Unique dental arrangement in a new species of Groenlandaspis (Placodermi, Arthrodire) from the Middle Devonian of Mount Howitt, Victoria, Australia (#106227)

First submission

Guidance from your Editor

Please submit by 13 Oct 2024 for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Author notes

Have you read the author notes on the guidance page?

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the <u>materials page</u>.

16 Figure file(s)

2 Table file(s)

3 Other file(s)

New species checks

! Have you checked our <u>new species policies</u>?

Do you agree that it is a new species?

Is it correctly described e.g. meets ICZN standard?

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty is not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Unique dental arrangement in a new species of Groenlandaspis (Placodermi, Arthrodire) from the Middle Devonian of Mount Howitt, Victoria, Australia

Austin N Fitzpatrick $^{\text{Corresp.},\,1}$, Alice M Clement 1 , John A Long 1

Corresponding Author: Austin N Fitzpatrick Email address: fitz0335@flinders.edu.au

Well-preserved specimens of an undescribed species of arthrodiran placoderm, *Groenlandaspis howittensis* sp. nov. (Middle Devonian of Victoria, Australia), reveals previously unknown information on the dermal skeleton, body-shape and tooth arcade of the wide-spread genus *Groenlandaspis*. The new material includes dual pineal plates, extrascapular plates, and cheek bones showing the presence of cutaneous sensory organs. The anterior supragnathal, usually a paired element in arthrodires, is a fused medial bone in *G. howittensis* sp. nov. It is positioned anterior to the occlusion of the mouth between the lower jaw (infragnathals) and upper jaw (posterior supragnathals) bones, indicating a specialised feeding mechanism and broadening the known diversity of placoderm dental morphologies. *G. howittensis* sp. nov. differs from all other groenlandaspidids by a less pronounced posterior expansion of the nuchal plate; the shape of the posterior dorsolateral plate and the presence of a short accessory canal on the anterior dorsolateral plate. A new phylogenetic analysis positions Groenlandaspididae in a monophyly with the phlyctaeniid families Arctolepidae and Arctaspididae, however, the specific intrarelationships of groenlandaspidids remain poorly resolved.

¹ College of Science and Engineering, Flinders University of South Australia, Adelaide, Australia

1	
2	Unique dental arrangement in a new species of <i>Groenlandaspis</i> (Placodermi, Arthrodire) from
3	the Middle Devonian of Mount Howitt, Victoria, Australia.
4	
5	Austin N. Fitzpatrick ¹ , Alice M. Clement ¹ , John A. Long ¹
6	
7	¹ College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
8	
9	Corresponding author:
10	Austin Fitzpatrick ¹
11	Email Address: <u>fitz0335@flinders.edu.au</u>
12	
13	
14	
15	
16	
17	
18	
19	

า	Λ
_	1,

Well-preserved specimens of an undescribed species of arthrodiran placoderm, *Groenlandaspis howittensis* sp. nov. (Middle Devonian of Victoria, Australia), reveals previously unknown information on the dermal skeleton, body-shape and tooth arcade of the wide-spread genus *Groenlandaspis*. The new material includes dual pineal plates, extrascapular plates, and cheek bones cheek bones showing the presence of cutaneous sensory organs. The anterior supragnathal, usually a paired element in arthrodires, is a fused medial bone in *G. howittensis* sp. nov. It is positioned anterior to the occlusion of the mouth between the lower jaw (infragnathals) and upper jaw (posterior supragnathals) bones, indicating a specialised feeding mechanism and broadening the known diversity of placoderm dental morphologies. *G. howittensis* sp. nov. differs from all other groenlandaspidids by a less pronounced posterior expansion of the nuchal plate; the shape of the posterior dorsolateral plate and the presence of a short accessory canal on the anterior dorsolateral plate. A new phylogenetic analysis positions Groenlandaspididae in a monophyly with the phlyctaeniid families Arctolepidae and Arctaspdidae, however, the specific intrarelationships of groenlandaspidids remain poorly resolved.

INTRODUCTION

Arthrodires are an extinct clade of placoderms (stem-jawed vertebrates) and a dominant faunal component of Devonian marine and freshwater ecosystems. Arthrodires are one of the earliest jawed vertebrates to show evidence of true teeth (Smith & Johanson 2003; Rücklin et *al.* 2012; Vaškaninová *et al.* 2020) and provide valuable insight into the early evolution of feeding ecologies, including durophagy (Dennis & Miles 1979), suspension feeding (Coatham *et al.* 2020) and pelagic hunting strategies (Jobbins *et al.* 2024). However, knowledge of these

- 43 specialisations is generally limited to more derived forms, such as the Eubrachythoraci, which
- possess more robust jaw bones. Consequently, the morphology of more basal forms, such as that
- of the globally occurring family Groenlandaspididae, remain poorly understood.
- 46 Groenlandaspidids are known from Lower to Upper Devonian deposits throughout Gondwana
- 47 (Young 1993; Anderson et al. 1999), attaining a cosmopolitan distribution following a northward
- dispersal into Laurussia in the Late Devonian (Janvier & Clément 2005). The namesake genus,
- 49 *Groenlandaspis*, Heintz 1932, is the most diverse consisting of 10 named species (Heintz, 1932;
- 50 Ritchie, 1975; Janvier & Ritchie, 1977; Chaloner et al., 1980; Long et al. 1997; Daeschler,
- 51 Frumes & Mullison 2003; Janvier & Clément, 2005; Olive et al, 2015) and numerous more
- 52 occurrences categorised only to genus level (Young 1993).
- The Middle Devonian Mount Howitt, fossil site (Victoria, Australia) preserves a diverse
- freshwater fish fauna (Table. 1) as compressed articulated individuals displaying aspects of both
- 55 dermal and visceral morphology (Long, 1983a; 1983b; 1984; 1986a; 1986b; 1987; 1988; 1992;
- 56 1999; Long & Holland, 2008; Long & Clement 2009; Holland, Long & Snitting, 2010). We
- 57 herein describe well-preserved and extensive material of a new species, *Groenlandaspis*
- 58 howittensis sp. nov., representing the first member of the globally-distributed family to be
- 59 formally described from Australia. This new material reveals undescribed features of the tooth
- 60 plates, squamation and body-shape of the genus.
- 61 Multiple characteristics have been suggested to be important for the evolution of
- 62 groenlandaspidids (Long 1995; Olive et al. 2015) but none have been incorporated into a
- computer driven analysis until now. This new complete material such as this offers the
- opportunity to clarify the phylogenetic relationships of *Groenlandaspis*, and the intra and
- 65 interrelationships of Groenlandaspididae. The phylogenetic relationships of Devonian fish have

been used to infer the geographic dispersal patterns of vertebrate groups, as has been recently demonstrated for bothriolepidid antiarch placoderms (Dupret *et al.* 2023).

68

69

MATERIALS AND METHODS

70 Fossil preparation — Specimens were collected from Taungurong country, Victoria, during field 71 trips lead by Professor Jim Warren of Monash University between 1970-1974, and by the late 72 Alex Ritchie of the Australian Museum in the early 1990's. The *Groenlandaspis* material 73 consists of specimens from the upper conglomerate and lower mudstone units of the Bindaree Formation (Long, 1983a). Specimens were prepared in 15% Hydrochloric acid (HCl) solution to 74 dissolve friable bone to reveal both sides preserved of an individual as impressions within the 75 rock. Black latex casts were whitened with ammonium chloride to reveal fine anatomical detail 76 for comparative analysis. 77

78

79

80

81

82

83

84

85

86

87

Phylogenetic analysis

To investigate the evolutionary relationships of the genus *Groenlandaspis* and the family Groenlandaspididae we performed a phylogenetic analysis of selected phlyctaenoid arthrodires using a morphological character matrix modified from the matrix of 121 characters and 60 taxa of Zhu *et al.* (2016). 11 new characters were identified from the literature or during the course of this research and incorporated in this existing matrix (Table 2), forming a new matrix of 132 characters and 72 taxa. The matrix was treated with MESQUITE v3.61 (Maddison & Maddison 2019), some minor corrections were made (supplementary 3). In addition to *G. howittensis* sp. nov. described herein, nine more taxa were added to the ingroup, including the type species for

88	Groenlandaspis, G. mirabilis, Heintz 1932 and four relatively complete groenlandaspidids:
89	Tiaraspis subtilis, (Gross, 1933), Groenlandaspis riniensis and Africanaspis doryssa, Long et al.,
90	1997, and Mulgaspis evansorum, Ritchie, 2004. As well as two arctolepidids (Arctolepis
91	decipiens, (Woodward, 1891), and Heintzosteus brevis, (Heintz, 1929)). Two selenosteids,
92	Alienacanthus malkowskii, Kulczycki, 1957 and Amazichthys trinajsticae, Jobbins et al. 2022,
93	were added for diversity.
94	Using our modified matrix, a phylogenetic analysis was performed in PAUP* 4.0 (Swofford,
95	2003) using a heuristic search with a random addition sequence of 1000 repetitions and holding
96	1000 trees per search. Characters 4, 14, 20, 35, 51, 75, 92, 93, 126, and 128 were ordered as they
97	form a morphoclines. The tree was rooted using the actinolepid arthrodires Kujdanowniaspis
98	podolica, (retained from Zhu et al. (2016)) and two additional taxa, Lehmanosteus hyperboreus,
99	Goujet, 1984, and the genus Bryantolepis, scored as a composite of the species Bryantolepis
100	brachycephela, Camp, et al. 1949, and Bryantolepis williamsi, Elliot & Carr, 2011. Outgroup
101	taxa were selected for their completeness and sister relationship to Phlyctaenoidei, see the
102	phylogenetic analyses of Dupret (2004) and Dupret et al. (2017).
103	
104	Institutional Abbreviations. NMV, Museum of Victoria, Melbourne, Australia; AMF,
105	Australian Museum, Sydney, Australia; ANU, Australian National University, Canberra,
106	Australia
107	Anatomical Abbreviations. ab, annular bourrelet; a.c, aberrant canal; acc, accessory canal;
108	ADL, anterior dorsolateral plate; af, anal fin; AL, anterior lateral plate; AMV, anterior median
109	ventral plate; APi, anterior pineal plate; ASG, anterior supragnathal; AVL, anterior ventrolateral

plate; C, central plate; cf.ADL, contact face for the anterior dorsolateral plate; cf.AMV, contact 110 face for the anterior median ventral plate; **cf,MD**, contact face for the median dorsal plate; 111 cf.PDL, contact face for the posterior dorsolateral plate; cf.IL, contact face for the interolateral 112 plate; cf.PMV, contact face for the posterior median ventral plate; cf.PVL, contact face for the 113 posterior ventrolateral plate; cf.Sp, contact face for the spinal plate; csc, central sensory canal; 114 115 cr.PNu, paranuchal crista; cuso, cutaneous sensory organ; df, dorsal fin; end.d, endolymphatic duct; Esc, extrascapular plates; Esc.c, extracapsular plate canal; if.pt, infranuchal pit; IG, 116 infragnathal; IL, interolateral plate; il.proc, iliac process of the pelvic gridle; ioc, infraorbital 117 canal; kd, articular condyle; lc, lateral canal; l.infsp, infraspinal lamina; MD, median dorsal 118 plate; mpl, median pit line; Nu, nuchal plate; oa.AVL, overlap area for the anterior ventrolateral 119 plate; oa,C, overlap area for the central plate; oa.IL, overlap area for interolateral plate; oa.M, 120 overlap area for the marginal plate; oa.N, overlap area for the nuchal plate; oa.PL, overlap area 121 for the posterior lateral; oa.PVL, overlap area for the posterior ventrolateral plate; occ, occipital 122 cross commissure; **orb**, orbit; **pap**, para-articular process; **PDL**, posterior dorsolateral plate; **pdl**, 123 posterior descending lamina; pect.f, pectoral fin; pelv; basal plate of the pelvic girdle; pelv.f, 124 pelvic fin; PL, posterior lateral plate; PPi, posterior pineal plate; ppl, posterior pit line; ppt, 125 126 pineal pit; psoc, post suborbital canal; PM, post marginal plate; pmc, postmarginal canal; pms, post median scute; PMV, posterior median ventral plate; PNu, paranuchal plate; PrO, preorbital 127 128 plate; **PSG**, posterior supragnathal; **PSO**, post suborbital plate; **Psph**, parasphenoid; **PtO**, 129 postorbital plate; PVL, posterior ventrolateral plate; R, rostral plate; SM, submarginal; SO, suborbital; soc, supraorbital canal; sorc, supraoral canal; Sp, spinal plate; suo.v, supra orbital 130 131 vault; **symph.s**, symphysial surface; **v.gr**, ventral groove.

132 PLACODERMI McCoy, 1848

133	ARTHRODIRA Woodward, 1891
134	PHLYCTAENIOIDEI Miles, 1973
135	PHLYCTAENII Miles, 1973
136	GROENLANDASPIDIDAE Obruchev, 1964
137	GROENLANDASPIS Heintz, 1932
138	
139	Amended Diagnosis. Groenlandaspidids with pineal element either singular or divided into dual
140	anterior and posterior plates (APi and PPi); rostrally developed preorbital plates that contact the
141	suborbital plate; postnasal plates absent. Extrascapular plates overlying a shallow posterior
142	descending lamina. Dorsoventrally flattened upper tooth-plates consisting of a fused, crescentric,
143	anterior supragnathal and paired posterior supragnathals. Anterior ventral plates absent. Large
144	posterior dorsolateral plate with sharp V-shaped flexure of the lateral canal (<110°). Median
145	dorsal plate longer than high.
146	
147	Remarks. The generic diagnosis has not been updated since Stensiö, (1939) described material
148	of Groenlandaspis from East Greenland, then only consisting of the type species, G. mirabilis.
149	Thereafter, additional species have been referred to the genus based on general resemblance, and
150	researchers have since suggested that the genus does not represent monophyletic clade (Janvier
151	& Clément, 2005; Olive et al., 2015).
152	
153	Groenlandaspis howittensis sp. nov.

154	Diagnosis. Medium sized <i>Groenlandaspis</i> with an adult armour length up to 150mm and a
155	reconstructed total body length of approximately 300mm. Skull-roof as long as broad with gently
156	concaved posterior margin. Anterior dorsolateral plate possessing a short dorsal accessory canal.
157	Posterior dorsolateral plate higher than long (NMV P48875, H/L = 1.44); lateral canal sharply
158	flexed (between 96°, NMV P48875 and 105°, AMF 62437). Median dorsal plate sub-equilateral
159	(H/L = approx. 0.65); caudal margin gently concaved and lined with prominent tubercules.
160	Etymology. After the site where it was found at the base of Mount Howitt
161	Holotype. NMV P48873, a complete specimen showing a flattened and complete headshield
162	with partial lateral trunk shield and pectoral fin preserved (Fig. 1A, C).
163	Referred Specimens. NMV P48874, counterpart to the holotype showing a complete ventral
164	trunk shield (Fig. 1B, D) and tooth plates (Fig. 2) preserved in life position.
165	Locality, Horizon, and Age. G. howittensis sp. nov. remains are known from the upper
166	sandstone conglomerate and lower mudstone shale members of the Bindaree Formation exposed
167	at the Mount Howitt Spur fossil site (Long 1983a). The holotype derives from the lower shale
168	member. The age of the Mount Howitt fauna is considered to be Givetian based on evidence of
169	its faunal composition and comparison with other Devonian fish faunas in south-eastern
170	Australia (Young, 1993; 2007; Long, 1999; Long et al., 2021).
171	
172	RESULTS
173	Description

Skull roof. The skull roof of *G. howittensis* sp. nov. is known from several complete and partial forgot to reference fig 4 here specimens (Fig. 1, 3, 5, 6). It is overall very similar to *G. antarcticus* (Ritchie, 1975) but differs by its more deeply situated orbits and nuchal plate. The cranial sensory canals adhere to the pattern described in other species of *Groenlandaspis* where complete crania are known, *G. antarcticus* and *G. riniensis* (Ritchie 1975; Long *et al.*, 1997). Other species of *Groenlandaspis* show no evidence of post nasal bones and we suspect they are completely reduced as in *Arctolepis* (Goujet, 1984). The pineal element of *G. howittensis* sp. nov. is formed of anterior (APi) and posterior pineal (PPi) plates, and in articulation they form approximately one third of the cranial length (Fig. 1A, C). In the holotype of *G. howittensis* sp. nov. the APi and PPi are fused and the suture is faint but several other specimens clearly show both plates in association but disarticulated (Fig. 4).

Dual pineal plates are a distinct feature in some members of the Groenlandaspididae and, thus far, one or both plates have also been described for *Turrisaspis*, *Africanaspis*, *Colombiaspis* (Olive *et al.*, 2015; 2019; Gess & Trinajstic, 2017) and are presumed to be present in *Tiaraspis* based on the gap in the headshield once reconstructed (Schultze, 1984). Dual pineal plates are herein described for the first time in a species of *Groenlandaspis* but have been previously noted in other species: *G. disjectus*, *G. antarcticus* and *Groenlandaspis* sp. from Canowindra, New South Wales, Australia (Ritchie, 2004, and pers. obv.) but are not confirmed for *G. riniensis* from the Waterloo Farm Lagerstatte, South Africa. The central plates are essentially identical to *G. antarcticus* differing only in a further developed embayment area for the postorbital plate (PtO). The nuchal (Nu) plate is longer than broad (B/L = 0.6, NMV 48874, Fig. 1A, C) and is roughly 40% of the cranial length, it is transversely convex, rising posteriorly to a slight median

crest. The plates posterior margin is enwrapped by small postnuchal processes of the paranuchal plates (PNu). Extrascapular plates (ESC) are preserved within the nuchal gap of one articulated specimen (Fig. 3) and a fragment of a possible dissociated ESC is also identified in AMF 155378 (Fig. 8). As in brachythoracids, e.g. *Millerosteus minor* (Desmond, 1974, fig. 1C), the extrascapulars are paired plates which overlie the posterior descending lamina (pdl) of the skullwrong figure reference roof (Fig. 2C) and are furrowed by a sensory canal; unlike brachythoracids, this sensory canal does not converge with the occipital cross commissure (occ) of the PNu, instead arcing posteriorly, possibly aligning with the dorsal accessory canal (acc) of the ADL plate. The visceral surface of the skull-roof (Fig. 5, 10) displays no continuous nuchal or occipital thickening as developed in brachythoracids though infranuchal pits (if.pt) are present, as in *Parabuchanosteus* (Young, 1979) and many other taxa.

Cheek plates. The cheek unit comprises of large submarginal (SM) and suborbital plates (SO) divided by a slender post suborbital plate (PSO). The suborbital lamina of the SO which encloses the ventral portion of the orbit is short and deep and contacts the PrO as in some eubrachythoracids, e.g. *Eastmanosteus* (Dennis-Bryan, 1987). The dermal surface of the plate carries two deep sensory lines, the supraoral (sorc) and infraorbital canals (ioc), which meet in the radiation centre of the plate (Fig. 6). In some individuals, such as in the holotype (Fig. 1), the supraoral canal terminates just before meeting the infraorbital canal into a cutaneous pit (cu.so). The PSO is preserved in the holotype with the ventral portion of the plate broken and disarticulated (Fig. 1). The PSO is a slender bone which tightly situates into the posterior notch of the SO plate, its dermal surface is furrowed longitudinally by postorbital sensory canal (psoc). The submarginal plate (SM) is preserved close to life position but broken in the holotype; in one

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

near complete specimen the SM is complete and displaced anterior to its life position and better reveals its overall shape (Fig. 6B). The SM of G. howittensis sp. nov. is the first of example of this bone described for a groenlandaspidid. It is a large, ellipsoidal bone which overlapped the lateral margin of the skull roof and postbranchial lamina of the AL plate, as in other basal arthrodiran forms, e.g. Wuttagoonaspis and Dicksonosteus (Ritchie, 1973; Goujet, 1984). **Tooth plates.** The tooth plates are preserved as impressions in several specimens (Figs. 2, 5, 7, 10), but are best represented in the counterpart of the holotype where the infragnathals (IG) are superimposed onto the posterior supragnathals (PSG) (Fig. 2). The tooth plates do not exhibit any wear facets as noted for eubrachythoracids like *Dunkleosteus* (Lebedev et al., 2023). The crescentic denticulated bone positioned under the rostral plate in this specimen and others is interpreted here as a fused anterior supragnathal (ASG) derived from the ancestral paired condition of other arthrodires, e.g. Coccosteus (Miles & Westoll, 1968, fig. 17A₂). In one smaller individual the ASG is much slenderer in proportions, suggesting positive allometric growth in this element through ontogeny (Fig. 6). The parasphenoid is preserved in two specimens (Fig. 5, 7) in ventral aspect, it is a small

The parasphenoid is preserved in two specimens (Fig. 5, 7) in ventral aspect, it is a small denticulated bone, as in other groenlandaspidids, *T. elektor* (Daeschler, Frumes & Mullison, 2003) and *M. evansorum* (Ritchie, 2004). However, it is not preserved sufficiently well to provide additional anatomical detail. Visible in the holotype (Fig. 3), scattered over the ventral surface of the IG and PrO plates, are small, crenulate scales with deep surface grooves. These were possibly skin denticles covering the underside of the head.

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

The posterior supragnathals (PSG) are elongated, dorsoventrally flattened paired bones which almost meet on the midline, just anterior to the pineal organ. Their oral surface is entirely covered in small, densely-packed, pointed teeth that radiate from a posteromedial depression, with the largest denticles occupying the outermost margins. The posterior supragnathals of G. howittensis sp. nov. are almost identical in structure and position of the "supragnathals" of T. elektor (Daeschler, Frumes & Mullison, 2003, fig. 8) and "anterior supragnathals" of A. doryssa (Gess & Trinajstic 2017, fig. 2B) therefore these tooth plates are presumed homologous with the Mount Howitt species. The infragnathal (IG) is a long and slender bone with a slight mesial curvature. The ventral surface is furrowed by a deep meckelian groove (v.gr, Fig. 2, 7) which would have housed the dorsal edge of the meckelian cartilage in life (Young et al., 2001). The occlusal surface of the IG, best represented by one juvenile specimen (Fig. 5), is entirely covered by short, densely packed teeth, as in phyllolepidids (Long, 1984; Ritchie, 2005), thus precluding the abductor division or "non-biting portion" which characterizes the IGs of eubrachythoracid arthrodires (Stensiö, 1963). The teeth increase in size from a single posterior point suggesting tooth addition occurred posteriorly from a single ossification centre (Fig. 5).

257

258

259

260

261

262

263

Trunk plates. The trunk armour consists of the same dermal plates as in other groenlandaspidids, e.g., *G. antarcticus* and *G. pennsylvanica* (Ritchie, 1975; Daeschler, Frumes & Mullison, 2003). Anterior ventral plates are absent. The posterior trunk shield exhibits a well-developed 'annular bourrelet', ('b.cpd', Goujet 1984, fig. 61B) along the posterior complex of plates (PDL, PL and PVL, Fig. 8, 9) as in other phlyctaeniids, such as *Dicksonosteus* and *Arctolepis*. The anterior dorsolateral plate (ADL) possesses a short dorsal accessory canal (acc,

264	Fig. 1C), a feature unique to G. howittensis sp. nov. among members of the genus, but also
265	present in the Early-Middle Devonian groenlandaspidid, <i>Mulgaspis</i> (Ritchie, 2004). The distinct
266	posterior dorsolateral (PDL) is higher than long and is best preserved in NMV P48875 ($H/L =$
267	1.44, Fig. 13). The plate displays the characteristic symphysial surface for the opposite PDL
268	(symph.s, Fig 8) and inverted V-shaped lateral line sensory canal, which are considered
269	diagnostic for the genus (Daeschler, Frumes & Mullison, 2003; fig. 5, Janvier & Clément, 2005,
270	fig. 8). The dorsal flexure of the lateral canal can range in angle from 96° (NMV P48875) to
271	105° (AMF 62437) in the examined material (the variability likely due to the angular shear of the
272	Mount Howitt specimens e.g., Fig. 3 this article, and in Austrophyllolepis (Long, 1984)). The
273	posterior lateral overlap area (oa.PL) bears a deep groove which accommodates the annular
274	bourrelet (ab) crossing the internal surface of the posterior lateral plate (PL, Fig. 8). Much like
275	the PDL plate, the median dorsal (MD) plate is highly variable among groenlandaspidids,
276	particularly <i>Groenlandaspis</i> (Ritchie, 1975; Janvier & Clément, 2005). The tip of the MD is
277	usually broken in adult specimens e.g., AMF 62537 (Fig. 12) and NMV P48875 (Fig. 13) but
278	preserved complete, however crushed, in lateral aspect in NMV P254749 (Fig. 9). In G.
279	howittensis sp. nov. the plate is approximately sub-equilateral in shape ($H/L = 0.65$, NMV
280	P254749, Fig. 9), its ventral margin is deeply scalloped and the ornamentation radiates from the
281	dorsal apex of the plate developing into prominent tubercles along the caudal margin. The spinal
282	plate (Sp) is identical to G. antarcticus, except for the variable presence of tiny hook-like spines
283	on the mesial margin of the spinal plate (Fig. 1, 10, 13).

285

286

The ventral surface of the trunk shield is crushed but completely preserved in the counterpart of the holotype (Fig. 1). The anterior median ventral plate (AMV) is broader than long (B/L = 1.37,

NMV P48873) and similarly proportioned to other described species, *G. antarcticus* (Ritchie 1975), *G. thorezi* (Janvier & Clément, 2005), and *G. potyi* (Olive *et al.*, 2015). The posterior median ventral plate (PMV) is trapezoidal and narrow (H/L = 0.53, NMV P48873). The anterior border of the PMV and posterior border of the AMV both possess an overlap area suggesting possible midline contact of the AVL plates, though this is not confirmed in any articulated material. The posterior ventrolateral plates (PVL) exhibit a complex form of overlap areas (Fig. 11) characteristic of phlyctaeniid arthrodires (Goujet 1984).

Pectoral Fin. The right pectoral fin is preserved as articulated dermal scales in the holotype. It is short (33mm) and broad (47mm) and covered dorsally and ventrally by small polygonal, non-overlapping scales each covered in short, rounded tubercules (Fig. 1). The pectoral fin is seldom fossilized among arthrodires, but when preserved it is typically represented by ossified endoskeletal radialia, e.g., *Incisoscutum ritchiei*, (Dennis & Miles, 1981). The pectoral fin is preserved in outline for *Amazichthys* which differs from *G. howittensis* sp. nov. in being broad and triangular in form (Jobbins *et al.*, 2022).

Post-thoracic anatomy. The tail of *G. howittensis* sp. nov. is preserved in lateral aspect in two specimens, the anterior portion in AMF 62537, (Fig. 12) and almost whole tail following the dorsal and anal fins in NMV P48875 (Fig. 13), only lacking the distal tip of the caudal fin. Both specimens are generally similarly proportioned based on comparable lengths of the MD (NMV P48875, L=60mm and AMF 62537, L=71mm) and thus these specimens can provide a complete restoration of the body shape and squamation for the genus (Fig. 14) and indicates a

reconstructed tail length of 158mm. Based on the length of the MD (60-71mm) and tail (158mm) in these specimens summed with the average length of the skull roof (77mm) in adult specimens (NMV 48873, AMF 63542 and AMF 63535), therefore a likely overall length of *G. howittensis* sp. nov. might be between 295mm and 306mm. Not accounting for the slight downward tilt of the head which subtracts a small amount from the total length but remains unknown given the flattened nature of the fossils. Compared with other arthrodire groups where the post-thoracic region is completely known e.g., coccosteids, holonematids, phyllolepidids, as well as other groenlandaspidids (*Africanaspis*) the tail of *G. howittensis* sp. nov. is relatively stout comprising roughly half the total length of the fish (Fig. 14).

The body scales of *G howittensis* sp. nov. display lateral and ventral variation. Burrow & Turner (1999) briefly described the lateral body scales of *G. howittensis sp. nov*. They noted the tail is covered by rhombic, non-overlapping scales 2.5-<0.1mm in length covered in and bear transverse ridge, some of these scales are deeply furrowed by the continuation of lateral canal from the PDL (Fig. 12). A postmedian "scute" (pms) can be observed toward the caudal end of NMV P48875 (Fig. 13), it is similar in morphology to the larger scales toward the base of the tail. Such "scutes" also occur in several other stem gnathostomes, e.g. *Kujdanowiaspis* and *Xuishanosteus* (Dupret *et al.*, 2010; Zhu *et al*, 2022). A portion of the ventral side of the tail is preserved in one specimen, NMV P48884, wherein overlapping scales immediately posterior to the base of the PVL plates are transversely elongated and completely lack ornamentation (Fig. 10). A putative pelvic girdle is identified by a poorly-defined impression in AMF 62537 (Fig. 13). It shows a slender iliac process (il.proc) and broad basal plate (pelv) as in Gogo arthrodires,

e.g., *Incisoscutum ritchiei* (Dennis & Miles, 1981) though overlying scales obscure finer anatomical detail.

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

Phylogenetic Results

The results of the 50% majority rule tree (Fig. 15) include clades which are identified in the strict consensus of other analyses, e.g., Carr & Hlavin (2010) and Zhu et al., (2016), but are not resolved in our strict consensus due to unstable taxa. A parsimony analysis (heuristic search) of our modified data matrix returned 35234 equally parsimonious trees at 618 steps (Fig. 15). The topology of our 50% consensus analysis is broadly comparable to the strict consensus of Zhu et al. (2016, fig. 9) though we recover lower support values for branches concerning homostiid and dunkleosteid taxa. Additionally, the superfamily Incisoscutoidea is paraphyletic. The two Moroccan eubrachythoracids added in this analysis, *Amazichthys* and *Alienacanthus*, emerge as sister taxa nested among other aspinothoracids, in congruence with Jobbins et al. (2024). The node supporting the Brachythoraci is defined by two synapomorphies; a laterally expanded or trapezoidal nuchal plate (char. 105) and contact of the ADL and PL plates (char. 126). The phlyctaeniid node is supported by the following synapomorphies: midline contact of the ADLs (char. 128), an internal thickening of the posterior trunk plates (char. 129) and sigmoidal/double overlapping of the PVL plates (character 130). In the strict consensus groenlandaspidids nested among the phlyctaeniids, sister to the arctolepids (Heintzosteus and Arctolepis) with Dicksonosteus one node basal. The groenlandpasidid M. evansorum recovers most basal among groenlandaspidids, followed by *Tiaraspis* in the 50% consensus. All members of the genus Groenlandaspis, including G howittensis. sp. nov. sit crownward to other groenlandaspidids in our 50% majority rule tree except for Africanaspis which is recovered in a polytomy with G.

riniensis basal one node to other species of *Groenlandaspis*. The incompletely known taxon *Elvaspis tuberculata* recovers either basal to the phlyctaeniids or basal to the brachythoracids in most parsimonious trees.

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

354

355

356

DISCUSSION

Intraspecific variation

Intraspecies variation is a pervasive problem in the description of fossil organisms. Anatomically distinct specimens can appear as two taxa without the presence of intermediate forms. In some cases the geological history of a site can influence the taxanomic identity of specimens, as in, Austrophyllolepis youngi which was originally considered distinct from Austrophyllolepis ritchei (Long 1984). However, the angular shear of the deposit created distortion in the Mount Howitt specimens that was not initially recognised by Long (1984). Intraspecific variation, particularly regarding the MD plate has been recognised in other groenlandaspidids, e.g., *Turrisaspis* (Daeschler, Frumes & Mullison, 2003) and some variation is noted in the material of G. howittensis sp. nov. In G. howittensis sp. nov. there is notable variation in the shape of the AMV plate between NMV P48874 (Fig. 1) and NMV P48884 (Fig. 10), the caudal portion of the latter being more elongate. The presence of the spinelets on the mesial margin of the spinal plate is also variable, the holotype individual lacks them NMV P48873 (Fig. 1) whereas they are clearly present on other individuals, NMV P48884 and NMV P48875 (Fig. 10, 13). Variation in the shape of the AMV has also been shown in extensive material of incisoscutid and camuropiscid arthrodires (Trinajstic & Hazelton, 2007). We equate the variance of these features to normal intraspecific

variance and not substantial enough to erect an additional species though we cannot preclude the 376 existence of two very anatomically close species of *Groenlandaspis* present in the Mount Howitt 377 378 fauna. There is also common asymmetrical variation in the path of sensory canals present on every 379 specimen of G. howittneiss sp. nov. where cranial plates are preserved, e.g., on the holotype, the 380 381 lateral canal (lc) of the right PNu is disjointed and in AMF 63548 (Fig. 3) the left supraorbital canal diverges briefly from its normal path. The most unusual example of this is in AMF 155378 382 (Fig. 8), where the PNu exhibits a second 'aberrant canal' (a.c) which diverges toward the post 383 marginal canal (pmc) and does not readily compare to any sensory canal before described in 384 arthrodires. Asymmetrical variation in the growth of plates and sensory canals in arthrodires has 385 been linked to intense environmental stresses (Trinajstic & Dennis-Bryan, 2009). This concurs 386 with observations made of the dipnoan taxa (Barwickia and Howidipterus) of the Mount Howitt 387 site which are thought to have recently diverged from a common ancestor driven by resource 388 scarcity (Long & Clement 2009). 389 Comparison of tooth plates with other arthrodires. Based on well-preserved examples of the 390 tooth plates in G. howittensis sp. nov. it is now evident the anterior supragnathal of 391 Groenlandaspis is unique among arthrodires in being a fused, medially positioned element in 392 contrast to a generalised paired condition (Fig. 16). This specialisation has likely led to some 393 394 error in the interpretation of these elements in other groenlandsaspidids. In *Turrisaspis elektor* a possible ASG is referred to as the 'anteroventral margin of the rostral plate' by Daeschler, 395 396 Frumes & Mullison (2003). A single fused ASG was also identified by Long et al. (1997) in a 397 specimen of a "juvenile G. riniensis", this specimen was subsequently reassigned to Africanaspis doryssa by Gess & Trinajstic (2017), but not further described. Both these genera show the same 398

399	unique arrangement of PSG plates as with G. howittensis sp. nov., supporting the likely
400	occurrence of a fused ASG. Therefore, the presence of a dorsoventrally flattened fused ASG,
401	should be considered a synapomorphy of the family Groenlandaspididae and present a character
402	for analysis. In non-groenlandaspidid arthrodires, a "peg-like" fused ASG was documented for
403	Holonema westolli (Miles, 1971) but subsequent newly prepared specimens form Gogo confirm
404	it is a paired element as in other arthrodires (pers. obv.).
405	Functional morphology and palaeoecology. The ASG bone that sits outside the main occlusion
406	of the PSG and IG bones suggests it could be as an extra-oral element (Fig. 16). This novel
407	adaption might have important implications for the global migration the family during the
408	Devonian. Nonetheless, without preservation of gut contents or the remaining jaw apparatus
409	(e.g., meckelian cartilage, palatoquadrate, hyoid arch) further inferences on the functional
410	significance of this structure remain speculative.
411	The ventrally flattened body, dorsolaterally positioned eyes and ventrally positioned mouth, are
412	consistent with bottom feeding habits and a demersal niche characteristic of basal arthrodires
413	(Miles, 1969). A relatively stout, heavily scaled tail suggests G. howittensis sp. nov. was likely a
414	weak swimmer, the short and inflexible pectoral fins likely only assisted in minor lift to keep the
415	fish slightly above the bottom of its lacustrine habitat when it swam. The fine, tuberculate
416	homodont dentition of this species aligns with a villiform morphotype adapted for gripping
417	rather than crushing or puncturing prey common in extant demersal fish, e.g., groupers
418	(Epinephelus, Mihalitsis & Bellwood, 2019) or siluriformes (Sado et al., 2020).
419	Alternatively, Gess & Whitefield (2020) interpreted the tooth plates of G. riniensis as those
420	adapted to a durophages diet, supported by the occurrence of bivalves preserved within some
421	juvenile specimens. A durophages habit is more likely for those groups living in marine

ecosystems, whereas this contrasts with the palaeoenvironmental interpretation of the Mount Howitt site as lacustrine, with the only non-vertebrate material identified being only lycopsid plants (Long, 1983a). Moreover, the gape of *G. howittensis* sp. nov. would have been heavily limited by the narrow nuchal gap and extrascapular plates, thus, incapable of feeding on other fully-grown gnathostomes of the Mount Howitt fauna. Though the function of the peculiar tooth array cannot be further interpreted at this time, *G. howittensis* sp. nov., possibly, scoured the benthic zone for larval fishes or soft-bodied invertebrates, analogous to extant freshwater skate or catfish.

Systematic implications. The material of *G. howittensis* sp. nov. is the most completely known example of any groenlandaspidid described and is the first member of the cosmopolitan genus *Groenlandaspis* to be formally described from Australia.

Extrascapular plates have previously been considered a specialisation of the brachythoracids (Miles, 1973; Dennis & Miles, 1979; Gardiner & Miles 1990), however, these elements have since been recognised in multiple genera of actinolepidids, e.g. *Sigaspis*, *Aleosteus*, and *Erikaspis* (Goujet, 1973; Johnson *et al.*, 2000; Dupret *et al.*, 2007), and now the phlyctaeniid, *Groenlandaspis*, supports extrascapular elements as being plesiomorphic for arthrodires and so subsequently lost in numerous later groups. The occurrence of these plate however presents a challenging character for analysis as they greatly affected by preservation bias. Of eight articulated specimens examined for this study only three occurrences of extrascapular plates were identified in the *G. howittensis* sp. nov. material.

443	King, Hu & Long (2018) reviewed the presence of possible electro sensory organs in Paleozoic
444	gnathostomes. They noted the potential phylogenetic significance of cutaneous sensory pits
445	(char. 126) in arthrodires. This feature is generally restricted to buchanosteids, coccostemorphs
446	along with Eastmanosteus in our analysis, is variably present among G. howittensis sp. nov.
447	individuals. The cheek plates for other groenlandaspidids are poorly known but these elements as
448	described for G. riniensis (Long et al. 1997, fig. 5H) and Africanaspis (Gess & Trinajstic 2017,
449	fig. 5 B, D) show no evidence of sensory pits.
450	The infraorder Phlyctaenii Miles 1973 is often considered as a grade group by several workers
451	(e.g., Dennis & Miles, 1979; Gardiner & Miles, 1990; 1994 and Zhu et al., 2016). Our
452	hypothesis of arthrodire phylogenetic relationships reflects that of Goujet (1984) and Dupret
453	(2004) in supporting a monophyletic relationship of the phlyctaeniid families,
454	Groenlandaspididae, Arctaspididae and Arctolepidae united by the specialisations: medial
455	contact of the ADL plates, followed by contact of the PDL plates in groenlandaspidids (char.
456	126) and sigmoidal/ double-overlappingcontact of the PVL plates (char. 129). Although Goujet
457	(1984) also proposed an anterior narrowing of the median dorsal plate as a synapomorphy, we
458	consider this character functionally correlated with the medial contact of the ADLs and so it is
459	not considered as a separate character in this analysis. Another major arthrodire family
460	considered among the Phlyctaenii are the Phlyctaeniidae, Fowler 1947, (e.g., Phlyctaenius and
461	Pagaeaaspis); they lack the unusual overlap pattern of the PVL plates (Young, 1983) and it is
462	unclear if they possess a developed annular bourrelet as in Arctolepis, Dicksonosteus and
463	Groenlandaspis. We propose these forms require further investigation of their phylogenetic
464	relationships, as they are generally conceded as a grade group by other workers positioned basal
465	to the rest of Phlyctaenioidei (Goujet, 1984; Dupret et al., 2017).

466	Our 50% consensus analysis fails to support the monophyly of the genus <i>Groenlandapsis</i> and we
467	do not identify any unique specialisations shared between currently described members of the
468	genus. Though we have provided an amended diagnosis we note that multiple species of
469	Groenlandaspis await further description, namely, G. disjectus from the Kiltorcan Formation,
470	Ireland (Ritchie, 1974), Groenlandaspis sp. from the Adolphspoort Formation, South Africa
471	(Anderson et al., 1999), Groenlandaspis sp. from Canowindra, Australia and an abundance of
472	fragmentary material from multiple other sites in Australia (Young, 1993). As such, our
473	diagnosis for <i>Groenlandaspis</i> should be considered tentative. Furthermore, revision of the type
474	species G. mirabilis is also necessary as some bones remain misidentified, e.g., the "AMV" and
475	"AVL" only depicted by drawings in, Heintz, 1932, Fig. 12, differ strongly in shape from any
476	known arthrodires and are likely erroneously labelled PVL plates. A full taxonomic review of
477	Groenlandaspis is required to complete a definition of the genus and further probe its
478	phylogenetic relationships.
479	Our analysis does not support a grouping of the three 'high-spired' genera with tall MD plates,
480	Tiaraspis, Turrisaspis and Africanaspis as previously proposed (Olive et al., 2015). Gess &
481	Trinajstic (2017) discussed similarities of these taxa, primarily the presence of a dorsolateral
482	ridge, dual pineal elements, and the foreshortened trunk armour. Dual pineal elements (char.
483	122) are now properly described in <i>Groenlandaspis</i> and is likely a synapomorphy uniting a clade
484	of derived groenlandaspidids, with a single element exhibited by Arctolepis and Mulgaspis being
485	the plesiomorphic state. A dorsolateral ridge (char. 126) commonly reported among phlyctaeniid
486	taxa, e.g. Denisonosteus (Young & Gorter, 1981) and Phlyctaenius (Young, 1983), yet lost in
487	Mulgaspis and some species of Groenlandaspis is also supported by our analysis as
488	plesiomorphic (Long, 1995). Lastly, compared to Groenlandaspis, the trunk armour of

489	Turrisaspis and Africanaspis and to a lesser extent Tiaraspis are foreshortened in proportions,
490	particularly in the median dorsal plate (Long et al., 1997; Daeschler, Frumes & Mullison, 2003).
491	Though similarly foreshortening is present in some Groenlandaspis species, as in the ADL and
492	PDL of G. riniensis (Long et al., 1997, fig. 7A, B) and the MD of G. seni (Janvier & Ritchie,
493	1977, fig. 1B, C). Signifying this morphology requires further investigation to quantify the effect
494	of bone proportions on the phylogeny of groenlandaspidids. Also significant for the evolution of
495	groenlandaspidids is the inflexion of the PDL sensory canal (Long, 1995). It is wide in Early-
496	Middle Devonian groenlandaspidids, Mulgaspis, Tiaraspis and Boomeraspis (Long, 1995;
497	Ritchie, 2004) and sharply flexed in certain Middle-Late Devonian forms, like <i>Groenlandaspis</i> ,
498	Turrisaspis, and Africanaspis (Daeschler, Frumes & Mullison, 2003). A wide flexion better
499	compares with the straight canal in exhibited by many phlyctaeniids, e.g. Dicksonosteus (Goujet,
500	1984), suggesting this to be the plesiomorphic state.
501	Alternative hypotheses regarding the phylogenetic relationships of <i>Groenlandaspis</i> includes a
502	grouping with <i>Holonema</i> and <i>Arctolepis</i> (Denison, 1978; 1984; Young & Gorter, 1981) in the
503	family Holonematidae chiefly based on the putative fusion of the postnasal bones with the rostral
504	plate. Though a compound rostral and postnasal bone is supported in the Gogo material for
505	Holonema (Miles, 1971), Goujet (1984) found no evidence of this in Arctolepis and nor do we
506	for Groenlandaspis. Our strict consensus places Holonema westolli within Brachythoraci, further
507	crownward than the buchanosteids, and supports Miles' (1971) interpretation of the genus as an
508	early diverging brachythoracid.

510

CONCLUSION

G. howittensis sp. nov. provides us with rare insight into the morphology of the post-trunk
skeleton, fins and dental morphology for arthrodires. The exceptional preservation of the Mount
Howitt specimens reveals undescribed details of the tooth plates for groenlandaspidids,
highlighting a uniquely specialised condition where the ASG is fused and positioned anterior to
the remainder of the tooth arcade. G. howittensis sp. nov. is a unique example of extreme dental
specialisation and evolutionary experimentation in stem jawed vertebrates nearing the origin of
teeth. The phylogenetic relationships of the Groenlandaspididae are presented for the first time in
a computer-driven phylogenetic analysis and supports a position among basal arthrodires.
ACKNOLWEDGMENTS
We are grateful to Dr Matthew McCurry, of the Australian Museum for graciously making latex
peels of many specimens in their collection. We thank Tim Ziegler for providing access to the
palaeontological collections of the Melbourne Museum and for his assistance in locating
specimens. We thank Shona Ritchie and the Canowindra Age of Fishes Museum for access to the
notes and casts of specimens made by the Dr Alex Ritchie.
A preprint of this manuscript has been uploaded to BioRxiv
REFRENCES

531	Anderson M., Long JA, Evans FJ, Almond JE, Theron JN, & Bender P. 1999. Biogeographic
532	affinities of Middle and Late Devonian fishes of South Africa. Records of the Western
533	Australian Museum, Supplement, 57, 157-168.
534	
535	Burrow CJ, Turner S. 1999. A review of placoderm scales, and their significance in placoderm
536	phylogeny. Journal of Vertebrate Paleontology, 19(2):204-19.
537	
538	Camp CL, Welles SP, Green M. 1949. Bibliography of fossil vertebrates, 1939–1943. <i>Geologica</i>
539	Society of America Memoir DOI 10.1130/MEM37-p1
540	
541	Chaloner WG, Forey PL, Gardiner BG, Hill A, Young VT. 1980. Devonian fish and plants from
542	the Bokkeveld Series of South Africa, Annals of the South African Museum, 81(3): 127-
543	157.
544	
545	Carr RK, Hlavin WJ. 2010. Two new species of <i>Dunkleosteus</i> Lehman, 1956, from the Ohio
546	Shale Formation (USA, Famennian) and the Kettle Point Formation (Canada, Upper
547	Devonian), and a cladistic analysis of the Eubrachythoraci (Placodermi, Arthrodira).
548	Zoological Journal of the Linnean Society, 159(1): 195-222. DOI 10.1111/j.1096-
549	<u>3642.2009.00578.x</u>
550	
551	Coatham SJ, Vinther J, Rayfield EJ, & Klug C. 2020. Was the Devonian placoderm <i>Titanichthys</i>
552	a suspension feeder? Royal Society Open Science, 7(5): 200272. DOI
553	10.1098/rsos.200272

554	
555	Daeschler, EB, Frumes, AC & Mullison, CF. 2003. Groenlandaspidid placoderm fishes from the
556	Late Devonian of North America, <i>Records of the Australian Museum</i> , 55(1): 45-60. DOI
557	10.3853/j.0067-1975.55.2003.137
558	
559	Denison RH. 1978. Placodermi; in HP. Schultze (ed.), Handbook of Paleoichthyology, Volume
560	2. Gustav Fischer Verlag, Stuttgart, 128 pp.
561	
562	Denison RH. 1984. Further Consideration of the Phylogeny and Classification of the Order
563	Arthrodira (Pisces: Placodermi), Journal of Vertebrate Paleontology, 4(3): 396-412.
564	
565	Dennis K, Miles RS. 1979. New durophagous arthrodires from Gogo, Western Australia.
566	Zoological Journal of the Linnean Society, 69(1), 43-85. DOI 10.1111/j.1096-
567	<u>3642.1980.tb01932.x</u>
568	
569	Dennis K, & Miles, RS. 1981. A pachyosteomorph arthrodire from Gogo, Western Australia.
570	Zoological Journal of the Linnean Society, 73(3), 213-258. DOI 10.1111/j.1096-
571	<u>3642.1981.tb01594.x</u>
572	
573	Dennis-Bryan K. 1987. A new species of eastmanosteid arthrodire (Pisces: Placodermi) from
574	Gogo, Western Australia, Zoological Journal of the Linnean Society, 90: 1-64. DOI
575	10.1111/j.1096-3642.1987.tb01347.x
576	

577	Desmond AJ. 1974. On the coccosteid arthrodire Millerosteus minor. Zoological Journal of the
578	Linnean Society, 54:277–298. DOI 10.1111/j.1096-3642.1974.tb00804.x
579	
80	Dupret V. 2004. The phylogenetic relationships between actinolepids (Placodermi: Arthrodira)
81	and other arthrodires (phlyctaeniids and brachythoracids). Fossils and Strata 50:40-55.
82	
83	Dupret V, Goujet D, Mark-Kurik E. 2007. A new genus of placoderm (Arthrodira:
84	'Actinolepida') from the Lower Devonian of Podolia (Ukraine). Journal of Vertebrate
85	Paleontology, 27(2): 266-284. DOI 10.1671/0272-
86	4634(2007)27[266:ANGOPA]2.0.CO;2
87	
888	
89	Dupret V. 2010. Revision of the genus Kujdanowiaspis, Stensiö, 1942 (Placodermi, Arthrodira,
90	"Actinolepida") from the Lower Devonian of Podolia (Ukraine). Geodiversitas., 32(1): 5-
91	63. <u>DOI 10.5252/g2010n1a1</u>
92	
93	Dupret V, Zhu M, & Wang, J-Q. 2017. Redescription of Szelepis Liu, 1981 (placodermi,
94	arthrodira), from the Lower Devonian of China. Journal of Vertebrate Paleontology,
595	<i>37</i> (2), e1312422. <u>DOI 10.1080/02724634.2017.1312422</u>
96	
597	Dupret V, Byrne HM, Castro N, Hammer Ø, Higgs KT, Long JA, Niedźwiedzki, G, Qvarnström
598	M, Stössel I, Ahlberg PE. 2023. The Bothriolepis (Placodermi, Antiarcha) material from
599	the Valentia Slate Formation of the Iveragh Peninsula (middle Givetian, Ireland):

600	Morphology, evolutionary and systematic considerations, phylogenetic and
601	palaeogeographic implications. PLOS one, 18(2). DOI 10.1371/journal.pone.0280208
602	
603	Elliott DK, Carr RK. (2010). A new species of <i>Bryantolepis</i> Camp, Welles, and Green, 1949
604	(Placodermi, Arthrodira) from the Early Devonian Water Canyon Formation of northern
605	Utah and southern Idaho, with comments on the endocranium. Kirtlandia, 57:22-35
606	
607	Gardiner BG, & Miles RS. 1990. A new genus of eubrachythoracid arthrodire from Gogo,
608	Western Australia. Zoological Journal of the Linnean Society, 99:159-204. DOI
609	10.1111/j.1096-3642.1990.tb00566.x
610	
611	Gardiner BG, Miles RS. 1994. Eubrachythoracid arthrodires from Gogo, Western Australia.
612	Zoological Journal of the Linnean Society, 112(4):443-477. DOI 10.1006/zjls.1994.1053
613	
614	Gess RW, Trinajstic KM. 2017. New morphological information on, and species of placoderm
615	fish, Africanaspis, (Arthrodira, Placodermi) from the Late Devonian of South Africa,
616	PLoS One, 12(4). DOI 10.1371/journal.pone.0173169
617	
618	Gess RW, Whitfield AK. 2020. Estuarine fish and tetrapod evolution: insights from a Late
619	Devonian (Famennian) Gondwanan estuarine lake and a southern African Holocene
620	equivalent, Biological Reviews, 95 (4):865-88. DOI 10.1111/brv.12590
621	
622	Goujet D. 1973. Sigaspis, un nouvel arthrodire du Dévonien inférieur du

623	Spitsberg, Palaeontographica Abteilung A, 73-88.
624	
625	Goujet D. 1984. Les poissons placodermes du Spitsberg—Arthrodires Dolichothoraci de la
626	Formation de Wood Bay (Devonien inferieur), Cahiers de Paleontologie (section
627	vertebres), Editions du CNRS, Paris.
628	
629	Gross W. 1933. Die unterdevonischen Fische und Gigantostraken von Overath. Abhandlungen
630	der Preußischen Geologischen Landesanstalt, 145: 41–77.
631	
632	Gross W. 1962. Neuuntersuchung der Dolichothoraci aus dem Unterdevon von Overath bei
633	Köln. Paläontologische Zeitschrift 36 (Suppl 1): 45-63.
634	
635	Heintz A. 1929. Die downtonischen und devonischen Vertebraten von Spitzbergen II.
636	Acanthaspida. Skrifter om Svalbard og Ishavet 22: 1-81.
637	
638	Heintz A. 1932. Beitrag zur Kenntnis der devonischen Fischfauna Ost-Grönlands. Skrifter
639	omSvalbard og Ishavet, 42: 1–27.
640	
641	Hills ES. 1931. The Upper Devonian fishes of Victoria, and their bearing on the stratigraphy of
642	the state, Geology Magazine, 68:206-231.
643	

644	Holland 1, Long, JA, Snitting, D. 2010. New information on the enigmatic tetrapodomorph fish
645	Marsdenichthys longioccipitus (Long, 1985). Journal of vertebrate paleontology,
646	30(1):68-77. <u>DOI 10.1080/02724630903409105</u>
647	
648	Janvier P, Ritchie A. 1977. Le genre <i>Groenlandaspis</i> Heintz (Pisces, Placodermi, Arthrodira)
649	dans le Devonien d'Asie Colloques Researches Academie des Sciences de Paris, series D
650	284:1385–1388.
651	
652	Janvier P, Clement G. 2005. A new groenlandaspidid arthrodire (Vertebrata: Placodermi) from
653	the Famennian of Belgium. Geologica Belgica 8:(1-2)51-67.
654	
655	Jobbins M, Rücklin M, Ferrón HG, Klug C. 2022. A new selenosteid placoderm from the Late
656	Devonian of the eastern Anti-Atlas (Morocco) with preserved body outline and its
657	ecomorphology. Frontiers in Ecology and Evolution 10: 969158. DOI
658	10.3389/fevo.2022.969158
659	
660	Jobbins M, Rücklin M, Sánchez Villagra MR, Lelièvre H, Grogan E, Szrek, P, Klug C. 2024.
661	Extreme lower jaw elongation in a placoderm reflects high disparity and modularity in
662	early vertebrate evolution. Royal Society Open Science 11(1): 231747. DOI
663	10.1098/rsos.231747
664	

665	Johnson H, Elliott D, Wittke J. 2000. A new actinolepid arthrodire (Class Placodermi) from the
666	Lower Devonian Sevy Dolomite, East-Central Nevada. Zoological Journal of the Linnean
667	Society 129, 241-266. DOI 10.1111/j.1096-3642.2000.tb00013.x
668	
669	King B, Hu Y, Long, JA. 2018. 'Electroreception in early vertebrates: survey, evidence and new
670	information. <i>Palaeontology</i> , 61(3): 325-58. DOI 10.1111/pala.12346
671	
672	
673	Kulczycki J. 1957. Upper Devonian fishes from the Holy Cross Mountains (Poland). Acta
674	Palaeontologica Polonica 2:285-380.
675	
676	Lebedev OA, Engelman RK, Skutschas PP, Johanson Z, Smith MM, Kolchanov VV, Trinajstic
677	K, Linkevich VV. 2023. Structure, Growth and Histology of Gnathal Elements in
678	Dunkleosteus (Arthrodira, Placodermi), with a Description of a New Species from the
679	Famennian (Upper Devonian) of the Tver Region (North-Western Russia). Diversity
680	15(5): 648.
681	
682	Long JA. 1983a. New Bothriolepid Fish from the Late Devonian of Victoria, Australia.
683	Palaeontology 26(2):295-320.
684	
685	Long, JA. 1983b. A new diplacanthoid acanthodian from the Late Devonian of Victoria.
686	Memoirs of the Association of Australasian Palaeontologists 1: 51-65.
687	

588	Long JA 1984. New phyllolepids from Victoria and the relationships of the group. <i>Proceedings</i>
589	of the Linnean Society of New South Wales 107:263-308.
590	
591	Long JA, Werdelin L. 1986a. A new Late Devonian bothriolepid (Placodermi, Antiarcha) from
592	Victoria, with descriptions of other species from the state. <i>Alcheringa</i> 10(4): 355-399.
593	DOI 10.1080/03115518608619146
594	
595	Long JA. 1986b. A new Late Devonian acanthodian fish from Mt. Howitt, Victoria, Australia,
596	with remarks on acanthodian biogeography. Proceedings of the Royal Society of Victoria
597	98(1-2): 1-17.
598	
599	Long JA. 1987. An unusual osteolepiform fish from the Late Devonian of Victoria, Australia.
700	Palaeontology 30(4): 839-852.
701	
702	Long JA. 1988. New palaeoniscoid fishes from the Late Devonian and Early Carboniferous of
703	Victoria. Memoirs of the Association of Australasian Palaeontologists 7(7): 1-64.
704	
705	Long JA. 1992. Cranial anatomy of two new late Devonian lungfishes (Pisces: Dipnoi) from Mt.
706	Howitt, Victoria. Records of the Australian Museum 44(3): 299-318. DOI 10.3853/j.0067-
707	<u>1975.44.1992.37</u>
708	
709	Long JA. 1995. A new groenlandaspidid arthrodire (Pisces; Placodermi) from the Middle.
710	Records of the Western Australian Museum 17: 35-41.

11			
712	Long JA, Anderson ME, Gess R, Hiller N. 1997. New Placoderm fishes from the Late Devonian		
713	of South Africa. Journal of Vertebrate Paleontology, 17(2), 253-268. DOI		
714	10.1080/02724634.1997.10010973		
715			
716	Long JA 1999. A new genus of fossil coelacanth (Osteichthyes: Coelacanthiformes) from the		
717	Middle Devonian of southeastern Australia. Records of the Western Australian Museum,		
718	Supplement 57: 37-53.		
719			
720	Long JA, Holland T. 2008. A possible 'elpistostegalid' fish from the Devonian of Gondwana.		
721	Proceedings of the Royal Society of Victoria 120(1):184-193.		
722			
723	Long JA, Clement AM. 2009. The postcranial anatomy of two Middle Devonian lungfishes		
724	(Osteichthyes, Dipnoi) from Mt. Howitt, Victoria, Australia. Memoirs of Museum		
725	Victoria 66(2):189-202. DOI 10.24199/j.mmv.2009.66.17		
726			
727	Long JA, Thomson V, Burrow C, Turner S. 2021. Fossil chondrichthyan remains from the		
728	Middle Devonian Kevington Creek Formation, South Blue Range, Victoria. In Ancient		
729	Fishes and their Living Relatives: a Tribute to John G. Maisey (pp. 239-245). Verlag, Dr		
730	Friedrich Pfeil.		
731			
732	Maddison WP. Maddison DR. 2019, Mesquite: a modular system for evolutionary analysis.		
733	Version 3.61 http://www.mesquiteproject.org .		

34		
735	McCoy F. 1848. 'On some new fossil fish of the Carboniferous period.' Annals and Magazine of	
736	Natural History 2:1–10.	
737		
738	Mihalitsis M, Bellwood D. 2019. Functional implications of dentition-based morphotypes in	
739	piscivorous fishes. Royal Society Open Science 6(9), 190040. DOI	
740	doi.org/doi:10.1098/rsos.190040	
741		
742	Miles RS, Westoll TS. 1968. IX.—the Placoderm fish Coccosteus cuspidatus Miller ex Agassiz	
743	from the middle old red sandstone of Scotland. Part I. Descriptive morphology. Earth an	
744	environmental science transactions of the Royal Society of Edinburgh 67(9): 373-476.	
745	<u>DOI 10.1017/S0080456800024078</u>	
746		
747	Miles RS. 1969. VI.—Features of Placoderm Diversification and the Evolution of the Arthrodire	
748	Feeding Mechanism, Earth and environmental science transactions of the Royal Society	
749	of Edinburgh 68(6):123-70. <u>DOI 10.1017/S0080456800014629</u>	
750		
751	Miles RS. 1971. The Holonematidae (placoderm fishes), a review based on new specimens of	
752	Holonema from the Upper Devonian of Western Australia. Philosophical transactions of	
753	the Royal Society of London. Series B, Biological sciences 263(849):101-234. DOI	
754	10.1098/rstb.1971.0111	
755		

/56	Miles RS. 19/3. An actinolepid arthrodire from the lower Devonian Peel Sound formation,	
757	Prince of Wales Island. Palaeontographica Abteilung A 109-118.	
758		
759	Obruchev, DV 1964. Osnovy Paleontologii [Fundamentals in Paleontology. Agnathes. Pisces],	
760	pp. 522 in J. A. Orlov (ed.), Fundamentals in Paleontology, Volume 11. Israel Program	
761	for Scientific Translations, Moscow.	
762		
763	Olive, S., C. Prestianni and V. Dupret (2015). A new species of Groenlandaspis Heintz, 1932	
764	(Placodermi, Arthrodira), from the Famennian (Late Devonian) of Belgium. Journal of	
765	Vertebrate Palentology, 35 (4). DOI 10.1080/02724634.2014.935389	
766		
767		
768	Olive S, Pradel A, Martinez-Pérez C, Janvier P, Lamsdell JC, Gueriau P, Rabet N, Duranleau-	
769	Gagnon P, Cárdenas-Rozo AL, Zapata Ramírez PA, Botella H. 2019. New insights into	
770	Late Devonian vertebrates and associated fauna from the Cuche Formation (Floresta	
771	Massif, Colombia). Journal of Vertebrate Paleontology 39(3).	
772	DOI 10.1080/02724634.2019.1620247	
773		
774	Ritchie A. 1973. Wuttagoonaspis gen. nov., an unusual arthrodire from the Devonian of Westerr	
775	New South Wales, Australia. Palaeontographica Abteilung A 58-72.	
776		
777	Ritchie A. 1974. "From Greenland's icy mountains"—a detective story in stone. <i>Australian</i>	
778	Natural History 18:28–35.	

779		
780	Ritchie A. 1975. <i>Groenlandaspis</i> in Antarctica, Australia and Europe. <i>Nature</i> 254: 569-573.	
781		
782	Ritchie A. 2004. A new genus and two new species of groenlandaspidid arthrodire (Pisces:	
783	Placodermi) from the Early-Middle Devonian Mulga Downs Group of western New	
784	South Wales, Australia. Fossils and Strata 50: 56-81.	
785		
786	Ritchie A. 2005. Cowralepis, a new genus of phyllolepid fish (Pisces, Placodermi) from the late	
787	Middle Devonian of New South Wales, Australia. Proceedings of the Linnean Society of	
788	New South Wales 126: 215-259	
789		
790	Rücklin M, Donoghue PC, Johanson Z, Trinajstic K, Marone F, Stampanoni M. 2012.	
791	Development of teeth and jaws in the earliest jawed vertebrates. Nature 2012	
792	491(7426):748-51. DOI 10.1038/nature11555	
793		
794		
795	Schultze H. 1984. The head shield of <i>Tiaraspis</i> subtilis (Gross)(Pisces, Arthrodira). <i>Proceedings</i>	
796	of the Linnean Society of New South Wales 107(3):355-365	
797		
798	Smith MM, Johanson Z. 2003. Separate evolutionary origins of teeth from evidence in fossil	
799	jawed vertebrates. Science 299(5610):1235-6. DOI 10.1126/science.1079623	
800		
801		

802	Stensiö EA. 1939. On the Placodermi of the Upper Devonian of East Greenland. I. Phyllolepida	
803	and Arthrodira. Meddeleser om Grønland 97(3): 1-33.	
804		
805	Stensiö EA. 1942. — On the snout of Arthrodires. Kungliga Svenska VetenskapsAkademiens	
806	Handlingar 20: 1-32.	
807		
808	Stensiö EA. 1963. Anatomical Studies on the Arthrodiran Head: Preface, geological and	
809	geographical distribution, the organization of the arthrodires, the anatomy of the head in	
810	the dolichothoraci, coccosteomorphi and pachyosteomorphi. Taxonomic Appendix.	
811	Almqvist & Wiksell.	
812		
813	Swofford DL. 2003. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods).	
814	Version 4. Sinauer Associates, Sunderland, Massachusetts.	
815		
816	Trinajstic K. 1999. New anatomical information on Holonema (Placodermi) based on material	
817	from the Frasnian Gogo formation and the Givetian-Frasnian Gneudna formation,	
818	Western Australia. Geodiversitas, 21(1):69-84.	
819		
820	Trinajstic, K, Hazelton M. 2007. Ontogeny, phenotypic variation and phylogenetic implications	
821	of arthrodires from the Gogo Formation, Western Australia. Journal of vertebrate	
822	paleontology, 27(3), 571-583. DOI 10.1671/0272-4634(2007)27[571:OPVAPI]2.0.CO;2	
823		

Trinajstic K, Dennis-Bryan K. 2009. Phenotypic plasticity, polymorphism and phylogeny within		
placoderms. <i>Acta Zoologica</i> , 90(s1), 83-102. DOI 10.1111/j.1463-6395.2008.00363.x		
Trinajstic K, Boisvert C, Long, JA, Maksimenko A, Johanson, Z. 2015. Pelvic and reproductive		
structures in placoderms (stem gnathostomes). <i>Biological Reviews</i> , 90(2): 467-501. DOI		
10.1111/brv.12118		
Vaškaninová V, Chen D, Tafforeau P, Johanson Z, Ekrt B, Blom H, Ahlberg PE. 2020. Marginal		
dentition and multiple dermal jawbones as the ancestral condition of jawed		
vertebrates. Science 369(6500): 211-216. DOI 10.1126/science.aaz9431		
Woodward AS. 1891. Catalogue of the Fossil Fishes in the British Museum of Natural History.		
Part II. Containing the Elasmobranchii (Acanthodii), Holocephali, Ichthyodorulites,		
Ostracodermi, Dipnoi, and Teleostomi (Crossopterygii), and Chondrostean		
Actinopterygii, Volume II. British Museum of Natural History, London, 567.		
Young GC. 1979. New information on the structure and relationships of Buchanosteus		
(Placodermi: Euarthrodira) from the Early Devonian of New South Wales. Zoological		
Journal of the Linnean Society, 66(4), 309-352.		
Young GC, Gorter JD. 1981. A new fish fauna of Middle Devonian age from the Taemas/Wee		
Jasper region of New South Wales, Bureau of Mineral Resources, Australia, Bulletin,		
209:83-147.		

847	
848	Young GC. 1981., Biogeography of Devonian vertebrates. <i>Alcheringa</i> 5(3):225-43.
849	
850	Young GC. 1993. Middle Palaeozoic macrovertebrate biostratigraphy of Eastern Gondwana, In
851	Long, JA (ed) Paleozoic Vertebrate Biostratigraphy and Biogeography pp 208-251.
852	Belhaven Press, London.
853	
854	Young GC, Lelièvre H, Goujet D. 2001. Primitive Jaw Structure in an Articulated
855	Brachythoracid Arthrodire (Placoderm Fish, Early Devonian) from Southeastern Australia
856	Journal of Vertebrate Paleontology 21(4):670-8. DOI 10.1671/0272-
857	4634(2001)021[0670:PJSIAA]2.0.CO;2
858	
859	Young GC, Goujet D. 2003. Devonian fish remains from the Dulcie Sandstone and Cravens Peak
860	Beds, Georgina Basin, central Australia, Records of the Western Australian Museum
861	(Supplement) 65:1–85. <u>DOI:10.18195/issn.0313-122x.65.2003.001-085</u>
862	
863	Young, G. C. 2007. Devonian formations, vertebrate faunas and age control on the far south
864	coast of New South Wales and adjacent Victoria. Australian journal of earth sciences
865	<i>54</i> (7): 991-1008. <u>DOI 10.1080/08120090701488313</u>
866	

867		
868	Young, GC, Burrow CJ, Long, JA, Turner S, Choo B. 2010. Devonian macrovertebrate	
869	assemblages and biogeography of East Gondwana (Australasia, Antarctica), Palaeoworl	
870	19(1-2): 55-74. DOI:10.1016/j.palwor.2009.11.005	
871		
872	Young VT. 1983, 'Taxonomy of the arthrodire <i>Phlyctaenius</i> from the Lower or Middle	
873	Devonian of , New Brunswick, Canada' Bulletin of the British Museum (Natural History	
874	Geology, 37: 1-35.	
875		
876	Zhu Y-A, Zhu M, Wang, J-Q. 2016. Redescription of Yinostius major (Arthrodira:	
877	Heterostiidae) from the Lower Devonian of China, and the interrelationships of	
878	Brachythoraci. Zoological Journal of the Linnean Society 176(4):806-34. DOI	
879	doi.org/10.1111/zoj.12356	
880		
881	Zhu YA, Li Q, Lu J, Chen Y, Wang J, Gai Z, Zhao W, Wei G, Yu Y, Ahlberg PE, Zhu M. 2022	
882	The oldest complete jawed vertebrates from the early Silurian of China. Nature	
883	609(7929):954-958. <u>DOI: 10.1038/s41586-022-05136-8</u>	
884		
885		

Table 1(on next page)

Faunal List from the Mount Howitt locality, Victoria, Australia following Long 1983; 1999.

PeerJ

1	'Placodermi'		
2	Arthrodira		
3	Phyllolepididae		
4	Austrophyllolepis ritchei, Long, 1984		
5	Groenlandaspididae		
6	Groenlandaspis howittensis sp. nov.		
7	Antiarchi		
8	Bothriolepididae		
9	Bothriolepis gippslandiensis, Hills, 1931		
10	Bothriolepis cullodensis, Long, 1983a	Bothriolepis cullodensis, Long, 1983a	
11	Bothriolepis fergusoni, Long, 1983b		
12	'Acanthodii'		
13	Climatiiformes		
14	Culmacanthiidae		
15	Culmacanthus stewarti, Long, 1983b		
16	Acanthodiformes		
17	Acanthodidae		
18	Howittacanthus kentoni, Long, 1986a		
19	Osteichthyes		
20	Sarcopterygii		
21	Coelacanthiformes		
22	Galvinia syntrips, Long, 1999		
23	Dipnoi		
24	Howidipterus donnae, Long, 1992		
25	Barwickia downunda, Long, 1992		
26	Canowindridae		
27	Beelarongia patrichae, Long, 1987		
28	Tristichopteridae		
29	Marsdenichthys longioccipitus, Long, 1985		
30	?Elpistostegalia		
31	Howittichthys warranae, Long & Holland, 200	80	
32	Actinopterygii		
33	Palaeonisciformes		
34	Howqualepis rostridens, Long, 1988		
35			
36			

Table 2(on next page)

11 new characters added onto a matrix of 121 characters from Zhu et al. (2016).

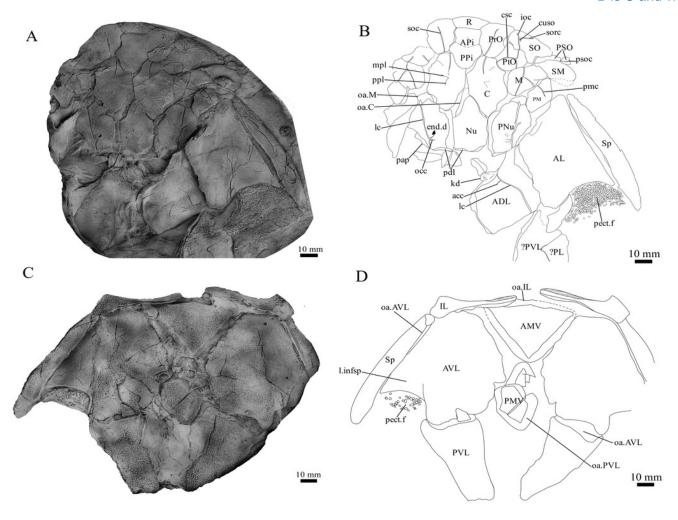
No.	Description	Reference
122	Cervical Joint: Sliding (0) Ginglymoid (1).	Miles 1973
123	Transversely divided pineal plate forming anterior and posterior	This article
	plates: Absent (0) Present (1).	
124	Cutaneous sensory pits present on the suborbital or/and post	King, Hu & Long, 2016
	suborbital plates: Absent (0) Present (1).	
125	Dermal contact between the anterior dorsolateral and posterior	This article
	lateral plates: Absent (0) Present (1).	
126	Inverted V-shaped flexure of the posterior dorsolateral plate	Long 1995
	sensory canal. Scored not applicable in taxa without a PDL	
	sensory canal: No flexure (0) Weak flexure, >110° (1) Strong	
	flexure, <110° (2).	
127	Dorsolateral ridge originating from near the condyle of the	Long 1995
	anterior dorsolateral plate: Absent (0) Present (1).	
128	Medial contact of the dorsolateral plates under the median	Goujet 1984
	dorsal plate: No contact (0) anterior dorsolateral plates (1)	
	anterior and posterior dorsolateral plates (2).	
129	Internal annular thickening of the posterior trunk plates	Goujet 1984
	('b.cpd', Goujet 1984, fig. 61B): Absent (0) Present (1).	
130	Median contact of the posterior ventrolateral plate: Simple	Goujet 1984, Dupret
	overlap (0) Sigmoidal/double overlapping (1)	2004
131	Ventral sensory canals: Absent (0) Present (1)	This article
132	Distinct infraspinal lamina/process ('pr.infsp', Miles & Westoll	This article

1968, fig. 40C; 'la.spv', Goujet 1984, fig. 66A) of the anterior ventrolateral plate: Absent (0) Present (1).

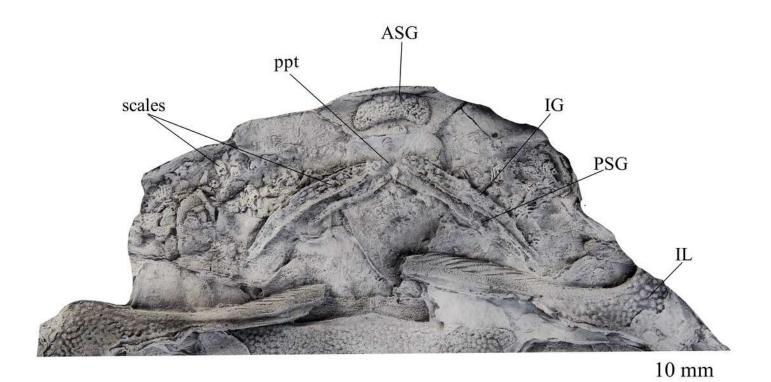
Anterior ventral plates: Absent (0) Present (1)

Miles 1973

1

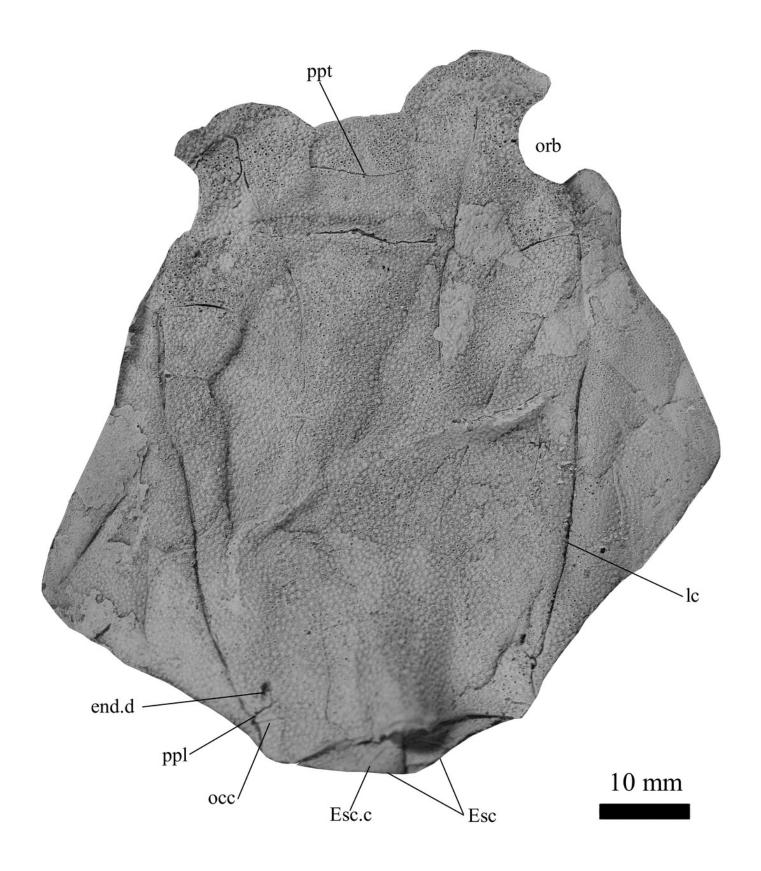

133

2

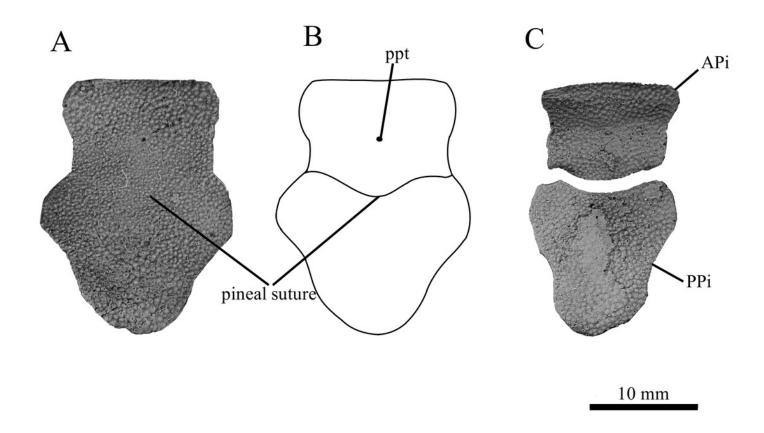

G. howittensis sp. nov.,

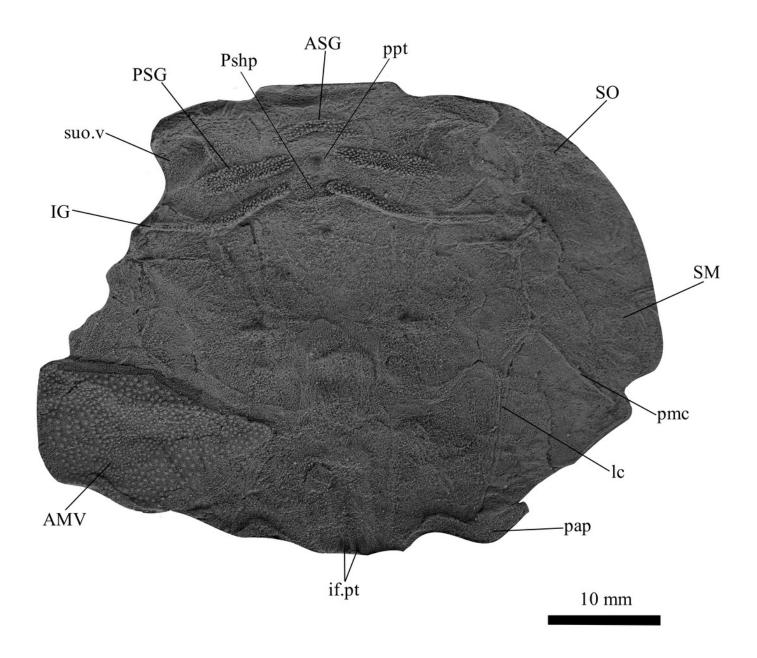
(A) Photo of the holotype NMV P48873, head shield and partial trunk shield in dorsal view. (B) Photo of NMV P48874, ventral trunk shield in ventral view. Latex peels whitened with ammonium chloride. (C, D) sketch interpretations of same specimens.

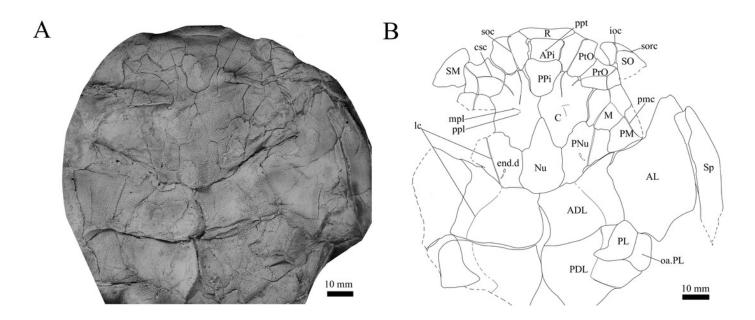
B is C and vice versa

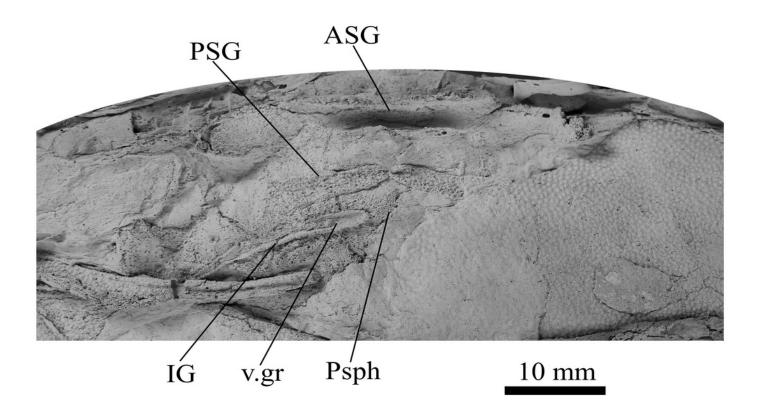


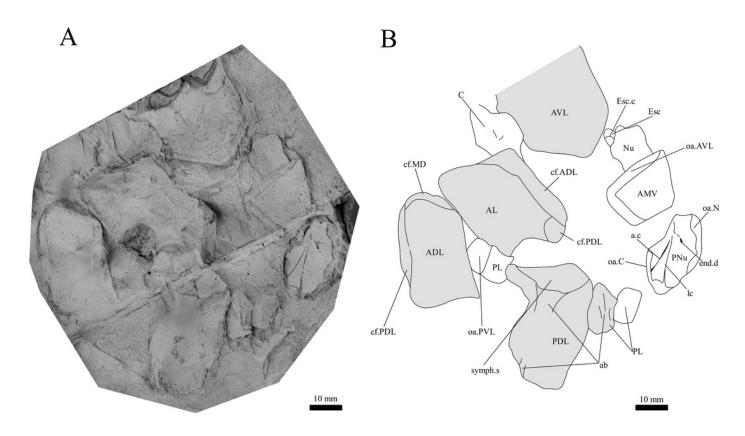
G. howittensis sp. nov., NMV P48773, jaws in ventral view. Latex peel whitened with ammonium chloride.



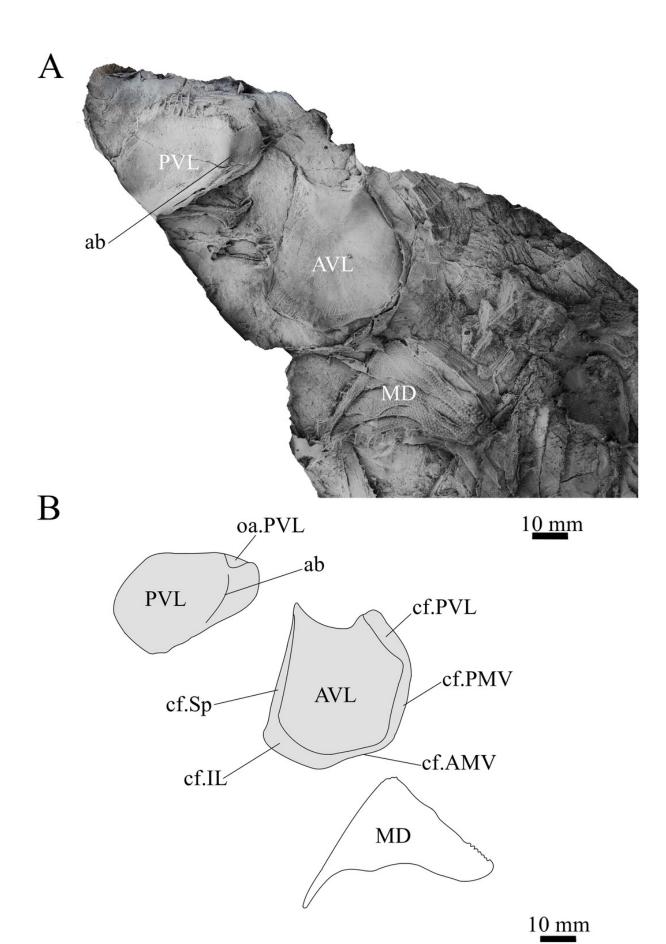

G. howittensis sp. nov., AMF 63548, skull roof in dorsal view. Latex peel whitened with ammonium chloride.


- G. howittensis sp. nov., pineal plates in dorsal view.
- (A) Photo of the pineal plate of NMV P48873. (B) interpretive drawing of the same specimen.
- (C) Photo of the APi and PPi of AMF 62532. (A, C) Latex peels whitened with ammonium chloride.

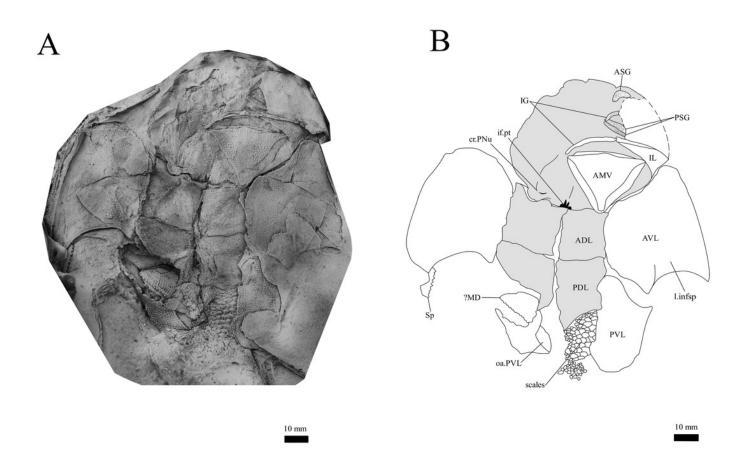

G. howittensis sp. nov., AMF 62534, juvenile head shield in ventral view. Latex peel whitened with ammonium chloride.

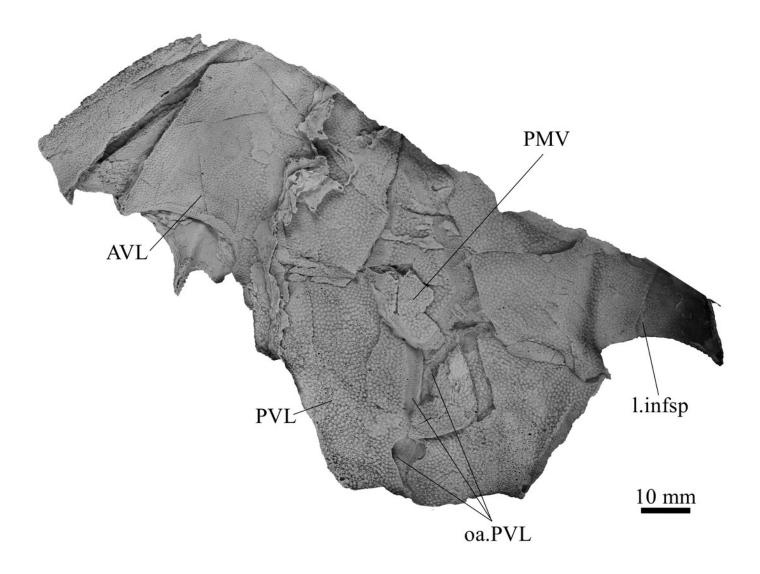

- G. howittensis sp. nov. head and trunk shield in dorsal view.
- (A) Photo of AMF 62532, latex peel whitened with ammonium chloride. (B) Interpretive line drawing of same specimen, dotted lines indicate broken or incomplete plate margins.

G. howwitensis sp. nov., AMF 62333, tooth plates in ventral view, latex peel whitened with ammonium chloride.

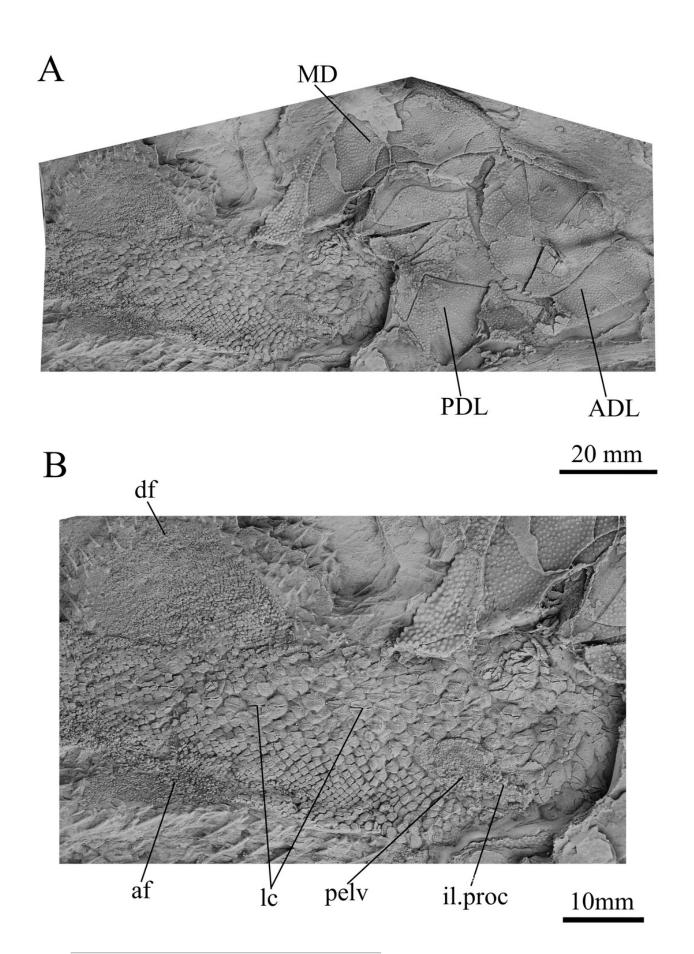


- G. howittensis sp. nov., disarticulated head and trunk plates.
- (A) Photo of AMF 155378, latex peel whitened with ammonium chloride. (B) Interpretive drawing of the same specimen, shaded areas indicate the internal side of the plate.

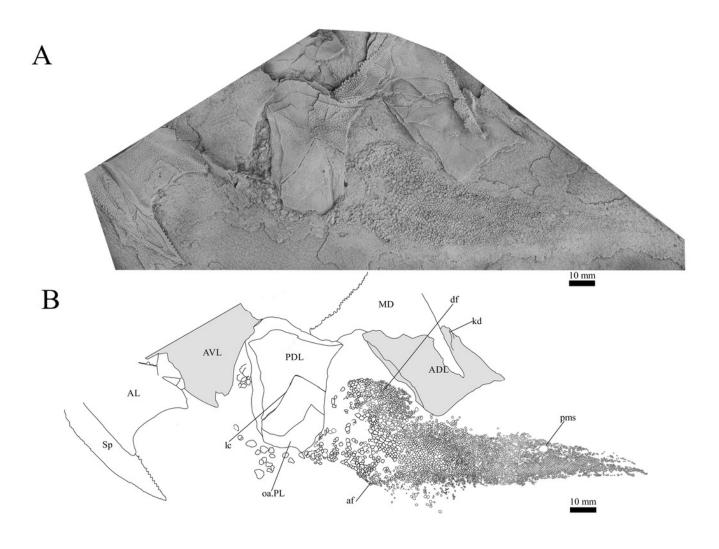



- G. howittensis sp. nov., disarticulated trunk plates.
- (A) Photo of NMV P254749, latex peel whitened with ammonium chloride. (B) Interprative drawing of the same specimen, shaded areas indicate internal side of plate.

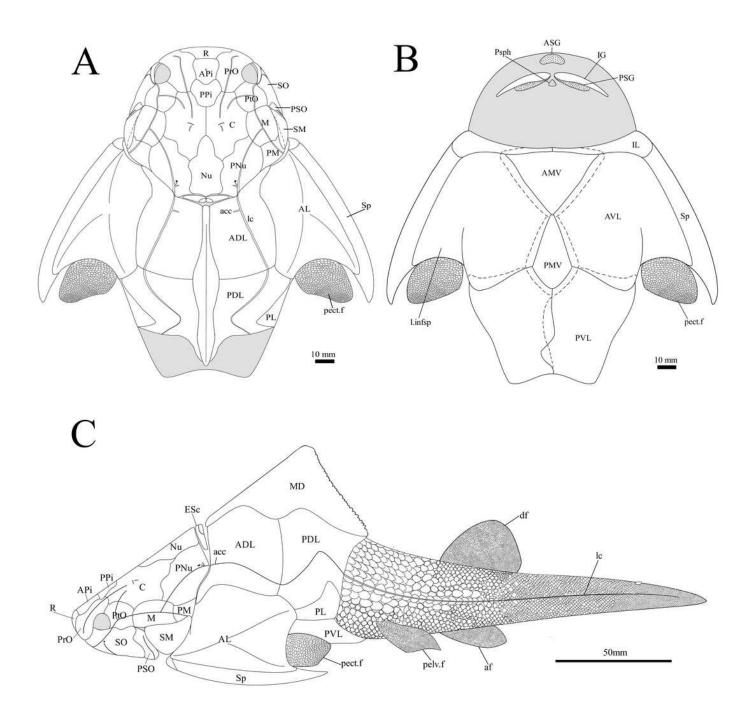
- G. howittensis sp. nov., in ventral view.
- (A) Photo of NMV P48884, latex peel whitened with ammonium chloride. (B) interpretative drawing of the same specimen, shaded areas indicate internal side of the plate.



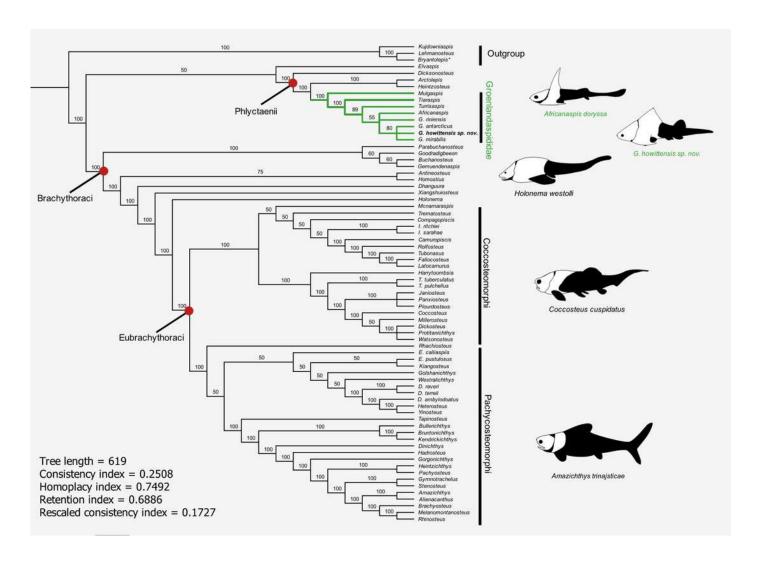
G. howittensis sp. nov., AMF 63543, partial ventral trunk shield in ventral view.



- G. howittensis sp. nov., partial tail and lateral trunk plates in lateral view.
- (A) Photo of AMF 62537 MD, PDL, ADL and tail depicted. (B) Closer view of the squamation, pelvic girdle and fins of the tail. (A,B) Latex peels whitened with ammonium chloride.

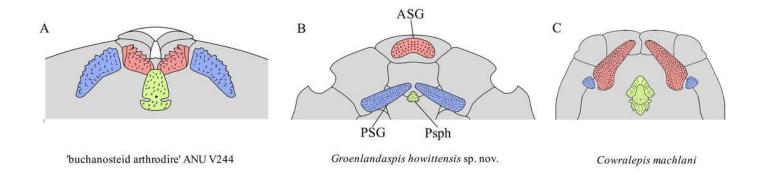


- G. howittensis sp. nov., disaticulated trunk plates and tail in lateral view.
- (A) Photo of NMV P48875, latex peel whitened with ammonium chloride. (B) interpretive drawing of the same specimen, shaded areas indicate internal side of the plate.



- G. howwitensis sp. nov. reconstruction.
- (A) dorsal view. (B) ventral view. (C) lateral view, dotted lines indicate overlap regions.

50% majority-rule consensus of 35234 equally parsimonious trees showing the phylogenetic relationships of *G. howittensis* sp. nov. and Groenlandaspididae (highlighted green) among phlyctaenioid arthrodires.


Values at nodes indicate consensus frequency (thus only nodes which occur at 100% will also appear on the strict consensus). Image silhouettes are our own (*G. howittensis*) or modified from the following: *Africanaspis* doryssa, (Gess & Trinajistic 2017, fig. 3); *Holonema westolli*, (Trinajstic 1999, fig. 5C); *Coccosteus cuspidatus* (Trinajstic *et al.* 2015, fig. 16); *Amazichthys trinajsticae* (Jobbins *et al.* 2022, fig. 9).

Arrangement of upper-tooth plates in basal arthrodires.

Red = anterior supragnathal (ASG), blue = posterior supragnathal (PSG), green = parasphenoid (Psph). (A) 'buchanosteid arthrodire' ANU V244, Fig. 6B. (B) *Groenlandaspis howittensis* sp. nov. composite reconstruction after NMV P48773 and AMF 62534. (C) *Cowralepis mclachlani* after Ritchie 2005, fig. 9F, G & 15C, D. Not to scale.

