Three new species of the spider genus Naphrys
Edwards (Araneae, Salticidae) under morphology and
molecular data with notes in the distribution of
Naphrys acerba (Peckham & Peckham) from Mexico

Juan Maldonado-Carrizales¹, Alejandro Valdez-Mondragón², María Luisa Jiménez-Jiménez² Javier Ponce-Saavedra¹

- ¹ Faculty of Biology, Entomology Laboratory, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia, Michoacán, Mexico
- ² Arachnological Collection (CARCIB), Centro de Investigaciones Biológicas del Noroeste
 (CIBNOR), La Paz, Baja California Sur, Mexico

- 15 Corresponding Author:
- 16 Javier Ponce-Saavedra
- 17 Edificio B4 2° piso, Gral. Francisco J. Múgica S/N, Morelia, Michoacán, 58040
- 18 Email address: javier.ponce@umich.mx

Comentado [Kd1]: The manuscript brings new information about the most diverse family of spiders. In addition, the use of different methods in species delimitation makes the manuscript even more efficient and described through integrative taxonomy. Authors should pay attention to taxomic lists, adjustments in taxonomic descriptions, standardization of type material and revision of figures. The figures are saved in PNG, which makes the background transparent. Many are blurred and have a non-standard background. Review mainly the habitus, illustrations and SEM. In addition, some adjustments in paragraph ordering. As soon as the adjustments and corrections are made, the work will be ready for acceptance and publication.

Abstract

Herein, we describe three new species of the spider genus *Naphrys* Edwards, 2003 from Mexico: *Naphrys echeri* sp. nov., *Naphrys tecoxquin* sp. nov., and *Naphrys tuuca* sp. nov. An integrative taxonomic approach was applied, utilizing data from morphology, ultra-morphology, molecular data (distance-based and tree-based), and distribution records. Four molecular methods for species delimitation were implemented under the corrected *p*-distance Neighbor-Joining (NJ) criteria: 1) Assemble Species by Automatic Partitioning (ASAP); 2) General Mixed Yule Coalescent (GMYC); 3) Bayesian Poisson Tree Process (bPTP); and 4) Multi-rate Poisson Tree Process (mPTP). Both morphological and molecular data supported the delimitation and recognition of the three new species. The average interspecific genetic distance (*p*-distance) within the genus *Naphrys* is 14%, while the intraspecific genetic distances (*p*-distance) is < 2% for most species. We demonstrate that the natural distribution of *Naphrys* is not restricted to the Nearctic region. Furthermore, the reported localities herein represent the first with precise locations in the country for *Naphrys acerba*. In addition, a taxonomic identification key is provided for the species in the genus.

Introduction

The spider family Salticidae, comprised of 6,689 described species. (WSC, 2024), represents the most diverse spider family worldwide (WSC, 2024). One of the largest groups within this family is the Euophryini tribe, containing over 1,000 species within 116 genera (Edwards, 2003; Maddison, 2015; Zhang & Maddison, 2015). Euophryini species have a global distribution, primarily found in tropical regions except for Africa (Zhang & Maddison, 2015; Maddison, 2015). They exhibit a remarkable uniformity in body shape, with elongate or ant-like forms uncommon (Author). Their genitalia also share some particular characteristics: the male palp typically has a simple spiral embolus, and the epigynum has windows framed by circular folds, presumably guiding the embolus during mating (Maddison, 2015).

According to Edwards (2003), most Euophryini species in the Nearctic region are small (less than 5 mm long) with compact bodies. These species often exhibit cryptic coloration (browns or grays) and possess a moderate number of setae on their bodies. The genus *Naphrys* Edwards, 2003 is as a clear representative of this group. *Naphrys* currently includes four described species restricted to North America: *Naphrys acerba* (G. W. Peckham & E. G. Peckham, 1909), *Naphrys bufoides* (Chamberlin & Ivie, 1944), *Naphrys pulex* (Hentz, 1846), and *Naphrys xerophila* (Richman, 1981) are all found in the United States. Additionally, *N. pulex* extends into Canada, and *N. acerba* has been reported in Mexico (Richman, 1981; Edwards, 2003; WSC, 2024).

In Mexico, the distribution of *N. acerba* is reported in the northeastern region, but precise locations remain unclear (Richman, 1981). Nevertheless, diverse sources (Ibarra-Núñez, Maya-Morales & Chamé-Vázquez, 2011; Maddison, 2015; Maldonado-Carrizales & Ponce-Saavedra, 2017) mention the presence of the genus in different parts of Mexico without assigning known species. This highlights the limited taxonomic knowledge about this genus in the country.

Comentado [Kd2]: Couple?

Comentado [Kd3]: Please insert about the phylogeny first and witch clade this genus is inserted and by what taxonomic characters? After, described something about the diagnosis for this genus.

The taxonomy of the tribe is encumbered by common morphological convergences and reversals, despite attempts at species delimitation using both morphological and molecular data. This taxonomic confusion is further compounded by the relative simplicity of Euophryini genitalia, which exhibit limited interspecific variation and hinder even genus-level identification (Zhang & Maddison, 2015).

Modern taxonomy enlists a wide variety of methods and different lines of evidence to analyze and delimit lineages, as morphological evidence alone can be extremely difficult or impossible to delimit species in some cases (Carstens et al., 2013, Luo et al., 2018; Nolasco & Valdez-Mondragón, 2022). This approach recognizes the limitations of relying solely on morphology.

DNA analysis has become a crucial tool in species delimitation due to its objectivity. Unlike morphology that can be subjective and influenced by the environment, DNA offers a standardized and quantifiable measure of evolutionary divergence (Fujita et al., 2012). Nevertheless, delineating or delimiting spider species based only on molecular data is insufficient and incorrect (Hamilton, Formanowicz & Bond, 2011).

The combined use of morphological and molecular data is becoming increasingly important for species delimitation in spiders. This approach is particularly valuable in families like Salticidae, where similar appearances and sexual characteristics make traditional classification methods challenging (Trębicki et al., 2021; Cala-Riquelme, Bustamante & Salgado, 2022; Maddison et al., 2022; Courtial et al, 2023; Kumar, Gupta & Sharma, 2024; Lin et al., 2024; Phung et al., 2024). Similar successes have been achieved in other spider groups such as Mygalomorphae (Hamilton et al., 2014; Ortiz & Francke, 2016; Candia-Ramírez & Francke 2021; Ferretti, Nicoletta & Soresi, 2024) and Synspermiata (Valdez-Mondragón et al., 2019; Navarro-Rodríguez & Valdez-Mondragón, 2024). The combined use of methods has resulted in robust characterizations of species boundaries.

The integrative taxonomy approach has emerged to address shortcomings of each method individually, using multiple data sources and disciplines in a complementary way to identify and delimit species or lineages. In other words, integrative taxonomy is the criterion that aims to delimit species, the fundamental units of biodiversity, from different and complementary perspectives (Dayrat, 2005; DeSalle, Egan & Siddall, 2005; Padial et al., 2010; Padial & de la Riva, 2010).

While integrative taxonomy has been applied in various biological groups, its use in spider research remains limited (Bond et al., 2021). This highlights the potential for further exploration of integrative taxonomy within spider systematics.

In this study, we employ integrative taxonomy to describe three new species of the genus *Naphrys*. This approach utilizes morphological characters, ultra-morphology, and molecular data analyzed using both genetic-distance and tree-based methods for species delimitation. As there is no single species concept, in this work we employ the unified species concept, which is a flexible framework that incorporates elements from various species concepts such as the biological,

Comentado [Kd4]: I think this paragraph is poorly placed because it is providing information about the tribe and also about the methods used, in addition to the problem of taxonomy. Please change to line 45-46, before mentioning the genus. Following the fluidity of the taxonomic hierarchy.

ecological, evolutionary, and phylogenetic concepts, to delimit species based on their status as separately evolving metapopulation lineages (De Queiroz, 2007; Schlick-Steiner et al., 2010).

We also consider the biogeographical distribution records of the new species. Finally, we provide a taxonomic identification key for the species of the genus and accurate distribution data for *N. acerba* in northeastern Mexico.

Materials & Methods

100

101

102

103

104 105

106 107

108 109

110

111

112

113

114

115

116

117118

119

120

121

122

123 124

125

126

127 128

129

130

131

132

133

134

135

136

137

138

139

The specimens were collected and preserved in both 96% ethanol for molecular analyses and 80% ethanol with complete field data labels for morphological studies. Type specimens are deposited at two biological collections: Colección de Arácnidos e Insectos, Centro de Investigaciones Biológicas del Noroeste, S.C. (CARCIB), La Paz, Baja California Sur, Mexico, and Colección Aracnológica de la Facultad de Biología de la Universidad Michoacana (CAFBUM), Morelia, Michoacán, Mexico. The specimens were collected under the document SPARN/DGVS/074492/24, Scientific Collector Permit from the Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT), Mexico, provided to Margarita Vargas Sandoval (Director and Head curator of the CAFBUM, Faculty of Biology, Entomology Laboratory, Universidad Michoacana de San Nicolás de Hidalgo). For morphological descriptions, specimens were observed using an Amscope SM1TZ-RL-10MA stereomicroscope. All measurements are in millimeters (mm). Epigyna were dissected, manually cleaned, and temporarily cleared with clove oil following the method described by Levi (1965), after digesting the internal epigynal soft tissues with KOH 10%. Left male palps were dissected and cleaned manually using hypodermic needles and a small brush. Both genitalia were observed under a transmitted light microscope Axiostar Plus Carl Zeiss. Habitus and genitalia photographs were obtained using separate setups, an Amscope MU1000 camera attached to an Amscope SM1TZ-RL-10MA stereomicroscope for habitus images, and a transmitted light microscope (Axiostar Plus Carl Zeiss) for genitalia. Photographs were processed with the Helicon focus v8.2.2 program and edited using Adobe Photoshop CS6. The distribution map was created using QGIS v3.32 'Lima'. Biogeographic province data (.shp) were obtained from the proposed boundaries by Morrone, Escalante & Rodríguez-Tapia (2017), and Escalante, Rodríguez-Tapia & Morrone (2021). Boundary data (.shp files) were sourced from USGS (2021). Finally, the topographic base layer used was 'ESRI Topo' via the subprogram XYZ Tiles in QGIS. For scanning electron microscopy (SEM), morphological structures were dissected, cleaned manually, dehydrated in absolute ethanol, critical-point dried with samdri-PVT-3B equipment, and then covered with gold:palladium in a 60:40 proportion. The structures were examined under low vacuum in a Hitachi S-3000N SEM. Measurements on electron micrographs are in micrometers (µm). Morphological nomenclature mostly follows Ramirez (2014) and Zhang & Maddison (2015), with abbreviations used in the description and figures as follows: AER, anterior eyes row; PER, posterior eyes row; ALE, anterior lateral eye; AME, anterior median eye; PLE, posterior lateral eye; PME, posterior median eye; OQ, ocular quadrangle; S, spermatheca; CD, copulatory duct; W, window of epigynum; CO, copulatory openings; FD, fertilization duct; MS, median septum; RTA,

Comentado [Kd5]: I loved this paragraph.

retrolateral tibial apophysis; E, embolus; ED, embolic disc; SP, sperm pore; T, tegulum; TL, tegular lobe; RSDL, retrolateral sperm duct loop; VTA, ventral tibial apophysis; PED, process on embolic disc.

Taxon sampling

140

141 142

143 144

145

146

147 148

149

150 151

152 153

154 155

156

157

158

159

160

161

162

163 164

165 166

167

168

169

170

171

172173

174

175 176 177

178

179

The molecular analyses were carried out with a total of 110 specimens, including one undescribed species of *Naphrys* and three new *Naphrys* species described herein. Because this study it is not a phylogenetic analysis, we use only one outgroup taxon to root the trees, *Corticattus latus* Zhang & Maddison, which represents the closely related genus to *Naphrys* according with Zhang & Maddison (2015) (Table 1).

DNA extraction, amplification, and sequencing

The DNA was isolated from legs using proteinase K/phenol/chloroform following the protocol by Hillis et al. (1996). Briefly, at least 1 μL of tissue was incubated at 60°C for 24 hours with a digestion buffer containing 400 µL saline solution, 45 µL of 1% SDS solution, and 5uL of proteinase K. After digestion, 200 µL of Phenol and 200 µL of isoamyl chloroform was added and shaken vigorously. Afterwards, samples were centrifuged at 12,000 rpm for 10 minutes. Once finished, 400 µL of upper aqueous phase was recovered, repeating the phenol/chloroform washes once more. Once the phenol/chloroform washes were done, 200 μL of phenol was added to the mixture, shaken gently, and then centrifuged immediately at 12,000 rpm for 10 minutes. 300 μL of upper aqueous phase was recovered and 750 μL of cold (-20°C) absolute ethanol was added. The mixture was then shaken gently and incubated for 12 hours at -20°C. Once incubated, it was centrifuged at 13,000 rpm for 20 minutes, and the ethanol was decanted by inversion, avoiding losing the bottom pellet. 600 µL of cold 70% ethanol (-20°C) was then added and centrifuged at 13,000 rpm for 20 minutes, with ethanol decanting by inversion while avoiding losing the bottom pellet. Finally, drying in a vacuum centrifuge was performed at 60°C for 10 minutes. Once the vial is dry, DNA is suspended in 50 μL of distilled water and stored at -20°C. After DNA extraction, the mitochondrial gene Cytochrome Oxidase subunit 1 (COI), proposed by Folmer et al (1994), was amplified (LCO1498 and HCO2198). Amplifications were carried out in a GeneAmp PCR System 2700 thermal cycler, in a total volume of 25.9 μL: 1.66 μL Buffer (5X), 1.5 μL MgCl2 (50 mM), 1.25 μL LCOI1498 (10 μM), 1.25 μL HCOI2198 (10 μM), $0.23~\mu L$ Taq (5U/ μL), $0.875~\mu L$ dNTP's (10 mM), 1 μL BSA (1.25 mg/ μL), 16.135 μL H2O, 2 μL DNA. The PCR was set up as follows: an initial step for 1 min 30 sec at 95 °C; 35 amplification cycles of 30 sec at 94 °C (denaturation), 30 sec at 50 °C (annealing), 45 sec at 72 °C (elongation), and final elongation of 10 min at 72 °C. PCR products were checked via gel electrophoresis to analyze length and purity on 1% agarose gels with a molecular marker of 100

DNA extractions were carried out at the Laboratorio de Biología Acuática "J. Javier Alvarado Díaz," while PCR amplifications were carried out at the Centro Multidiciplinario de Estudios en Biotecnología (CMEB), both at the Universidad Michoacana de San Nicolás de

Hidalgo (UMSNH) in Morelia, Michoacán, Mexico. Sequencing was carried out in Psomagen, Maryland, United States.

Sequence editing and alignment

The sequences were visualized in Geneious Prime v.2023.2.1 (Geneious Prime, 2023) and then manually edited using the BioEdit v. 7.7.1 program (Hall, 1999). After saving in FASTA format (.fas), the sequences were aligned using MAFFT v. 7 (Katoh & Toh 2008) with default parameters on the MAFFT online server (https://mafft.cbrc.jp/alignment/server/).

Molecular analysis and species delimitation

Four different molecular delimitation methods were employed using the corrected *p*-distances Neighbor-Joining (NJ) as initial criteria: 1) ASAP (Assemble Species by Automatic Partitioning) (Puillandre, Brouillet & Achaz, 2021), 2) GMYC (General Mixed Yule Coalescent) (Pons et al., 2006), 3) bPTP (Bayesian Poisson Tree Process) (Zhang et al., 2013), and 4) mPTP (multi-rate Poisson tree processes) (Kapli et al., 2017).

p-distances Neighbor-Joining (NJ) criteria

MEGA v.10.0.5 (Kumar et al., 2018) was used to construct the genetic distance tree, using the following parameters: number of replicates = 1000, bootstrap support values = 1000 (significant values \geq 50%), substitution type = nucleotide, model = p-distance, substitutions to include = d: transitions + transversions, rates among sites = gamma distributed with invariant sites (G+I), missing data treatment = pairwise deletion.

Assemble Species by Automatic Partitioning (ASAP)

This method is an ascending hierarchical clustering algorithm that analyzes single-locus DNA barcode datasets. It iteratively merges sequences with the highest pairwise similarity into progressively larger clusters. Additionally, ASAP retains information on all potential clustering steps, resulting in a comprehensive series of partitions representing putative species groupings within the data. Subsequently, ASAP calculates a probability score for each partition based on the within-group sequence similarity compared to between-group similarity. Finally, the method identifies the partitions with the highest probability scores as the most likely species-level groupings and constructs a species partition tree reflecting the hierarchical relationships among these putative species (Puillandre, Brouillet & Achaz, 2021). ASAP analyses were run on the online platform (https://bioinfo.mnhn.fr/abi/public/asap/) using Kimura (K80) distance matrices and configured under following parameters: substitution model = p-distances, probability = 0.01, best scores = 10, fixed seed value = -1.

General Mixed Yule Coalescent (GMYC)

The GMYC method (Fujisawa & Barraclough 2013) is a statistical framework employed for species delimitation using single-locus DNA barcode data. This approach utilizes single time

thresholds to define species boundaries within a Maximum Likelihood context, relying on ultrametric trees as input (Ortiz & Francke 2016; Nolasco & Valdez-Mondragón, 2022). Ultrametric trees were generated in this study through phylogenetic analyses performed in BEAUti and BEAST v.2.7.6 software (Bouckaert et al., 2019). A Yule Process tree prior was implemented during the analysis to account for lineage diversification patterns. Furthermore, an optimized relaxed molecular clock model was applied, incorporating the estimated evolutionary model for the COI gene (GTR + I + G). To ensure robustness of the phylogenetic inference, five independent BEAST analyses were executed, each running for 80 million iterations. Convergence of these analyses was subsequently evaluated using Tracer v1.6 (Rambaut and Drummond, 2003–2013), with a minimum threshold of 200 for the Effective Sample Sizes (ESS). Following this, Tree Annotator 2.6.0 (part of the BEAST package) was employed to generate maximum likelihood trees representing the most likely evolutionary histories. The first 25% of each independent run was discarded as burn-in to account for potential initial biases in the MCMC chains. Finally, the GMYC method was implemented through the online platform (https://species.h-its.org/gmyc/) (Fujisawa & Barraclough, 2013).

Bayesian Poisson Tree Processes (bPTP)

bTPT operates within a Bayesian framework, accounting for uncertainties in both the phylogenetic tree's branch lengths and potential species assignments. This method assumes a Poisson process for speciation events along the tree branches and incorporates branch lengths reflecting sequence divergences. Considering this information and its inherent uncertainties, bPTP estimates posterior probabilities for various candidate species partitions within the data, which represent the likelihood of each partition accurately reflecting true species boundaries (Zhang et al., 2013). In this work, Bayesian and Maximum Likelihood variants were carried out on the online platform (https://species.h-its.org/ptp/), using following options: rooted tree, MCMC = 1000000, thinning = 100, burn-in = 0.1, seed = 123. The resulting trees were edited in FigTree 1.4.4 (Rambaut, 2018) and Photoshop CS6. Congruence integration criteria were employed to delimit different species. This approach compares evidence across multiple methods, resulting in more robust species delimitations and better supported species hypotheses (e.g., DeSalle, Egan & Siddall, 2005; Pons et al., 2006; Navarro-Rodríguez & Valdez-Mondragón, 2020; Valdez-Mondragón, 2020; Valdez-Mondragón, 2020).

Multi-rate Poisson Tree Processes (mPTP)

mPTP uses a non-homogeneous Poisson process model. This approach allows for the estimation of distinct rate multipliers for individual branches within the phylogenetic tree, recognizing potential heterogeneity in evolutionary rates across lineages. ML tree estimation was used to identify branch-specific rate multipliers, and Markov chain Monte Carlo (MCMC) simulations were employed to integrate over the uncertainty associated with these estimates (Kapli et al., 2017). By identifying statistically significant shifts in diversification rates along the tree generated from our ML analysis, mPTP pinpoints potential species boundaries, specifically

taking into account lineages that have undergone evolution at disparate paces. This analysis was carried out on the online platform (http://mptp.h-its.org/).

Zoobank

The electronic version of this article in Portable Document Format (PDF) will represent a published work according to the International Commission on Zoological Nomenclature (ICZN). Hence, the new names contained in the electronic version are effectively published under that Code from the electronic edition alone. This published work and the nomenclatural acts it contains have been registered in ZooBank, the online registration system for the ICZN. The ZooBank LSIDs (Life Science Identifiers) can be resolved, and the associated information viewed through any standard web browser by appending the LSIDs to the prefix http://zoobank.org/. The LSIDs for this publication are: urn:lsid:zoobank.org:act:6CFF43A9-8C98-4027-A1DA-2838FE4D79F8; urn:lsid:zoobank.org:act:D67CCC72-E17D-450C-9193-231120527FDE; and urn:lsid:zoobank.org:act:3129A3DE-57E8-46CC-8036-86DC467EB056. The online version of this work is archived and available from the following digital repositories: PeerJ, PubMed Central SCIE, and CLOCKSS.

Results

Molecular analysis of genetic distances

The corrected *p*-distances under NJ of COI recovered six putative species (Fig. 1). Genetic distance analyses recovered groups corresponding to one putative new species (with bootstrap support value below 50%), the two previously described species *N. pulex* and *N. xerophila* (with high bootstrap support value, 89%), and three new species described herein (with high bootstrap support value, 98%). Bootstrap support values for all species were high (>89%) (Fig. 1). The average genetic *p*-interspecific distances of *Naphrys* species was 14% (min: 11%, max: 18.1%) (Table 2). Average interspecific *p*-distance between previously known species (*N. pulex* and *N. xerophila*) was 11.8%. Between new species (*N. echeri* sp. nov., *N. tecoxquin* sp. nov., and *N. tuuca* sp. nov.) and previously known species, higher interspecific average *p*-distances were observed, between 12.9% and 14%. With average values above 15.1%, *Naphrys* sp. had the highest average interspecific *p*-distance. For most species, intraspecific distances were below 1.61%, except for *Naphrys* sp. that showed a higher value (Table 3).

Molecular methods for species delimitation

The ASAP delimitation analysis recovered all six species (*N. echeri* **sp. nov.**, *N. tecoxquin* **sp. nov.**, *N. tuuca* **sp. nov.**, *Naphrys* sp., *Naphrys* pulex, and *Naphrys* xerophila) with high (>93%) bootstrap support value (Fig. 2) from the NJ tree. GMYC and mPTP methods recovered the three new species described herein and one putative new species, while *N. pulex* was not recovered as one species (Fig. 2). The most incongruent result was observed in bPTP, which delimited 42 and 50 putative species under ML and IB variants, respectively. Only *N. tecoxquin* **sp. nov.** and *N. xerophila* were recovered by the ML variant of bPTP.

Only *N. xerophila* was recovered under all methods and supported by a high bootstrap value (93%). *Naphrys pulex* shows the most incongruent results in all species delimitation methods, recovering 10 species in mPTP, 16 in GMYC, and 42 and 50 species in the ML and BI variants of bPTP method, respectively (Fig. 2). Nevertheless, *N. pulex* presents low intraspecific genetic distance (< 2%) and high bootstrap support value (100%) (Table 3; Fig. 2).

Taxonomy

Family: Salticidae Blackwall, 1841
 Tribe: Euophryini Simon, 1901
 Genus: Naphrys Edwards, 2003

B11 **T**

Type specie: *Habrocestum acerbum* (G. W. Peckham & E. G. Peckham, 1909), by original designation.

Emended diagnosis. After Richman (1981) and Edwards (2003). *Naphrys* species are characterized by their small size (2–6.1 mm) and dull, cryptic coloration (black and brown) (Figs. 3C-D, 6C, 12D-E, 18C-E). With one bicuspid promarginal tooth on chelicera and high carapace. First tibia has no more than two pairs of ventral macrosetae and leg III longer than leg IV (Tibia+Patella III > Tibia+Patella IV). Male palpal bulb is usually large with a proximal TL. Simple finger-like RTA and RSDL present. Also, with ventral apophysis on the palpal tibia (VTA). Embolar disk (ED) has a ventral conical projection. Embolus (E) is three-dimensional construction with prolateral edge of ED (Figs. 4C-H, 7C-H, 9A, 10A, 13C-H, 15A, 16A, 19C-H, 21A, 22A). Epigynum has a typical window structure with a median septum (Figs. 5C-F, 8C-F, 11, 14C-F, 17, 20C-F, 23). Copulatory openings (CO) are positioned along posterior (Figs. 20C-F), median (Figs. 5C-F), or anteromedian (Figs. 8C-F, 14C-F) edges of atria, with atrial rims intersecting them posteriorly. Rims fail to completely encircle the atria. Spermathecas (S) are nearly spherical, more or less contiguous medially, and half or more the diameter of the atria. They are positioned about halfway to entirely within the posterior part of atria as seen in ventral view (Figs. 5C-F, 8C-F, 14C-F, 20C-F).

Current composition. *Naphrys* is composed of seven species: *Naphrys acerba* (Peckham & Peckham, 1909); *Naphrys bufoides* (Chamberlin & Ivie, 1944); *Naphrys echeri* sp. nov.; *Naphrys pulex* (Hentz, 1846); *Naphrys tecoxquin* sp. nov.; *Naphrys tuuca* sp. nov.; *Naphrys xerophila* (Richman, 1981).

Distribution. Canada, Mexico, and the United States.

Remarks. We emend the generic diagnosis based on copulatory organs of male and females.

339 Key to Naphrys species

340 341 342 343 344 345 346 347 348	1. Male
349 350 351 352 353 354 355 356 357 358 359 360 361 362	4. Dorsum of the opisthosoma with a medial longitudinal white stripe that covers the anterior portion. Anterior part of cephalothorax exhibits bright, coppery bronze setae across surface (Metzner 2024; Fig. 293)
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	Embolar disk (ED) lacks a process. The thin embolus, larger than ED, folds at the midpoint, forming a gentle curve (Figs. 17E, H, 19A, 20C). Cephalothorax, in dorsal view, has white setae forming a Y-shape mark, extending outwards from the sides of the PLE (Figs. 16C, 17A)

379 380	and exhibiting mottled pattern of faint translucent markings (Figs. 6C, 8A)
381	10. Copulatory ducts (CD) open into the epigynum forming transparent windows (W), with
382	openings more than one-third the length of S (Figs. 5C-F)
383	Copulatory ducts (CD) have circular opening, less than one-third the length of S. Copulatory
384	openings (CO) located anteriorly to S (Richman 1981; Fig. 18). Dark opisthosoma covered with
385	brown and black setae across surface, with a longitudinal white stripe in the middle of the first
386	third and a black chevron pattern on the remaining two-thirds (Metzner 2024; Fig. 294)
387	
388	11. Dorsum of opisthosoma with two round, bright white spots (Figs. 3C, D, 5A)
389	Dorsum of opisthosoma otherwise
390	12 Copulatory openings (CO) located in center of epigynum, touching the anterior edge of S.
391	Copulatory ducts (CD) have a unique loop, resembling a G-shape (Fig. 5C, E)
392	
393	Copulatory openings (CO) not touching anterior edge of S (Richman 1981; Fig. 22)
394	
395	13. Copulatory openings (CO) located in the middle of epigynum (Richman 1981; Fig. 10)
396	
397	Copulatory openings (CO) located in the middle basal part of epigynum (Fig. 18C, E)
398	
399	
400	Naphrys acerba (Peckham & Peckham, 1909)
401	Figs. 3–5, 21.
402	Habrocestum acerbum Peckham & Peckham, 1909, p. 522, pl. 44, figs. 1-Ic. Holotype:
403	Holotype not assigned by author. Syntypes: several males and one female from Travis County,
404	Austin, Texas, USA, and one male from Georgia, USA. NOT EXAMINED.
405	
406	Naphrys acerba Edwards, 2003 p. 69, fig. 5-8 (Transferred from Habrocestum)
407	
408	Holotype: Holotype not assigned by author. Syntypes: several males and one female from Travis
409	County, Austin, Texas, USA, and one male from Georgia, USA. NOT EXAMINED.
410	
411	Other material examined. MEXICO: Nuevo León: 6 females (CAFBUM88003,
412	CAFBUM88004, CABUM84234, CAFBUM84242, CAFBUM84256, CAFBUM84257), along
413	path to cable car, Cerro de la Silla, Guadalupe municipality (lat. 25.655501, long100.254415,
414	587 m), oak forest, ground hand collecting, J. Maldonado Carrizales, F. Morales Martínez, E. G.
415	Fuentes Ortiz cols., 21/X/2023. Tamaulipas: 3 males (CAFBUM88005) and 3 immatures
416	(CAFBUM880040), Mr. Sabino's ranch, highway Ciudad Victoria-Tula km 28 (lat. 23.606512,

-. Circular S (Figs. 8C-F). Dark opisthosoma covered with coppery-bronze setae across surface

378

Comentado [Kd6]: Revise. Is not a taxonomic list.

417 long. 99.229572, 1473 m), oak forest, ground hand collecting, J. Maldonado Carrizales, F.

418 Morales Martínez, E. G. Fuentes Ortiz cols., 20/X/2023.

Emended diagnosis. After Peckham & Peckham (1909) and Richman (1981). Naphrys acerba resembles N. bufoides and N. xerophila by possessing white, round spots on dorsal abdomen (Fig. 4A-B, 5A-B). However, it differs from N. xerophila by lacking a medial longitudinal white stripe covering anterior portion. Additionally, N. acerba can be distinguished from N. bufoides by its thicker embolus, which is shorter than ED (Figs. 4C-H). In females, CO of N. acerba are located centrally within the epigynum, touching anterior edge of S (Figs. 5C, E). This contrasts with N. bufoides, where CO do not reach anterior edge of S, and N. tuuca, where CO are

positioned in middle basal part of epigynum.

429 **Distribution.** UNITED STATES: Texas; MEXICO: Coahuila, Nuevo León, and Tamaulipas (Richman, 1981).

Natural history. According to Richman (1981), this species appears to be associated with oak and juniper woodlands. Specimens used in this study were collected from upper leaf litter layer of oak forests (Ouercus sp.) at 1473 m in Tamaulipas, Mexico, within known range of the species. This also included disturbed areas into Monterrey City (Fig. 3A-D).

Naphrys echeri sp. nov.

438 Figs. 6–10, 21.

419 420

421

422

423

424

425 426

427 428

430

431 432

433

434

435 436 437

440

441

442

443

444

445

446

447

448

449

450

451

452

453 454

455

456

439 LSID: urn:lsid:zoobank.org:act:FFCFC48A-1827-4DCF-9096-DE8504E63251

Type material: Male holotype, Holotype. MEXICO: Michoacán, male from Cerro El Gigante, Jesús del Monte, Morelia municipality (lat. 19.636605, long. -101.146877, 2192 m), oak forest (Ouercus sp.), ground hand collecting, J. Maldonado Carrizales, F. Morales Martínez, R. Cortés Santillán cols., 31/III/2023. (CARCIB-AR-047). Paratypes: Allotype: 1 Ffemale with same data as holotype (CARCIB-Ar-008) and MEXICO: Michoacán: 1 male (CARCIB-Ar-0327) and 1 female (CARCIB-Ar-0328), same collection data as for holotypeditto. Jalisco: 1 male, 1 immature (CAFBUM84264) Piedras Bolas, Ahualulco de Mercado municipality (lat. 20.653021, long. -104.057697, 1907 m), oak forest (Ouercus sp.), ground hand collecting, J. Maldonado Carrizales, G. L. López Solís, S. Montañez Hernández, N. Ruíz Hernández cols., 8/IV/2022. 1 female (CAFBUM88012) UMA Potrero de Mulas, San Sebastián del Oeste municipality (lat. 20.749852, long. -104.976763, 797 m) cloud forest, ground hand collecting, J. Maldonado Carrizales, E. G. Fuentes Ortiz cols., 13/XII/2022.

Other material examined. MEXICO: Jalisco: 1 female (CNAN-Ar011468) and 1 male (CNAN-Ar011467), beginning of the path to Cerro La Bufa, San Sebastián del Oeste municipality (lat. 20.758, long. -104.8438, 1460 m), young pine forest, D. Guerrero, G. Contreras, C. Hutton, G.B.

Comentado [Kd7]: For organization and citation purposes, please insert brackets [] when it is a geographic record from other authors and cite it. This way we will know when it is a new record for the

Comentado [Kd8]: Were all authors discoverers of the new species? Please check this for all new species. In case of disagreement, please insert the authors' surnames in order of discovery. If not, all species are given the long name: Naphrys echeri Maldonado-Carrizales, Valdez-Mondragón, Jiménez-Jiménez & Ponce-Saavedra sp. nov.

Comentado [Kd9]: Revise all new species for this

Edwards cols., 14/VI/2018. 3 males, 3 immatures (CNAN-Ar011464), and 1 female (CNAN-Ar011462), Piedras Bolas, Ahualulco de Mercado municipality (lat. 20.64945, long. -104.05592, 1863 m), oak forest (*Quercus* sp.), D. Guerrero, G. Contreras, C. Hutton and G.B. Edwards cols., 17/VI/2018.

Etymology. The species name "echeri" (/etf eri/ native pronunciation) is a noun in apposition that means "land or soil" in the P'urépecha language, referring to the microhabitat where it inhabits. The P'urépecha state, which peaked in the 14th and 15th centuries before Spanish arrival, is known today as Michoacán, and represents the type locality of this species.

Diagnosis. Naphrys echeri **sp. nov.** resembles N. tuuca **sp. nov.** by males having an extended medial white longitudinal line on dorsal part of opisthosoma, which extends across the entire opisthosoma (Fig. 7A). However, N. echeri **sp. nov.** differs in possessing an ED that bears a well-developed triangular process (PED) next to embolus, clearly visible in retrolateral view (Figs. 7D, G, 9B, 10A-C). Naphrys echeri **sp. nov.** has a thick and straight E shorter than ED (Figs. 7C, F), whereas in N. pulex this is thick but curved, and in N. tuuca **sp. nov.** the E is thin and folds at midpoint forming a gentle curve, ultimately larger than ED. Naphrys echeri **sp. nov.** differs from N. tecoxquin **sp. nov.** and N. tuuca **sp. nov.** in morphology of its embolus apex, with N. echeri **sp. nov.** possessing a fine projection that abruptly narrows to a spine-like structure and is oriented towards the interior of the palp (Fig. 9A-B, 10A, D). Females of N. echeri **sp. nov.** share with N. tecoxquin **sp. nov.** the placement of CO on external lateral side of S, but differ in shape; in N. echeri **sp. nov.**, S are circular (Figs. 8C-F), while in N. tecoxquin **sp. nov.** they are pyriform (Figs. 13C-F).

Description. Male holotype (CARCIB-AR-047). Total length: 2.6. Cephalothorax 1.57 long and 1.22 wide. Darkish brown, with white setae forming a V-shaped mark, extending outwards from sides of PLE towards pedicel in cephalic region (Fig. 7A). Lower border covered with white seta forming a band. Ocular quadrangle (OQ) 0.3 long. Anterior eyes row (AER) 1.46 times wider than PER, AER 1.1 wide, PER 0.75 wide. Sternum reddish brown, 0.65 long, 0.5 wide. Labium reddish brown, as long as wide, 0.3 long, 0.3 wide. Endite 0.42 long, 0.17 wide, reddish brown, whitish anteriorly and square shaped (Fig. 7B). Opisthosoma 1.03 long and 0.95 wide; exhibiting a longitudinal band with white setae in dorsal view, covering more than half its width (Fig. 7A). Palp covered by white setae in dorsal view; in ventral view possesses a straight, short, and wide E that covers up to half distal part of cymbium (Figs. 7C, F, 9A, 10A). Ventral view of E with scales (Fig. 10A, C). A PED is present, easily seen in retrolateral view, triangular with fine projection on tip that abruptly narrows forming two spine-like structure (Figs. 7D, G, 9A-B, 10A-C). Embolus apex and SP are oriented towards interior of palp (Fig. 9A, 10A-B). Embolus apex presents one fine projection that abruptly narrows to a spine-like structure, while SP presents a multi-convex edge forming smooth ridges (Fig. 10D). Embolar disk (ED) completely rough and folded in anterior portion (Fig. 9A, 10A). Tegulum (T) yellow with

Comentado [Kd10]: Standardize. Always 2 decimal places after the decimal point.

Comentado [Kd11]: If you choose Cephalothorax, please change Opisthosoma to Abdomen. If it is the other way around, Prosoma and Opisthosoma. Revise

darkish marks and wide RSDL occupying more than half of it, easily seen in retrolateral view (Figs. 7D, G). Furthermore, RSDL is divided in two, anterior loop is extremely curved forming a backwards "C" that extends from the middle of the T to its retrolateral edge. Posterior loop is curved anteriorly and straight in its most posterior part, forming a backwards "L" that does not touch retrolateral edge (Figs. 7D, G). Retrolateral tibial apophysis (RTA) wide at base, becoming smaller in distal part slightly anteriorly oriented (Fig. 7D, G, 9B, D). Ventral tibial apophysis (VTA) rounded with a large pit at the tip. It has faint lines running across its surface (Fig. 9A, C). Reddish brown legs with black bands. Leg formula 3412. Leg I 2.84 (0.9, 0.45, 0.6, 0.46, 0.42), Leg II 2.72 (0.92, 0.45, 0.52, 0.45, 0.38), Leg III 3.9 (1.2, 0.55, 0.82, 0.77, 0.47), Leg IV 3.8 (1.3, <mark>0.5,</mark> 0.72, 0.82, 0.45).

507 508 Female allotype (CARCIB-Ar-008). Sexual dimorphism in coloration observed compared to 509 510 511

male. Total length: 5.1. Cephalothorax 2.5 long and 1.9 wide. Darkish brown, with white and orange setae anteriorly (Fig. 8A). Lower border covered with white setae forming a band. Ocular quadrangle (OQ) 0.6 long. Anterior eyes row (AER) 1.27 times wider than PER, AER 1.4 wide, PER 1.1 wide. Sternum reddish brown with dark marks, 1.67 long, 0.87 wide. Labium black slightly longer than wide, 0.37 long, 0.32 wide. Endite 0.25 long, 0.65 wide, reddish brown, whitish anteriorly and ovoid shaped (Fig. 8B). Opisthosoma 2.6 long and 2.5 wide; covered with coppery bronze setae across surface and exhibiting mottled pattern of faint translucent markings (Fig. 8A). Epigynum slightly wider than long, 0.4 long, 0.34 wide. Copulatory openings (CO) located on external lateral sides of S. Circular S and a unique loop in CD forms a D-shape in each side of epigynum (Fig. 8C-F). Median septum (MS) and sides have a smooth, tridentshaped with grooves or ridges on anterior part (Fig. 10E). Windows of epigynum (W) mostly smooth, but striated centrally (Fig. 10E). Reddish brown legs with black marks. Leg formula 3412. Leg I 3.72 (1.12, 0.7, 0.85, 0.65, 0.4), Leg II 3.67 (1.3, 0.62, 0.67, 0.62, 0.45), Leg III 5.52 (1.85, 0.8, 1.25, 1.0, 0.62), Leg IV 4.4 (1.57, 0.67, 1.12, 0.52, 0.5).

522 523

497

498

499

500

501

502

503

504

505

506

512

513

514

515

516

517

518

519

520

521

Distribution. MEXICO: Michoacán and Jalisco.

524 525 526

527

Natural history. The specimens collected inhabit oak forest (*Quercus* sp.) and cloud forest on litter. Adults were mainly found from March to November (Fig. 6).

528 529

531

Naphrys tecoxquin sp. nov.

530 Figs. 11–15, 21.

urn:lsid:zoobank.org:act:D67CCC72-E17D-450C-9193-231120527FDE

532 533

Holotype. MEXICO. Jalisco: male from Boca de Tomatlán, Cabo Corrientes municipality (lat.

534 20.511861, long. -105.318, 36m), tropical forest, ground hand collecting, J. Maldonado

535 Carrizales, R. Cortés Santillán, E. G. Fuentes Ortiz cols., 13/IV/2023 (CARCIB-Ar-048).

536 Paratypes: Allotype Female with same data as holotype (CARCIB-Ar-009). Comentado [Kd12]: Ditto. Revise all.

Comentado [Kd13]: Ditto.

Paratypes: 1 male (CARCIB-Ar-0329) and 1 female (CARCIB-Ar-0330), same collection data as holotype; 2 males (CAFBUM84260-CAFBUM84261), 1 female (CAFBUM84238): same data as holotype.

Other material examined. MEXICO. *Jalisco*: 1 male (CAFBUM84232) and 12 immatures (CAFBUM84221), same collection data as holotype. 1 imm (CNAN-Ar011469), same collection data as paratype. 1 female (CNAN-Ar011471), Las Ánimas in same municipality as holotype (lat. 20.50002, long. -105.33869, 399m), tropical forest, ground hand collecting, G. Contreras col., 6/IX/2018.

Etymology. The species name "tecoxquin" (/tek oʃkin/ native pronunciation) is a noun in apposition in reference to the original native group that inhabited an extensive region covering the entire southern coast of Nayarit and neighboring coastal of Jalisco where type locality is found.

Diagnosis. Naphrys tecoxquin **sp. nov.** males possess bright, coppery bronze setae in anterior part of cephalothorax (Figs. 11E, 12A), a light opisthosoma with four black spots in dorsal view, and dark brown upwards chevron marks in posterior last third (Fig. 12A). In contrast, *N. echeri* **sp. nov.** exhibits a dark opisthosoma covered with coppery bronze setae across its surface and displays a mottled pattern of faint translucent markings (Fig. 7A). Naphrys tecoxquin **sp. nov.** is similar to *N. xerophila*, but differs in having a thick and straight embolus (Fig. 12C-H), in contrast to the curved embolus observed in *N. xerophila* and *N. pulex. Naphrys tecoxquin* **sp. nov.** differs from *N. echeri* **sp. nov.** and *N. tuuca* **sp. nov.** in morphology of its embolus apex, which is ventrally flat and dorsally convex, oriented towards the exterior of the pedipalp. The surface of the embolus apex in *N. tecoxquin* **sp. nov.** is sinuous with small projections (Fig. 15B). Additionally, *N. tecoxquin* **sp. nov.** lacks PED next to embolus, a characteristic of *N. echeri* **sp. nov.** (Figs. 7D, G, 9B, 10A-B). In females of *N. tecoxquin* **sp. nov.**, CO are located on external lateral side of S (Fig. 13C, E). *Naphrys tecoxquin* **sp. nov.** differs to *N. echeri* **sp. nov.** in S shape, which is pyriform in *N. tecoxquin* **sp. nov.** (Fig. 13C-F), but round in *N. echeri* **sp. nov.** (Fig. 8C-F).

Description. Male holotype (CARCIB-Ar-048). Total length: 2.9. Cephalothorax 1.74 long and 1.26 wide. Darkish brown, with white setae forming a U-shaped mark, extending outwards from sides of PLE towards pedicel, anterior part is covered by bronze setae (Fig. 12A). Lower border covered with white setae forming a band. Ocular quadrangle (OQ), 0.6 long. Anterior eye row (AER) 1.31 times wider than PER, AER 1.18 wide, PER 0.9 wide. Sternum dark with faint yellow marks, 0.62 long, 0.46 wide. Labium dark, wider than long, 0.15 long, 0.22 wide. Endite 0.27 long, 0.25 wide, reddish brown, whitish anteriorly, and square shaped (Fig. 12B). Opisthosoma 1.16 long and 0.92 wide, exhibiting two straight longitudinal bands forming a "V"

Comentado [Kd14]: Ditto.

that cover almost half of anterior opisthosoma. In central part, there is a black mark in shape of three triangles joined at base. Additionally, a white diamond-shaped mark is present in distal part (Fig. 12A). Palp covered by white setae in dorsal view; in ventral view, a thick and straight E covers up to half of distal part of the cymbium (Figs. 12C, F). Embolus apex and SP are oriented towards exterior of the palp (Fig. 14A, 15A). Embolus apex is ventrally flat and dorsally convex, oriented towards the exterior of pedipalp. Surface of the embolus apex is sinuous with small projections (Fig. 15A-B). Embolar disk (ED) possesses a slight fold anteriorly, with striations at center (Fig. 14A, 15A). Tegulum (T) dark with faint yellow and orange marks. RSDL wide and easily seen in retrolateral view (Figs. 12D, G). Furthermore, RSDL is divided in two, anterior loop is gently curved similar to a closed parentheses ")", extended on retrolateral edge. Adjacent, the posterior loop shares the same shape, but does not touch retrolateral edge (Figs. 12D, G). Retrolateral tibial apophysis (RTA) exhibits a densely striated surface along entire length. This apophysis projects in a straight orientation, gradually attenuating distally. Notably, RTA displays a slight dorsal orientation relative to the palp (Fig. 14B, D). Ventral tibial apophysis (VTA) is rounded and smooth (Fig. 14A, C). Femur, Patella, and Tibia of legs I and II dark with faint reddish-brown marks, metatarsus amber, and tarsus yellow. Legs III and IV yellow. Leg formula 3412. Leg I 2.81 (0.82, 0.48, 0.62, 0.45, 0.42); leg II 2.86 (0.85, 0.47, 0.6, 0.52, 0.41); leg III 3.83 (1.25, 0.47, 0.77, 0.81, 0.52); leg IV 3.75 (1.27, 0.58, 0.78, 0.57, 0.52).

Female paratype allotype (CARCIB-Ar-009). Sexual dimorphism in coloration observed compared to male. Total length: 2.68. Cephalothorax 1.5 long and 1.1 wide, darkish brown, with anterior part covered with black and orange setae (Fig. 13A); lower border covered with white setae forming a band. Ocular quadrangle (OO), 0.7 long. Anterior eyes row (AER) 1.5 times wider than PER, AER 1.08 wide, PER 0.72 wide. Sternum reddish brown with dark marks, 0.62 long, 0.46 wide. Labium black, wider than long, 0.22 long, 0.46 wide. Endite 0.28 long, 0.24 wide, reddish brown, and ovoid shaped (Fig. 13B). Opisthosoma 1.18 long and 0.92 wide; light with four black spots in dorsal view, along with dark brown upwards chevron marks in posterior last third (Fig. 13A). Epigynum longer than wide, 0.82 long, 0.46 wide. Copulatory openings (CO) are located on external lateral sides of S. Pyriform S and a unique loop in CD forms a Dshape on each side of the epigynum (Fig. 13C-F). Median septum (MS) and sides smooth, trident-shaped, with grooves on anterior edges of W (Fig. 15C). Windows of epigynum (W) longer than wide, mostly smooth, but striated at center (Fig. 15C). Reddish brown legs with black marks. Femur, Patella, and Tibia of legs I and II dark with faint reddish-brown marks, metatarsus amber, and tarsus yellow. Legs III and IV yellow with dark bands near the junction between segments. Leg formula 3412. Leg I 2.25 (0.67, 0.45, 0.47, 0.37, 0.27); leg II 2.12 (0.55, 0.4, 0.5, 0.35, 0.32); leg III 3.27 (1.05, 0.45, 0.7, 0.6, 0.47); leg IV 3.1 (1.0, 0.4, 0.67, 0.65, 0.37).

Distribution. MEXICO: Jalisco.

577

578

579

580

581

582

583 584

585

586 587

588

589

590

591

592

593

594

595 596

597

598

599

600 601

602

603

604

605

606

607

608

609

610

611

612 613 614

615

Natural history. The specimens collected inhabit ground above leaf litter in tropical dry forests with broad-leaved trees. Adults were mainly found from April to July and from September to November (Fig. 11). Naphrys tuuca sp. nov. Figs. 16–21. LSID: urn:lsid:zoobank.org:act:3129A3DE-57E8-46CC-8036-86DC467EB056 Holotype. MEXICO. Nayarit: male from Cerro San Juan, Tepic municipality (lat. 21.505877, long. -104.924464, 1121m), oak forest (Quercus sp.), ground hand collecting, J. Maldonado Carrizales, R. Cortés Santillán col., 24/V/2023 (CARCIB-Ar-049). Paratypes: Female allotype with same data as holotype (CARCIB-Ar-010). Paratypes: 2 males (CARCIB-Ar-0331; CAFBUM880039) and 2 females (CARCIB-Ar-0332; CAFBUM880021), same collection data as holotype. Other material examined. MEXICO. Nayarit: 2 males (CAFBUM880001; CAFBUM880002), 1 female (CAFBUM880075), same data as holotype. 1 male (CNAN-Ar011460), same data as holotype (CNAN-Ar011461). 3 males and 3 females (CNAN-Ar011461), Ceboruco Volcano, Jala municipality (lat. 21.1149, long. -104.5014, 1916m), wet glen, D. Guerrero, G. Contreras, C. Hutton, and G.B. Edwards col., 16/V/2018. Etymology. The species name "tuuca" (/t uuk a/ native pronunciation) is a noun in apposition that means "spider" in the Wixárika language. Wixárika people are native to the Sierra Madre

Occidental range in Nayarit state, where the type locality is found.

Comentado [Kd15]: Ditto.

Comentado [Kd16]: Ditto.

Diagnosis. Cephalothorax in dorsal view of *N. tuuca* **sp. nov.** has a unique characteristic white setae forming a Y-shaped mark, extending outwards from sides of PLE (Fig. 16A). In contrast, *N. echeri* **sp. nov.** exhibits white setae forming a V-shaped mark in this region (Fig. 7A). *Naphrys tuuca* **sp. nov.** has a dark **opisthosoma** covered with coppery-bronze setae across surface (Fig. 17A), similar to *N. echeri* **sp. nov.**; nevertheless, *N. tuuca* **sp. nov.** has a distinct mottled pattern of white markings and a medial longitudinal smooth white stripe that covers anterior portion of the opisthosoma (Fig. 17A). Males of *N. tuuca* **sp. nov.** possess a thin embolus (Fig. 17C-H). Embolus is larger than ED and folds at midpoint, forming a gentle curve (Fig. 17E, H, 19A, 20A), in contrast to thin and straight embolus observed in *N. bufoides*. Similar to *Naphrys tecoxquin* **sp. nov.**, embolus apex of *N. tuuca* **sp. nov.** is surved and oriented towards the exterior of palp. Surface of embolus apex in *N. tuuca* **sp. nov.** is smooth (Fig. 20B). Additionally, *N. tuuca* **sp. nov.** lacks PED, which is present in *N. echeri* **sp. nov.** Females of *N. tuuca* **sp. nov.** present CO located in middle basal part of epigynum (Fig. 18C, E, 20C), differing from central location of CO observed in *N. acerba*, *N. bufoides* and *N. pulex*.

Description. Male holotype (CARCIB-Ar-049). Total length: 2.48. Cephalothorax 1.42 long and 1.1 wide, dark with white setae forming a Y-shaped mark, extending outwards from sides of PLE towards pedicel (Figs. 16C, 17A). Lower border covered with white setae forming a band. Ocular quadrangle (OQ), 0.74 long. Anterior eye row (AER) 1.53 times wider than PER, AER 0.98 wide, PER 0.64 wide. Sternum dark with faint amber marks, 0.72 long, 0.5 wide. Labium dark, wider than long, 0.17 long, 0.25 wide. Endite 0.35 long, 0.27 wide, amber, and squareshaped (Fig. 17B). Opisthosoma 1.06 long and 0.88 wide, exhibiting a longitudinal band with white setae in dorsal view, covering one third of width (Fig. 16C, 17A). Palp covered by white setae in dorsal view, with a thin embolus in ventral view, larger than ED, which folds at midpoint, forming a gentle curve (Figs. 17C-H, 19A, 20A). Embolus apex exhibits a lateral flattening, resulting in a dorsally convex shape; oriented outwards from the main body of the palp. Embolus apex surface with smooth contours (Fig. 20A-B). Embolar disk (ED) exhibits unfolded anterior margin, and central region displays a higher concentration of striations (Fig. 20A, 21A). Tegulum (T) dark with faint yellow and orange marks, RSDL wide, easily seen in retrolateral view (Figs. 17D, G). Furthermore, RSDL is divided in two, with anterior loop extremely curved, forming a backwards "C" that extends from middle of T to its retrolateral edge. Posterior loop is curved anteriorly and straight in its most posterior part, forming a hookedshape that does not touch retrolateral edge (Figs. 17D, G). Retrolateral tibial apophysis (RTA) exhibits sparse striations along its entire length. This structure projects in a straight orientation, gradually attenuating distally and displaying a slight anterior orientation (Fig. 17D, G, 19B, D). Ventral tibial apophysis (VTA) presents a conical structure with a roughened surface texture and a small notch distally (Fig. 19A, C). Yellow legs with black bands. Leg formula 3412. Leg I 2.71 (0.78, 0.47, 0.50, 0.49, 0.45); leg II 2.68 (0.96, 0.45, 0.51, 0.50, 0.24); leg III 3.91 (1.26, 0.65, 0.78, 0.74, 0.47); leg IV 3.6 (1.1, 0.45, 0.76, 0.87, 0.49).

Female paratypeallotype (CARCIB-r-010). Sexual dimorphism in coloration observed compared to male. Total length: 3.64. Cephalothorax 1.64 long and 1.34 wide, darkish brown, anterior part covered with white and orange setae (Fig. 16D, 18A). Lower border covered with white setae forming a band. Ocular quadrangle (OQ) 0.68 long. Anterior eyes row AER 1.47 times wider than PER, AER 1.18 wide, PER 0.8 wide. Sternum reddish brown with dark marks, 0.67 long, 0.57 wide. Labium dark with faint amber marks, wider than long, 0.2 long, 0.27 wide. Endite 0.37 long, 0.25 wide, reddish brown, and ovoid shaped (Fig. 18B). Opisthosoma 2.0 long and 1.8 wide, dark, covered with coppery-bronze setae across surface, with a mottled pattern of white markings and a medial longitudinal smooth white stripe covering anterior portion (Fig. 18A). Epigynum slightly wider than long, 0.3 long, 0.34 wide. Copulatory openings (CO) located in middle basal part of epigynum. Circular S and a unique loop in CD form a D-shape in each side of epigynum (Fig. 18C-F). Median septum (MS) exhibits a smooth surface texture, while anterior edges of W present grooves (Fig. 20C). Overall surface of W exhibits a slightly roughened texture. Windows of epigynum (W) as long as wide (Fig. 20C). Legs yellow with

dark marks, metatarsus amber, and tarsus yellow. Legs III and IV yellow with dark bands near segment junctions. Leg formula 3412. Leg I 2.82 (0.88, 0.52, 0.56, 0.5, 0.36); leg II 2.86 (0.92, 0.44, 0.58, 0.58, 0.34); leg III 4.14 (1.34, 0.58, 0.82, 0.9, 0.5); leg IV 4.06 (1.3, 0.56, 0.8, 0.82, 0.58).

Distribution. MEXICO: Nayarit.

Natural history. The specimens collected inhabit ground above leaf litter in oak forests (*Quercus* sp.). Adults were mainly found from May to September. This species feeds on small animals such as Collembola (Fig. 16D).

Discussion

Species delimitation within the family Salticidae has increasingly relied on a combination of molecular and morphological data. This trend is evident in studies that employ a phylogenetic perspective (Maddison, 2016a, 2016b; Cala-Riquelme, Bustamante & Salgado, 2022; Maddison et al., 2022). While genomic data can also be a reliable approach (Kanesharatnam & Benjamin, 2021; Lin, Yang & Zhang, 2024), it typically requires greater resource investments and analysis time. In contrast, studies integrating diverse data sources for species delimitation within Salticidae remain relatively scarce.

A notable example is the work by Trębicki et al. (2021), who addressed taxonomic ambiguities within the genus *Cytaea* and related species. The authors attributed this taxonomic confusion to poor original diagnoses and descriptions within the genus. To resolve this issue, Trębicki et al. (2021) employed a combined approach, analyzing both the morphology of the holotype specimens and utilizing the Automatic Barcode Gap Detection (ABGD) method based on a NJ tree constructed with COI gene sequences. Their results revealed that previously recognized "similar species" were synonymous with the *Cytaea* holotype, prompting the authors to formally synonymize these taxa.

_While the authors employed a distance-based delimitation method (NJ tree) to clarify the identity of ambiguous species, in our work we take a more comprehensive approach, incorporating tree-based molecular analyses. To avoid future confusion, we also present an emended diagnosis of the genus *Naphrys*. These comprehensive resources aim to facilitate accurate species and genus-level determinations.

Boperachchi et al. (2022) further exemplify the application of molecular methods for species delimitation within Salticidae. Their study aimed to clarify the species diversity within the genus *Ballus* in Sri Lanka. Three species had been previously reported for this region, described in the late 19th and early 20th centuries. To address this taxonomic uncertainty, Boperachchi et al. (2022) employed a multifaceted approach, integrating morphological data with sequence data from three genes (COI, H3, 28S). They utilized multiple species delimitation methods, including ABGD, mPTP, and Bayesian Multi-Locus Species Delimitation (BPP). Notably, all applied methods yielded congruent results, indicating that the three previously

Comentado [Kd17]: Author

Comentado [Kd18]: Author

recognized *Ballus* species represented a single species with consistent morphological characteristics and no significant genetic differentiation.

Similar to our work, the authors employed multiple molecular methods to investigate species diversity within a genus containing previously described species. In our study, the mPTP method, also used by Boperachchi et al. (2022), not only confirmed the identity of the previously known species *N. xeophila*, but also supported the designation of three new species.

Finally, Phung et al. (2024) employed a combined approach for species delimitation within the genus *Phintella* and related *Phintella*-like spiders. Their approach utilized three distinct methods: one distance-based method (ASAP) and two tree-based methods (Bayesian version of GMYC and BPP). These methods were used to delineate putative new species based on available genetic data. Furthermore, the authors recognized the challenge of strong sexual dimorphism within *Phintella*. They addressed this limitation by incorporating the same methods to assign male-female combinations for approximately one-third of the species where such pairings were unknown. The analyses by Phung et al. (2024) resulted in the identification of 22 distinct species, with 11 potentially representing undescribed taxa. Nevertheless, it is important to note that the study did not formally establish new species through the nomenclatural act.

Concordant with our findings, Phung et al. (2024) applied various methods for species delimitation. The distance-based ASAP method yielded a lower species count similar to our results. Conversely, tree-based methods (bGMYC and BPP) led to overestimations, as we also observed. Both studies endorse the utility of the COI gene for preliminary detection of potentially undescribed species, which subsequently have to be described as performed in this work.

Similar to the challenges encountered in the previous discussed studies, the Euophryini tribe exhibits numerous taxonomic uncertainties. These difficulties often stem from poor original species descriptions, limited knowledge of sexual dimorphism (e.g., only one sex known for some species), and high morphological similarity among species. To overcome these limitations, researchers have increasingly employed a combination of multiple methods (e.g., morphological and molecular data) for species delimitation (Navarro-Rodríguez & Valdez-Mondragón, 2020; Candia-Ramírez & Francke 2021; Cala-Riquelme, Bustamante & Salgado, 2022).

Morphological characters, particularly sexual characteristics, remain indispensable for robust species diagnosis, identification, and delimitation (Valdez-Mondragón, 2020). This is due, in part, to the typically low level of intraspecific variation and high level of interspecific variation observed in spider genitalia (Eberhard, 1985; Eberhard et al., 1998), making this characteristic a valuable diagnostic tool (Valdez-Mondragón, 2013; 2020; Valdez-Mondragón & Francke, 2015). In our study, we delimited different species through morphological characters, some of which were particularly diagnostic. For instance, the presence of a clearly visible PED in *N. echeri* sp. nov. and the distinctive shape of S readily distinguished this species from its congeners.

Modern taxonomic practices increasingly emphasize the integration of multiple data sources for species validation and delimitation. This combined approach strengthens the

Comentado [Kd19]: Author

evidence for species boundaries and provides a more comprehensive understanding of the newly described taxa. In this way, the study herein represents the first where new species are described within the Salticidae family through species delimitation methods based on molecular data (both distance and tree-based).

Compared to other genes, the use of the COI gene has proven to be an effective tool for species delimitation in spiders (Trębicki et al., 2021; Valdez-Mondragón et al., 2019; Navarro-Rodríguez & Valdez-Mondragón, 2020; Nolasco & Valdez-Mondragón, 2022; Phung et al., 2024). Naseem & Muhamman (2016) identified Salticidae in citrus orchards using the COI gene with interspecific values of nucleotide divergence between 9.96–11.91%. Yamasaki et al. (2018) found higher interspecific values of nucleotide divergence (14.1–18.2%) in their redescription of the genus *Chrysilla*, based on morphology and DNA barcoding. Those studies serve as a reference for variation among different species. The interspecific genetic divergences found in this work were greater than 11% (mean: 14%, min: 11%, max: 18.1%), fitting within the range previously reported for Salticidae.

For many taxonomic groups, a 3% genetic divergence threshold is often used to define species boundaries (Sbordoni, 2010). However, this value can vary across animal groups and even among closely related species due to differences in evolutionary rates (Trębicki et al., 2021). Previous studies (Vink, Dupérré & McQuillan, 2011; Richardson & Gunter, 2012; Blagoev et al., 2016; Trębicki et al., 2021) have reported a broad range of intraspecific genetic divergences within the Salticidae family, ranging from less than 0.5% to 7.57%.

Our results (Table 3) fit within this established range for Salticidae, except for *Naphrys* sp., which exhibited a higher divergence value of 10.94%. Nevertheless, the use of genetic data obtained from GenBank for this taxon precluded a morphological examination to identify diagnostic characters. Of note is *Naphrys pulex*, which despite inconsistencies in some species delimitation methods, showed observed intraspecific variation less than 2%, which falls well within the expected range for species of Salticidae.

Among the methods tested in this work, ASAP recovered the lowest number of species, similar to the findings by Phung et al. (2024) with Salticidae. Guo & Kong (2022) suggested that the distance-based approach is generally superior to the tree-based approach, with the ASAP method being the most efficient. As in Phung et al. (2024), our use of GMYC, bPTP, and mPTP methods resulted in a significantly higher number of delineated species. This contrast to previous studies with other groups (Mygalomorphae and Araneomorphae) of spiders (Ortiz & Francke, 2016; Valdez-Mondragón et al., 2019; Navarro-Rodríguez & Valdez-Mondragón, 2020), in which a lower number of species were typically identified using similar methods. This discrepancy might be attributed to the limitations of GMYC and PTP methods. As discussed by Luo et al. (2018) and Guo & Kong (2022), these methods can be particularly sensitive to gene flow, which can disrupt the clear correlation between population size and divergence time, potentially leading to an overestimation of species boundaries. This overestimation issue could explain the differences found in the tree-based methods of the molecular analysis for *N. pulex*, despite the low genetic intraspecific distances observed (<2%).

Hamilton, Formanowicz & Bond (2011) emphasized the utility of geographical data in species delimitation. In our study, the different *Naphrys* species present in Mexico can be separated by their distribution. *Naphrys pulex* is widespread throughout the biogeographic Alleghany subregion corresponding to eastern Canada and the United States (Escalante, Rodríguez-Tapia & Morrone, 2021). *Naphrys xerophila* is distributed only in the southeastern coastal plains of the United States through the Austroriparian biogeographic province within the Alleghany subregion (Richman, Cutler & Hill, 2012; Escalante, Rodríguez-Tapia & Morrone, 2021). Their distribution is limited by the increased aridity in the western and southern boundaries of the Alleghany subregion (Takhtajan, 1986; Escalante, Rodríguez-Tapia & Morrone, 2021).

Prior to this study, the only known species present in Mexico was *N. acerba*, which is distributed in the northern part of the Sierra Madre Oriental biogeographical province in the northeast of the country. *Naphrys tecoxquin* **sp. nov.** inhabits a distinct biogeographical province, the Pacific Lowlands. This province corresponds to a narrow, uninterrupted strip along the Pacific coast (Morrone, 2019). *Naphrys tuuca* **sp. nov.** and *N. echeri* **sp. nov.** are distributed within the Trans-Mexican Volcanic Belt (TVB) province. This province corresponds to the set of volcano mountain ranges that traverses the country from west to east (Morrone, 2019).

Within the TVB, *N. tuuca* **sp. nov.** inhabits the western mountain zone. In contrast, *N. echeri* **sp. nov.** occupies the central mountains of the TVB. *Naphrys echeri* **sp. nov.** also occurs in the eastern mountains of Mexico, specifically in the northern part of the Sierra Madre del Sur (SMS) province, a mountain system that runs in parallel to the Pacific Ocean coast in a northwest-southeast direction. Nevertheless, its continuity is interrupted by a series of valleys, with rivers typically flowing above 1000 m (Hernández-Cerda, Azpra-Romero & Aguilar-Zamora, 2016; Morrone, 2019). The SMS and TVB provinces are both part of the Mexican Transition Zone (MTZ). The MTZ exhibits a unique combination of characteristics that distinguish it from other transition zones. Notably, it harbors a remarkable mixture of Nearctic and Neotropical taxa.

Geographical barriers play a key role in the differential distribution of *N. echeri* **sp. nov.** and *N. tuuca* **sp. nov.** The SMS mountain range breaks through a tectonic graben of volcanic plateaus, with stratovolcanoes developing along its margins such as the Ceboruco Volcano (Blanco y Correa, Pérez & Cruz-Medina, 2021). The easternmost locality for *N. tuuca* **sp. nov.** is separated from western localities of *N. echeri* **sp. nov.** (Piedras Bolas in the TVB and Potrero de Mulas in the SMS) by extensive alluvial plains (up to 25 km wide) and deep clefts formed by the Ameca River (Valdivia-Ornelas & Castillo-Aja, 2001; Blanco y Correa, Pérez & Cruz-Medina, 2021; Valero-Padilla, Rodríguez-Reynaga & Cruz-Angón, 2017).

The species described herein are the southernmost representatives of the genus. Contrary to prior assumptions by Edwards (2003) that the genus has a Nearctic distribution, our findings reveal the presence of these species in the Neotropical region, suggesting a broader geographical range. While the present work focused on western Mexico, further exploration particularly in the

south is likely to yield additional undescribed species. This study also provides the first precise locality data for *N. acerba* within Mexico, previously known only from historical records.

Our study demonstrates the utility of the COI gene for robust species-level delimitation within the *Naphrys* genus. This finding is supported by the high congruence observed among most methods employed. Additionally, morphological characters, particularly the male palps and female epigynes, proved to be reliable features for the identification and diagnosis of *Naphrys* species.

Acknowledgements

The first author thanks the Consejo Nacional de Humanidades, Ciencia y Tecnología (CONHACYT) of Mexico for the scholarship (no. 790303) to carry out their PhD studies. The first author also thanks the Programa Institucional de Doctorado en Ciencias Biológicas (PIDCB), Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), for the academic training during the research, as well as to the PhD synodal committee for their valuable contributions, comments, and suggestions in the realization of this work. The authors appreciate the support of technician Ariel Arturo Cruz Villacorta in the operation of the Scanning Electron Microscope (SEM) in the Electron Microscopy Laboratory at Centro de Investigaciones Biológicas del Noroeste, S.C.

References

- Bidegaray-Batista L, Arnedo MA. 2011. Gone with the plate: the opening of the Western Mediterranean basin drove the diversification of ground-dweller spiders. BMC Evolutionary Biology, 11(317): 1-15. https://doi.org/10.1186/1471-2148-11-317
- Blagoev GA, deWaard JR, Ratnasingham S, deWaard L, Lu L, Robertson J, Telfer AC, Hebert DN. 2016. Untangling taxonomy: A DNA barcode reference library for Canadian spiders. Molecular Ecology Resources, 16: 325–341. https://doi.org/10.1111/1755-0998.12444
- Blanco y Correa M, Pérez MAO, Cruz-Medina J. 2021. Diversidad del relieve. In: Angón AC,
 Medina JC, Cordero, KCN, Melgarejo ED, Fong JAS, Uribe EYF, ed. La biodiversidad en
 Nayarit. Estudio de Estado. Vol. I. México: CONABIO, 40-45.
 - Bond JE, Godwin RL, Colby JD, Newton LG, Zahnle XJ, Agnarsson I, Hamilton CA, Kuntner M. 2021. Improving taxonomic practices and enhancing its extensibility—an example from araneology. Diversity, 14(1): 1-15. https://doi.org/10.3390/d14010005
- Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M, Gavryushkina A, Heled J,
 Jones G, Kühnert D, De Maio N, Matschiner M, Mendes FK, Müller NF, Ogilvie HA,
 duPlessis L, Popinga A, Rambaut A, Rasmussen D, Siveroni I, Suchard MA, Wu CH, Xie
 D, Zhang C, Stadler T, Drummond AJ. 2019. BEAST2.5: An advanced software platform

891	for Bayesian evolutionary analysis. PLoS Computational Biology, 15(4): e1006650.
892	https://doi.org/10.1371/journal.pcbi.1006650
893	Cala-Riquelme F, Bustamante AA, Salgado A. 2022. Morphological delimitation of the genus
894	Cobanus F.O. Pickard-Cambridge, 1900 (Araneae: Salticidae: Euophryini) with a
895	description of two new species from Colombia. Zoologischer Anzeiger, 297: 42-70.
896	https://doi.org/10.1016/j.jcz.2022.02.002
897	Candia-Ramírez D, Francke O. 2021. Another stripe on the tiger makes no difference? Unexpected
898	diversity in the widespread tiger tarantula Davus pentaloris (Araneae: Theraphosidae:
899	Theraphosinae). Zoological Journal of the Linnean Society, 192(1): 75-104.
900	https://doi.org/10.1093/zoolinnean/zlaa107
901	Carstens BC, Pelletier TA, Reid NM, Satler J. 2013. How to fail at species delimitation. Molecular
902	Ecology, 22(17): 4369–4383. https://doi.org/10.1111/mec.12413
903	Courtial C, Privet K, Aubriot X, Picard L, Pétillon J. 2023. Description of a new species of
904	Hypaeus (Araneae: Salticidae: Salticinae: Amycini) based on integrative taxonomy.
905	Studies on Neotropical Fauna and Environment, 58(2): 439-447.
906	https://doi.org/10.1080/01650521.2022.2068223
907	Dayrat B. 2005. Towards integrative taxonomy. Biological journal of the Linnean society, 85(3):
908	407-417. https://doi.org/10.1111/j.1095-8312.2005.00503.x
909	De Queiroz K. 2007. Species concepts and species delimitation. Systematic biology, 56(6): 879-
910	886. https://doi.org/10.1080/10635150701701083
911	DeSalle R, Egan MG, Siddall M. 2005. The unholy trinity: taxonomy, species delimitation and
912	DNA barcoding. Philosophical Transactions of the Royal Society B: Biological Sciences,
913	360:1905-1916. https://doi.org/10.1098%2Frstb.2005.1722
914	Dimitrov D, Arnedo MA, Ribera C. 2008. Colonization and diversification of the spider genus
915	Pholcus Walckenaer, 1805 (Araneae, Pholcidae) in the Macaronesian archipelagos:
916	evidence for long-term occupancy yet rapid recent speciation. Molecular phylogenetics and
917	evolution, 48(2): 596-614. https://doi.org/10.1016/j.ympev.2008.04.027
918	Dimitrov D, Hormiga G. 2021. Spider diversification through space and time. Annual Review of
919	Entomology, 66: 225-241. https://doi.org/10.1146/annurev-ento-061520-083414
920	Eberhard WG. 1985. Sexual Selection and Animal Genitalia. Cambridge: Harvard university Press.

https://doi.org/10.4159/harvard.9780674330702

921

- 922 Eberhard WG, Huber BA, Rodriguez RL, Briceno RD, Salas I, Rodriguez V. 1998. One size fits
- all? Relationships between the size and degree of variation in genitalia and other body parts
- 924 in twenty species of insects and spiders. Evolution, 52: 415–431.
- 925 https://doi.org/10.1111/j.1558-5646.1998.tb01642.x
- 926 Eberle J, Dimitrov D, Valdez-Mondragón A, Huber BA. 2018. Microhabitat change drives
- 927 diversification in pholcid spiders. BMC Evolutionary Biology, 18: 1-13.
- 928 https://doi.org/10.1186/s12862-018-1244-8
- 929 Edwards GB, Hill DE. 2008. Representatives of the North American salticid fauna, revisited.
- 930 Peckhamia, 30.2: 1-15.
- 931 Edwards GB. 2003. A review of the Nearctic jumping spiders (Araneae: Salticidae) of the
- 932 subfamily Euophryinae north of Mexico. Insecta Mundi, 16(2002): 65-75.
- 933 Escalante T, Rodríguez-Tapia G, Morrone JJ. 2021. Toward a biogeographic regionalization of
- 934 the Nearctic region: Area nomenclature and digital map. Zootaxa, 5027(3): 351-375.
- 935 https://doi.org/10.11646/zootaxa.5027.3.3
- 936 Ferretti N, Nicoletta M, Soresi DS. 2024. An integrative taxonomy approach evaluates the limits
- 937 of the widespread tarantula Plesiopelma longisternale (Araneae: Mygalomorphae:
- 938 Theraphosidae) and reveals a new species from Argentina. Zoologischer Anzeiger, 308:
- 939 131-143. https://doi.org/10.1016/j.jcz.2023.12.003
- 940 Folmer M, Black W, Lutz R, Vrijenhoek R. 1994. DNA primers for amplification of mitochondrial
- 941 cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine
- Biology and Biotechnology, 3: 294–299.
- 943 Fujisawa T, Barraclough TG. 2013. Delimiting species using single-locus data and the Generalized
- 944 Mixed Yule Coalescent approach: A revised method and evaluation on simulated data sets.
- 945 Systematic Biology, 62(5): 707–724. https://doi.org/10.1093/sysbio/syt033
- 946 Fujita MK, Leaché AD, Burbrink FT, McGuire JA, Moritz C. 2012. Coalescent-based species
- 947 delimitation in an integrative taxonomy. Trends in ecology & evolution, 27(9): 480-488.
- 948 https://doi.org/10.1016/j.tree.2012.04.012
- 949 Geneious Prime. 2023. Geneious Prime 2023.2.1. Available at https://www.geneious.com
- 950 (accesed 10 October 2023).

951	Guo B, Kong L. 2022. Comparing the Efficiency of Single-Locus Species Delimitation Methods
952	within Trochoidea (Gastropoda: Vetigastropoda). Genes, 13: 2273.
953	https://doi.org/10.3390/genes13122273
954	Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program
955	for Windows 95/98/NT. [Abstract] Nucleic acids symposium series 47: 95-98.
956	Hamilton CA, Formanowicz DR, Bond JE. 2011. Species delimitation and phylogeography of
957	Aphonopelma hentzi (Araneae, Mygalomorphae, Theraphosidae): Cryptic diversity in
958	North American tarantulas. PLoS ONE, 6(10): e26207.
959	https://doi.org/10.1371/journal.pone.0026207
960	Hamilton CA, Hendrixson BE, Brewer MS, Bond JE. 2014. An evaluation of sampling effects on
961	multiple DNA barcoding methods leads to an integrative approach for delimiting species:
962	A case study of the North American tarantula genus Aphonopelma (Araneae,
963	Mygalomorphae, Theraphosidae). Molecular Phylogenetics and Evolution, 71: 79-93.
964	https://doi.org/10.1016/j.ympev.2013.11.007
965	Hernández-Cerda ME, Azpra-Romero E, Aguilar-Zamora V. 2016. Condiciones climáticas de la
966	Sierra Madre del Sur. In: Luna-Vega I, Espinosa D, Contreras-Medina R, ed. Biodiversidad
967	de la Sierra Madre del Sur: una síntesis preliminar. México: UNAM, 91-116.
968	Ibarra-Núñez G, Maya-Morales J, Chamé-Vázquez D. 2011. Las arañas del Bosque Mesófilo de
969	Montaña de la Reserva de la Biosfera Volcán Tacaná, Chiapas, México. Revista Mexicana
970	de Biodiversidad, 82(4): 1183-1193. https://doi.org/10.22201/ib.20078706e.2011.4.736
971	Jackson ND, Carstens BC, Morales AE, O'Meara BC. 2017. Species delimitation with gene flow.
972	Systematic biology, 66(5): 799-812. https://doi.org/10.1093/sysbio/syw117
973	Kanesharatnam N, Benjamin SP. 2021. Phylogenetic relationships and systematics of the jumping
974	spider genus Colopsus with the description of eight new species from Sri Lanka (Araneae:
975	Salticidae). Journal of Natural History, 54(43-44): 2763-2814.
976	http://dx.doi.org/10.1080/00222933.2020.1869335
977	Kapli P, Lutteropp S, Zhang J, Kobert K, Pavlidis P, Stamatakis A, Flouri T. 2017. Multi-rate
978	Poisson tree processes for single-locus species delimitation under maximum likelihood and

1630-1638.

33(11):

979

980

Markov

chain

Monte

https://doi.org/10.1093/bioinformatics/btx025

Carlo.

Bioinformatics,

- 981 Katoh K, Toh H. 2008. Recent developments in the MAFFT multiple sequence alignment program.
- 982 MAFFT version 7. Briefings in Bioinformatics, 4(4): 286–298.
- 983 https://doi.org/10.1093/bib/bbn013
- 984 Kumar R, Gupta BK, Sharma AK. 2024. Revisiting taxonomic problems in the genus Myrmaplata
- 985 Prószyński, 2016 (Araneae: Salticidae). International Journal of Entomology Research,
- 986 9(1): 7-14. https://dx.doi.org/10.2139/ssrn.4334501
- 987 Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: Molecular evolutionary genetics
- analysis across computing platforms. Molecular Biology and Evolution, 35(6): 1547-1549.
- 989 https://doi.org/10.1093/molbev/msy096
- 990 Levi HW. 1965. Techniques for the study of spider genitalia. Psyche: A Journal of entomology,
- 991 72: 152-158. https://doi.org/10.1155/1965/94978
- 992 Lin L, Yang ZY, Zhang JX. 2024. Revalidation of the jumping spider genus Cheliceroides Zabka,
- 993 1985 based on molecular and morphological data (Araneae, Salticidae). ZooKeys, 1196:
- 994 243-253. https://doi.org/10.3897/zookeys.1196.117921
- 995 Luo A, Ling C, Ho YM, Zhu CD. 2018. Comparison of methods for molecular species delimitation
- 996 across a range of speciation scenarios. Systematic Biology, 67(5): 830-846.
- 997 https://doi.org/10.1093/sysbio/syy011
- 998 Maddison WP, Ruiz GRS, Ng PYC, Vishnudas EH, Sudhikumar AV. 2022. Kelawakaju gen. nov.,
- 999 a new Asian lineage of marpissine jumping spiders (Araneae, Salticidae, Marpissina).
- 1000 ZooKeys, 1130: 79-102. https://doi.org/10.3897/zookeys.1130.87730
- 1001 Maddison WP. 2015. A phylogenetic classification of jumping spiders (Araneae: Salticidae).
- 1002 Journal of Arachnology, 43(3): 231-292. https://doi.org/10.1636/arac-43-03-231-292
- 1003 Maddison WP. 2016a. Sumakuru, a deeply-diverging new genus of lyssomanine jumping spiders
- 1004 from Ecuador (Araneae: Salticidae). ZooKeys, 614: 87-96.
- 1005 http://dx.doi.org/10.3897/zookeys.614.9368
- 1006 Maddison WP. 2016b. Papuaneon, a new genus of jumping spiders from Papua New Guinea
- 1007 (Araneae: Salticidae: Neonini). Zootaxa, 4200(3): 437-443.
- 1008 http://dx.doi.org/10.11646/zootaxa.4200.3.9
- 1009 Maldonado-Carrizales J, Ponce-Saavedra J. 2017. Arañas Saltarinas (Araneae: Salticidae) en dos
- 1010 sitios contrastantes en grado de antropización en Morelia Michoacán, México.
- 1011 Entomología mexicana, 4(1), 597-603.

1012	Metzner H. 2024. Jumping spiders (Arachnida: Araneae: Salticidae) of the world. Available at
1013	https://www.jumping-spiders.com (accessed 20 March 2024).
1014	Morrone JJ, Escalante T, Rodríguez-Tapia G. 2017. Mexican biogeographic provinces: Map and
1015	shapefiles. Zootaxa, 4277(2): 277–279. https://doi.org/10.11646/zootaxa.4277.2.8
1016	Morrone JJ. 2019. Regionalización biogeográfica y evolución biótica de México: encrucijada de
1017	la biodiversidad del Nuevo Mundo. Revista Mexicana de Biodiversidad, 90: e902980.
1018	https://doi.org/10.22201/ib.20078706e.2019.90.2980
1019	Naseem S, Muhamman HT. 2016. Use of mitochondrial COI gene for the identification of family
1020	Salticidae and Lycosidae of spiders. Mitochondrial DNA Part A, 29: 96-101.
1021	http://dx.doi.org/10.1080/24701394.2016.1248428
1022	Navarro-Rodríguez CI, Valdez-Mondragón A. 2024. Violins we see, species we don't Species
1023	delimitation of the spider genus Loxosceles Heineken & Lowe (Araneae: Sicariidae) from
1024	North America using morphological and molecular evidence. Zootaxa, 5428 (4): 527-548
1025	https://doi.org/10.11646/zootaxa.5428.4.4
1026	Navarro-Rodríguez I, Valdez-Mondragón A. 2020. Description of a new species of Loxosceles
1026 1027	Navarro-Rodríguez I, Valdez-Mondragón A. 2020. Description of a new species of <i>Loxosceles</i> Heineken & Lowe (Araneae, Sicariidae) recluse spiders from Hidalgo, Mexico, under
1027	Heineken & Lowe (Araneae, Sicariidae) recluse spiders from Hidalgo, Mexico, under
1027 1028	Heineken & Lowe (Araneae, Sicariidae) recluse spiders from Hidalgo, Mexico, under integrative taxonomy: Morphological and DNA barcoding data (CO1+ITS2). European
1027 1028 1029	Heineken & Lowe (Araneae, Sicariidae) recluse spiders from Hidalgo, Mexico, under integrative taxonomy: Morphological and DNA barcoding data (CO1+ITS2). European Journal of Taxonomy, 704: 1–30. https://doi.org/10.5852/ejt.2020.704
1027 1028 1029 1030	Heineken & Lowe (Araneae, Sicariidae) recluse spiders from Hidalgo, Mexico, under integrative taxonomy: Morphological and DNA barcoding data (CO1+ITS2). European Journal of Taxonomy, 704: 1–30. https://doi.org/10.5852/ejt.2020.704 Nolasco S, Valdez-Mondragón A. 2022. To be or not to be Integrative taxonomy and species
1027 1028 1029 1030 1031	Heineken & Lowe (Araneae, Sicariidae) recluse spiders from Hidalgo, Mexico, under integrative taxonomy: Morphological and DNA barcoding data (CO1+ITS2). European Journal of Taxonomy, 704: 1–30. https://doi.org/10.5852/ejt.2020.704 Nolasco S, Valdez-Mondragón A. 2022. To be or not to be Integrative taxonomy and species delimitation in the daddy long-legs spiders of the genus <i>Physocyclus</i> (Araneae, Pholcidae)
1027 1028 1029 1030 1031 1032	Heineken & Lowe (Araneae, Sicariidae) recluse spiders from Hidalgo, Mexico, under integrative taxonomy: Morphological and DNA barcoding data (CO1+ITS2). European Journal of Taxonomy, 704: 1–30. https://doi.org/10.5852/ejt.2020.704 Nolasco S, Valdez-Mondragón A. 2022. To be or not to be Integrative taxonomy and species delimitation in the daddy long-legs spiders of the genus <i>Physocyclus</i> (Araneae, Pholcidae) using DNA barcoding and morphology. ZooKeys, 1135: 93-118.
1027 1028 1029 1030 1031 1032 1033	Heineken & Lowe (Araneae, Sicariidae) recluse spiders from Hidalgo, Mexico, under integrative taxonomy: Morphological and DNA barcoding data (CO1+ITS2). European Journal of Taxonomy, 704: 1–30. https://doi.org/10.5852/ejt.2020.704 Nolasco S, Valdez-Mondragón A. 2022. To be or not to be Integrative taxonomy and species delimitation in the daddy long-legs spiders of the genus <i>Physocyclus</i> (Araneae, Pholcidae) using DNA barcoding and morphology. ZooKeys, 1135: 93-118. https://doi.org/10.3897/zookeys.1135.94628
1027 1028 1029 1030 1031 1032 1033 1034	Heineken & Lowe (Araneae, Sicariidae) recluse spiders from Hidalgo, Mexico, under integrative taxonomy: Morphological and DNA barcoding data (CO1+ITS2). European Journal of Taxonomy, 704: 1–30. https://doi.org/10.5852/ejt.2020.704 Nolasco S, Valdez-Mondragón A. 2022. To be or not to be Integrative taxonomy and species delimitation in the daddy long-legs spiders of the genus <i>Physocyclus</i> (Araneae, Pholcidae) using DNA barcoding and morphology. ZooKeys, 1135: 93-118. https://doi.org/10.3897/zookeys.1135.94628 Ortiz D, Francke O. 2016. Two DNA barcodes and morphology for multi-method species
1027 1028 1029 1030 1031 1032 1033 1034 1035	Heineken & Lowe (Araneae, Sicariidae) recluse spiders from Hidalgo, Mexico, under integrative taxonomy: Morphological and DNA barcoding data (CO1+ITS2). European Journal of Taxonomy, 704: 1–30. https://doi.org/10.5852/ejt.2020.704 Nolasco S, Valdez-Mondragón A. 2022. To be or not to be Integrative taxonomy and species delimitation in the daddy long-legs spiders of the genus <i>Physocyclus</i> (Araneae, Pholcidae) using DNA barcoding and morphology. ZooKeys, 1135: 93-118. https://doi.org/10.3897/zookeys.1135.94628 Ortiz D, Francke O. 2016. Two DNA barcodes and morphology for multi-method species delimitation in <i>Bonnetina</i> tarantulas (Araneae: Theraphosidae). Molecular Phylogenetics
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036	Heineken & Lowe (Araneae, Sicariidae) recluse spiders from Hidalgo, Mexico, under integrative taxonomy: Morphological and DNA barcoding data (CO1+ITS2). European Journal of Taxonomy, 704: 1–30. https://doi.org/10.5852/ejt.2020.704 Nolasco S, Valdez-Mondragón A. 2022. To be or not to be Integrative taxonomy and species delimitation in the daddy long-legs spiders of the genus <i>Physocyclus</i> (Araneae, Pholcidae) using DNA barcoding and morphology. ZooKeys, 1135: 93-118. https://doi.org/10.3897/zookeys.1135.94628 Ortiz D, Francke O. 2016. Two DNA barcodes and morphology for multi-method species delimitation in <i>Bonnetina</i> tarantulas (Araneae: Theraphosidae). Molecular Phylogenetics and Evolution, 101: 176–193. https://doi.org/10.1016/j.ympev.2016.05.003

Padial JM, Miralles A, De la Riva I, Vences M. 2010. The integrative future of taxonomy. Frontiers

in zoology, 7: 1-14. https://doi.org/10.1186/1742-9994-7-16

1040

1041

- 1042 Phung LTH, Su YC, Yamasaki T, Li YY, Eguchi K. 2024. High species diversity of *Phintella* and
- 1043 Phintella-like spiders (Araneae: Salticidae) in Vietnam revealed by DNA-based species
- delimitation analyses. Ecology and Evolution, 14: e11144.
- 1045 https://doi.org/10.1002/ece3.11144
- 1046 Pons J, Barraclough TG, Gomez-Zurita J, Cardoso A, Duran DP, Hazell S, Kamoun S, Sumlin
- 1047 WD, Volger AP. 2006. Sequence based species delimitation for the DNA taxonomy of
- 1048 undescribed insects. Systematic Biology, 55(4): 595–609.
- 1049 https://doi.org/10.1080/10635150600852011
- 1050 Puillandre N, Brouillet S, Achaz G. 2021. ASAP: assemble species by automatic partitioning.
- 1051 Molecular Ecology Resources, 21(2): 609-620. https://doi.org/10.1111/1755-0998.13281
- Rambaut A. 2018. FigTree v1.4.4. Available at http://tree.bio.ed.ac.uk/software/figtree/ (accesed 1053 10 October 2023).
- 1054 Ramírez MJ. 2014. The morphology and phylogeny of dionychan spiders (Araneae:
- 1055 Araneomorphae). Bulletin of the American Museum of Natural History, 390: 1-374.
- 1056 http://dx.doi.org/10.1206/821.1
- 1057 Richardson BJ, Gunter NL. 2012. Revision of Australian jumping spider genus Servaea Simon
- 1058 1887 (Aranaea: Salticidae) including use of DNA sequence data and predicted
- distributions. Zootaxa, 3350(1): 1-33. https://doi.org/10.11646/zootaxa.3350.1.1
- 1060 Richman DB, Cutler B, Hill DE. 2012. Salticidae of North America, including Mexico.
- 1061 Peckhamia, 95(3): 1-88.
- 1062 Richman DB. 1981. A revision of the genus Habrocestum (Araneae, Salticidae) in North America.
- Bulletin of the American Museum of Natural History, 170: 197-206.
- 1064 Rosenzweig ML.1995. Species Diversity in Space and Time. UK: Cambridge University Press.
- 1065 https://doi.org/10.1017/CBO9780511623387
- 1066 Sbordoni V. 2010. Strength and Limitations of DNA Barcode under the Multidimensional Species
- 1067 Perspective. In: Nimis PL, Lebbe RV, ed. Tools for Identifying Biodiversity: Progress and
- 1068 Problems. Proceedings of the International Congress. Paris, Trieste: EUT Edizioni
- 1069 Università di Trieste.
- 1070 Schlick-Steiner BC, Steiner FM, Seifert B, Stauffer C, Christian E, Crozier RH. 2010. Integrative
- 1071 Taxonomy: A Multisource Approach to Exploring Biodiversity. Annual Review of
- 1072 Entomology, 55: 421–438. https://doi.org/10.1146/annurev-ento-112408-085432

- 1073 Stein A, Gerstner K, Kreft H. 2014. Environmental heterogeneity as a universal driver of species
- 1074 richness across taxa, biomes and spatial scales. Ecology Letters, 17(7): 866-80.
- 1075 https://doi.org/10.1111/ele.12277
- 1076 Takhtajan A. 1986. Floristic regions of the world. Berkeley, University of California Press.
- 1077 Trebicki Ł, Patoleta BM, Dabert M, Żabka M. 2021. Redescription of type species of the genus
- 1078 Cytaea Keyserling, 1882 (Araneae: Salticidae)—an integrative approach. The European
- 1079 Zoological Journal, 88(1), 933-947. https://doi.org/10.1080/24750263.2021.1961029
- 1080 USGS. 2021. North America Political Boundaries Sciencebase-Catalog. Available at
- https://www.sciencebase.gov/catalog/item/4fb555ebe4b04cb937751db9 (accesed 1
- 1082 January 2024).
- 1083 Valdez-Mondragón A, Francke OF. 2015. Phylogeny of the spider genus Ixchela Huber, 2000
- 1084 (Araneae: Pholcidae) based on morphological and molecular evidence (CO1 and 16S), with
- a hypothesized diversification in the Pleistocene. Zoological Journal of the Linnean
- 1086 Society, 175: 20–58. https://doi.org/10.1111/zoj.12265
- 1087 Valdez-Mondragón A, Navarro-Rodríguez CI, Solís-Catalán KP, Cortez-Roldán MR, Juárez-
- 1088 Sánchez AR. 2019. Under an integrative taxonomic approach: The description of a new
- species of the genus *Loxosceles* (Araneae, Sicariidae) from Mexico City. ZooKeys, 892:
- 1090 93–133. https://doi.org/10.3897/zookeys.892.39558
- 1091 Valdez-Mondragón A. 2013. Taxonomic revision of the spider genus Ixchela Huber, 2000
- 1092 (Araneae: Pholcidae), with description of ten new species from Mexico and Central
- 1093 America. Zootaxa, 3608 (5): 285–327. https://doi.org/10.11646/zootaxa.3608.5.1
- 1094 Valdez-Mondragón A. 2020. COI mtDNA barcoding and morphology for species delimitation in
- the spider genus Ixchela Huber (Araneae: Pholcidae), with the description of two new
- 1096 species from Mexico. Zootaxa, 4747(1): 54-76. doi:10.11646/zootaxa.4747.1.2
- 1097 Valdivia-Ornela L, Castillo-Aja MR. 2001. Las regiones geomorfológicas del estado de Jalisco.
- 1098 Revista Geocalli, 2(3): 17-108.
- 1099 Valero-Padilla J, Rodríguez-Reynaga FP, Cruz-Angón A. 2017. Resumen ejecutivo. Contexto
- 1100 físico. In: Angón AC, Hermosillo, AO, Padilla JV, Melgarejo ED, ed. La biodiversidad en
- 1101 Jalisco. Estudio de Estado. Vol. I. México: CONABIO, 21-22.
- 1102 Vink C, Dupérré N, McQuillan BN. 2011. The black-headed jumping spider, Trite planiceps
- 1103 Simon, 1899 (Araneae: Salticidae): redescription including cytochrome c oxidase subunit

1104	1 and paralogous 28S sequences. New Zealand Journal of Zoology, 38(4): 317-331.
1105	http://dx.doi.org/10.1080/03014223.2011.613939
1106	WSC. 2024. World Spider Catalog. Version 24. Natural History Museum Bern. Available at
1107	http://wsc.nmbe.ch (accesed 27 April 2024). https://doi.org/10.24436/2
1108	Xu X, Liu F, Cheng R-C, Chen J, Xu X, Zhang Z, Ono H, Pham DS, Norma-Rashid Y, Arnedo
1109	MA, Kuntner M, Li D. 2015. Extant primitively segmented spiders have recently
1110	diversified from an ancient lineage. Proceedings of the Royal Society B: Biological
1111	Sciences, 282(1808): 20142486. https://doi.org/10.1098/rspb.2014.2486
1112	Yamasaki T, Yamaguchi M, Phung LTH, Huang PS, Tso IM. 2018. Redescription of Chrysilla
1113	lauta Thorell 1887 (Araneae: Salticidae) based on the comparison with the holotype, and
1114	DNA barcoding. Acta Arachnologica, 67(1): 23–29. http://dx.doi.org/10.2476/asjaa.67.23
1115	Zhang J, Kapli P, Pavlidis P, Stamatakis A. 2013. A general species delimitation method with
1116	applications to phylogenetic placements. Bioinformatics, 29(22): 2869–2876.
1117	https://doi.org/10.1093/bioinformatics/btt499
1118	Zhang J, Maddison WP. 2015. Genera of euophryine jumping spiders (Araneae: Salticidae), with
1119	a combined molecular-morphological phylogeny. Zootaxa, 3938(1): 1-147.

https://doi.org/10.11646/zootaxa.3938.1.1

1120