteratively merges sequences with the highest pairwise similarity into 
206 progressively larger clusters. Additionally, ASAP retains information on all potential clustering 
207 steps, resulting in a comprehensive series of partitions representing putative species groupings 
208 within the data. Subsequently, ASAP calculates a probability score for each partition based on 
209 the within-group sequence similarity compared to between-group similarity. Finally, the method 
210 identifies the partitions with the highest probability scores as the most likely species-level 
211 groupings and constructs a species partition tree reflecting the hierarchical relationships among 
212 these putative species (Puillandre, Brouillet & Achaz, 2021). ASAP analyses were run on the 
213 online platform (https://bioinfo.mnhn.fr/abi/public/asap/) using Kimura (K80) distance matrices 
214 and configured under following parameters: substitution model = p-distances, probability = 0.01, 
215 best scores = 10, fixed seed value = -1.
216

217 General Mixed Yule Coalescent (GMYC)

218 The GMYC method (Fujisawa & Barraclough 2013) is a statistical framework employed 
219 for species delimitation using single-locus DNA barcode data. This approach utilizes single time 
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220 thresholds to define species boundaries within a Maximum Likelihood context, relying on 
221 ultrametric trees as input (Ortiz & Francke 2016; Nolasco & Valdez-Mondragón, 2022). 
222 Ultrametric trees were generated in this study through phylogenetic analyses performed in 
223 BEAUti and BEAST v.2.7.6 software (Bouckaert et al., 2019). A Yule Process tree prior was 
224 implemented during the analysis to account for lineage diversification patterns. Furthermore, an 
225 optimized relaxed molecular clock model was applied, incorporating the estimated evolutionary 
226 model for the COI gene (GTR + I + G). To ensure robustness of the phylogenetic inference, five 
227 independent BEAST analyses were executed, each running for 80 million iterations. 
228 Convergence of these analyses was subsequently evaluated using Tracer v1.6 (Rambaut and 
229 Drummond, 2003�2013), with a minimum threshold of 200 for the Effective Sample Sizes 
230 (ESS). Following this, Tree Annotator 2.6.0 (part of the BEAST package) was employed to 
231 generate maximum likelihood trees representing the most likely evolutionary histories. The first 
232 25% of each independent run was discarded as burn-in to account for potential initial biases in 
233 the MCMC chains. Finally, the GMYC method was implemented through the online platform 
234 (https://species.h-its.org/gmyc/) (Fujisawa & Barraclough, 2013).
235

236 Bayesian Poisson Tree Processes (bPTP)

237 bTPT operates within a Bayesian framework, accounting for uncertainties in both the 
238 phylogenetic tree's branch lengths and potential species assignments. This method assumes a 
239 Poisson process for speciation events along the tree branches and incorporates branch lengths 
240 reflecting sequence divergences. Considering this information and its inherent uncertainties, 
241 bPTP estimates posterior probabilities for various candidate species partitions within the data, 
242 which represent the likelihood of each partition accurately reflecting true species boundaries 
243 (Zhang et al., 2013). In this work, Bayesian and Maximum Likelihood variants were carried out 
244 on the online platform (https://species.h-its.org/ptp/), using following options: rooted tree, 
245 MCMC = 1000000, thinning = 100, burn-in = 0.1, seed = 123. The resulting trees were edited in 
246 FigTree 1.4.4 (Rambaut, 2018) and Photoshop CS6. Congruence integration criteria were 
247 employed to delimit different species. This approach compares evidence across multiple 
248 methods, resulting in more robust species delimitations and better supported species hypotheses 
249 (e.g., DeSalle, Egan & Siddall, 2005; Pons et al., 2006; Navarro-Rodríguez & Valdez-
250 Mondragón, 2020; Valdez-Mondragón, 2020; Nolasco & Valdez-Mondragón, 2022).
251

252 Multi-rate Poisson Tree Processes (mPTP)

253 mPTP uses a non-homogeneous Poisson process model. This approach allows for the 
254 estimation of distinct rate multipliers for individual branches within the phylogenetic tree, 
255 recognizing potential heterogeneity in evolutionary rates across lineages. ML tree estimation was 
256 used to identify branch-specific rate multipliers, and Markov chain Monte Carlo (MCMC) 
257 simulations were employed to integrate over the uncertainty associated with these estimates 
258 (Kapli et al., 2017). By identifying statistically significant shifts in diversification rates along the 
259 tree generated from our ML analysis, mPTP pinpoints potential species boundaries, specifically 
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260 taking into account lineages that have undergone evolution at disparate paces. This analysis was 
261 carried out on the online platform (http://mptp.h-its.org/).
262

263 Zoobank

264 The electronic version of this article in Portable Document Format (PDF) will represent a 
265 published work according to the International Commission on Zoological Nomenclature (ICZN). 
266 Hence, the new names contained in the electronic version are effectively published under that 
267 Code from the electronic edition alone. This published work and the nomenclatural acts it 
268 contains have been registered in ZooBank, the online registration system for the ICZN. The 
269 ZooBank LSIDs (Life Science Identifiers) can be resolved, and the associated information 
270 viewed through any standard web browser by appending the LSIDs to the prefix 
271 http://zoobank.org/. The LSIDs for this publication are: urn:lsid:zoobank.org:act:6CFF43A9-
272 8C98-4027-A1DA-2838FE4D79F8; urn:lsid:zoobank.org:act:D67CCC72-E17D-450C-9193-
273 231120527FDE; and urn:lsid:zoobank.org:act:3129A3DE-57E8-46CC-8036-86DC467EB056. 
274 The online version of this work is archived and available from the following digital repositories: 
275 PeerJ, PubMed Central SCIE, and CLOCKSS.
276

277 Results

278 Molecular analysis of genetic distances

279 The corrected p-distances under NJ of COI recovered six putative species (Fig. 1). 
280 Genetic distance analyses recovered groups corresponding to one putative new species (with 
281 bootstrap support value below 50%), the two previously described species N. pulex and N. 

282 xerophila (with high bootstrap support value, 89%), and three new species described herein (with 
283 high bootstrap support value, 98%). Bootstrap support values for all species were high (>89%) 
284 (Fig. 1). The average genetic p-interspecific distances of Naphrys species was 14% (min: 11%, 
285 max: 18.1%) (Table 2). Average interspecific p-distance between previously known species (N. 

286 pulex and N. xerophila) was 11.8%. Between new species (N. echeri sp. nov., N. tecoxquin sp. 

287 nov., and N. tuuca sp. nov.) and previously known species, higher interspecific average p-
288 distances were observed, between 12.9% and 14%. With average values above 15.1%, Naphrys 
289 sp. had the highest average interspecific p-distance. For most species, intraspecific distances 
290 were below 1.61%, except for Naphrys sp. that showed a higher value (Table 3).
291

292 Molecular methods for species delimitation

293 The ASAP delimitation analysis recovered all six species (N. echeri sp. nov., N. 

294 tecoxquin sp. nov., N. tuuca sp. nov., Naphrys sp., Naphrys pulex, and Naphrys xerophila) with 
295 high (>93%) bootstrap support value (Fig. 2) from the NJ tree. GMYC and mPTP methods 
296 recovered the three new species described herein and one putative new species, while N. pulex 
297 was not recovered as one species (Fig. 2). The most incongruent result was observed in bPTP, 
298 which delimited 42 and 50 putative species under ML and IB variants, respectively. Only N. 

299 tecoxquin sp. nov. and N. xerophila were recovered by the ML variant of bPTP.
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300 Only N. xerophila was recovered under all methods and supported by a high bootstrap 
301 value (93%). Naphrys pulex shows the most incongruent results in all species delimitation 
302 methods, recovering 10 species in mPTP, 16 in GMYC, and 42 and 50 species in the ML and BI 
303 variants of bPTP method, respectively (Fig. 2). Nevertheless, N. pulex presents low intraspecific 
304 genetic distance (< 2%) and high bootstrap support value (100%) (Table 3; Fig. 2).
305

306 Taxonomy

307 Family: Salticidae Blackwall, 1841
308 Genus: Naphrys Edwards, 2003
309

310 Type specie: Habrocestum acerbum (G. W. Peckham & E. G. Peckham, 1909)
311

312 Emended diagnosis. After Richman (1981) and Edwards (2003). Naphrys species are 
313 characterized by their small size (2�6.1 mm) and dull, cryptic coloration (black and brown) 
314 (Figs. 3C-D, 6C, 12D-E, 18C-E). With one bicuspid promarginal tooth on chelicera and high 
315 carapace. First tibia has no more than two pairs of ventral macrosetae and leg III longer than leg 
316 IV (Tibia+Patella III > Tibia+Patella IV). Male palpal bulb is usually large with a proximal TL. 
317 Simple finger-like RTA and RSDL present. Also, with ventral apophysis on the palpal tibia 
318 (VTA). Embolar disk (ED) has a ventral conical projection. Embolus (E) is three-dimensional 
319 construction with prolateral edge of ED (Figs. 4C-H, 7C-H, 9A, 10A, 13C-H, 15A, 16A, 19C-H, 
320 21A, 22A). Epigynum has a typical window structure with a median septum (Figs. 5C-F, 8C-F, 
321 11, 14C-F, 17, 20C-F, 23). Copulatory openings (CO) are positioned along posterior (Figs. 20C-
322 F), median (Figs. 5C-F), or anteromedian (Figs. 8C-F, 14C-F) edges of atria, with atrial rims 
323 intersecting them posteriorly. Rims fail to completely encircle the atria. Spermathecas (S) are 
324 nearly spherical, more or less contiguous medially, and half or more the diameter of the atria. 
325 They are positioned about halfway to entirely within the posterior part of atria as seen in ventral 
326 view (Figs. 5C-F, 8C-F, 14C-F, 20C-F).
327

328 Current composition. Naphrys is composed of seven species: Naphrys acerba (Peckham & 
329 Peckham, 1909); Naphrys bufoides (Chamberlin & Ivie, 1944); Naphrys echeri sp. nov.; 
330 Naphrys pulex (Hentz, 1846); Naphrys tecoxquin sp. nov.; Naphrys tuuca sp. nov.; Naphrys 

331 xerophila (Richman, 1981).
332

333 Distribution. Canada, Mexico, and the United States.
334

335 Remarks. We emend the generic diagnosis based on copulatory organs of male and females.
336

337 Key to Naphrys species

338 1. Male ���������������������������������� 2
339 -. Female ���������������������������������. 8
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340 2. Dorsum of opisthosoma with two round, bright white spots (Fig. 4A) ��������... 3
341 -. Dorsum of opisthosoma otherwise ����������������������.. 5
342 3. Embolus thin and straight, larger than ED (Richman 1981; Fig. 5). White setae covering all 
343 lateral side of cephalothorax (Edwards and Hill 2008; Fig. 7) �������������. 
344 �����..����������������. N. bufoides (Chamberlin & Ivie, 1944)

345 -. Embolus thick and curve, shorter than ED (Richman 1981; Figs. 8, 16) ����...���� 
346 �������������������������������������... 4
347 4. Dorsum of the opisthosoma with a medial longitudinal white stripe that covers the anterior 
348 portion. Anterior part of cephalothorax exhibits bright, coppery bronze setae across surface 
349 (Metzner 2024; Fig. 293) ��������.������� N. xerophila (Richman, 1981)

350 -. Dorsum of the opisthosoma without medial longitudinal white stripe. Anterior part of 
351 cephalothorax is densely covered with a mixture of white, bronze, and black setae (Fig. 4A) �. 
352 �������������������..�� N. acerba (Peckham & Peckham, 1909)

353 5. Dorsum of opisthosoma with an extended medial white longitudinal band that extends across 
354 the entire opisthosoma (Figs. 7A, 16C, 17A) �������������������� 6
355 -. Dorsum of opisthosoma otherwise�����������������������.. 7
356 6. Embolar disk (ED) bears a well-developed triangular process, next to the embolus, clearly 
357 visible in retrolateral view and smaller than embolus. (Figs. 7D, G, 9A-B, 10A-C). Embolus 
358 thick and shorter than ED. Cephalothorax, in dorsal view, has white setae forming a V-shape 
359 mark, extending outwards from the sides of the PLE towards the pedicel (Fig. 7A) �����. 
360 ������������������������������� N. echeri sp. nov.

361 -. Embolar disk (ED) lacks a process. The thin embolus, larger than ED, folds at the midpoint, 
362 forming a gentle curve (Figs. 17E, H, 19A, 20C). Cephalothorax, in dorsal view, has white setae 
363 forming a Y-shape mark, extending outwards from the sides of the PLE (Figs. 16C, 17A) �..�.. 
364 �������������������������������.. N. tuuca sp. nov.

365 7. Embolus thick and curved, shorter than ED (Zhang & Maddison, 2015; Fig. 140). Anterior 
366 part of cephalothorax densely covered with a mixture of white and black setae (Edwards and Hill 
367 2008; Fig. 8) ������.����������.�������. N. pulex (Hentz, 1846)

368 -. Embolus thick and straight (Fig. 12C, F, 14A, 15A). Anterior part of cephalothorax exhibits 
369 bright, coppery-bronze setae ������������..�����... N. tecoxquin sp. nov.

370 8. Copulatory openings (CO) are located on the external lateral side of the S (Figs. 8C, E, 13C, 
371 E) ������������������������������������� 9
372 -. Copulatory openings (CO) located in different place ���������������... 10
373 9. Pyriform S (Figs. 13C-F). Light opisthosoma with four black spots in dorsal view, along with 
374 dark brown upwards chevron marks in the posterior last third (Figs. 11D, 13A) ������� 
375 �������������������...���������� N. tecoxquin sp. nov.

376 -. Circular S (Figs. 8C-F). Dark opisthosoma covered with coppery-bronze setae across surface 
377 and exhibiting mottled pattern of faint translucent markings (Figs. 6C, 8A) ������........... 
378 �������������������������������. N. echeri sp. nov.
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379 10. Copulatory ducts (CD) open into the epigynum forming transparent windows (W), with 
380 openings more than one-third the length of S (Figs. 5C-F) ������������.�.... 11
381 -. Copulatory ducts (CD) have circular opening, less than one-third the length of S. Copulatory 
382 openings (CO) located anteriorly to S (Richman 1981; Fig. 18). Dark opisthosoma covered with 
383 brown and black setae across surface, with a longitudinal white stripe in the middle of the first 
384 third and a black chevron pattern on the remaining two-thirds (Metzner 2024; Fig. 294) 
385 ��������������������������. N. xerophila (Richman, 1981)

386 11. Dorsum of opisthosoma with two round, bright white spots (Figs. 3C, D, 5A) ����� 12
387 -. Dorsum of opisthosoma otherwise����������������������� 13
388 12.- Copulatory openings (CO) located in center of epigynum, touching the anterior edge of S. 
389 Copulatory ducts (CD) have a unique loop, resembling a G-shape (Fig. 5C, E) �������.. 
390 ���������������������� N. acerba (Peckham & Peckham, 1909)

391 -. Copulatory openings (CO) not touching anterior edge of S (Richman 1981; Fig. 22) ����. 
392 ����������..������������ N. bufoides (Chamberlin & Ivie, 1944)

393 13. Copulatory openings (CO) located in the middle of epigynum (Richman 1981; Fig. 10) �..... 
394 �����������������������������. N. pulex (Hentz, 1846)

395 -. Copulatory openings (CO) located in the middle basal part of epigynum (Fig. 18C, E) ���.. 
396 ������������������..���........................................ N. tuuca sp. nov.

397

398 Naphrys acerba (Peckham & Peckham, 1909)
399 Figs.  21.
400 Habrocestum acerbum Peckham & Peckham, 1909, p. 522, pl. 44, figs. 1-Ic.
401 Naphrys acerba Edwards, 2003 p. 69, fig. 5-8 (Transferred from Habrocestum)
402

403 Holotype: Holotype not assigned by author. Syntypes: several males and one female from Travis 
404 County, Austin, Texas, USA, and one male from Georgia, USA. NOT EXAMINED.
405

406 Other material examined. MEXICO: Nuevo León: 6 females (CAFBUM88003, 
407 CAFBUM88004, CABUM84234, CAFBUM84242, CAFBUM84256, CAFBUM84257), along 
408 path to cable car, Cerro de la Silla, Guadalupe municipality (lat. 25.655501, long. -100.254415, 
409 587 m), oak forest, ground hand collecting, J. Maldonado Carrizales, F. Morales Martínez, E. G. 
410 Fuentes Ortiz cols., 21/X/2023. Tamaulipas: 3 males (CAFBUM88005) and 3 immatures 
411 (CAFBUM880040), Mr. Sabino�s ranch, highway Ciudad Victoria-Tula km 28 (lat. 23.606512, 
412 long. 99.229572, 1473 m), oak forest, ground hand collecting, J. Maldonado Carrizales, F. 
413 Morales Martínez, E. G. Fuentes Ortiz cols., 20/X/2023.
414

415 Emended diagnosis. After Peckham & Peckham (1909) and Richman (1981). Naphrys acerba 

416 resembles N. bufoides and N. xerophila by possessing white, round spots on dorsal abdomen 
417 (Fig. 4A-B, 5A-B). However, it differs from N. xerophila by lacking a medial longitudinal white 
418 stripe covering anterior portion. Additionally, N. acerba can be distinguished from N. bufoides 
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419 by its thicker embolus, which is shorter than ED (Figs. 4C-H). In females, CO of N. acerba are 
420 located centrally within the epigynum, touching anterior edge of S (Figs. 5C, E). This contrasts 
421 with N. bufoides, where CO do not reach anterior edge of S, and N. tuuca, where CO are 
422 positioned in middle basal part of epigynum.
423

424 Distribution. UNITED STATES: Texas; MEXICO: Coahuila, Nuevo León, and Tamaulipas 

425 (Richman, 1981).

426

427 Natural history. According to Richman (1981), this species appears to be associated with oak 
428 and juniper woodlands. Specimens used in this study were collected from upper leaf litter layer 
429 of oak forests (Quercus sp.) at 1473 m in Tamaulipas, Mexico, within known range of the 
430 species. This also included disturbed areas into Monterrey City (Fig. 3A-D).
431

432 Naphrys echeri sp. nov.

433 Figs.  21.
434 LSID: urn:lsid:zoobank.org:act:FFCFC48A-1827-4DCF-9096-DE8504E63251
435

436 Holotype. MEXICO. Michoacán: male from Cerro El Gigante, Jesús del Monte, Morelia 
437 municipality (lat. 19.636605, long. -101.146877, 2192 m), oak forest (Quercus sp.), ground hand 
438 collecting, J. Maldonado Carrizales, F. Morales Martínez, R. Cortés Santillán cols., 31/III/2023. 
439 (CARCIB-AR-047). Allotype: Female with same data as holotype (CARCIB-Ar-008).
440

441 Paratypes: MEXICO: Michoacán: 1 male (CARCIB-Ar-0327) and 1 female (CARCIB-Ar-
442 0328), same collection data as for holotype. Jalisco: 1 male, 1 immature (CAFBUM84264) 
443 Piedras Bolas, Ahualulco de Mercado municipality (lat. 20.653021, long. -104.057697, 1907 m), 
444 oak forest (Quercus sp.), ground hand collecting, J. Maldonado Carrizales, G. L. López Solís, S. 
445 Montañez Hernández, N. Ruíz Hernández cols., 8/IV/2022. 1 female (CAFBUM88012) UMA 
446 Potrero de Mulas, San Sebastián del Oeste municipality (lat. 20.749852, long. -104.976763, 797 
447 m) cloud forest, ground hand collecting, J. Maldonado Carrizales, E. G. Fuentes Ortiz cols., 
448 13/XII/2022.
449

450 Other material examined. MEXICO: Jalisco: 1 female (CNAN-Ar011468) and 1 male (CNAN-
451 Ar011467), beginning of the path to Cerro La Bufa, San Sebastián del Oeste municipality (lat. 
452 20.758, long. -104.8438, 1460 m), young pine forest, D. Guerrero, G. Contreras, C. Hutton, G.B. 
453 Edwards cols., 14/VI/2018. 3 males, 3 immatures (CNAN-Ar011464), and 1 female (CNAN-
454 Ar011462), Piedras Bolas, Ahualulco de Mercado municipality (lat. 20.64945, long. -104.05592, 
455 1863 m), oak forest (Quercus sp.), D. Guerrero, G. Contreras, C. Hutton and G.B. Edwards cols., 
456 17/VI/2018.
457

PeerJ reviewing PDF | (2024:07:104276:0:1:NEW 2 Aug 2024)

Manuscript to be reviewed



458 Etymology. The species name "echeri"  native pronunciation) is a noun in apposition 
459 that means "land or soil" in the P'urépecha language, referring to the microhabitat where it 
460 inhabits. The P'urépecha state, which peaked in the 14th and 15th centuries before Spanish 
461 arrival, is known today as Michoacán, and represents the type locality of this species.
462

463 Diagnosis. Naphrys echeri sp. nov. resembles N. tuuca sp. nov. by males having an extended 
464 medial white longitudinal line on dorsal part of opisthosoma, which extends across the entire 
465 opisthosoma (Fig. 7A). However, N. echeri sp. nov. differs in possessing an ED that bears a 
466 well-developed triangular process (PED) next to embolus, clearly visible in retrolateral view 
467 (Figs. 7D, G, 9B, 10A-C). Naphrys echeri sp. nov. has a thick and straight E shorter than ED 
468 (Figs. 7C, F), whereas in N. pulex this is thick but curved, and in N. tuuca sp. nov. the E is thin 
469 and folds at midpoint forming a gentle curve, ultimately larger than ED. Naphrys echeri sp. nov. 
470 differs from N. tecoxquin sp. nov. and N. tuuca sp. nov. in morphology of its embolus apex, with 
471 N. echeri sp. nov. possessing a fine projection that abruptly narrows to a spine-like structure and 
472 is oriented towards the interior of the palp (Fig. 9A-B, 10A, D). Females of N. echeri sp. nov. 

473 share with N. tecoxquin sp. nov. the placement of CO on external lateral side of S, but differ in 
474 shape; in N. echeri sp. nov., S are circular (Figs. 8C-F), while in N. tecoxquin sp. nov. they are 
475 pyriform (Figs. 13C-F).
476

477 Description. Male holotype (CARCIB-AR-047). Total length: 2.6. Cephalothorax 1.57 long 
478 and 1.22 wide. Darkish brown, with white setae forming a V-shaped mark, extending outwards 
479 from sides of PLE towards pedicel in cephalic region (Fig. 7A). Lower border covered with 
480 white seta forming a band. Ocular quadrangle (OQ) 0.3 long. Anterior eyes row (AER) 1.46 
481 times wider than PER, AER 1.1 wide, PER 0.75 wide. Sternum reddish brown, 0.65 long, 0.5 
482 wide. Labium reddish brown, as long as wide, 0.3 long, 0.3 wide. Endite 0.42 long, 0.17 wide, 
483 reddish brown, whitish anteriorly and square shaped (Fig. 7B). Opisthosoma 1.03 long and 0.95 
484 wide; exhibiting a longitudinal band with white setae in dorsal view, covering more than half its 
485 width (Fig. 7A). Palp covered by white setae in dorsal view; in ventral view possesses a straight, 
486 short, and wide E that covers up to half distal part of cymbium (Figs. 7C, F, 9A, 10A). Ventral 
487 view of E with scales (Fig. 10A, C). A PED is present, easily seen in retrolateral view, triangular 
488 with fine projection on tip that abruptly narrows forming two spine-like structure (Figs. 7D, G, 
489 9A-B, 10A-C). Embolus apex and SP are oriented towards interior of palp (Fig. 9A, 10A-B). 
490 Embolus apex presents one fine projection that abruptly narrows to a spine-like structure, while 
491 SP presents a multi-convex edge forming smooth ridges (Fig.10D). Embolar disk (ED) 
492 completely rough and folded in anterior portion (Fig. 9A, 10A). Tegulum (T) yellow with 
493 darkish marks and wide RSDL occupying more than half of it, easily seen in retrolateral view 
494 (Figs. 7D, G). Furthermore, RSDL is divided in two, anterior loop is extremely curved forming a 
495 backwards "C" that extends from the middle of the T to its retrolateral edge. Posterior loop is 
496 curved anteriorly and straight in its most posterior part, forming a backwards "L" that does not 
497 touch retrolateral edge (Figs. 7D, G). Retrolateral tibial apophysis (RTA) wide at base, becoming 
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498 smaller in distal part slightly anteriorly oriented (Fig. 7D, G, 9B, D). Ventral tibial apophysis 
499 (VTA) rounded with a large pit at the tip. It has faint lines running across its surface (Fig. 9A, 
500 C). Reddish brown legs with black bands. Leg formula 3412. Leg I 2.84 (0.9, 0.45, 0.6, 0.46, 
501 0.42), Leg II 2.72 (0.92, 0.45, 0.52, 0.45, 0.38), Leg III 3.9 (1.2, 0.55, 0.82, 0.77, 0.47), Leg IV 
502 3.8 (1.3, 0.5, 0.72, 0.82, 0.45).
503

504 Female allotype (CARCIB-Ar-008). Sexual dimorphism in coloration observed compared to 
505 male. Total length: 5.1. Cephalothorax 2.5 long and 1.9 wide. Darkish brown, with white and 
506 orange setae anteriorly (Fig. 8A). Lower border covered with white setae forming a band. Ocular 
507 quadrangle (OQ) 0.6 long. Anterior eyes row (AER) 1.27 times wider than PER, AER 1.4 wide, 
508 PER 1.1 wide. Sternum reddish brown with dark marks, 1.67 long, 0.87 wide. Labium black 
509 slightly longer than wide, 0.37 long, 0.32 wide. Endite 0.25 long, 0.65 wide, reddish brown, 
510 whitish anteriorly and ovoid shaped (Fig. 8B). Opisthosoma 2.6 long and 2.5 wide; covered with 
511 coppery bronze setae across surface and exhibiting mottled pattern of faint translucent markings 
512 (Fig. 8A). Epigynum slightly wider than long, 0.4 long, 0.34 wide. Copulatory openings (CO) 
513 located on external lateral sides of S. Circular S and a unique loop in CD forms a D-shape in 
514 each side of epigynum (Fig. 8C-F). Median septum (MS) and sides have a smooth, trident-
515 shaped with grooves or ridges on anterior part (Fig. 10E). Windows of epigynum (W) mostly 
516 smooth, but striated centrally (Fig. 10E). Reddish brown legs with black marks. Leg formula 
517 3412. Leg I 3.72 (1.12, 0.7, 0.85, 0.65, 0.4), Leg II 3.67 (1.3, 0.62, 0.67, 0.62, 0.45), Leg III 5.52 
518 (1.85, 0.8, 1.25, 1.0, 0.62), Leg IV 4.4 (1.57, 0.67, 1.12, 0.52, 0.5).
519

520 Distribution. MEXICO: Michoacán and Jalisco.
521

522 Natural history. The specimens collected inhabit oak forest (Quercus sp.) and cloud forest on 
523 litter. Adults were mainly found from March to November (Fig. 6).
524

525 Naphrys tecoxquin sp. nov.

526 Figs. 11�15, 21.
527 urn:lsid:zoobank.org:act:D67CCC72-E17D-450C-9193-231120527FDE
528

529 Holotype. MEXICO. Jalisco: male from Boca de Tomatlán, Cabo Corrientes municipality (lat. 
530 20.511861, long. -105.318, 36m), tropical forest, ground hand collecting, J. Maldonado 
531 Carrizales, R. Cortés Santillán, E. G. Fuentes Ortiz cols., 13/IV/2023 (CARCIB-Ar-048). 
532 Allotype Female with same data as holotype (CARCIB-Ar-009).
533

534 Paratypes: 1 male (CARCIB-Ar-0329) and 1 female (CARCIB-Ar-0330), same collection data 
535 as holotype; 2 males (CAFBUM84260-CAFBUM84261), 1 female (CAFBUM84238): same data 
536 as holotype.
537
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538 Other material examined. MEXICO. Jalisco: 1 male (CAFBUM84232) and 12 immatures 
539 (CAFBUM84221), same collection data as holotype. 1 imm (CNAN-Ar011469), same collection 
540 data as paratype. 1 female (CNAN-Ar011471), Las Ánimas in same municipality as holotype 
541 (lat. 20.50002, long. -105.33869, 399m), tropical forest, ground hand collecting, G. Contreras 
542 col., 6/IX/2018.
543

544 Etymology. The species name "tecoxquin"  native pronunciation) is a noun in 
545 apposition in reference to the original native group that inhabited an extensive region covering 
546 the entire southern coast of Nayarit and neighboring coastal of Jalisco where type locality is 
547 found.
548

549 Diagnosis. Naphrys tecoxquin sp. nov. males possess bright, coppery bronze setae in anterior 
550 part of cephalothorax (Figs. 11E, 12A), a light opisthosoma with four black spots in dorsal view, 
551 and dark brown upwards chevron marks in posterior last third (Fig. 12A). In contrast, N. echeri 
552 sp. nov. exhibits a dark opisthosoma covered with coppery bronze setae across its surface and 
553 displays a mottled pattern of faint translucent markings (Fig. 7A). Naphrys tecoxquin sp. nov. is 
554 similar to N. xerophila, but differs in having a thick and straight embolus (Fig. 12C-H), in 
555 contrast to the curved embolus observed in N. xerophila and N. pulex. Naphrys tecoxquin sp. 

556 nov. differs from N. echeri sp. nov. and N. tuuca sp. nov. in morphology of its embolus apex, 
557 which is ventrally flat and dorsally convex, oriented towards the exterior of the pedipalp. The 
558 surface of the embolus apex in N. tecoxquin sp. nov. is sinuous with small projections (Fig. 
559 15B). Additionally, N. tecoxquin sp. nov. lacks PED next to embolus, a characteristic of N. 

560 echeri sp. nov. (Figs. 7D, G, 9B, 10A-B). In females of N. tecoxquin sp. nov., CO are located on 
561 external lateral side of S (Fig. 13C, E). Naphrys tecoxquin sp. nov. differs to N. echeri sp. nov. 
562 in S shape, which is pyriform in N. tecoxquin sp. nov. (Fig. 13C-F), but round in N. echeri sp. 

563 nov. (Fig. 8C-F).
564

565 Description. Male holotype (CARCIB-Ar-048). Total length: 2.9. Cephalothorax 1.74 long and 
566 1.26 wide. Darkish brown, with white setae forming a U-shaped mark, extending outwards from 
567 sides of PLE towards pedicel, anterior part is covered by bronze setae (Fig. 12A). Lower border 
568 covered with white setae forming a band. Ocular quadrangle (OQ), 0.6 long. Anterior eye row 
569 (AER) 1.31 times wider than PER, AER 1.18 wide, PER 0.9 wide. Sternum dark with faint 
570 yellow marks, 0.62 long, 0.46 wide. Labium dark, wider than long, 0.15 long, 0.22 wide. Endite 
571 0.27 long, 0.25 wide, reddish brown, whitish anteriorly, and square shaped (Fig. 12B). 
572 Opisthosoma 1.16 long and 0.92 wide, exhibiting two straight longitudinal bands forming a "V" 
573 that cover almost half of anterior opisthosoma. In central part, there is a black mark in shape of 
574 three triangles joined at base. Additionally, a white diamond-shaped mark is present in distal part 
575 (Fig. 12A). Palp covered by white setae in dorsal view; in ventral view, a thick and straight E 
576 covers up to half of distal part of the cymbium (Figs. 12C, F). Embolus apex and SP are oriented 
577 towards exterior of the palp (Fig. 14A, 15A). Embolus apex is ventrally flat and dorsally convex, 
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578 oriented towards the exterior of pedipalp. Surface of the embolus apex is sinuous with small 
579 projections (Fig. 15A-B). Embolar disk (ED) possesses a slight fold anteriorly, with striations at 
580 center (Fig. 14A, 15A). Tegulum (T) dark with faint yellow and orange marks. RSDL wide and 
581 easily seen in retrolateral view (Figs. 12D, G). Furthermore, RSDL is divided in two, anterior 
582 loop is gently curved similar to a closed parentheses �)�, extended on retrolateral edge. Adjacent, 
583 the posterior loop shares the same shape, but does not touch retrolateral edge (Figs. 12D, G). 
584 Retrolateral tibial apophysis (RTA) exhibits a densely striated surface along entire length. This 
585 apophysis projects in a straight orientation, gradually attenuating distally. Notably, RTA displays 
586 a slight dorsal orientation relative to the palp (Fig. 14B, D). Ventral tibial apophysis (VTA) is 
587 rounded and smooth (Fig. 14A, C). Femur, Patella, and Tibia of legs I and II dark with faint 
588 reddish-brown marks, metatarsus amber, and tarsus yellow. Legs III and IV yellow. Leg formula 
589 3412. Leg I 2.81 (0.82, 0.48, 0.62, 0.45, 0.42); leg II 2.86 (0.85, 0.47, 0.6, 0.52, 0.41); leg III 
590 3.83 (1.25, 0.47, 0.77, 0.81, 0.52); leg IV 3.75 (1.27. 0.58. 0.78. 0.57. 0.52).
591

592 Female allotype (CARCIB-Ar-009). Sexual dimorphism in coloration observed compared to 
593 male. Total length: 2.68. Cephalothorax 1.5 long and 1.1 wide, darkish brown, with anterior part 
594 covered with black and orange setae (Fig. 13A); lower border covered with white setae forming a 
595 band. Ocular quadrangle (OQ), 0.7 long. Anterior eyes row (AER) 1.5 times wider than PER, 
596 AER 1.08 wide, PER 0.72 wide. Sternum reddish brown with dark marks, 0.62 long, 0.46 wide. 
597 Labium black, wider than long, 0.22 long, 0.46 wide. Endite 0.28 long, 0.24 wide, reddish 
598 brown, and ovoid shaped (Fig. 13B). Opisthosoma 1.18 long and 0.92 wide; light with four black 
599 spots in dorsal view, along with dark brown upwards chevron marks in posterior last third (Fig. 
600 13A). Epigynum longer than wide, 0.82 long, 0.46 wide. Copulatory openings (CO) are located 
601 on external lateral sides of S. Pyriform S and a unique loop in CD forms a D-shape on each side 
602 of the epigynum (Fig. 13C-F). Median septum (MS) and sides smooth, trident-shaped, with 
603 grooves on anterior edges of W (Fig. 15C). Windows of epigynum (W) longer than wide, mostly 
604 smooth, but striated at center (Fig. 15C). Reddish brown legs with black marks. Femur, Patella, 
605 and Tibia of legs I and II dark with faint reddish-brown marks, metatarsus amber, and tarsus 
606 yellow. Legs III and IV yellow with dark bands near the junction between segments. Leg 
607 formula 3412. Leg I 2.25 (0.67, 0.45, 0.47, 0.37, 0.27); leg II 2.12 (0.55, 0.4, 0.5, 0.35, 0.32); leg 
608 III 3.27 (1.05, 0.45, 0.7, 0.6, 0.47); leg IV 3.1 (1.0, 0.4, 0.67, 0.65, 0.37).
609

610 Distribution. MEXICO: Jalisco.
611

612 Natural history. The specimens collected inhabit ground above leaf litter in tropical dry forests 
613 with broad-leaved trees. Adults were mainly found from April to July and from September to 
614 November (Fig. 11).
615

616 Naphrys tuuca sp. nov.

617 Figs. 16�21.
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618 LSID: urn:lsid:zoobank.org:act:3129A3DE-57E8-46CC-8036-86DC467EB056
619

620 Holotype. MEXICO. Nayarit: male from Cerro San Juan, Tepic municipality (lat. 21.505877, 
621 long. -104.924464, 1121m), oak forest (Quercus sp.), ground hand collecting, J. Maldonado 
622 Carrizales, R. Cortés Santillán col., 24/V/2023 (CARCIB-Ar-049). Female allotype with same 
623 data as holotype (CARCIB-Ar-010).
624

625 Paratypes: 2 males (CARCIB-Ar-0331; CAFBUM880039) and 2 females (CARCIB-Ar-0332; 
626 CAFBUM880021), same collection data as holotype.
627

628 Other material examined. MEXICO. Nayarit: 2 males (CAFBUM880001; CAFBUM880002), 
629 1 female (CAFBUM880075), same data as holotype. 1 male (CNAN-Ar011460), same data as 
630 holotype (CNAN-Ar011461). 3 males and 3 females (CNAN-Ar011461), Ceboruco Volcano, 
631 Jala municipality (lat. 21.1149, long. -104.5014, 1916m), wet glen, D. Guerrero, G. Contreras, C. 
632 Hutton, and G.B. Edwards col., 16/V/2018.
633

634 Etymology. The species name "tuuca"  native pronunciation) is a noun in apposition 
635 that means "spider" in the Wixárika language. Wixárika people are native to the Sierra Madre 
636 Occidental range in Nayarit state, where the type locality is found.
637

638 Diagnosis. Cephalothorax in dorsal view of N. tuuca sp. nov. has a unique characteristic white 
639 setae forming a Y-shaped mark, extending outwards from sides of PLE (Fig. 16A). In contrast, 
640 N. echeri sp. nov. exhibits white setae forming a V-shaped mark in this region (Fig. 7A). 
641 Naphrys tuuca sp. nov. has a dark opisthosoma covered with coppery-bronze setae across 
642 surface (Fig. 17A), similar to N. echeri sp. nov.; nevertheless, N. tuuca sp. nov. has a distinct 
643 mottled pattern of white markings and a medial longitudinal smooth white stripe that covers 
644 anterior portion of the opisthosoma (Fig. 17A). Males of N. tuuca sp. nov. possess a thin 
645 embolus (Fig. 17C-H). Embolus is larger than ED and folds at midpoint, forming a gentle curve 
646 (Fig. 17E, H, 19A, 20A), in contrast to thin and straight embolus observed in N. bufoides. 
647 Similar to Naphrys tecoxquin sp. nov., embolus apex of N. tuuca sp. nov. is curved and oriented 
648 towards the exterior of palp. Surface of embolus apex in N. tuuca sp. nov. is smooth (Fig. 20B). 
649 Additionally, N. tuuca sp. nov. lacks PED, which is present in N. echeri sp. nov. Females of N. 

650 tuuca sp. nov. present CO located in middle basal part of epigynum (Fig. 18C, E, 20C), differing 
651 from central location of CO observed in N. acerba, N. bufoides and N. pulex.
652

653 Description. Male holotype (CARCIB-Ar-049). Total length: 2.48. Cephalothorax 1.42 long 
654 and 1.1 wide, dark with white setae forming a Y-shaped mark, extending outwards from sides of 
655 PLE towards pedicel (Figs. 16C, 17A). Lower border covered with white setae forming a band. 
656 Ocular quadrangle (OQ), 0.74 long. Anterior eye row (AER) 1.53 times wider than PER, AER 
657 0.98 wide, PER 0.64 wide. Sternum dark with faint amber marks, 0.72 long, 0.5 wide. Labium 
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658 dark, wider than long, 0.17 long, 0.25 wide. Endite 0.35 long, 0.27 wide, amber, and square-
659 shaped (Fig. 17B). Opisthosoma 1.06 long and 0.88 wide, exhibiting a longitudinal band with 
660 white setae in dorsal view, covering one third of width (Fig. 16C, 17A). Palp covered by white 
661 setae in dorsal view, with a thin embolus in ventral view, larger than ED, which folds at 
662 midpoint, forming a gentle curve (Figs. 17C-H, 19A, 20A). Embolus apex exhibits a lateral 
663 flattening, resulting in a dorsally convex shape; oriented outwards from the main body of the 
664 palp. Embolus apex surface with smooth contours (Fig. 20A-B). Embolar disk (ED) exhibits 
665 unfolded anterior margin, and central region displays a higher concentration of striations (Fig. 
666 20A, 21A). Tegulum (T) dark with faint yellow and orange marks, RSDL wide, easily seen in 
667 retrolateral view (Figs. 17D, G). Furthermore, RSDL is divided in two, with anterior loop 
668 extremely curved, forming a backwards "C" that extends from middle of T to its retrolateral 
669 edge. Posterior loop is curved anteriorly and straight in its most posterior part, forming a hooked-
670 shape that does not touch retrolateral edge (Figs. 17D, G). Retrolateral tibial apophysis (RTA) 
671 exhibits sparse striations along its entire length. This structure projects in a straight orientation, 
672 gradually attenuating distally and displaying a slight anterior orientation (Fig. 17D, G, 19B, D). 
673 Ventral tibial apophysis (VTA) presents a conical structure with a roughened surface texture and 
674 a small notch distally (Fig. 19A, C). Yellow legs with black bands. Leg formula 3412. Leg I 2.71 
675 (0.78, 0.47, 0.50, 0.49, 0.45); leg II 2.68 (0.96, 0.45, 0.51, 0.50, 0.24); leg III 3.91 (1.26, 0.65, 
676 0.78, 0.74, 0.47); leg IV 3.6 (1.1, 0.45, 0.76, 0.87, 0.49).
677

678 Female allotype (CARCIB-r-010). Sexual dimorphism in coloration observed compared to 
679 male. Total length: 3.64. Cephalothorax 1.64 long and 1.34 wide, darkish brown, anterior part 
680 covered with white and orange setae (Fig. 16D, 18A). Lower border covered with white setae 
681 forming a band. Ocular quadrangle (OQ) 0.68 long. Anterior eyes row AER 1.47 times wider 
682 than PER, AER 1.18 wide, PER 0.8 wide. Sternum reddish brown with dark marks, 0.67 long, 
683 0.57 wide. Labium dark with faint amber marks, wider than long, 0.2 long, 0.27 wide. Endite 
684 0.37 long, 0.25 wide, reddish brown, and ovoid shaped (Fig. 18B). Opisthosoma 2.0 long and 1.8 
685 wide, dark, covered with coppery-bronze setae across surface, with a mottled pattern of white 
686 markings and a medial longitudinal smooth white stripe covering anterior portion (Fig. 18A). 
687 Epigynum slightly wider than long, 0.3 long, 0.34 wide. Copulatory openings (CO) located in 
688 middle basal part of epigynum. Circular S and a unique loop in CD form a D-shape in each side 
689 of epigynum (Fig. 18C-F). Median septum (MS) exhibits a smooth surface texture, while anterior 
690 edges of W present grooves (Fig. 20C). Overall surface of W exhibits a slightly roughened 
691 texture. Windows of epigynum (W) as long as wide (Fig. 20C). Legs yellow with dark marks, 
692 metatarsus amber, and tarsus yellow. Legs III and IV yellow with dark bands near segment 
693 junctions. Leg formula 3412. Leg I 2.82 (0.88, 0.52, 0.56, 0.5, 0.36); leg II 2.86 (0.92, 0.44, 0.58, 
694 0.58, 0.34); leg III 4.14 (1.34, 0.58, 0.82, 0.9, 0.5); leg IV 4.06 (1.3, 0.56, 0.8, 0.82, 0.58).
695

696 Distribution. MEXICO: Nayarit.
697
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698 Natural history. The specimens collected inhabit ground above leaf litter in oak forests 
699 (Quercus sp.). Adults were mainly found from May to September. This species feeds on small 
700 animals such as Collembola (Fig. 16D).
701

702 Discussion

703 Species delimitation within the family Salticidae has increasingly relied on a combination 
704 of molecular and morphological data. This trend is evident in studies that employ a phylogenetic 
705 perspective (Maddison, 2016a, 2016b; Cala-Riquelme, Bustamante & Salgado, 2022; Maddison 
706 et al., 2022). While genomic data can also be a reliable approach (Kanesharatnam & Benjamin, 
707 2021; Lin, Yang & Zhang, 2024), it typically requires greater resource investments and analysis 
708 time. In contrast, studies integrating diverse data sources for species delimitation within 
709 Salticidae remain relatively scarce.
710 A notable example is the work by  et al. (2021), who addressed taxonomic 
711 ambiguities within the genus Cytaea and related species. The authors attributed this taxonomic 
712 confusion to poor original diagnoses and descriptions within the genus. To resolve this issue, 
713  et al. (2021) employed a combined approach, analyzing both the morphology of the 
714 holotype specimens and utilizing the Automatic Barcode Gap Detection (ABGD) method based 
715 on a NJ tree constructed with COI gene sequences. Their results revealed that previously 
716 recognized "similar species" were synonymous with the Cytaea holotype, prompting the authors 
717 to formally synonymize these taxa.
718 While the authors employed a distance-based delimitation method (NJ tree) to clarify the 
719 identity of ambiguous species, in our work we take a more comprehensive approach, 
720 incorporating tree-based molecular analyses. To avoid future confusion, we also present an 
721 emended diagnosis of the genus Naphrys. These comprehensive resources aim to facilitate 
722 accurate species and genus-level determinations.
723 Boperachchi et al. (2022) further exemplify the application of molecular methods for 
724 species delimitation within Salticidae. Their study aimed to clarify the species diversity within 
725 the genus Ballus in Sri Lanka. Three species had been previously reported for this region, 
726 described in the late 19th and early 20th centuries. To address this taxonomic uncertainty, 
727 Boperachchi et al. (2022) employed a multifaceted approach, integrating morphological data 
728 with sequence data from three genes (COI, H3, 28S). They utilized multiple species delimitation 
729 methods, including ABGD, mPTP, and Bayesian Multi-Locus Species Delimitation (BPP). 
730 Notably, all applied methods yielded congruent results, indicating that the three previously 
731 recognized Ballus species represented a single species with consistent morphological 
732 characteristics and no significant genetic differentiation.
733 Similar to our work, the authors employed multiple molecular methods to investigate 
734 species diversity within a genus containing previously described species. In our study, the mPTP 
735 method, also used by Boperachchi et al. (2022), not only confirmed the identity of the previously 
736 known species N. xeophila, but also supported the designation of three new species.
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737 Finally, Phung et al. (2024) employed a combined approach for species delimitation 
738 within the genus Phintella and related Phintella-like spiders. Their approach utilized three 
739 distinct methods: one distance-based method (ASAP) and two tree-based methods (Bayesian 
740 version of GMYC and BPP). These methods were used to delineate putative new species based 
741 on available genetic data. Furthermore, the authors recognized the challenge of strong sexual 
742 dimorphism within Phintella. They addressed this limitation by incorporating the same methods 
743 to assign male-female combinations for approximately one-third of the species where such 
744 pairings were unknown. The analyses by Phung et al. (2024) resulted in the identification of 22 
745 distinct species, with 11 potentially representing undescribed taxa. Nevertheless, it is important 
746 to note that the study did not formally establish new species through the nomenclatural act.
747 Concordant with our findings, Phung et al. (2024) applied various methods for species 
748 delimitation. The distance-based ASAP method yielded a lower species count similar to our 
749 results. Conversely, tree-based methods (bGMYC and BPP) led to overestimations, as we also 
750 observed. Both studies endorse the utility of the COI gene for preliminary detection of 
751 potentially undescribed species, which subsequently have to be described as performed in this 
752 work.
753 Similar to the challenges encountered in the previous discussed studies, the Euophryini 
754 tribe exhibits numerous taxonomic uncertainties. These difficulties often stem from poor original 
755 species descriptions, limited knowledge of sexual dimorphism (e.g., only one sex known for 
756 some species), and high morphological similarity among species. To overcome these limitations, 
757 researchers have increasingly employed a combination of multiple methods (e.g., morphological 
758 and molecular data) for species delimitation (Navarro-Rodríguez & Valdez-Mondragón, 2020; 
759 Candia-Ramírez & Francke 2021; Cala-Riquelme, Bustamante & Salgado, 2022).
760 Morphological characters, particularly sexual characteristics, remain indispensable for 
761 robust species diagnosis, identification, and delimitation (Valdez-Mondragón, 2020). This is due, 
762 in part, to the typically low level of intraspecific variation and high level of interspecific 
763 variation observed in spider genitalia (Eberhard, 1985; Eberhard et al., 1998), making this 
764 characteristic a valuable diagnostic tool (Valdez-Mondragón, 2013; 2020; Valdez-Mondragón & 
765 Francke, 2015). In our study, we delimited different species through morphological characters, 
766 some of which were particularly diagnostic. For instance, the presence of a clearly visible PED 
767 in N. echeri sp. nov. and the distinctive shape of S readily distinguished this species from its 
768 congeners.
769 Modern taxonomic practices increasingly emphasize the integration of multiple data 
770 sources for species validation and delimitation. This combined approach strengthens the 
771 evidence for species boundaries and provides a more comprehensive understanding of the newly 
772 described taxa. In this way, the study herein represents the first where new species are described 
773 within the Salticidae family through species delimitation methods based on molecular data (both 
774 distance and tree-based).
775 Compared to other genes, the use of the COI gene has proven to be an effective tool for 
776 species delimitation in spiders (  et al., 2021; Valdez-Mondragón et al., 2019; Navarro-
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777 Rodríguez & Valdez-Mondragón, 2020; Nolasco & Valdez-Mondragón, 2022; Phung et al., 
778 2024). Naseem & Muhamman (2016) identified Salticidae in citrus orchards using the COI gene 
779 with interspecific values of nucleotide divergence between 9.96�11.91%. Yamasaki et al. (2018) 
780 found higher interspecific values of nucleotide divergence (14.1�18.2%) in their redescription of 
781 the genus Chrysilla, based on morphology and DNA barcoding. Those studies serve as a 
782 reference for variation among different species. The interspecific genetic divergences found in 
783 this work were greater than 11% (mean: 14%, min: 11%, max: 18.1%), fitting within the range 
784 previously reported for Salticidae.
785 For many taxonomic groups, a 3% genetic divergence threshold is often used to define 
786 species boundaries (Sbordoni, 2010). However, this value can vary across animal groups and 
787 even among closely related species due to differences in evolutionary rates  et al., 
788 2021). Previous studies (Vink, Dupérré & McQuillan, 2011; Richardson & Gunter, 2012; 
789 Blagoev et al., 2016;  et al., 2021) have reported a broad range of intraspecific genetic 
790 divergences within the Salticidae family, ranging from less than 0.5% to 7.57%.
791 Our results (Table 3) fit within this established range for Salticidae, except for Naphrys 
792 sp., which exhibited a higher divergence value of 10.94%. Nevertheless, the use of genetic data 
793 obtained from GenBank for this taxon precluded a morphological examination to identify 
794 diagnostic characters. Of note is Naphrys pulex, which despite inconsistencies in some species 
795 delimitation methods, showed observed intraspecific variation less than 2%, which falls well 
796 within the expected range for species of Salticidae.
797 Among the methods tested in this work, ASAP recovered the lowest number of species, 
798 similar to the findings by Phung et al. (2024) with Salticidae. Guo & Kong (2022) suggested that 
799 the distance-based approach is generally superior to the tree-based approach, with the ASAP 
800 method being the most efficient. As in Phung et al. (2024), our use of GMYC, bPTP, and mPTP 
801 methods resulted in a significantly higher number of delineated species. This contrast to previous 
802 studies with other groups (Mygalomorphae and Araneomorphae) of spiders (Ortiz & Francke, 
803 2016; Valdez-Mondragón et al., 2019; Navarro-Rodríguez & Valdez-Mondragón, 2020), in 
804 which a lower number of species were typically identified using similar methods. This 
805 discrepancy might be attributed to the limitations of GMYC and PTP methods. As discussed by 
806 Luo et al. (2018) and Guo & Kong (2022), these methods can be particularly sensitive to gene 
807 flow, which can disrupt the clear correlation between population size and divergence time, 
808 potentially leading to an overestimation of species boundaries. This overestimation issue could 
809 explain the differences found in the tree-based methods of the molecular analysis for N. pulex, 
810 despite the low genetic intraspecific distances observed (<2%).
811 Hamilton, Formanowicz & Bond (2011) emphasized the utility of geographical data in 
812 species delimitation. In our study, the different Naphrys species present in Mexico can be 
813 separated by their distribution. Naphrys pulex is widespread throughout the biogeographic 
814 Alleghany subregion corresponding to eastern Canada and the United States (Escalante, 
815 Rodríguez-Tapia & Morrone, 2021). Naphrys xerophila is distributed only in the southeastern 
816 coastal plains of the United States through the Austroriparian biogeographic province within the 
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817 Alleghany subregion (Richman, Cutler & Hill, 2012; Escalante, Rodríguez-Tapia & Morrone, 
818 2021). Their distribution is limited by the increased aridity in the western and southern 
819 boundaries of the Alleghany subregion (Takhtajan, 1986; Escalante, Rodríguez-Tapia & 
820 Morrone, 2021).
821 Prior to this study, the only known species present in Mexico was N. acerba, which is 
822 distributed in the northern part of the Sierra Madre Oriental biogeographical province in the 
823 northeast of the country. Naphrys tecoxquin sp. nov. inhabits a distinct biogeographical 
824 province, the Pacific Lowlands. This province corresponds to a narrow, uninterrupted strip along 
825 the Pacific coast (Morrone, 2019). Naphrys tuuca sp. nov. and N. echeri sp. nov. are distributed 
826 within the Trans-Mexican Volcanic Belt (TVB) province. This province corresponds to the set of 
827 volcano mountain ranges that traverses the country from west to east (Morrone, 2019).
828 Within the TVB, N. tuuca sp. nov. inhabits the western mountain zone. In contrast, N. 

829 echeri sp. nov. occupies the central mountains of the TVB. Naphrys echeri sp. nov. also occurs 
830 in the eastern mountains of Mexico, specifically in the northern part of the Sierra Madre del Sur 
831 (SMS) province, a mountain system that runs in parallel to the Pacific Ocean coast in a 
832 northwest-southeast direction. Nevertheless, its continuity is interrupted by a series of valleys, 
833 with rivers typically flowing above 1000 m (Hernández-Cerda, Azpra-Romero & Aguilar-
834 Zamora, 2016; Morrone, 2019). The SMS and TVB provinces are both part of the Mexican 
835 Transition Zone (MTZ). The MTZ exhibits a unique combination of characteristics that 
836 distinguish it from other transition zones. Notably, it harbors a remarkable mixture of Nearctic 
837 and Neotropical taxa.
838 Geographical barriers play a key role in the differential distribution of N. echeri sp. nov. 
839 and N. tuuca sp. nov. The SMS mountain range breaks through a tectonic graben of volcanic 
840 plateaus, with stratovolcanoes developing along its margins such as the Ceboruco Volcano 
841 (Blanco y Correa, Pérez & Cruz-Medina, 2021). The easternmost locality for N. tuuca sp. nov. is 
842 separated from western localities of N. echeri sp. nov. (Piedras Bolas in the TVB and Potrero de 
843 Mulas in the SMS) by extensive alluvial plains (up to 25 km wide) and deep clefts formed by the 
844 Ameca River (Valdivia-Ornelas & Castillo-Aja, 2001; Blanco y Correa, Pérez & Cruz-Medina, 
845 2021; Valero-Padilla, Rodríguez-Reynaga & Cruz-Angón, 2017).
846 The species described herein are the southernmost representatives of the genus. Contrary 
847 to prior assumptions by Edwards (2003) that the genus has a Nearctic distribution, our findings 
848 reveal the presence of these species in the Neotropical region, suggesting a broader geographical 
849 range. While the present work focused on western Mexico, further exploration particularly in the 
850 south is likely to yield additional undescribed species. This study also provides the first precise 
851 locality data for N. acerba within Mexico, previously known only from historical records.
852 Our study demonstrates the utility of the COI gene for robust species-level delimitation 
853 within the Naphrys genus. This finding is supported by the high congruence observed among 
854 most methods employed. Additionally, morphological characters, particularly the male palps and 
855 female epigynes, proved to be reliable features for the identification and diagnosis of Naphrys 
856 species. 
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1 Table 1. Specimens used in the molecular analyses under COI, DNA voucher numbers, localities, and 

2 GenBank/BOLD accession numbers.

Specie DNA voucher numbers Locality GenBank/BOLD 

accesion number

Naphrys pulex Npulex_CAN1 Canada: Ontario HM880192

Npulex_CAN2 Canada: Wellintong GU682819

Npulex_CAN3 Canada: Wellintong GU682817

Npulex_CAN4 Canada: Wellintong GU682816

Npulex_CAN5 Canada: Wellintong GU682814

Npulex_CAN6 Canada: Wellintong GU682836

Npulex_CAN7 Canada: Wellintong ARONT843-18

Npulex_CAN8 Canada: Wellintong ARONT876

Npulex_CAN9 Canada: Ontario ARONT917

Npulex_CAN10 Canada: Wellintong ARONT947

Npulex_CAN11 Canada: Ontario KP646979

Npulex_CAN12 Canada: Ontario KP656563

Npulex_CAN13 Canada: Ontario MG049224

Npulex_CAN14 Canada: Ontario ARONZ306

Npulex_CAN15 Canada: Ontario ARONZ331

Npulex_CAN16 Canada: Ontario ARONZ571

Npulex_CAN17 Canada: Ontario HQ924681

Npulex_CAN18 Canada: Ontario HQ924683

Npulex_CAN19 Canada: Nova Scotia GU683271

Npulex_CAN20 Canada: Nova Scotia GU683271

Npulex_CAN21 Canada: Ontario MF816087

Npulex_CAN22 Canada: Nova Scotia KP652066

Npulex_CAN23 Canada: Quebec KP646121

Npulex_CAN24 Canada: Ontario MF808927

Npulex_CAN25 Canada: Ontario MF816952

Npulex_CAN26 Canada: Ontario KP651428

Npulex_CAN27 Canada: Ontario KP648109

Npulex_CAN28 Canada: Ontario MF810509

Npulex_CAN29 Canada: Ontario ELPCG2846

Npulex_CAN30 Canada: Ontario ELPCG2847

Npulex_CAN31 Canada: Ontario ELPCG3050

Npulex_CAN32 Canada: Ontario ELPCG3523

Npulex_CAN33 Canada: Ontario ELPCG3524

Npulex_CAN34 Canada: Ontario ELPCG3525

Npulex_CAN35 Canada: Ontario ELPCG3599

Npulex_CAN36 Canada: Ontario ELPCG5003

Npulex_CAN37 Canada: Ontario ELPCG5472

Npulex_CAN38 Canada: Ontario ELPCG6449

Npulex_CAN39 Canada: Ontario ELPCG7399
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Npulex_CAN40 Canada: Ontario ELPCG7401

Npulex_CAN41 Canada: Ontario ELPCG8416

Npulex_CAN42 Canada: Ontario ELPCG8449

Npulex_CAN43 Canada: Ontario ELPCG8644

Npulex_CAN44 Canada: Ontario ELPCH2306

Npulex_CAN45 Canada: Ontario MG048013

Npulex_CAN47 Canada: Nova Scotia KP649884

Npulex_CAN48 Canada: Nova Scotia KP654153

Npulex_CAN49 Canada: Ontario KP652349

Npulex_CAN50 Canada: Nova Scotia MF809281

Npulex_CAN51 Canada: Nova Scotia MF813033

Npulex_CAN52 Canada: Ontario OPPKG2671

Npulex_CAN53 Canada: Ontario OPPOG1872

Npulex_CAN54 Canada: Ontario OPPZE1286

Npulex_CAN55 Canada: Wellintong KP647608

Npulex_CAN56 Canada: Ontario KM839902

Npulex_CAN57 Canada: Ontario JN308610

Npulex_CAN58 Canada: Ontario JN308622

Npulex_CAN59 Canada: Ontario JN308631

Npulex_CAN60 Canada: Ontario JN308807

Npulex_CAN61 Canada: Ontario JN308822

Npulex_CAN62 Canada: Ontario RARBB197

Npulex_CAN63 Canada: Ontario RARBB202

Npulex_CAN64 Canada: Ontario DQ127443

Npulex_CAN65 Canada: Ontario DQ127431

Npulex_CAN66 Canada: Ontario RBGBB303

Npulex_CAN67 Canada: Ontario ROUGE2474

Npulex_CAN68 Canada: Ontario KT707577

Npulex_CAN69 Canada: Ontario KT707910

Npulex_CAN70 Canada: Ontario KT706489

Npulex_CAN71 Canada: Ontario KT619474

Npulex_CAN72 Canada: Ontario MG048049

Npulex_CAN73 Canada: Ontario MG046695

Npulex_CAN74 Canada: Ontario MG044990

Npulex_CAN75 Canada: Ontario HQ977049

Npulex_CAN76 Canada: Ontario KP650393

Npulex_CAN77 Canada: Ontario KP656197

Npulex_CAN78 Canada: Ontario KP646924

Npulex_CAN79 Canada: Ontario KP656484

Npulex_CAN80 Canada: Ontario KP649929

Npulex_CAN81 Canada: Ontario MG046512

Npulex_CAN82 Canada: Ontario MG043132

Npulex_CAN83 Canada: Ontario MF815739
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Npulex_CAN84 Canada: Ontario MG509225

Npulex_CAN85 Canada: Ontario MG509777

Npulex_CAN86 Canada: Ontario KP656878

Npulex_CAN87 Canada: Ontario KP656232

Npulex_USA2 United States: Texas BBUSE1504 

(BIOUG01877-

H01)

Npulex_USA3 United States: 

Tennessee

GMGSQ008 

(BIOUG03453-

H09)

Npulex_USA4 United States: 

Tennessee

GMGST563 

(BIOUG04938-

E01)

Npulex_USA5 United States: 

Washington

GMNCF099

Npulex_USA6 United States: Unknown OR235169

Naphrys xerophila Nxerophila_USA1 United States: Texas BBUSE1415 

(BIOUG01637-

H07)

Naphrys sp. Nsp_USA10 United States: High 

Appalachian Mountains

OR174102

Nsp_USA11 United States: High 

Appalachian Mountains

OR173350

Nsp_USA8 United States: High 

Appalachian Mountains

OR174487

Nsp_USA9 United States: High 

Appalachian Mountains

OR174414

Naphrys echeri sp. nov. Necheri_MEX11 Mexico: Michoacán PP123908

Necheri_MEX58 Mexico: Michoacán PP123905

Necheri_MEX71 Mexico: Michoacán PP123902

Necheri_MEX73 Mexico: Michoacán PP123909

Necheri_MEX74 Mexico: Michoacán PP123903

Necheri_MEX8 Mexico: Michoacán PP123900

Necheri_MEX9 Mexico: Michoacán PP123901

Naphrys tecoxquin sp. nov. Ntecoxquin_MEX109 Mexico: Jalisco PP123899

Ntecoxquin_MEX54 Mexico: Jalisco PP123898

Ntecoxquin_ MEX 56 Mexico: Jalisco PP123906

Naphrys tuuca sp. nov. Ntuuca_ MEX 52 Mexico: Nayarit PP123904

Ntuuca_ MEX 76 Mexico: Nayarit PP123910

Ntuuca_ MEX 98 Mexico: Nayarit PP123907

Corticattus latus Clatus_DomRep Dominican Republic: 

Pedernales

KC615698

3
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Table 2(on next page)

Average genetic distances (p-distances) of COI among Naphrys species.
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1 Table 2. Average genetic distances (p-distances) of COI among Naphrys species.

1 2 3 4 5

1. Naphrys pulex USA -

2. Naphrys xerophila USA 11.8 -

3. Naphrys sp. USA 15.1 16.4 -

4. Naphrys tecoxquin sp. nov. MEX 14.0 12.9 18.1 -

5. Naphrys echeri sp. nov. MEX 13.4 13.4 17.8 11.2 -

6. Naphrys tuuca sp. nov. MEX 13.0 13.6 17.2 11.0 11.1

2
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Table 3(on next page)

Average genetic distance (p-distances) of COI within Naphrys species.
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1 Table 3. Average genetic distance (p-distances) of COI w����� Naphrys species.

Specie Distance Standard 

Error

Naphrys pulex USA 1.61 0.26

Naphrys xerophila USA - -

Naphrys sp. USA 10.94 1.18

Naphrys tecoxquin sp. nov. MEX 0 0

Naphrys echeri sp. nov. MEX 0.32 0.15

Naphrys tuuca sp. nov. MEX 0.34 0.19

2
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Figure 1
Neighbor-Joining (NJ) with corrected p-distances tree constructed with COI sequences
from diûerent species of Naphrys.

Colors indicate putative species. Red numbers above branches represent signiûcant
Bootstrap support values (> 50%).
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Figure 2
(Continued).

Image continuation of Neighbor-Joining (NJ) with corrected p-distances tree constructed with
COI sequences from diûerent species of Naphrys. Colors indicate putative species. Red
numbers above branches represent signiûcant Bootstrap support values (> 50%).
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Figure 3
Maximum Likelihood (ML) tree of Naphrys constructed with COI.

Colors represent putative species. Columns represent the diûerent species delimitation
methods. Numbers above branches represent Bootstrap support values for ML (> 50%
signiûcant). Column abbreviations: Neighbor-Joining (NJ); General Mixed Yule Coalescent
(GMYC); Bayesian Poisson Tree Processes (bPTP) with Maximum Likelihood (ML) and Bayesian
Inference (IB) variants; Multi-rate Poisson Tree Processes (mPTP). Red numbers above
branches represent Bootstrap support values for ML (> 50% signiûcant).
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Figure 4
(Continued).

Image continuation of Maximum Likelihood (ML) tree of Naphrys constructed with COI. Colors
represent putative species. Columns represent the diûerent species delimitation methods.
Numbers above branches represent Bootstrap support values for ML (> 50% signiûcant).
Column abbreviations: Neighbor-Joining (NJ); General Mixed Yule Coalescent (GMYC);
Bayesian Poisson Tree Processes (bPTP) with Maximum Likelihood (ML) and Bayesian
Inference (IB) variants; Multi-rate Poisson Tree Processes (mPTP). Red numbers above
branches represent Bootstrap support values for ML (> 50% signiûcant).

PeerJ reviewing PDF | (2024:07:104276:0:1:NEW 2 Aug 2024)

Manuscript to be reviewed



PeerJ reviewing PDF | (2024:07:104276:0:1:NEW 2 Aug 2024)

Manuscript to be reviewed



Figure 5
Naphrys acerba (Peckham & Peckham, 1909) from path to cable car, Cerro de la Silla,
Guadalupe, Nuevo León, Mexico.

Red arrow indicates A) Habitat, B) Microhabitat. C) and D) Live female on leaf litter. Photos by
Juan Maldonado-Carrizales (2023)
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Figure 6
Naphrys acerba (Peckham & Peckham, 1909)

male habitus A) dorsal and B) ventral views. Left palp C) ventral, D) retrolateral and E)
prolateral views. Drawings of left palp F) ventral, G) retrolateral and H) prolateral views.
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Figure 7
Naphrys acerba (Peckham & Peckham, 1909)

female habitus A) dorsal and B) ventral views. Epigynum C) dorsal and D) ventral views.
Drawings of epigynum E) ventral and F) dorsal views.
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Figure 8
Type locality of Naphrys echeri sp. nov. from Cerro El Gigante, Jesús del Monte, Morelia,
Michoacán, Mexico.

Red arrow indicates A) habitat and B) microhabitat. C) live female specimen in oak forest.
Photos by Juan Maldonado-Carrizales (2023).
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Figure 9
Naphrys echeri sp. nov. male holotype (CARCIB-AR-047)

habitus A) dorsal and B) ventral views. Left palp C) ventral, D) retrolateral and E) prolateral
views. Drawings of left palp F) ventral, G) retrolateral and H) prolateral views.
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Figure 10
Naphrys echeri sp. nov. female allotype (CARCIB-Ar-008)

habitus A) dorsal and B) ventral views. epigynum C) dorsal and D) ventral views. Drawings of
epigynum E) ventral and F) dorsal views.
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Figure 11
Naphrys echeri sp. nov. male genitalia SEM micrographs.

Palp A) prolateral and B) retrolateral views. C) ventral tibial apophysis (VTA). D) retrolateral
tibial apophysis (RTA).
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Figure 12
Naphrys echeri sp. nov. male genitalia SEM micrographs.

Embolus A) ventral and B) dorsal view. C) process on embolic disc (PED). D) sperm pore (SP)
at embolus apex. E) female genitalia SEM micrograph epigynum ventral view.
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Figure 13
Type locality of Naphrys tecoxquin sp. nov. from Boca de Tomatlán, Cabo Corrientes,
Jalisco, Mexico.

Red arrow indicates A) habitat and B) microhabitat. C) red arrow indicates live specimen on
ûoor. D) female live specimen and E) male live specimen.
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Figure 14
Naphrys tecoxquin sp. nov. male holotype (CARCIB-Ar-048)

habitus A) dorsal and B) ventral views. Left palp C) ventral, D) retrolateral and E) prolateral
views. Drawings of left palp F) ventral, G) retrolateral and H) prolateral views.
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Figure 15
Naphrys tecoxquin sp. nov. female allotype (CARCIB-Ar-009)

habitus A) dorsal and B) ventral views. epigynum C) dorsal and D) ventral views. Drawings of
epigynum E) ventral and F) dorsal views.
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Figure 16
Naphrys tecoxquin sp. nov. male genitalia SEM micrographs.

Palp A) prolateral and B) retrolateral views. C) ventral tibial apophysis (VTA). D) retrolateral
tibial apophysis (RTA).
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Figure 17
Naphrys tecoxquin sp. nov. male genitalia SEM micrographs.

Embolus A) ventral view. B) sperm pore (SP) at embolus apex. C) female genitalia SEM
micrograph epigynum ventral view.
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Figure 18
Type locality of Naphrys tuuca sp. nov. from Cerro San Juan, Tepic, Nayarit, Mexico.

Red arrow indicates A) habitat and B) microhabitat. C) live male specimen. D) live female
eating a Collembola in ûeld. E) live female eating a larva of Drosophila melanogaster Meigen,
1830 in captivity. Photos by Juan Maldonado-Carrizales (2023).
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Figure 19
Naphrys tuuca sp. nov. male holotype (CARCIB-Ar-049)

habitus A) dorsal and B) ventral views. Left palp C) ventral, D) retrolateral and E) prolateral
views. Drawings of left palp F) ventral, G) retrolateral and H) prolateral views.
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Figure 20
Naphrys tuuca sp. nov. female allotype (CARCIB-Ar-010)

habitus A) dorsal and B) ventral views. epigynum C) dorsal and D) ventral views. Drawings of
epigynum E) ventral and F) dorsal views.
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Figure 21
Naphrys tuuca sp. nov. male genitalia SEM micrographs.

Palp A) prolateral and B) retrolateral views. C) ventral tibial apophysis (VTA). D) retrolateral
tibial apophysis (RTA).
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Figure 22
Naphrys tuuca sp. nov. male genitalia SEM micrographs.

Embolus A) ventral view. B) sperm pore (SP) at embolus apex. C) female genitalia SEM
micrograph epigynum ventral view.
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Figure 23
Known distribution records of the Mexican species of Naphrys.

Star: N. acerba. Diamond: N. echeri sp. nov.. Circle: N. tecoxquin sp. nov. Cross: N. tuuca sp.
nov. Colors represent the biogeographical provinces following Escalante, Rodríguez-Tapia &
Morrone (2021). Blue: Transmexican Volcanic Belt province. Green: Sierra Madre del Sur
Province. Pink: Sierra Madre Oriental. Yellow: Paciûc Lowlands.
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