# New findings of *Dunyu* (Eugaleaspiformes, Galeaspida) from the Xiaoxi Formation in South China and their biostratigraphic significance (#102582)

First submission

#### Guidance from your Editor

Please submit by 4 Oct 2024 for the benefit of the authors (and your token reward) .



#### **Structure and Criteria**

Please read the 'Structure and Criteria' page for guidance.



#### **Custom checks**

Make sure you include the custom checks shown below, in your review.



#### **Author notes**

Have you read the author notes on the guidance page?



#### Raw data check

Review the raw data.



#### Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

#### **Files**

Download and review all files from the <u>materials page</u>.

- 6 Figure file(s)
- 1 Table file(s)
- 1 Raw data file(s)



#### **New species checks**

- Have you checked our <u>new species policies</u>?
- Do you agree that it is a new species?
- Is it correctly described e.g. meets ICZN standard?

# Structure and Criteria



#### Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

#### **Editorial Criteria**

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

#### **BASIC REPORTING**

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
  Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

#### **EXPERIMENTAL DESIGN**

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

#### **VALIDITY OF THE FINDINGS**

- Impact and novelty is not assessed.

  Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.



Conclusions are well stated, linked to original research question & limited to supporting results.

# Standout reviewing tips



The best reviewers use these techniques

| Τ | p |
|---|---|

# Support criticisms with evidence from the text or from other sources

# Give specific suggestions on how to improve the manuscript

### Comment on language and grammar issues

# Organize by importance of the issues, and number your points

# Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

#### **Example**

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.



### New findings of *Dunyu* (Eugaleaspiformes, Galeaspida) from the Xiaoxi Formation in South China and their biostratigraphic significance

Qiang Li $^{1,2,3,4}$ , Xianren Shan $^3$ , Zhikun Gai $^{3,5}$ , Yang Chen $^2$ , Lijian Peng $^{1,4}$ , Jiaqi Zheng $^1$ , Xianghong Lin $^6$ , Wenjin Zhao $^{3,5}$ , Min Zhu Corresp.  $^{3,5}$ 

Corresponding Author: Min Zhu Email address: zhumin@ivpp.ac.cn

New discoveries of the late Silurian fossil fish *Dunyu* (Eugaleaspidae, Eugaleaspiformes, Galeaspida), *Dunyu tianlu* sp. nov. and *Dunyu* sp., are described from the Xiaoxi Formation in Xiushan of Chongqing and Xiushui of Jiangxi, respectively. *D. tianlu* sp. nov. can be distinguished from *D. longiforus* and *D. xiushanensis* in its nearly equal preorbital and postorbital regions of the headshield. As the currently only known genus of Eugaleaspiformes during the late Silurian, *Dunyu* not only displays a large morphological disparity with galeaspids from both the early Silurian and Early Devonian but also occupies a phylogenetic position that is far from the root of Eugaleaspiformes, which indicates that the lineages between Yongdongaspidae and Eugaleaspidae should have diversified before the early Ludlow, even during the Telychian. Discovery of new specimens of *Dunyu* provides direct evidence on the genus level for the correlation of the late Ludlow strata between the margin and interior of the Yangtze Platform, further supporting that the central part of the Yangtze Platform suffered from widespread transgression in the late Silurian.

<sup>&</sup>lt;sup>1</sup> Research Center of Natural History and Culture, Qujing Normal University, Qujing, China

<sup>&</sup>lt;sup>2</sup> Chongqing Institute of Geology and Mineral Resources, Chongqing, China

<sup>&</sup>lt;sup>3</sup> Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China

<sup>&</sup>lt;sup>4</sup> Key Laboratory of Yunnan Provincial Department of Education, Faculty of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China

<sup>&</sup>lt;sup>5</sup> University of Chinese Academy of Sciences, Beijing, China

 $<sup>^{6}</sup>$  Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming, China



#### New findings of *Dunyu* (Eugaleaspiformes,

#### 2 Galeaspida) from the Xiaoxi Formation in South China

#### and their biostratigraphic significance

4 5

3

Qiang Li<sup>1,2,3,5</sup>, Xianren Shan<sup>3</sup>, Zhikun Gai<sup>3,4</sup>, Yang Chen<sup>2</sup>, Lijian Peng<sup>1,5</sup>, Jiaqi Zheng<sup>1</sup>,
 Xianghong Lin<sup>6</sup>, Wenjin Zhao<sup>3,4</sup>, Min Zhu<sup>3,4</sup>

8

- <sup>1</sup> Research Center of Natural History and Culture, Qujing Normal University, Qujing,
   China.
- <sup>2</sup> Chongging Institute of Geology and Mineral Resources, Chongging, China.
- <sup>3</sup> Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate
- 13 Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China.
- <sup>4</sup> University of Chinese Academy of Sciences, Beijing, China.
- <sup>15</sup> Key Laboratory of Yunnan Provincial Department of Education, Faculty of Biological
- 16 Resource and Food Engineering, Qujing Normal University, Qujing, China.
- 17 <sup>6</sup> Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan
- 18 University, Kunming, China.

19

- 20 Corresponding Author:
- 21 Min Zhu<sup>3,4</sup>
- 142 Xi-zhi-men-wai Street, Xicheng District, Beijing, 100044, China
- 23 Email address: <a href="mailto:zhumin@ivpp.ac.cn">zhumin@ivpp.ac.cn</a>

24 25

#### **ABSTRACT**

- New discoveries of the late Silurian fossil fish *Dunyu* (Eugaleaspidae,
- Eugaleaspiformes, Galeaspida), *Dunyu tianlu* sp. nov. and *Dunyu* sp., are described
- 28 from the Xiaoxi Formation in Xiushan of Chongging and Xiushui of Jiangxi,
- respectively. *D. tianlu* sp. nov. can be distinguished from *D. longiforus* and *D.*
- 30 xiushanensis in its nearly equal preorbital and postorbital regions of the headshield.
- 31 As the currently only known genus of Eugaleaspiformes during the late Silurian,
- 32 Dunyu not only displays a large morphological disparity with galeaspids from both the
- early Silurian and Early Devonian but also occupies a phylogenetic position that is far
- from the root of Eugaleaspiformes, which indicates that the lineages nested between
- 35 Yongdongaspidae and Eugaleaspidae should have diversified before the early Ludlow,
- even during the Telychian. Discovery of new specimens of *Dunyu* provides direct
- evidence on the genus level for the correlation of the late Ludlow strata between the
- margin and interior of the Yangtze Platform, further supporting that the central part of
- the Yangtze Platform suffered from widespread transgression in the late Silurian.



41

43

45

47

48

49

51

53 54

55

57

58

59

61

62

63

64

65

66 67

68

69

70

71

72

73

74

75

76

77

78

#### INTRODUCTION

The Siluro-Devonian Galeaspida is a strongly endemic clade of jawless stem-42 gnathostomes, occurring exclusively in the South China, North China, and Tarim blocks (Janvier, 1996; Zhu and Gai, 2006; Janvier et al., 2009; Gai et al., 2018). Fossil records 44 show that Galeaspida gained its early evolutionary radiation in the South China and Tarim blocks during the Telychian (Llandovery, Silurian) with the diversification of three 46 plesiomorphic groups (Dayongaspidae, Hanyangaspidae, and Xiushuiaspidae), Eugaleaspiformes (e.g. Shuyuidae, Sinogaleaspidae, and Yongdongaspidae), as well as Polybranchiaspiformes (e.g. Gumuaspidae) (Gai et al., 2018; Shan et al., 2020; Chen et al., 2022; Shan et al., 2022a; Shan et al., 2022b; Shan et al., 2023; Zhang et 50 al., 2023). Due to the Kwangsian Orogeny, however, the Yangtze Platform of the South China Block as a whole was uplifted by the end of the Telychian (Rong et al., 1984; 52 Rong et al., 1990; Rong et al., 2019), resulting in the disappearance of a shallow marine environment suitable for galeaspids living. Because of this, the galeaspids underwent a rapid decline in diversity and remained unknown until the late Ludlow of Silurian (Zhu et al., 2012) when several areas of the Yangtze Platform developed into residual basins 56 that provided suitable palaeogeographical conditions for the recovery of galeaspids and other early vertebrates, i.e. placoderms and osteichthyans of the Xiaoxiang vertebrate fauna (Zhu and Zhao, 2009; Zhu et al., 2009; Wang et al., 2010; Zhu et al., 2013; Zhao and Zhu, 2014, 2015; Zhu et al., 2016). 60

*Dunyu*, which is erected based on the type species *Dunyu longiforus* from the Kuanti Formation in Qujing of Yunnan, China (Zhu et al., 2012), is the only known galeaspids during the Ludlow of Silurian. Therefore, the genus is of great significance in understanding the morphology and recovery of galeaspids during the late Silurian. Liu (1983) described Eugaleaspis xiushanensis from the late Ludlow Xiaoxi Formation (upper part of the Huixingshao or Xiaoxiyu Formation in Pan (1986)) in Xiushan of Chongging, and this species used to represent the earliest occurrence of the genus Eugaleaspis (Liu, 1965; Liu, 1975). However, E. xiushanensis was later referred to as Dunyu xiushanensis based on the presence of the posteriorly extending cornual process, the headshield with its breadth/length ratio smaller than 1.1, and the median dorsal opening that is more posteriorly extended, a suit of characters that are absent in the Devonian Eugaleaspis (Zhu et al., 2012). Here we described a new species of Dunyu, Dunyu tianlu sp. nov., and Dunyu sp., from the Xiaoxi Formation in Xiushan of Chongqing and Xiushui of Jiangxi, China new discoveries not only enrich the diversity of galeaspids during the Ludlow lso provide additional evidence for the stratigraphic correlation between the Ludlow Red Beds ─puth China.

#### **MATERIAL AND METHODS**

#### Material



The specimens of *Dunyu* in this study are permanently housed and accessible for 79 examination in the collections of the Institute of Vertebrate Paleontology and 80 Paleoanthropology, Chinese Academy of Sciences (IVPP). All fossil specimens were 81 prepared mechanically using a vibro tool with a tungsten-carbide bit or a needle. They 82 83 were measured with a digital vernier calliper, studied under optical zoom, and photographed with a Canon EOS 5D Mark III camera coupled with a Canon macro 84 photolens (MP-E 65 mm 1:2.8 1-5×). 85 The specimens of *Dunyu tianlu* sp. nov. include a nearly complete headshield (IVPP 86 V33246) and an incomplete headshield (IVPP V33247) cted from the Xiaoxi 87 Formation in Tianlu scenic area of Xiushan County, Chenney and Municipality, China. The 88 specimen of *Dunyu* sp. is an incomplete headshield (IVPP V30976) cted from the 89 Xiaoxi Formation in Sidu Town of Xiushui County, Jiangxi Province, \_\_\_\_\_a. The Xiaoxi 90 Formation, known as the Ludlow Red Beds (LDRBs), is mainly distributed in the interior 91 of the Yangtze Platform of South China including central Guizhou, southeastern 92 Chongging, northwestern Hunan, southeastern Hubei, northwestern Jiangxi, and 93 southwestern Anhui (Wang et al., 2010; Wang et al., 2011; Wang et al., 2017a; Wang et 94 al., 2017b; Wang et al., 2018a; Wang et al., 2018b; Wang et al., 2018c). At both fossil 95 localities of *Dunyu*, the Xiaoxi Formation shows disconformity in contact relationships 96 with the underlying and overlying strata. The geological age of the Xiaoxi Formation is 97 thought to be of late Ludlow and possibly extending to Pridoli, evidenced by 98 nematophyte plants and micro-plant fossils (Wang et al., 2011; Wang et al., 2018a). 99 In the Xiushan area of Chongging, the fish-bearing Xiaoxi Formation is dominated by 100 grey-yellow and green-yellow sandstone, siltstone, silty mudstone, and mudstone (Li et 101 102 al., 2021). The material of *Dunyu tianlu* sp. nov. was discovered from dark greenishyellow silty mudstone near the top of the Xiaoxi Formation, approximately 9.8 m away 103 from the bottom of the overlying Yuntaiguan Formation. In addition to plant debris, 104 chitinozoans, and trace fossils, the associated fossils with *Dunyu tianlu* sp. nov. include 105 the placoderm Bianchengichthys micros (Li et al., 2021). The Xiaoxi Formation 106 disconformably overlies the Telychian Huixingshao Formation, in which the Chongging 107 Lagerstätte was found (Chen et al., 2022; Gai et al., 2022; Zhu et al., 2022). 108 109 In the Xiushui area of Jiangxi, the *Dunyu*-bearing Xiaoxi Formation mainly consists of yellow-green and grey-green fine-grained guartz sandstone interbedded with siltstone. 110 The material of *Dunyu* sp. was collected from dark greenish-yellow silty mudstone near 111 the top of the Xiaoxi Formation. This section is located 5 kilometers southwest of the 112 Silurian Xikeng section. These two sections are located on the two wings of the same 113 syncline, respectively. At the Xikeng section, the Xiaoxi Formation overlies the middle-114 late Telychian Xikeng Formation in which abundant galeaspids including Sinogaleaspis, 115 Rumporostralis, and Xiushuiaspis are yielded (Pan and Wang, 1980; Pan and Wang, 116 1983; Gai et al., 2020; Shan et al., 2020). Dunyu sp. represents the first fossil fish 117 discoveried in the late Ludlow Xiaoxi Formation in Jiangxi, China. 118



121

122

123

124

125

126

127

128

129

130

131

#### Phylogenetic analysis

To determine the phylogenetic position of *Dunyu tianlu* sp. nov. within Galeaspida, an extended phylogenetic analysis based on the updated dataset of Sun et al. (2022) and Liu et al. (2023) was conducted. Two new taxa, Dunyu tianlu sp. nov. and D. xiushanensis, were added to the data matrix (Supplemental Information). The phylogenetic character data entry and formatting were performed in Mesquite (version 3.61) (Maddison and Maddison, 2015). An early plesiomorphic osteostracan Ateleaspis was selected as the outgroup for the phylogenetic analysis and all characters were treated as unordered and weighted equally. The dataset was subjected to the maximum parsimony analysis in the TNT software package (Goloboff and Catalano, 2016). The analysis was conducted using a traditional search strategy, with the following settings: 10,000 maximum trees in memory and 1,000 replications.

132

133

#### RESULTS

- Systematic Paleontology 134
- Subclass Galeaspida Tarlo, 1967 135
- Order Eugaleaspiformes (Liu, 1965) Liu, 1980 136
- Family Eugaleaspidae (Liu, 1965) Liu, 1980 137
- **Differential diagnosis (emended).** Eugaleaspidae differs from all known galeaspids in 138 its silt-like median dorsal opening that extends posteriorly nearly to or beyond the posterior 139 margin of the orbital opening. It differs from other families of Eugaleaspiformes in the 140 absence of the inner cornual process. 141
- Type genus. Eugaleaspis (Liu. 1965) Liu. 1980 142
- Referred genera. Dunyu Zhu et al., 2012, Xitunaspis Sun et al., 2022 143

144

Genus Dunyu Zhu et al., 2012 145

146

- Type species. Dunyu longiforus Zhu et al., 2012 147
- Referred species. Dunyu xiushanensis (Liu, 1983), Dunyu tianlu sp. nov. 148
- **Differential diagnosis (emended).** Dunyu differs from other Eugaleaspiformes by the 149 cornual process that extends posteriorly, a median dorsal opening extending posteriorly 150 beyond orbital openings, and the strong size variation of polygonal flat-topping 151 tubercles.

152 153

Dunyu tianlu sp. nov. 154

155

- **Etymology.** After the Tianlu scenic zone, the fossil site. 156
- Holotype. A nearly complete headshield, IVPP V33246a, and its external mould, 157



- 158 IVPP V33246b.
- Referred specimens. An incomplete headshield, IVPP V33247.
- Locality and horizon. Tianlu scenic area, Xiushan County, Chongqing, China; Xiaoxi Formation, Ludfordian, late Ludlow, Silurian.

**Differential diagnosis.** *Dunyu tianlu* sp. nov. can be distinguished from other species of *Dunyu*, *D. longiforus* and *D. xiushanensis*, by the following characters: small-sized headshield with a maximum length of 43.2 mm and maximum width of 51.8 mm; length ratio between preorbital and postorbital regions of headshield approaching 1.0; third lateral transverse canal without ptomous end.

Dunyu sp.

- **Material.** An incomplete headshield, IVPP V30976.
- **Locality and horizon.** Sidu Town, Xiushui County, Jiangxi Province, China; Xiaoxi Formation, Ludfordian, Ludlow, Silurian.
- **Differential diagnosis.** *Dunyu* sp. differs from other species of *Dunyu* by the longer preorbital region (length ratio between the preorbital and postorbital portions of headshield perhaps greater than 1.0) and the closely related orbital openings with a distance of 13.2 mm between them.
- **Remarks.** Information about the sensory canal system and the cornual process is unknown because of the poorly-preserved specimen.

#### **Description**

#### Dunyu tianlu sp. nov.

The holotype IVPP V33246 (Figs. 1A and 1B) that preserves a nearly complete dorsal headshield and partially ventral headshield, together with IVPP V33247 that preserves a cornual process (Fig. 1C), enables nstruction of a whole headshield morphology of *Dunyu tianlu* sp. nov. (Figs. 1D, 2A 2B). The headshield has a medium size with a maximum width of 51.8 mm, a midline length of 43.2 mm, and an estimated maximum length of 56.2 mm (Table 1). The width-to-length ratio of the headshield is approximately 0.91, nearly equal to that of *Dunyu longiforus*, which is about 0.92. The rostral margin of the headshield is blunt arciform in outline without a rostral process or a rostral angle. The headshield attains its maximum width at nearly the base of the cornual process (c) where the lateral margin of the headshield is nearly parallel (Fig. 1A). The cornual process (Fig. 1C) is spine-shaped with a total length from its base to tip of approximately 13.0 mm. The inner cornual process is absent.

The median dorsal opening (md.o) (Figs. 1A, 1B, 1D and 2A) is longitudinal slit-like in outline with a length of 22.9 mm and a width ranging from 1.5 mm at its middle to 1.9 mm at its anterior and posterior ends (Table 1). The posterior end of the median dorsal opening extends posteriorly beyond the level of the posterior margin of orbital openings (orb). In the holotype, the dermal exoskeleton encircling the median dorsal opening is



200

201

202203

204

205

206

207

208

209

210

211

212

213

214

215

216217

218

219

220

221222

223

224

225226

227

228

229

230

231

232

233

234

235

236

237

238

thickened, forming a ring-like structure (Fig. 1A). The pineal opening (pi) is situated 1.9 mm away from the posterior end of the median dorsal opening (Figs. 1A, 1D, 1E and 2A), and it is small with a diameter of 0.5 mm.

The orbital openings (orb) are dorsally positioned, oval in shape (Figs. 1A, 1B, 1D and 2A), and relatively large with a long axis at 5.2 mm and a short axis at 3.61 mm (Table 1). Each orbital opening is also encircled by a dermal ring-like structure. The distance between the medial margins of two orbital openings is approximately 26.5 mm. The length of the preorbital region, from the center of the orbital opening to the rostral margin, is 21.4 mm, while that of the postorbital region, from the center of the orbital opening to the posterior margin of the headshield (excluding the cornual process), is approximately 21.8 mm (Table 1). The length ratio between preorbital and postorbital regions is nearly 1.0.

The sensory canal system, which can be observed in the internal mould of the holotype (Figs. 1A and 1D), consists of infraorbital canal (ifc), lateral dorsal canals (ldc), lateral transverse canals (ltc), posterior supraorbital canal (soc<sub>2</sub>), median dorsal canal (mdc), and dorsal commissure (dcm). The distributing pattern of the sensory canal system of *Dunyu tianlu* sp. nov. is strikingly similar to that of the type species *D*. longiforus. Specifically, the infraorbital canal stars from the anterolateral side of the orbital opening, extending posteriorly and joining with the lateral dorsal canal at a bend (Figs. 1A and 1D). The lateral dorsal canal continues posteriorly to the posterior margin of the headshield. Three lateral transverse canals (ltc<sub>1-3</sub>) issue laterally from the lateral dorsal canals, and among them, the posteriormost one is much longer than the anterior two canals (Figs. 1A and 1D). The posterior supraorbital canal starts at the anterior side of the orbital opening, extends posteriorly towards the middle line of the headshield, and connects smoothly to the median dorsal canal at the level of the pineal opening (Figs. 1A and 1D). The paired median dorsal canals are nearly parallel and converge with the opposite one to form a U-shaped trajectory. One dorsal commissure, which is roughly in level with the second lateral transverse canal (Itc<sub>2</sub>), is present to connect the median dorsal canals and lateral dorsal canals (Figs. 1A and 1D). One dorsal commissure, which connects the lateral dorsal canals and median dorsal canals, should be present. but it cannot be clearly observed in the holotype (Figs, 1A and 1D).

In the holotype, the dorsal dermal skeleton posterior to orbital openings was partially destroyed, which resulted in six pairs of branchial chambers (br.c) naturally exposed and lined by five successive arranged shallow grooves (Figs. 1A and 1D). The dorsal headshield curves ventrally to form a flat ventral rim (vr) which is partially preserved in the external mould of the holotype (Fig. 1B). The anterior portion of the ventral rim is relatively broad with a width of approximately 8.0 mm on each side. In the central area of IVPP V33246b (Fig. 1B), there is a subtriangular depression enclosed by the ventral rim, indicating the position of the oralobranchial cavity (obr.c). The oralobranchial cavity comprises an anterior oronasal cavity that opens ventrally by an oral fenestra and a



240

241

242243

244

245

246

247

248

249

250251252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268269

270

271272273

274

275

276

277

278

posterior branchial cavity that opens ventrally by several branchial openings (Gai et al., 2011). It is noteworthy that the anterior margin of the oral fenestra, defined by the posterior margin of the anteriormost ventral rim, is in an acute angle (Figs. 1B and 2B), a condition similar to that of *Dunyu longiforus* and *Falxcornus liui* (Meng and Gai, 2021) but distinct from that of basal galeaspids such as *Hanyangaspis guodingshanensis* (Pan et al., 1975) and *Changxingaspis gui* (Wang, 1991) in which the anterior margin of the oral fenestra is gently arched.

The ornamentation of the headshield consists of closely set, irregular, and polygonal tubercles, a condition similar to that of *Dunyu longiforus*. The tubercles show various sizes in different regions of the headshield. Specifically, the tubercles in the central area of the headshield are large (Figs. 1A and 1E), with a length of 0.9 mm, whereas those around the lateral margin of the headshield are relatively smaller, with a length of 0.6

#### Dunyu sp.

The material of *Dunyu* sp. only includes an incomplete headshield with a preserved length of 46.3 mm and an estimated maximum width of 49.2 mm, suggesting that the whole length of the headshield is probably much greater than its width. The headshield width of *Dunyu* sp. approaches that of *D. tianlu* (51.1 mm) but is much smaller than that of D. xiushanensis (58.0 mm) and D. longiforus (78.0 mm). The median dorsal opening (Figs. 3A and 3B) is longitudinal slit-like in outline with a length of 23.2 mm and a width ranging from 1.5 mm to 2.2 mm (Table 1). The length-to-width ratio of the median dorsal opening is greater than 10.5. As in other species of Dunyu, the posterior end of the median dorsal opening extends posteriorly beyond the level of the posterior margin of orbital openings. The pineal opening (Figs. 3A and 3B) is far from the posterior end of the median dorsal opening with a distance of 7.0 mm between them. It is round in outline with a diameter of approximately 0.9 mm. The orbital openings (Figs. 3A and 3B) are dorsally positioned and relatively close to the midline of the headshield with a distance of 13.2 between them. The long axis of the orbital opening is nearly 4.2 mm (Table 1). The length of the preorbital region is 29.8 mm, approaching the length of D. longiforus (28.0 mm) but being much greater than the length of D. tianlu (21.4 mm) and D. xiushanensis (16.5 mm). The ornamentation of the headshield consists of closely set, polygonal, and large tubercles with the maximum length of a single tubercle exceeding 1.0 mm.

Comparison

*Dunyu tianlu* sp. nov. can be assigned to the genus *Dunyu* because it exhibits a suit of diagnostic characters of the genus, including the median dorsal opening extending posteriorly beyond orbital openings, the posteriorly extending cornual process, and no inner cornual process. *D. tianlu* sp. nov. is more similar to *D. longiforus* than *D. xiushanensis* in the width-to-length ratio of the headshield, which is approximately 0.9,



and in the length-to-width ratio of the median dorsal opening, which is nearly 12.0. Regarding individual size, *D. tianlu* sp. nov. approaches *D. xiushanensis* but is much smaller than *D. longiforus*. However, *D. tianlu* sp. nov. markedly differs from both *D. longiforus* and *D. xiushanensis* in the length ratio between the preorbital and postorbital regions of the headshield. The ratio is 0.99 in *D. tianlu* sp. nov., whereas it is 0.74 in *D. longiforus* and 0.80 in *D. xiushanensis*, which means that the orbital openings of *D. tianlu* sp. nov. are more posteriorly positioned than those of the latter two.

The specimen IVPP V30976 resembles *Dunyu*, *Xitunaspis*, and *Eugaleaspis* by the longitudinal slit-like median dorsal opening that extends to the posterior margin of orbital openings. However, *Xitunaspis* and *Eugaleaspis* are known exclusively from the Lochkovian to the Pragian of Lower Devonian in Yunnan and Guangxi, whereas IVPP V30976 is collected from the upper Ludlow Xiaoxi Formation in Jiangxi. By comparison, specimen IVPP V30976 is suggestive of the late Ludlow *D. tianlu* sp. nov. in headshield size, the length-to-width ratio of the median dorsal opening, and the ornamentation of the headshield. It only differs from *D. tianlu* sp. nov. in its longer preorbital region and more closely related orbital openings. Therefore, we propose to assign IVPP V30976 to *Dunyu*. Considering the lack of data on the sensory canal system and the cornual process, the erection of a new species is suspended for the specimen.

#### Phylogenetic results

The maximum parsimony analysis produced one most-parsimonious tree (Fig. 4) with a tree length = 216, consistency index (CI) = 0.389, and retention index (RI) = 0.781. The monophyly of Eugaleaspidae consisting of *Eugaleaspis*, *Xitunaspis*, and *Dunyu* is supported by the loss of inner cornual processes. Three species of *Dunyu* constitute a clade nested within Eugaleaspidae, supported by two synapomorphies including the posteriorly-projected cornual processes and the median dorsal opening extending posteriorly beyond the posterior margin of orbital openings. Within the *Dunyu* clade, *Dunyu tianlu* sp. nov. is resolved as the sister taxon to *D. longiforus* plus *D. xiushanensis*.

#### DISCUSSION

#### **Taxonomic implications**

Dunyu tianlu sp. nov. and Dunyu sp. enriched the morphological and taxonomic diversity of Eugaleaspidae and deepened the understanding of the distribution and diversity of galeaspids during the late Silurian. Eugaleaspidae was established by Liu (1965) based on the type genus Eugaleaspis. Zhu and Gai (2006) incorporated Eugaleaspis, Yunnanogaleaspis (Pan and Wang, 1980), Pterogonaspis (Zhu, 1992), Tridensaspis (Liu, 1986) and Nochelaspis (Zhu, 1992) into Eugaleaspidae based on the first cladistically-based classification of the Galeaspida. The following described Dunyu was also assigned to the Eugaleaspidae among which Dunyu was thought to be more closely related to Eugaleaspis than to other genera by the absence of inner cornual



- process (Zhu et al., 2012). However, the incorporation of *Yunnanogaleaspis*, Pterogonaspis, Tridensaspis, and Nochelaspis into Eugaleaspidae, as proposed by Zhu and Gai (2006), will cause the diagnosis of the family to be greatly modified to occupy a larger morphospace (e.g. bearing rostral process or not; inner cornual process absent or not; cornual process projecting laterally, posterolaterally, or posteriorly). Therefore, Shan et al. (2020) proposed to assign *Pterogonaspis* and *Tridensaspis* to the Tridensaspidae and remove Yunnanogaleaspis and Nochelaspis from the Eugaleaspidae to maintain the diagnostic stability of the Eugaleaspidae erected based on Eugaleaspis (Fig. 4). Among Eugaleaspiformes, the clade Eugaleaspidae was resolved as the highest branch by the synapomorphy of the loss of inner cornual processes, bearing a closer relationship to Tridensaspidae than Yunnanogaleaspis and Nochelaspis. The phylogenetic stability of Eugaleaspidae was also corroborated by the finding of the middle Lochkovian Xitunaspis which falls into the clade Eugaleaspidae and is sister to Dunyu (Sun et al., 2022). Dunyu tianlu sp. nov. described herein displays nearly equal preorbital and postorbital regions, which is unique among Eugaleaspidae, thus increasing the taxonomic and morphological diversity of the clade during the Ludlow of late Silurian.
  - Fossil records show that the Eugaleaspiformes diverged from the basal galeaspids as early as the Telychian (Llandovery, Silurian) during which they reached the highest taxonomic diversity with the occurrence of Shuyuidae, Sinogaleaspida, Yongdongaspidae, and *Anjiaspis* (Chen et al., 2022; Shan et al., 2022a; Shan et al., 2022b). After a major decline caused by the Yangtze Uplift, the diversity of Eugaleaspiformes gained a second peak during the Early Devonian (Fig. 4). As a stratigraphically intermediate member, however, *Dunyu* fails to fill the morphological gap of Eugaleaspiformes between the early Silurian and Early Devonian. By contrast, it exhibits a large number of specialized features, such as the absence of the inner cornual process and the posteriorly extending cornual process. Recent phylogenetic results resolve *Dunyu* as a sister group to *Xitunaspis* (Sun et al., 2022), a phylogenetic position that is far from the root of Eugaleaspiformes, indicating the lineages positioned between Yongdongaspidae and Eugaleaspidae should have diversified before the early Ludlow, even during the Telychian (Fig. 4).

#### Biostratigraphic significance

The Silurian shallow marine red beds are widely distributed in South China, and three sets of them, informally called the Lower Red Beds (LRBs), the Upper Red Beds (URBs), and the Ludlow Red Beds (LDRBs), have been recognized mainly in the following three horizons: the lower Telychian, the upper Telychian, and the upper Ludlow (Rong et al., 2012; Rong et al., 2019). For a long time, the late Ludlow strata were considered to be distributed exclusively in the marginal area of the Yangtze Platform of South China Block (Rong et al., 2003), including western and northern



Sichuan (Jin et al., 1989; Wan et al., 1991), eastern Yunnan (Ge et al., 1979; Wang, 2001), northern Jiangsu (Geng et al., 1997; Wang and Li, 2000; Wang and Li, 2001), and southern Guangxi and Guangdong (Fig. 5A). This paleogeographic pattern was caused by the "Yangtze Uplift" that resulted in the Yangtze Platform of South China Block as a whole being uplifted by the end of the Telychian (Llandovery, Silurian)(Rong et al., 1984; Rong et al., 1990). In the past two decades, the late Ludlow shallow marine deposits (known as the Xiaoxi Formation) were successively discovered in the interior of the Yangtze Platform including Xiushan of Chongging, Zhangjiajie of Hunan, Yinjiang of Guizhou, Yichang and Tongshan of Hubei, Xiushui of Jiangxi, and Susong of Anhui, indicating that the shallow seawater invaded into the central part of the Yangtze Platform during the late Ludlow after the "Yangtze Uplift" (Fig. 5A) (Wang et al., 2010; Wang et al., 2011; Wang et al., 2017a; Wang et al., 2017b; Wang et al., 2018a; Wang et al., 2018b; Wang et al., 2018c). 

The age of the late Silurian rocks along the margin of the Yangtze Platform (Region I and III, Fig. 5A) can be determined by the conodonts like *Ozarkodina snajdri* and *O. crispa*, as well as the brachiopods like the *Retziella* fauna (Wan et al., 1991; Jin et al., 1992; Tang et al., 2010). For example, the Chejiaba Formation in northern Sichuan is mainly of late Ludlow age and could extend upward to lower Pridoli (Tang et al., 2010; Wang et al., 2017b). However, the common marine index fossils are nearly absent in the Ludlow deposits (Xiaoxi Formation) in the interior of the Yangtze Platform (Region VI, Fig. 5A) where the recognition and correlation of the Ludlow strata have been weakly supported by nematophytes, tubular trace fossils, as well as fossil fishes (Zhao and Zhu, 2010; Wang et al., 2017b).

In Qujing of East Yunnan, the Ludlow Red Beds (LDRBs) are found in the Kuanti Formation, which has yielded the Yangtze Vertebrate Assemblage represented by galeaspids *Dunyu longiforus*, placoderms *Entelognathus primordialis* and *Qilinyu rostrata* (Zhu et al., 2013, 2016), and osteichthyans *Guiyu oneiros* and *Megamastax amblyodus* (Zhao and Zhu, 2010, 2014). This assemblage can be confidently assigned to the Ludfordian age (Ludlow, Silurian) because it is immediately beneath the first appearance of *Ozarkodina crispa* (Zhao and Zhu, 2014, 2015; Cai et al., 2020). Therefore, the Yangtze Vertebrate Assemblage can provide a palaeoichthyological standard for the correlations of the Ludlow Red Beds (LDRBs) between the margin and interior of the Yangtze Platform.

Previously, mainly based on *Dunyu*, the correlation between the Kuanti Formation in Qujing of Yunnan and the Xiaoxi Formation in Xiushan of Chongqing was suggested (Zhao and Zhu, 2014, 2015). However, the horizon of the *Dunyu xiushanensis* in Xiushan of Chongqing was in reality not clear in Liu (1983), and it was inferred to be the upper member of the 'Huixingshao Formation' (corresponding to the Xiaoxi Formation) by Pan (1986). *Dunyu tianlu* sp. nov. described herein confirmed that the strata yielding *Dunyu* in Xiushan of Chongqing belong to the Xiaoxi Formation, thus providing new



- evidence for the reliable correlation between the Xiaoxi Formation and the Kuanti
- Formation (Fig. 5B). The funding of *Dunyu* sp. expanded the distribution of *Dunyu* to
- 401 northwestern Jiangxi and provided further evidence for the correlation between the
- 402 Xiaoxi Formation and the Kuanti Formation in eastern Yunnan. Therefore, the genus
- 203 Dunyu is of great biostratigraphic significance in the recognition and correlation of the
- upper Ludlow in South China (Fig. 5B). The paleogeographic distribution of the late
- Ludlow *Dunyu* in the interior of the Yangtze Platform (Fig. 6) also corroborates that the
- central part of the Yangtze Platform suffered from widespread transgression in the late
- 407 Silurian.

409

#### CONCLUSIONS

The new materials of eugaleaspids from the upper Silurian of Chongging, China, 410 provide reliable diagnostic features for the erection of a new species, *Dunyu tianlu* sp. 411 nov. *Dunyu* shows a large morphological disparity to all other eugaleaspiform members 412 and phylogenetically forms a sister to the Devonian Xitunaspis, which indicates that the 413 lineages phylogenetically between Yongdongaspidae and Eugaleaspidae should have 414 diversified before the early Ludlow, even during the Telychian. The occurrences of *Dunyu* 415 from the Xiaoxi Formation in Chongging and Jiangxi and the Kuanti Formation in Yunnan 416 provide reliable evidence for the correlations of the Ludlow Red Beds (LDRBs) between 417 the margin and interior of the Yangtze Platform of South China. 418

419 420

421 422

#### **ACKNOWLEDGEMENTS**

We thank Ridong Zhao and Jie Zhang for their assistance with the field work and Jinjing Li for the life restoration of galeaspids.

423

424

#### References

- Cai, J.C., Zhao, W.J., and Zhu, M., 2020. Subdivision and age of the Silurian fish-bearing Kuanti
   Formation in Qujing, Yunnan Province. Vertebrata PalAsiatica, 58 (4): 249–266.
   DOI 10.19615/j.cnki.1000-3118.200513
- Chen, Y., Gai, Z.K., Li, Q., Wang, J.H., Peng, L.J., Wei, G.B., and Zhu, M., 2022. A new family of
   galeaspids (Jawless Stem-Gnathostomata) from the early Silurian of Chongqing, southwestern
   China. Acta Geologica Sinica (English Edition), 96 (2): 430–439. https://doi.org/10.1111/1755 6724.14909
- Gai, Z.K., Donoghue, P.C.J., Zhu, M., Janvier, P., and Stampanoni, M., 2011. Fossil jawless fish from China foreshadows early jawed vertebrate anatomy. Nature, 476 (7360): 324–327. https://doi.org/10.1038/nature10276
- Gai, Z.K., Li, Q., Ferrón, H.G., Keating, J.N., Wang, J., Donoghue, P.C.J., and Zhu, M., 2022.
  Galeaspid anatomy and the origin of vertebrate paired appendages. Nature, 609(7929): 959–963. https://doi.org/10.1038/s41586-022-04897-6



- 438 Gai, Z.K., Lu, L.W., Zhao, W.J., and Zhu, M., 2018. New polybranchiaspiform fishes (Agnatha:
- Galeaspida) from the Middle Palaeozoic of China and their ecomorphological implications. PloS One, 13 (9): e0202217. https://doi.org/10.1371/journal.pone.0202217
- Gai, Z.K., Shan, X.R., Sun, Z.X., Zhao, W.J., Pan, Z.H., and Zhu, M., 2020. A redescription of the
- Silurian *Sinogaleaspis shankouensis* (Galeaspida, stem-Gnathostomata) from Jiangxi, China.
- Vertebrata PalAsiatica, 58 (2): 85–99. DOI 10.19615/j.cnki.1000-3118.191105
- 444 Ge, Z.Z., Rong, J.Y., Yang, X.C., Liu, G.W., Ni, Y.N., Dong, D.Y., and Wu, H.J., 1979. The Silurian
- System of Southwest China. In: Nanjing Institute of Geology and Palaeontology, Academia Sinica, ed. Carbonate Biostratigraphy of Southwest China. Beijing: Science Press, 155–220.
- Geng, L.Y., Qian, Z.S., Ding, L.S., Wang, Y., Wang, G.X., and Cai, X.Y., 1997. Silurian chitinozoans from the Yangtze Region. Palaeoworld, (8): 1–152, 20pls.
- Goloboff, P.A., Catalano, S.A., 2016. TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics. 32, 221–238.
- Janvier, P., 1996. Early Vertebrates. Oxford: Clarendon Press, 1–393.
- Janvier, P., Thanh, T.D., Phuong, T.H., Clément, G., and Phong, N.D., 2009. Occurrence of
- Sanqiaspis, Liu, 1975 (Vertebrata, Galeaspida) in the Lower Devonian of Vietnam, with remarks
- on the anatomy and systematics of the Sanqiaspididae. Comptes Rendus Palevol, 8 (1): 59–65.

  DOI:10.1016/j.crpv.2008.10.008
- Jin, C.T., Wan, Z.Q., Ye, S.H., Chen, J.R., Qian, Y.Z., and Yi, Y.E., 1992. The Silurian System in
- Guangyuan, Sichuan and Ningqiang, Shaanxi. Chengdu Scientific and Technologic University
  Press, Chengdu: 1–97.
- 459 Jin, C.T., Ye, S.H., Jiang, X.S., Li, Y.W., Yu, H.J., He, Y.X., Yi, Y.E., and Pan, Y.T., 1989. The
- Silurian stratigraphy and paleontology in Erlangshan district, Sichuan. Bulletin of the Chengdu
- Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences, 11: 1– 224.
- Li, Q., Zhu, Y.A., Lu, J., Chen, Y., Wang, J.H., Peng, L.J., Wei, G.B., and Zhu, M., 2021. A new
- Silurian fish close to the common ancestor of modern gnathostomes. Current Biology, 31 (16): 3613–3620. DOI:10.1016/j.cub.2021.05.053
- 466 Liu, S.F., 1983. Agnathan from Sichuan, China. Vertebrata PalAsiatica, 21 (2): 97–102.
- 467 Liu, S.F., 1986. Fossil Eugaleaspid from Guangxi. Vertebrata PalAsiatica, 24 (1): 1–9.
- 468 Liu, W.Y., Shan, X.R., Lin, X.H., Shen, Y.M., Liu, Y.H., Zhang, Z.H., Gai, Z.K., 2023. The first
- Eugaleaspiforme fish from the Silurian of the Tarim Basin reveals a close relationship between
- the Tarim and South China blocks at 438 mya. Palaeogeography, Palaeoclimatology,
- 471 Palaeoecology, 628(2023): 111774. https://doi.org/10.1016/j.palaeo.2023.111774
- Liu, Y.H., 1965. New Devonian agnathans of Yunnan. Vertebrata PalAsiatica, 9 (2): 125–134.
- Liu, Y.H., 1975. Lower Devonian Agnathans of Yunnan and Sichuan. Vertebrata PalAsiatica, 13 (4): 202–216.
- 475 Maddison, W.P., Maddison, D.R., 2015. Mesquite 3.51: a modular system for evolutionary analysis.
- 476 Meng, X.Y., Gai, Z.K., 2021. Falxcornus, a new genus of Tridensaspidae (Galeaspida, stem-
- Gnathostomata) from the Lower Devonian in Qujing, Yunnan. China. Historical Biology, 34(5):
- 478 897–906. https://doi.org/10.1080/08912963.2021.1952198
- P'an, K., Wang, S.T., and Liu, Y.P., 1975. The Lower Devonian agnatha and pisces from South China. Professional Papers of Stratigraphy and Paleontology, 1: 135–169.
- Pan, J., 1986. New discovery of Silurian vertebrates in China. In: Professional Papers Presented to
- Professor Yoh Sen-shing. Beijing: Geological Publishing House, 67–76.
- Pan, J., and Wang, S.T., 1980. New finding of Galeaspiformes in South China. Acta Palaeontologica



- 484 Sinica, 19 (1): 1–7.
- Pan, J., and Wang, S.T., 1983. Xiushuiaspidae, a new family of Polybranchiaspformes from Xiushui of Jiangxi Province. Acta Palaeontologica Sinica, 22 (5): 505–509.
- Rong, J.Y., Chen, X., Wang, C.Y., Geng, L.Y., Wu, H.J., Deng, Z.Q., Chen, T.E., and Xu, J.T., 1990.
  Some problems concerning the Silurian correlation in South China. Journal of Stratigraphy, 14
  (3): 161–177.
- 490 Rong, J.Y., Johnson, M.E., and Yang, X.C., 1984. Early Silurian (Llandovery) sealevel changes in 491 the Upper Yangtze region of central and southwestern China. Acta Palaeontologica Sinica, 23 492 (6): 672-693.
- 493 Rong, J.Y., Wang, Y., Zhan, R.B., Fan, J.X., Huang, B., Tang, P., Li, Y., Zhang, X.L., Wu, R.C., and
  494 Wang, G.X., 2019. Silurian integrative stratigraphy and timescale of China. Science China-Earth
  495 Science, 62 (1): 89–111. DOI 10.1007/s11430-017-9258-0
- 496 Rong, J.Y., Wang, Y., and Zhang, X.L., 2012. Tracking shallow marine red beds through geological 497 time as exemplified by the lower Telychian (Silurian) in the Upper Yangtze Region, South China. 498 Science China-Earth Science, 55 (5): 699–713. DOI 10.1007/s11430-012-4376-5
- Rong, J.Y., Chen, X.G., Su, Y.Z., Ni, Y.N., Zhan, R.B., and Chen, T.E., 2003. Silurian paleogeography of China. In: Landing E, Johnson M E, eds. Silurian Lands and Seas-Paleogeography Outside of Laurentia. New York State Mus Bull, 493: 243–298.
- Shan, X.R., Gai, Z.K., Lin, X.H., Chen, Y., Zhu, M., and Zhao, W.J., 2022a. The oldest
   eugaleaspiform fishes from the Silurian red beds in Jiangxi, South China and their stratigraphic
   significance. Journal of Asian Earth Science, 229: 105187.
   https://doi.org/10.1016/j.jseaes.2022.105187
- 506 Shan, X.R., Lin, X.H., Zhang, Y.M., Li, X.T., and Gai, Z.K., 2023. New findings of *Xiyuichthys*507 (Xiushuiaspidae, Galeaspida) from the Silurian of Jiangxi Province and Tarim Basin. Vertebrata
  508 PalAsiatica, 61 (4): 245–260. DOI: 10.19615/j.cnki.2096-9899.230904
- Shan, X.R., Zhao, W.J., Lin, X.H., Chen, Y., Li, Q., Zhu, M., and Gai, Z.K., 2022b. The correlations
   of the lower Telychian red beds in China from the palaeoichthyological evidence. Journal of
   Stratigraphy, 46 (2): 138–153. DOI 10.19839/j.cnki.dcxzz.2022.0011
- Shan, X.R., Zhu, M., Zhao, W.J., Pan, Z.H., Wang, P.L., and Gai, Z.K., 2020. A new genus of
   sinogaleaspids (Galeaspida, stem-Gnathostomata) from the Silurian Period in Jiangxi, China.
   PeerJ, 8: e9008. DOI 10.7717/peerj.9008
- Sun, H.R., Gai, Z.K., Cai, J.C., Li, Q., Zhu, M., and Zhao, W.J., 2022. *Xitunaspis*, a new eugaleaspid
   fish (Eugaleaspiformes, Galeaspida) from the Lower Devonian of Qujing, Yunnan. Vertebrata
   PalAsiatica, 60 (3): 169–183. DOI 10.19615/j.cnki.2096-9899.220412
- Tang, P., Huang, B., Wang, C.Y., Xu, H.H., and Wang, Y., 2010. Restudy and definition of the
   Ludlow Chejiaba Formation of the Guangyuan area, Sichuan Province. Journal of Stratigraphy,
   34: 241–253.
- Tarlo, L.B., 1967. Agnatha. In: Harland W B ed. The Fossil Record. London: The Geological Society of London, 629–636.
- Wan, Z.Q., Jin, C.T., Chen, J.R., Qian, Y.Z., and Ye, S.H., 1991. Discovery of late Silurian strata in the Guangyuan area of Sichuan and its significance. Journal of Stratigraphy, 15: 53–55.
- Wang, C.Y., 2001. Age of the Guandi Formation in Qujing District, E. Yunnan. Journal of Stratigraphy, 25 (2): 125–127.
- Wang, N.Z., 1991. Two new Silurian galeaspids (jawless craniates) from Zhejiang Province, China,
- with a discussion of galeaspid-gnathostome relationships. In: Chang, M.M., Liu, Y.H., and
- Zhang, G.R. (eds), Early vertebrates and related problems of evolutionary biology. Beijing:



- 530 Science Press, 41–65.
- 531 Wang, Y., Jiang, Q., Tang, P., Zhang, X.I., Huang, B., Zhan, R.B., Sun, C.I., and Rong, J.Y., 2018a.
- The discovery of late Silurian Xiaoxi Formation and emendation of lower Silurian Xikeng
- Formation in north-western Jiangxi, South China. Journal of Stratigraphy, 42 (3): 257–266.
- Wang, Y., Jiang, Q., Tang, P., Zhang, X.L., Huang, B., and Zhan, R.B., 2017a. The discovery of late Silurian strata in the Tongshan area, South China. Journal of Stratigraphy, 41 (4): 386–391.
- Wang, Y., Jiang, Q., Tang, P., Zhang, X.L., Huang, B., and Zhan, R.B., 2018b. Study of the late
- Silurian Xiaoxi Formation at the Zuoshan section, Susong, Anhui, China. Journal of Stratigraphy, 42 (4): 159–166.
- Wang, Y., and Li, J., 2000. Late Silurian trilete spores from northern Jiangsu, China. Review of Palaeobotany and Palynology, 111 (1-2): 111–125.
- Wang, Y., and Li, J., 2001. The study of Upper Silurian "Phytodebris" from North Jiangsu, China.

  Acta Palaeontological Sinica, 40 (1): 51–60.
- Wang, Y., Rong, J.Y., Xu, H.H., Wang, C.Y., and Wang, G.X., 2010. On the late Silurian stratigraphy
   of the Zhangjiajie area, Hunan Province, with a discussion on age of the Xiaoxi Formation.
   Journal of Stratigraphy, 34 (2): 113–126.
- Wang, Y., Tang, P., Zhang, X.L., Liu, J.B., Zhang, Y.C., Yan, K., Wang, G.X., Huang, B., and Zhan,
   R.B., 2017b. Discovery of the nematophyte fossils from the late Silurian Chejiaba Formation,
   Guangyuan, Sichuan, South China, and their stratigraphical significance. Journal of
- 549 Stratigraphy, 41: 368–374.
- Wang, Y., Tang, P., Zhang, X.L., Zhang, Y.C., Huang, B., and Rong, J.Y., 2018c. Discovery of late
   Silurian Xiaoxi Formation from Shamaoshan section, Yichang, Hubei, South China Journal of
   Stratigraphy, 42 (4): 371–380.
- Wang, Y., Zhang, X.L., Xu, H.H., Jiang, Q., and Tang, P., 2011. Discovery of the late Silurian Xiaoxi Formation in the Xiushan area, Chongqing City, China, and the revision of the Huixingshao Formation. Journal of stratigraphy, 35 (2): 113–121.
- Zhang, Y.M., Li, X.T.S., Xian R, Lin, X.H., Tan, K., Li, Q., Zhao, W.J., Tang, L.Z., Zhu, M., and Gai,
   Z.K., 2023. The first galeaspid fish (stem-gnathostomata) from the Silurian Xiushan formation of
   Hunan Province, China. Historical Biology: 1–12.
- 559 https://doi.org/10.1080/08912963.2023.2225083
- Zhao, W.J., and Zhu, M., 2010. Siluro-Devonian vertebrate biostratigraphy and biogeography of China. Palaeoworld, 19 (1–2): 4–26. DOI:10.1016/j.palwor.2009.11.007
- Zhao, W.J., and Zhu, M., 2014. A review of the Silurian fishes from China, with comments on the
   correlation of fish-bearing strata. Earth Science Frontiers, 21 (2): 185–202. DOI
   10.13745/j.esf.2014.02.014
- Zhao, W.J., and Zhu, M., 2015. A review of Silurian fishes from Yunnan, China and related
   biostratigraphy. Palaeoworld, 24 (1–2): 243–250. https://doi.org/10.1016/j.palwor.2015.02.004
- Zhu, M., 1992. Two new eugaleaspids, with a discussion on eugaleaspid phylogeny. Vertebrata PalAsiatica, 30 (3): 169–184.
- Zhu, M., Ahlberg, P.E., Pan, Z.H., Zhu, Y.A., Qiao, T., Zhao, W.J., Jia, L.T., and Lu, J., 2016. A
  Silurian maxillate placoderm illuminates jaw evolution. Science, 354 (6310): 334-336. DOI
  10.1126/science.aah3764
- Zhu, M., and Gai, Z.K., 2006. Phylogenetic relationships of galeaspids (Agnatha). Vertebrata
   PalAsiatica, 44 (1): 1–27.
- Zhu, M., Liu, Y.H., Jia, L.T., and Gai, Z.K., 2012. A new genus of eugaleaspidiforms (Agnatha:
- Galeaspida) from the Ludlow, Silurian of Qujing, Yunnan, Southwestern China. Vertebrata



576 PalAsiatica, 50 (1): 1-7. Zhu, M., Yu, X.B., Ahlberg, P.E., Choo, B., Lu, J., Qiao, T., Qu, Q.M., Zhao, W.J., Jia, L.T., Blom, H., 577 and Zhu, Y.A., 2013. A Silurian placoderm with osteichthyan-like marginal jaw bones. Nature, 578 579 502 (7470): 188-193. https://doi.org/10.1038/nature12617 Zhu, M., and Zhao, W., 2009. The Xiaoxiang Fauna (Ludlow, Silurian) - a window to explore the 580 early diversification of jawed vertebrates. Rendiconti della Società Paleontologica Italiana, 3 (3): 581 582 357-358. Zhu, M., Zhao, W.J., Jia, L.T., Lu, J., Qiao, T., and Qu, Q.M., 2009. The oldest articulated 583 osteichthyan reveals mosaic gnathostome characters. Nature, 458: 469-474. 584 https://doi.org/10.1038/nature07855 585 586 Zhu, Y.A., Li, Q., Lu, J., Chen, Y., Wang J.H., Gai, Z.K., Zhao, W.J., Wei, G.B., Yu, Y.L., Ahlberg, P.E., Zhu, M., 2022. The oldest complete jawed vertebrates from the early Silurian of 587

China. Nature 609, 954-958 (2022). https://doi.org/10.1038/s41586-022-05136-8



Table 1(on next page)

Measurements and comparisons of *Dunyu* (mm)

Table 1 Measurements and comparisons of *Dunyu* (mm)

| Items                                   | D. longiforus | D. xiushanensis | D. tianlu | D. sp.  |
|-----------------------------------------|---------------|-----------------|-----------|---------|
|                                         | IVPP V17681   | V6793.1         | V33246    | V30976  |
| Maximum length of the headshield        | 85.0          | 55.0            | 56.2      | _       |
| Maximum width of the headshield         | 78.0          | 58.0            | 51.1      | 49.2    |
| Length of the headshield in midline     | 66.0          | 37.0            | 43.2      | _       |
| Long axis of orbital openings           | 10.0          | 5.0             | 5.2       | 4.2     |
| Distance between orbital openings       | _             | 20.0            | 21.1      | 13.1    |
| Length of preorbital region in midline  | 28.0          | 16.5            | 21.4      | 29.8    |
| Length of postorbital region in midline | 38.0          | 20.5            | 21.8      | _       |
| Long axis of median dorsal opening      | 30.5          | 15.0            | 22.9      | 23.2    |
| Short axis of median dorsal opening     | 1.6~2.5       | 2.0             | 1.5~1.9   | 1.5~2.2 |
| Diameter of pineal opening              | 2.0           | <del>-</del>    | 0.5       | 0.9     |

2

3

Figure 1 Photographs of *Dunyu tianlu* sp. nov.

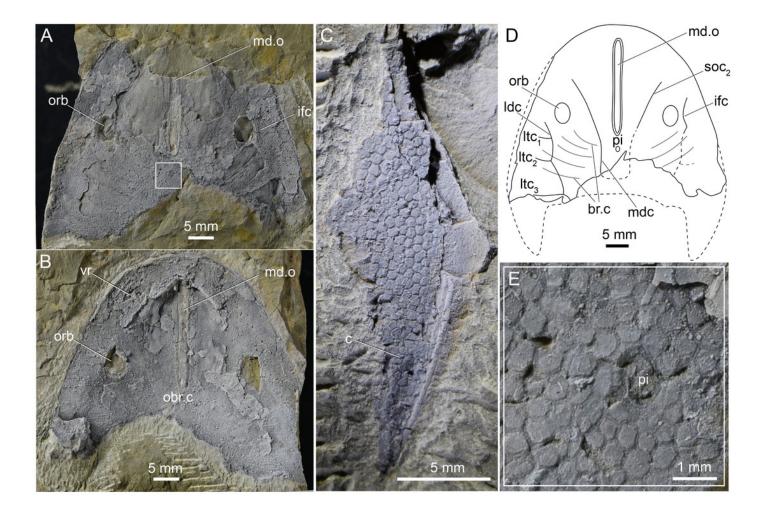



Figure 2 Restoration of *Dunyu tianlu* sp. nov. in dorsal (A) and ventral (B) views.

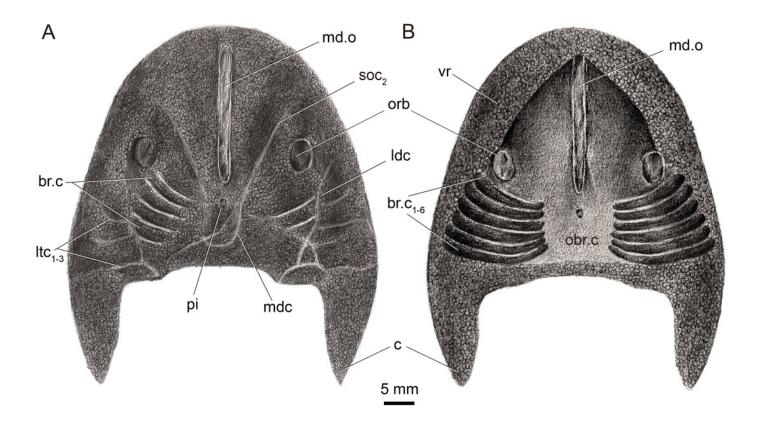





Figure 3 Photographs of *Dunyu* sp.

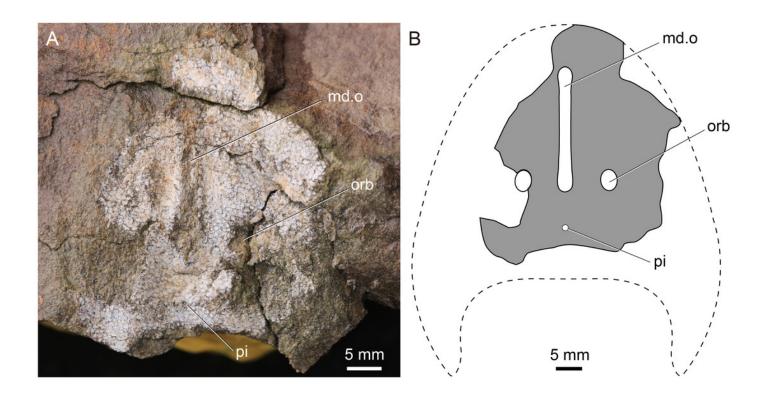



Figure 4 Time-calibrated cladogram of the Eugaleaspiformes.

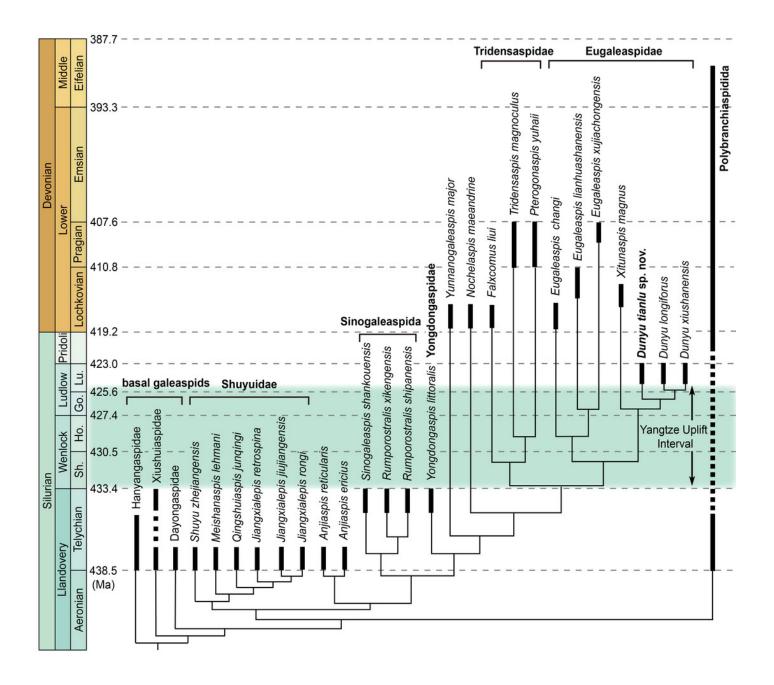





Figure 5 Late Silurian paleogeographic map of South China (A) and the stratigraphical positions and correlations of the Ludlow Red Beds in Yangtze Region (B).

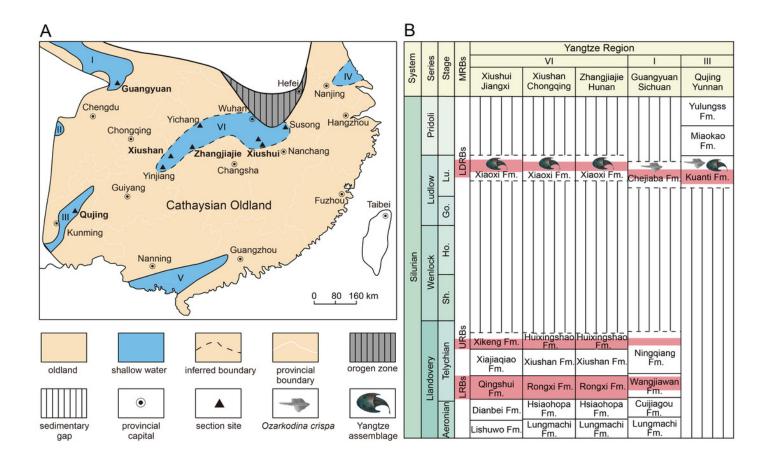
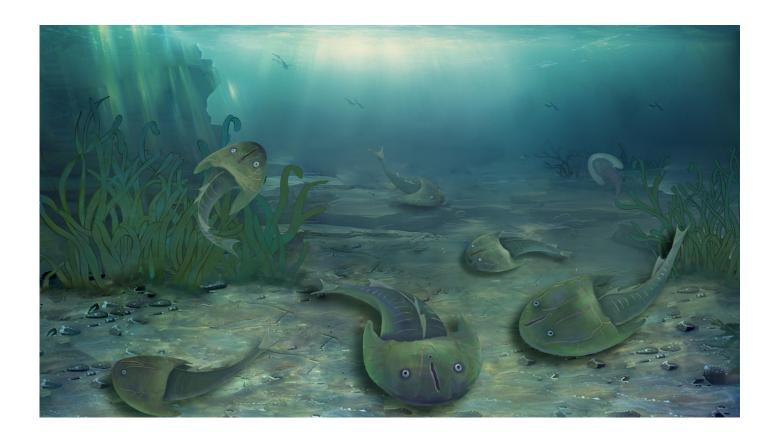




Figure 6 Life restoration of *Dunyu tianlu* sp. nov. Artwork credit: Jinjing Li.

