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In this study, we attempt to illustrate fossil vertebrate dental tissue geochemistry and, by 28 

inference, the its extent of diagenetic alteration, state of apatite preservation using quantitative, 29 

semi-quantitative and optical tools to evaluate bioapatite preservation. We present visual 30 

comparisons of elemental compositions in fish and plesiosaur dental remains ranging in age from 31 

Silurian to Cretaceous, based on a combination of micro-scale optical cathodoluminescence (CL) 32 

observations (optical images and scanning electron microscope) with in-situ minor, trace and 33 

rare earth element (REE) compositions (EDS, maps and profiles, REE), as a tool for assessing 34 

diagenetic processes and biomineral preservation during fossilization of vertebrate dental apatite. 35 

Tissue-selective REE values have been obtained using lLaser aAblation- iInductively cCoupled 36 

pPlasma- mMass sSpectrometry (LA-ICP-MPS), indicating areas of potential REE enrichment, 37 

combined with cCathodoluminescence (CL) analysis. Energy dDispersive X-ray sSpectroscopy 38 

(EDS) mapping was also used to identify major elemental components and identify areas of 39 

contamination or diagenetic replacement. We conclude that the relative abilities of different 40 

dental tissues to resist alteration and proximity to the exposure surface reflect largely determine 41 

the REE composition and, accordingly, subsequently the inferred quality of preserved bioapatite. 42 

 43 

Introduction 44 

 45 

Assessing the preservation quality of fossil hard tissues such as bone, dentine, enamel or 46 

enameloid is fundamental to research that utilizes this material as a source of biogeochemical 47 

data. Isotopic and elemental proxies derived from fossil bioapatite rely on unaltered specimens to 48 

accurately reflect palaeobiology or the environmental conditions in the past. The chemical 49 

composition of fossil bone tissues, including trace elements and stable light isotope ratios, may 50 

provide valuable information on the biology of extinct species, such as thermometabolism (e.g. 51 

Amiot et al. 2007; Bernard et al. 2010; Eagle et al. 2011; Rey et al. 2017; Séon et al. 2020; 52 

Leuzinger et al. 2022), diet (e.g. Heuser et al. 2011; Owocki et al. 2020; Klock et al. 2022), or 53 

ecology and environmental occupations (e.g. Daniel Bryant & Froelich 1995; Fricke et al. 2008; 54 

Amiot et al. 2010; Goedert et al. 2018, 2020; De Rooij et al. 2022; Thibon et al. 2022). Our The 55 
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ability to make such inferences depends on the preservation quality of the fossil remains, and at 56 

present there exists no definitive methodology for screening out digenetic alteration.  57 

To better understand the effects of diagenesis and to discriminate the primary (or closest-58 

to-primary) geochemical signal from early-diagenetic secondary overprinting, a spatially 59 

resolved compositional analysis of the histological sections of fossil bioapatite is required. In this 60 

study we combine spectroscopic mapping techniques including cathodoluminescence (CL) and 61 

eEnergy dispersiveal spectroscopy (EDS) analysis with in-situ rare earth element (REE) analysis 62 

to visualize compositional changes. We examine plesiosaur teeth and lungfish dental plates from 63 

the Lower Cretaceous, as well as Devonian fish scales to compare potential biomineral 64 

preservation in enamel, enameloid, and dentinous tissues. 65 

The mineral component of vertebrate hard tissues is composed of biological apatite, 66 

commonly present in the form of carbonate hydroxyapatites, which stabilize to fluorapatite 67 

[Ca5(PO4)3F] during diagenesis as the carbonate component diminishes and is replaced by 68 

fluorine (Trotter & Eggins, 2006; Keenan et al., 2015; Lübke et al., 2017). Depending on the 69 

conditions and environment of burial, the processes of fossilization may lead to the modification 70 

of preserved biominerals through ionic exchange and rearrangements in the primary structure 71 

throughout the incorporation of foreign ions into the crystal lattice. These ions substitutions may 72 

include rare earth elements (REEs) for Ca2+ in Ca sites (Burton & Wright 1995; Daniel Bryant & 73 

Froelich 1995; Trueman & Tuross 2002; Trueman et al. 2006; Kocsis, Trueman & Palmer 2010; 74 

Heuser et al. 2011). 75 

REE composition of fossil vertebrate hard tissues is an established tool for determining 76 

the extent of reworking and chemical changes during taphonomy (Trueman, 1999, 2013; Kohn & 77 

Cerling, 2002). Rare earth elements are also commonly used in the reconstruction of past 78 



environments (Grandjean et al. 1987; Kemp & Trueman 2003; Lécuyer, Reynard & Grandjean 79 

2004; Fadel et al. 2015; Žigaitė et al. 2016; Ivanova et al. 2022), principally as a proxy to 80 

provenance, taphonomy and diagenesis. The incorporation of REEs and other trace elements into 81 

bioapatite predominantly takes place post-mortem (Toyoda & Tokonami, 1990) due to the 82 

infiltration from either sediment pore water, or directly from surrounding water bodies. 83 

Apatite, with its very high affinity for REEs, frequently contains at least two to three 84 

orders of magnitude higher REE concentrations than any other mineral phase present in the fossil 85 

bones and teeth (Trueman & Palmer 1997; Kohn, Schoeninger & Barker 1999; Trueman 1999).  86 

Concentrations of REEs in fossil apatite from marine basins are higher than any other 87 

sedimentary mineral and commonly 5−-6 orders of magnitude higher than seawater (Kolodny et 88 

al., 1996). The REE reside in the two calcium sites in the apatite lattice and are normally present 89 

in living bone at the ppb level (Shaw & Wasserburg 1985), while fossil bones yield much higher 90 

REE levels, usually in the 103 ppm range (Kolodny et al. 1996).  91 

The REE record is taxon-independent since the REE do not appear to be physiologically 92 

vital trace elements and in vivo bone concentrations are several orders of magnitude lower than 93 

diagenetic concentrations (Trueman 1999).  Wright et al. (1987) argued that ichthyoliths 94 

(disarticulated dermal and dental fish remains), concentrated at the sediment-water interface, 95 

exhibit an enrichment in REEs, with no discernible fractionation of REEs occurring during this 96 

particular process. However, (Reynard et al. 1999) convincingly argued for fractionation 97 

between seawater and ichthyoliths. Debate remains (summarized in by Ivanova et al. 2022) as to 98 

whether REE uptake occurs only during early diagenesis or whether the process occurs 99 

continually. Two main mechanisms exist for REE trapping in phosphates – adsorption and 100 

substitution (Reynard et al. 1999; Trueman & Tuross 2002).  101 
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However, the adsorption process is in equilibrium and desorption of REE3+ ions can 102 

occur over time, as argued by Li et al. (2021). Herwartz et al. (2011, 2013a, 2013b) have 103 

disputed the view set out by Reynard et al. (1999) that adsorption and substitution represent 104 

“early” and “late” stages of diagenesis. Further, Chen et al. (2015) have shown that in order to 105 

capture the composition of contemporary seawater, REE adsorption must occur close to the 106 

sediment-water interface, as even shallow burial can result in fractionation during early 107 

diagenesis. 108 

Cathodoluminescence (CL) is achieved through the excitation of the sample mineral with 109 

a continuous high-energy electron beam to produce photon emission, generally in the visible 110 

spectral range (Barbin 2013). CL analysis has been used extensively as a tool to assess 111 

preservation quality and diagenetic impact in fossil enamel (e.g. Götze et al. 2001; Schoeninger 112 

et al. 2003; Ségalen et al. 2008; Owocki et al. 2020; Richard et al. 2022).  In assessing 113 

biomineral preservation in apatitic fossil hard tissues, CL provides a relatively quick tool 114 

tomeans of identifying areas of diagenetic replacement (Ségalen et al. 2008), without further 115 

destruction of the thin section. 116 

Substitution by other elements of Ca sites in the crystal lattice of apatite can be detected 117 

through CL, with the elements responsible for the substitution discernible based on the 118 

wavelength and hue of the photon emission. For example, sSubstitution by Mn2+ produces a 119 

yellow or orange hue (Gaft et al. 1997) of between 565 nm and 585 nm, whereas. U unaltered 120 

biogenic apatite emits a dull blue luminescence of approximately 400 nm (Schoeninger et al. 121 

2003). Hättig et al. (2019) have shown that Mn2+ incorporation can cause CL emission in enamel 122 

from recent sharks, and thus CL alone cannot be relied upon as a diagenetic indicator. Areas of 123 

REE substitution were associated with distinct bands with sharp emission lines between 300 nm 124 



and 1000 nm (Gaft et al. 1997; Blanc et al. 2000; Habermann et al. 2000; Ségalen et al. 2008). 125 

Notably, Gaft et al. (1997) showed that the luminescence bands are absent where adsorption has 126 

occurred and are only present as a result of substitution.  127 

EDS is a widely used scanning electron microscopy (SEM) technique for determining the 128 

elemental composition of specimens. EDS has previously been used to study the distribution of 129 

elements within dental remains in relation to their structure and functional use(s) (e.g. Enax et al. 130 

2012; Dumont et al., 2009,; Dumont et al. 2011) and to compare the elemental composition 131 

present in the teeth of different groups of organisms (Lübke et al. 2015). 132 

Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is an in-situ 133 

form of mass spectrometryscopy with useful for down-hole compositional depth profiling, which 134 

provides reliable, quantitative, high-resolution REE and major element compositions with only 135 

minor destruction of the thin section (see Trotter and Eggins 2006; Žigaitė et al. 2016). 136 

In this study we use cathodoluminescence-microscopy and spectroscopy (micro-CL) 137 

combined with energy dispersive spectroscopy (EDS) and in-situ laser ablation inductive 138 

coupled plasma mass-spectrometry (LA-ICP-MS) on fossil bioapatite, using the several types of 139 

dental fossils, and the same thin and thick sections to be able to combine and cross-verify the 140 

results of these three complementary techniques. 141 

 142 

Materials & Methods 143 

Samples investigated by in this study include dermal scales from jawless and jawed 144 

fishes from the Devonian of Svalbard as well as plesiosaur tooth crowns and fossil lungfish 145 

(Ddipnoi) dental plates from the Cretaceous of southeasternSE Australia. 146 

 147 
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Figure 1 148 

 149 

The Devonian fish scales were obtained from the palaeontological collections of the Paris 150 

National Natural History Museum (Museum Nnational d’Histoire nNaturelle), France. Original 151 

sampling of this material was from the Andrée Land Group of Spitsbergen Island, Svalbard 152 

archipelago, Norway. The sScales analysed comprise derive from two taxa, the thelodont 153 

Talivalia svalbardae and an undescribed putative chondrichthyan, both of which come from the 154 

Grey Hoek Formation in the upper part of the Andrée Land Group succession. The thelodont 155 

hasve been described by Žigaitė et al. in (2013), and the putative chondrichthyan is currently 156 

being describedby Žigaitė et al. recently (in prep). 157 

The Early Cretaceous plesiosaur and lungfish fossils were sampled from the 158 

palaeontological collection of the Melbourne Museum (Museums Victoria) (NMV), Melbourne, 159 

Australia.  One plesiosaur tooth and one lungfish toothplate (see Fig. 1) were selected from the 160 

lower Albian , the Eumeralla Formation and uppermost Barremian to lowermost Aptian, the 161 

Wonthaggi Formation of southeastern Australia (Wagstaff et al., 2020). Previous taxonomic 162 

evaluations of these plesiosaur teeth suggested leptocledian affinity (Kear, 2006; Kear & 163 

Hamilton-Bruce, 2011; Poropat et al., 2018, 2023; Kear et al., 2018); the lungfish toothplates 164 

cannot be confidently identified beyond Ceratodontiformes indet. (see Poropat et al. [2018] for 165 

discussion). 166 

All specimen sections are held in The Museum of Evolution Palaeontological Collections 167 

(PMU), Uppsala University, Sweden. 168 

 169 
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 171 

Svalbard Mmaterial 172 

The thelodont and chondrichthyan scales used in this study come from the Andrée Land, 173 

territory in the northern part of Spitsbergen Island, Svalbard archipelago. Stratigraphically the 174 

material originates from the Lower Devonian Old Red Sandstone succession referred to as the 175 

Andrée Land Group (Blomeier et al., 2003) and represents deposition in a continental rift basin 176 

along the northern margin of the Old Red Sandstone (ORS) landmass. The succession is 177 

essentially confined to a major graben with a unique depositional history, involving a shift from 178 

coarse clastic red-beds, mainly of alluvial fan and fluvial origin, to a series of more greyish 179 

fluvial and possibly deltaic sediments illustrating recording athe transition from the southern arid 180 

zone to the equatorial tropics. The nature of the basin and, more specifically, the its 181 

palaeoenvironmental conditions are as yet poorly understood, although it plays an important role 182 

as a regional niche and separate biogeographical province in the Early Devonian.  183 

Vertebrate microfossils are quite common in the Andrée Land deposits, and include 184 

isolated micromeric elements of the dermal exoskeleton (dentine scales) of acanthodians, 185 

chondrichthyans, and thelodonts (Ørvig 1967; Blom & Goujet 2002; Žigaitė et al. 2013). The 186 

Formation extends from the Lower to Middle Devonian (Blomeier et al. 2003). It is subdivided 187 

into three lithologgraphical units: the Verdalen, Skamdalen and Tavlefjellet members (Blomeier 188 

et al. 2003; Volohonsky et al. 2008). The tThelodont scales come both from the Tavlefjellet and 189 

Skamdalen, while the undescribed chondrichthyan comes only from the Skamdalen, specifically 190 

from the Gråkammen locality (Žigaitė et al. 2013).  191 

 192 

Australian Mmaterial 193 
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 194 

The Wonthaggi and Eumeralla formations consist of fluvial sandstone and mudstone 195 

deposits which formed part of a wider floodplain arising from the rifting of mainland Australia, 196 

Tasmania and Antarctica (Mutter et al. 1985). Both formations have previously yielded a diverse 197 

array of vertebrate body and ichnofossils (Martin et al. 2012; Poropat et al. 2018; Romilio & 198 

Godfrey, 2022). 199 

The informally designated ´Wonthaggi Formation` is a unit of the Strzelecki Group 200 

correlated asassigned to the latest Barremian to earliest Aptian on the basis of palynology 201 

(Wagstaff et al. 2020). The Eumeralla Formation from the Otway Group is early Albian in age 202 

(Wagstaff et al. 2020). The Wonthaggi Formation` records evidence of possible freezing in the 203 

winter (Wagstaff and & Mason 1989) in contrast with more temperate conditions present in the 204 

Eumeralla Formation. Both units are associated with high palaeolatitudes, the position of 205 

Australia during the Lower Cretaceous being approximately 60-−80o S (Embleton & McElhinny 206 

1982). An assessment of the floral communities of the Eumeralla Formation by Tosolini et al. 207 

(2018) concluded that itsa warmer climate may have included been involved strong seasonal 208 

variations.  209 

 210 

Sample Preparation 211 

 212 

Sectioning and preparation of dental fossils used examined in this study wereas carried 213 

out at the Department of Organismal Biology at Uppsala University, Sweden and at the 214 

NordSIM facility, Department of Mineralogy, Swedish Museum of Natural History, Stockholm, 215 

Sweden. Sections were taken along the vertical axial plane of each tooth fragment, through both 216 



the enamel and the dentine. The sample sections were selected on the basis of enamel thickness 217 

to provide a reasonable amount of working material. Thin sections (30 μm) were polished and 218 

carbon-coated before CL-spectroscopy analysis at by the Biomineralizations and 219 

Palaeoenvironment group at, the University of Pierre and Marie Curie, Paris, 6, France. The 220 

same sections of plesiosaur teeth and the dental plates of lungfish were subsequently analysed 221 

through SEM analysis.   222 

 223 

Energy Dispersive X-ray Spectroscopy (EDS) 224 

 225 

The chemical composition of the biomineral was investigated using eEnergy-dDispersive 226 

X-rRay sSpectroscopy (EDS) at the Max Plank Institute for Iron Research, Duesseldorf, 227 

Germany, in accordance with the methods outlined in by Dumont et al. (2014). EDS elemental 228 

map sections and profiles have been generated for the plesiosaur teeth and the tooth plates of 229 

lungfish. SEM imaging was conducted using a Jeol JSM-6500F scanning electron microscope 230 

operating at 15 kV with a tungsten filament instrument. The microscope was equipped with an 231 

EDAX-TSL EBSD system. The chemical compositions used in mapping were determined using 232 

EDAX energy-dispersive X-ray spectrometers (EDS) attached to the electron microscope. The 233 

microanalyses were conducted using the EDAX library standard-less procedure with a 20 second 234 

dwell time.  235 

 236 

Laser Ablation- Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) 237 

 238 



All specimens subject to LA-ICP-MS underwent gold spattering and polishing prior to 239 

analysis. The elemental compositions were obtained by laser ablation inductively coupled plasma 240 

mass spectrometry (LA-ICP-MS) at the Imaging and Analysis Centre of the Science Facilities 241 

Department, Natural History Museum, London (UK). LA-ICP-MS is a widely used technique to 242 

determine in-situ mineral elemental compositions, and offers the necessary high spatial 243 

resolution required to analyse REE the in-situand trace element compositions of separate tissues 244 

of micron-sized scales in-situ at a separate tissue level. Analyses were performed using a New 245 

Wave Research UP213AI 213 nm aperture imaged laser ablation accessory coupled to a Thermo 246 

Elemental PQ3 ICP-MS with an enhanced sensitivity S-option interface. Data were acquired for 247 

120 seconds at each analysis site on the plesiosaur and lungfish specimens, taking individual 248 

points in histologically different regions (dentine or enamel). Background signals were collected 249 

for the first ca ~ 60 s, then and the laser was fired at the sample to collect sample signals for the 250 

remaining acquisition time. Data were collected using the time resolved method and were 251 

processed offline using LAMTRACE software (Simon Jackson, Macquarie University, Sydney).  252 

Elemental concentrations were calculated using the National Institute of Standards and 253 

Technology (NIST) standard reference material 612 for calibration and calcium was used for 254 

internal standardization. The limit of detection was taken as 1σ of the mean background count, 255 

and the data filtered at twice this limit (2σ). Calculated precision was better than 3% RSD (at 1σ 256 

error) when using 43Ca as an internal standard. The concentrations of REEs were measured in 257 

parts per million and normalized to Post-Archaean Australian Shale (PAAS) concentration 258 

values (McLennan 1989). The obtained in-situ REE compositions are explored below using basic 259 

geochemical calculations and quantifications for sedimentary rocks (Reynard et al., Lécuyer and 260 

Grandjean 1999; Johannesson et al. 2006; Žigaitė et al. 2016 and citations therein). Elemental 261 
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compositions were measured in parts per million (ppm), and the Al2O3, SiO2, TiO2, MgO, CaO, 262 

MnO and FeO oxides, in weight percentages (wt%) (see Supplementary Tables 1−-7).  263 

 264 

Optical Ccathodoluminescence 265 

 266 

Optical CL examination of the samples was performed at the Imaging and Analysis 267 

Center (NHMUK) using an OPEA Catodym luminoscope operating at 15 kV and 300 -μA. 268 

Transmitted light and CL images of the samples were taken using a Nikon D70 digital camera. 269 

CL images were subsequently processed in Adobe Photoshop by raising brightness 150%. This 270 

was done to enhance the visibility of histological features as well as cracks, in order to visualize 271 

any changes in the distribution of secondary elements associated with these features. The 272 

luminescence colours and their corresponding wavelengths were then compared to the peak 273 

shifts for REE emission spectra (Ségalen et al., 2008). 274 

 275 

Results 276 

 277 

Optical Cathodoluminescence 278 

 279 

Figure 2 280 

 281 

The optical CL images of the specimens from the Eumeralla Formation show a red-282 

orange luminescence present in the biomineralized tissue of all of our the samples, most likely 283 

attributable to REE substitution in the Ca+ sites of the preserved apatite. Luminescence of this 284 
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hue is associated with replacement by Eu3+ and Sm2+ ions (Blanc et al. 2000, Ségalen et al. 285 

2008). In the lungfish plate, distinct areas of light blue or violet luminescence can be seen in the 286 

matrix infill around the denteons (Fig. 2C).  Light blue/violet luminescence is not exclusive to 287 

bioapatite, and as it also can be generated by aoccurs number of silicate minerals (Götze, 2012). 288 

The EDS maps of this specimen (see Ssupplementary Figuresdata) show enrichment of silicon 289 

and aluminium within this infill. These elements are not signature ofpresent in the an original 290 

bioapatite, suggesting this luminescence is representative of secondary mineral infilling rather 291 

than the preserved dentine. 292 

In the Devonian fish from Svalbard, a yellow-orange luminescence is observed. 293 

Substitution by Dy3+, Sm3+, and Eu3+ ions is associated with these hues (Blanc et al. 2000, 294 

Ségalen et al. 2008). Notably, the interior pulp cavity in the thelodont scale from Tavlefjellet 295 

(Fig. 2G) appears to luminesce a bright yellow, although this it must be noted that this 296 

luminescence is filtered through the external enameloid. Yellow luminescence can also arise 297 

from Mn2+ substitution, which may also contribute to this effect. However, the overall 298 

concentration of MnO is lower in the Gråkammen scales in comparison to the Tavlefjellet scale, 299 

as measured by in-situ LA-ICP-MS (see below). 300 

As optical cathodoluminescence imaging is limited to the visible spectrum of light, 301 

luminescence in wavelengths outside the visible range is not detected. Thus, despite the 302 

abundance of Gd in the specimens being comparable to, or exceeding, that of Sm and Eu (Fig. 3, 303 

D), the influence of this element on the CL images is not observed, as the emission peak of the 304 

Gd3+ ion in apatite has a wavelength in the ultraviolet range (Blanc et al. 2000). 305 

 306 

Trace Eelement aAnalysis 307 
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The EDS maps (Supplementary Figures) show that secondary elements are concentrated 308 

in areas accessible by pore fluids,; most significantly in the dentine and internal pores and voids 309 

but also at the enamel-matrix interface and in cracks. Differences in secondary mineralization 310 

between the two formations appear to be minor and are best explained by the histology of the 311 

samples. 312 

The plesiosaur teeth from the Eumeralla Formation exhibit a limited secondary element 313 

presence, with high calcium and phosphorous concentrations in both the dentine and enamel. 314 

Samples 1122A and 1122B both feature homogenous distribution of Ca and P across the enamel 315 

layers (Supplementary. Figures). Secondary minerals are largely concentrated in and around 316 

cracks. No surficial inclusions are present in these samples.  317 

The Eumeralla Formation lungfish dental plates overall show more widespread secondary 318 

mineralization than the plesiosaur teeth, but with strong histological differentiation in the 319 

distribution of these minerals. For example, the enamel does not appear to have undergone 320 

significant secondary mineralization, both according to the REE concentrations, and the micro-321 

CL and EDS imaging. Sample 1122C exhibits a slight reduction in calcium and phosphorous in 322 

areas of cracked enamel and in the vicinity of the enamel-dentine junction. Both specimens 323 

1122C and 1122D exhibit surficial inclusions of Si-, Al-, and Na- richbased secondary 324 

precipitate minerals. By comparison, the dentine of each of these samples contains a greater 325 

number of minerals present in relatively high concentration. For instance, tThe dentine of sample 326 

1122D has been infiltrated by iron-, aluminium-, and silicon- richbased minerals which have 327 

crystalized within cavities in the dentine. Outside of these cavities calcium and phosphorous 328 

remain abundant, with similar concentrations observed in both enamel and dentine.  329 

 330 



REE Analysis 331 

REE concentrations are highest in the dentine and lowest in the inner enamel of the 332 

plesiosaur teeth. The EDJ (enamel-dentine junction (EDJ) generally has an REE content lower 333 

than the dentine but higher than the lower enamel. More REEs are present in the outer part of the 334 

enamel than in the inner part. This suggests that the samples experienced approximately the same 335 

degree of post-mortem crystallizationdiagenetic alteration, independent of age and burial 336 

environments. Contrastingly, in the Svalbard fish scales REE concentrations are substantially 337 

higher in the pulp cavity than the outer enameloid layers, with europium (Eu) anomalies present 338 

in all samples and tissue types.  339 

 340 

Figure 3 341 

 342 

Cerium (Ce) and Lanthanum (La) anomalies can be calculated based on the LA-ICP-MS 343 

data and represent an important paleoenvironmental indicator, as these anomalies are linked to 344 

the oxic state of pore waters (e.g. Reynard et al. 1999; Kemp & Trueman 2003; Patrick et al. 345 

2004). Negative Ce anomalies are associated with oxic conditions, whilst positive anomalies - or 346 

the absence of an anomaly - may indicate anoxia. The shale-normalized cerium (Ce/Ce*)sn  and  347 

praseodymium  (Pr/Pr*)sn  anomalies werewas calculated using the following respective 348 

formulae: Ce/Ce* = 2Cesn/(Lasn + Ndsn) and Pr/Pr* = 2Prsn/(Cesn + Smsn) (Barrat et al. 2023) 349 

(fFigure 4).  350 

 351 

Figure 4 352 
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Discussion 354 

 355 

Most of the enamel present in the samples studied appears to represent the original 356 

biomineralized material. The outermost enamel at the surface of the teeth and dental plates has a 357 

higher secondary element content than the inner enamel. The exposure of the outer surface of the 358 

hard tissues to the environment may account for this to some extent; it is the area with the most 359 

contact with the matrix fluids that are the source of many of the secondary elements. The 360 

presence of elevated REE concentrations ion the outermost enamel relative to the inner enamel is 361 

consistent with the observations of Williams et al. (1997) and Ségalen et al. (2008) that REE 362 

integration occurs primarily at the interface between the preserved tissue and the sediment. The 363 

density and poor permeability of the outer enamel may shield the inner matrix from significant 364 

pore fluid infiltration. 365 

In the Wonthaggi plesiosaur teeth, secondary minerals are more prevalent. In sample 366 

1223A the pulp cavity has undergone extensive infilling, with Al, Si, Fe and Zn present in higher 367 

concentrations than the surrounding dentine. The enamel of this sample is less secondarily 368 

mineralized, though infilling of cracks by Si- and Al-rich based minerals is observed. Sample 369 

1223B also exhibits some secondary mineralization. Whilst there is no infilling of the pulp 370 

cavity, the dentine is marked in places by areas of exhibiting increased F and C; while Al, Si, and 371 

C fillings in the cracks of the inner part of the tooth surficial inclusions are observed, along with 372 

infiltrations of Fe at the outermost extent of the dentine. The lungfish plates display high levels 373 

of Ca and P, more so than is seen in the dentine of other samples. Secondary mineralization is 374 

also present in the lungfish teeth, with extensive infilling of pore spaces and dentine tubules by 375 

Si, Al, and Fe. Although infilling is widespread, particularly in sample 1123D (Suppl. Figure 376 
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11), no large areas of recrystallisation alike thoseas seen in the Eumeralla Formation specimens 377 

are seen.  378 

In both sets of samples Si, Al and Fe are the most abundant elements present in cracks. 379 

The probable source of these elements is the matrix in which the specimens were deposited; the 380 

formations in which the specimens were found consist of sandstones and mudstones from which 381 

high quantities of quartz and clay minerals are to be expected. Fluorine (F) is generally elevated 382 

in fossil hard tissues relative to contemporary remains, as in vivo incorporation of F into 383 

bioapatites is comparatively low yet, while fluoride ions readily replace OH- during diagenesis 384 

(Ghadimi et al. 2013; Keenan et al. 2015). An exception would be enameloid, which has close 385 

chemical composition to geological fluorapatite (Sasagawa et al. 2009; Enax et al. 2012). In our 386 

these samples, F is present in the matrix and has accumulateds in areas close to psurficial cracks, 387 

but it is also present within the fossil tissue. The distribution of F within all the analysed tissues 388 

is largely homogenous, with no clear distinction between dentine and enamel visible from within 389 

the EDS maps (see Supplementary dataFigures).  390 

Secondary elements are marginally more prevalent abundant in the lungfish plates than in 391 

the plesiosaur teeth.  Lungfish do not shed their dental plates (Kemp 2002), and they are thus 392 

only deposited with the death of the animal. The outer surface of the plate is susceptible to 393 

mechanical wear, which may expose the eroded dentine to secondary elements. Wearing may be 394 

exacerbated by environmental stresses such as food availability and oOxygen concentration 395 

(Kemp 2005). It should also be noted that some lungfish taxa replace eroded enamel with 396 

hydroxyapatite- enriched petrodentine which is continuously produced (Kemp 2001; Smith & 397 

Krupina 2001; Kemp 2001). By contrast, plesiosaurs are known to have undergone experienced 398 

continuous tooth shedding and replacement (Kear et al. 2017). Polyphyodonty (tooth shedding) 399 
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is a trait found in the majority of vertebrate groups and is not indicative of an animal’s 400 

metabolism. Kear (2006) noted that the plesiosaur teeth used in this study also exhibited wear to 401 

some degree, though not to the extent that inclusions in worn enamel present a significant route 402 

for secondary mineral infiltration into the dentine (compared to compaction-induced cracks or 403 

natural poresholes).   404 

As with the secondary elements, luminescence is strongly associated with cracks and the     405 

outer surfaces of the samples, reflecting the vulnerability of these areas to infiltration by pore 406 

waters during diagenesis. The enamel present in the plesiosaur teeth superficially appears to 407 

luminesce more strongly than the dentine, contrary to expectations based on the LA-ICP-MS 408 

results. We suggest this may result from the transparency of the enamel, allowing for more 409 

photon transmission than in relatively comparatively more opaque dentine, rather than a signal of 410 

potentially greater diagenetic infiltrationsalteration. The wavelength of the luminescence, 411 

inferred from the hue, is of greater importance to this study than the intensity, as it is indicative 412 

of whether REE replacement has occurred. It is also suggestive of which elements may be 413 

responsible for said replacement, though this information is substantially less quantitative in 414 

comparison to those derived from methods such as LA-ICP-MS.  415 

The compositional profiles obtained in the context of fossil tissue histology determines 416 

potential systematic trends in their relative permeability and susceptibility to diagenesis. Enamel 417 

and enameloid are more resistant to elemental and mineral replacement and alteration than 418 

dentine as they are of a lower porosity and more extensively mineralised, with < 2% organic 419 

content (Hoppe et al. 2003) in comparison to approximately 70% in dentine. Dentine is less 420 

mineralised in vivo than enamel and is conmposed of micro-sized tubules which increase its 421 

porosity and permeability. In lungfish dental plates the dentine is also vascularized (Kemp & 422 
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Barry, 2006), with voids left by blood vessels providing an effective entry -points for 423 

groundwater during taphonomy and early diagenesis. These factors increase the potential for 424 

infiltration of the dentine by secondary elements, in turn increasing the likelihood of mineral 425 

alteration and replacement.  426 

The strong yellow luminescence in the pulp cavity of the Tavlefjellet thelodont scale 427 

(Fig. 2G) suggests stronger infiltration of the cavity by REEs relative to the dentine and 428 

enameloid. This is supported by our LA-ICP-MS analysis showing REE concentrations in the 429 

pulp cavity, in particular Eu, up to an order of magnitude higher than in other tissues, especially 430 

for Eu. Pulp is extensively vascularised and has a greater organic component than dentine, and so 431 

it is more susceptible to fluid infiltration. Greater REE enrichment of the pulp cavity tissue in 432 

comparison to the other tissues further supports the porosity of hard tissues being a significant 433 

factor in diagenetic REE uptake.  434 

The observed REE profiles of the fossils are indicative of limited diagenetic alteration. In 435 

the plesiosaur teeth, the degree of preservation in the inner enamel is such that the observed 436 

isotope signals produced can be interpreted as primary. In these fossil specimens, REE content 437 

varies based on histology and does so in a way that largely mimics the distribution of secondary 438 

elements seen in the EDS maps. The dentine of the samples is, with some exceptions, more 439 

strongly enriched than the enamel. However, the enamel exhibits greater variability of in 440 

enrichment within the same tissue; while it is generally the case that the outer enamel is more 441 

strongly enriched than the inner, both areas possess regions either more strongly or weakly 442 

enriched than would be predicted based on histology. Even within the same tooth this is the case, 443 

as seen in the Wonthaggi plesiosaur tooth. Here In that specimen, the inner enamel is split 444 

between areas of high REE concentration exceeding that of the enamel (approaching 103 ppm 445 
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(log)), and exceptionally low concentration, between 10-1 ppm (log) for LREEs and 1 ppm (log) 446 

for HREEs. 447 

All the Australian Cretaceous samples exhibit a slightly “bell shaped” shale-normalized 448 

REE profile, with MREEs being more abundant than LREEs and HREEs, though this is most 449 

pronounced in the plesiosaur samples. The abundance of MREEs, and in particular Eu, is 450 

reflected in the Cdathodoluminescence images. Strong MREE enrichment is associated with the 451 

overprinting of early diagenetic signals by later recrystallization and fractionation (Lécuyer et al. 452 

2004). This pattern supports the interpretation of the specimens as being well preserved, 453 

displaying minor REE adsorption from early diagenesis rather than the fractionated incorporation 454 

of a significant amount of REEs associated with later overprinting (Fadel et al. 2015; Žigaitė et 455 

al. 2015). 456 

Cerium state varies greatly between tissue types in the examined fossils. In the 457 

Wonthaggi plesiosaur tooth, the Ce anomaly of throughout its dentine appears to be influenced 458 

by a negative La anomaly, while the enamel is influenced by a positive La anomaly. The enamel 459 

of both plesiosaur teeth exhibits an overall positive Ce anomaly. The lungfish plate broadly 460 

displays no Ce anomaly. Positive La anomalies have been linked to riverine conditions (Kulaksız 461 

& Bau 2011). The HREE concentrations in our samples are lower than would be expected from 462 

ocean waters (Patrick et al. 2004). In the Svalbard fish materialsamples, REE enrichment is more 463 

varied. The tThelodont scales display a considerablye positive Eu anomaliesy, which may be 464 

attributed to reworking during diagenesis (see Žigaitė et al. 2016). 465 

 466 

Conclusions 467 
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The REE distribution patterns in the fossil samples studied herein are indicative of 468 

generally minimal diagenetic overprinting in the samples overall, with histological variations that 469 

overlap with the secondary element distributions seen from in the EDS maps. 470 

Our analysis data therefore supports the view conclusion that the primary chemical 471 

composition of the fossil bioapatite is largely well preserved in the studied specimens. In 472 

particular, the inner enamel of our samples likely consists of mostly unaltered, original tissues 473 

and is a prime candidate for future study. We awere also able to show identify the extent to 474 

which secondary elements had infiltrated these samples through diagenetic processes, including 475 

and identify their spatial distributions. We conclude that histology is a better indicator of the 476 

extent of both preserved biominerals and secondary replacement than either diagenetic or non-477 

histology-related biological factors. 478 

The distribution of REEs in our samples in line with the interpretation of a freshwater 479 

system being present, in agreement with previous paleoenvironmental assessments. Our results 480 

unfortunately provide no further insights into the climate of southeasternSE Australia in the 481 

Lower Early Cretaceous, though the cool environment identified by other studies (Rich et al. 482 

2002) may have been a factor in the high level of biomineral chemical preservation seen in our 483 

samples (Tütken et al. 2008). The elevated quantities of MREEs in the pPlesiosaur samples may 484 

be reflective of the marine conditions inhabited by the animals in during life (Žigaitė et al. 2016). 485 

Given the fluvial interpretation of the Eumeralla Fformation (Kear 2006; Kear et al. 2006; Kear 486 

2006; Benson et al. 2013), this further supports the idea of euryhaline behaviour in plesiosaurs 487 

(Benson et al. 2013; Bunker et al. 2022, and citations therein). 488 

Mapping of REE and trace element distributions through electrospectroscopic techniques 489 

provides the benefit of visualising geochemical composition. In so doing, it allows for areas of 490 
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significant diagenetic alteration to be identified, providing insight into the specific mechanism(s) 491 

of diagenetic change. Conversely, it these mapping techniques highlights areas in which primary 492 

biomineral composition is likely to be preserved, and thus they provideserves as a useful tools to 493 

guide other paleobiological, paleoecological, and paleoenvironmental analyseis. In particular, 494 

mapping is likely to benefit the design and spatial targeting while conducting in-situ 495 

microanalyses. Consequently, the application of mapping from multiple sources increases 496 

confidence in biogeochemistry-based reconstructions of past organisms and environments. 497 

 498 
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