

Diversity and habitat preferences of bdelloid rotifers in mosses and liverworts from beach forests along sand dunes in Thailand

Sittikron Jattupan ¹, Rapeepan Jaturapruek ¹, Phannee Sa-ardrit ², Janejaree Inuthai ³, Chatchai Ngernsaengsaruay ^{4,5}, Supiyanit Maiphae ^{Corresp. 1,5}

Corresponding Author: Supiyanit Maiphae Email address: supiyanit.m@ku.th

Microscopic animals are often thought to be widely distributed due to their small size and specific capabilities. However, evidence shows that bdelloid rotifers in bryophytes exhibit habitat specialization, with species composition varying by microhabitat. This suggests that their distribution is influenced by complex ecological processes, warranting further research, especially at the microscale. Therefore, we aimed to test whether species richness and composition of bdelloid rotifers differ across bryophyte species, forms, characteristics, and seasons to understand their distribution and habitat preferences in limnoterrestrial environments. Rotifers were identified and counted from bryophyte samples collected in April (low rainfalls), August (moderate rainfalls), and December 2022 (high rainfalls) at Bang Berd Beach Forest, Chumphon Province, Thailand. The results revealed high bdelloid diversity, with 22 species identified, 14 of which are new records for Thailand, raising the known number to 30. Species richness did not vary significantly across bryophyte variables or seasons, and there was no strong habitat preference between bdelloid rotifers and bryophytes, except for a few species. However, species composition showed high variation across bryophyte variables, confirming the limitation of their distribution. These findings indicate that this highly variable bdelloid rotifer community is surprising for several reasons. First, it suggests that bdelloid rotifers are not as vagile as previously thought. Second, it implies some local adaptation or competitive interactions between species that generate local and unique communities.

¹ Animal Systematics and Ecology Research Unit, Department of Zoology, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, Thailand

² The Princess Maha Chakri Sirindhorn Natural History Museum and RSPG Southern Region Network Coordinating Center, Prince of Songkla University, Hatyai, Songkhla, Thailand

Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Lampang Campus, Hang Chat, Lampang, Thailand

⁴ Department of Botany, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, Thailand

⁵ Biodiversity Center Kasetsart University, Kasetsart University, Chatuchak, Bangkok, Thailand

Diversity and habitat preferences of bdelloid rotifers

in mosses and liverworts from beach forests along

sand dunes in Thailand

_	
5	Sittikron Jattupan ¹ , Rapeepan Jaturapruek ¹ , Phannee Sa-ardrit ² , Janejaree Inuthai ³ , Chatchai
6	Ngernsaengsaruay ^{4,5} , Supiyanit Maiphae ^{1,5}
7	
8	¹ Animal Systematics and Ecology Research Unit, Department of Zoology, Faculty of Science,
9	Kasetsart University, Bangkok 10900 Thailand
10	² The Princess Maha Chakri Sirindhorn Natural History Museum and RSPG Southern Region
11	Network Coordinating Center, Prince of Songkla University, Songkhla 90110 Thailand
12	³ Department of Biotechnology, Faculty of Science and Technology, Thammasat University,
13	Lampang Campus, Lampang 52190 Thailand
14	⁴ Department of Botany, Faculty of Science, Kasetsart University, Bangkok 10900 Thailand
15	⁵ Biodiversity Center Kasetsart University, Kasetsart University, Bangkok 10900 Thailand
16	
17	Corresponding Author:
18	Supiyanit Maiphae ^{1,5}
19 20	Email address: supiyanit.m@ku.ac.th
20 21	Eman address. supryamt.m@kd.ac.tn
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	

37

Abstract

- 38 Microscopic animals are often thought to be widely distributed due to their small size and
- 39 specific capabilities. However, evidence shows that bdelloid rotifers in bryophytes exhibit
- 40 habitat specialization, with species composition varying by microhabitat. This suggests that their
- 41 distribution is influenced by complex ecological processes, warranting further research,
- 42 especially at the microscale. Therefore, we aimed to test whether species richness and
- 43 composition of bdelloid rotifers differ across bryophyte species, forms, characteristics, and
- seasons to understand their distribution and habitat preferences in limnoterrestrial environments.
- 45 Rotifers were identified and counted from bryophyte samples collected in April (low rainfalls),
- 46 August (moderate rainfalls), and December 2022 (high rainfalls) at Bang Berd Beach Forest,
- 47 Chumphon Province, Thailand. The results revealed high bdelloid diversity, with 22 species
- 48 identified, 14 of which are new records for Thailand, raising the known number to 30. Species
- 49 richness did not vary significantly across bryophyte variables or seasons, and there was no strong
- 50 habitat preference between bdelloid rotifers and bryophytes, except for a few species. However,
- 51 species composition showed high variation across bryophyte variables, confirming the limitation
- of their distribution. These findings indicate that this highly variable bdelloid rotifer community
- 53 is surprising for several reasons. First, it suggests that bdelloid rotifers are not as vagile as
- 54 previously thought. Second, it implies some local adaptation or competitive interactions between
- 55 species that generate local and unique communities.

Introduction

56

- The distributions and abundances of microscopic organisms (< 1 mm) may not follow the
- 59 patterns typically attributed to larger organisms (Fontaneto et al., 2008; Segers & De Smet, 2008;
- 60 Kaya & Erdoğan, 2015; Zawierucha et al., 2023). It has been hypothesized that microscopic
- organisms tend to be more widely distributed because they are small enough to be passively
- 62 dispersed by wind over long distances, a concept known as the 'everything is everywhere' or
- 63 ubiquity hypothesis (Finlay, 2002; Fenchel & Finlay, 2004; Fontaneto & Hortal, 2013).
- 64 Additionally, certain microscopic organisms, such as rotifers, possess efficient resting stages that
- allow them to endure prolonged periods of dormancy, and their asexual and parthenogenetic
- 66 reproduction enables them to rapidly colonize suitable habitats (Fontaneto, 2019). This suggests
- 67 that they can be considered cosmopolitan (Fontaneto, 2011). Furthermore, Fontaneto, Westberg,
- and Hortal (2011) confirmed that microscopic organisms, such as bdelloid rotifers, have a lower
- 69 degree of habitat specialization than larger organisms. However, this occurs within a complex
- 70 scenario of ecological processes; therefore, more research is needed to explain the effects on
- 71 species composition, especially at the microscale.
- 72 The distribution of microinvertebrates, such as tardigrades (Nelson & Adkins, 2001; Ramsay et
- 73 al., 2021) and bdelloid rotifers (Kaya, De Smet & Fontaneto, 2010; Dražina et al., 2013; Kaya &
- 74 Erdoğan, 2015), in bryophytes has been extensively studied. Bryophytes have ecological
- associations with microorganisms, including protozoans and rotifers, as well as other
- 76 invertebrates, plants, and fungi (Gerson, 1982). They provide food, shelter, and nesting material

11	for small animals and invertebrates, indirectly serving as a matrix for various interactions among
78	all these organisms (Bahuguna et al., 2013). Several studies have illustrated significantly
79	enhanced invertebrate densities in bryophytes compared to unstable gravels (Suren, 1991; Suren,
80	1993). Furthermore, it has been reported that the species richness and composition of bdelloid
81	rotifers living in bryophytes differ significantly among microhabitats, providing evidence of
82	habitat specialization (Kaya & Erdoğan, 2015; Heatwole & Miller, 2019). In contrast, no
83	relationships have been found between bdelloids and moss species (Burger, 1948; Kaya, De
84	Smet & Fontaneto, 2010). Therefore, it appears that the species composition inhabiting
85	bryophytes may change over time, or certain species may coexist in specific patterns.
86	Bdelloid rotifers are microscopic organisms capable of reproducing without fertilization and
87	resisting dry and frozen conditions, which allows them to disperse across a variety of terrestrial
88	and aquatic habitats (Fontaneto, Melone & Ricci, 2003; Ricci & Caprioli, 2005; Fontaneto &
89	Ricci, 2006; Wilson, 2011; Debortoli, Laender & Doninck, 2018). Currently, approximately 460
90	species of bdelloid rotifers have been reported worldwide (Segers, 2007). In recent decades,
91	bdelloid diversity in terrestrial environments has been extensively studied across various regions
92	including Central and Eastern Europe (Donner, 1965; Koste, 1975, 1978a, 1978b; Schmid-
93	Araya, 1995), Turkey (Kaya, 2013), Korea (Song & Kim, 2000; Song & Min, 2015; Song & Lee
94	2017), China (Zeng et al., 2020; Wang et al., 2023), the Arctic (Svalbard) (Kaya et al., 2010),
95	and Antarctica (Velasco-Castrillón et al., 2014; Iakovenko et al., 2015). These studies have
96	contributed to extensive species lists, resulting in numerous species being recorded (Fontaneto et
97	al., 2007; Zeng et al., 2020).
98	In Thailand, studies on bdelloid rotifers have predominantly focused on freshwater habitats, with
99	16 species reported (Sa-Ardrit, Pholpunthin & Segers, 2013; Maiphae, 2017; Jaturapruek et al.,
100	2018, 2021). While their niche preferences and distribution patterns in freshwater environments
101	have been explored (Jaturapruek et al., 2021), there remains limited knowledge about their
102	distribution in limnoterrestrial habitats. This study was the first to investigate the habitat
103	preferences of bdelloid rotifers in tropical terrestrial environments, where water availability may
104	influence dispersal and distribution patterns, potentially differing from those in drier or colder
105	regions. The Bang Burd Forest, the largest beach forest on sand dunes in Thailand, is a unique
106	ecosystem characterized by a diverse plant community, including climbers and trees adapted to
107	sandy soils, intense sunlight, high winds, dryness, and constant seawater spray (Inuthai, 2007).
108	This forest is significant not only for its distinct environmental conditions but also for the rich
109 110	biodiversity it supports. Previous research has documented a high diversity of bryophytes—specifically, 16 species of mosses and liverworts (Inuthai, 2007)—indicating a variety of
111 112	microhabitats that could be crucial for supporting invertebrate communities (Budke et al., 2018).
112	As a result, this study aims to examine the distribution patterns of bdelloid rotifers in relation to bryophyte species and their characteristics. By understanding these relationships, we hope to
114	gain insights into the habitat preferences of bdelloid rotifers in this distinctive ecosystem.
	gain morgans and the matrial preferences of buenoid fourers in this distinctive ecosystem.
115	

Materials & Methods

117 Sampling site

- 118 Bang Berd Beach Forest in Chumphon Province, Thailand, is located near the coast
- 119 (10.987531700278218, 99.49570988282339) with an elevation ranging from 6 to 54 meters
- above sea level. This forest is characterized by sand dunes and scattered patches of plants. The
- surrounding area is dry and sunny, while the interior is more humid. The plant community
- includes shrubs, trees, and climbers, which provide habitats for bryophytes (Fig. 1).

123124

Sample collection, species identification and count

- 125 A total of 173 bryophyte samples were collected in April 2022 (low rainfalls), August 2022
- 126 (moderate rainfalls) and December 2022 (high rainfalls), and the average rainfalls of each
- periods based on data during 2019-2021 were 6.96, 15.04 and 21.64 mm, respectively (Hydro-
- 128 Informatics Institute (Public Organization), 2021). (Approved by the Institutional Animal Care
- and Use Committee, Kasetsart University, approval no. ACKU66-SCI-018). All samples were
- stored in zip-lock plastic bags for bdelloid studies and bryophyte identification. There are 11
- species of mosses and 31 species of liverworts which were classified into groups (mosses,
- liverworts), life forms (cushion, turf, mat) (Inuthai, 2007; Suwanmala & Chantanaorrapint,
- 133 2016), and morphological characteristics. The morphological characteristics of mosses and
- liverworts were classified by the complexity of their structure that may be linked to the ability to
- harbor water, which is an environment for rotifers. Mosses are classified into two characters
- including leaves curl when dry and leaves do not curl when dry (in this context, 'leaves' refers to
- a leave-like structure or phyllids) and liverworts are classified into two characters including large
- lobules (a ratio of lobules is about half or more than half of lobe length) and small lobules (a
- ratio of lobules is less than half of lobe length) (Table 1, Figs. 2-3). Samples containing mixed
- bryophyte species (Table S1) and those where bdelloid rotifers were not found were excluded
- 141 from the analysis. Therefore a total of 52 samples were used for data analysis. In the laboratory,
- samples were prepared for identification using a modified method from Peters et al. (1993). A
- 3x3 cm² of each sample was soaked in mineral water for 24 hours, then shaken thoroughly
- before collecting the water samples for bdelloid rotifer identification and counting. Bdelloid
- rotifers in each water sample were sorted using a stereomicroscope (Olympus SZ51). The
- morphological characteristics of each specimen were examined live with a light microscope
- 147 (Olympus CH2). All taxonomic characters were photographed and recorded on video.
- 148 Identifications were based on morphological characteristics, following Donner (1965) and Ricci
- 149 & Melone (2000).

150151

Data analysis

- 152 Species diversity
- 153 Shannon diversity and species evenness index was used to compare species diversity of bdelloid
- rotifers among bryophyte species, among seasons (low, moderate and high rainfalls), among
- bryophyte forms (cushion, turf, mat) and among bryophyte characters (mosses: leaves curl when

156 dry and leaves do not curl when dry; liverworts; large lobules and small lobules). These analyses used the Microsoft Excel program (Microsoft 365). 157 158 Species composition and habitat preferences 159 Differences in species composition were assessed using a Jaccard similarity index (Wolda, 160 1981). To visualize the relationship between species composition and bryophyte species, 161 between species composition and bryophyte forms and between species composition and season, 162 Principal Components Analysis (PCA) was performed using PC-ORD program version 7.11 163 (McCune & Mefford, 2016). Before performing the analyses, species composition was 164 transformed to normalize the data using log transformation and relativization. PCA was 165 conducted using a correlation cross-products matrix, and scores for species were calculated 166 through weighted averaging. Convex hull polygons were used to highlight groups of variables 167 including bryophyte group, bryophyte species, bryophyte form, bryophyte characters and season. 168 169 The habitat preference of each species was calculated following the equation of Dufrêne & Legendre (1997). According to the results, three groups of preference degree were classified: 170 high ($\geq 50\%$), moderate (30-49%) and low (< 30%). 171 172 173 Results 174 **Species diversity** A total of 22 bdelloid species were identified (Tables 2-4), 14 of which are newly recorded in 175 Thailand. In addition, five bdelloid species, including Adineta vaga, Adineta sp. 2, Habrotrocha 176 177 cf. brocklehursti, Macrotrachela cf. plicata, and Philodina rugosa, were found exclusively in samples of mixed bryophyte species (Table 4), making it difficult to determine the exact 178 bryophyte species they inhabited. In each example, a range of 1 to 7 bdelloid species was 179 identified, which corresponds to the number of species observed in other variables, including the 180 bryophyte group, form, morphological characteristics, and across different seasons. 181 Moreover, only two species, Macrotrachela multispinosa and Rotaria sordida, were distributed 182 183 in more than 50% of the 83 samples, accounting for 51.81% and 53.01%, respectively. They were followed by Habrotrocha angusticollis (25.30%) and Habrotrocha bidens (19.28%), which 184 185 were relatively widespread. In contrast, most other species were found in only 1 to 8 samples 186 (Fig. 4). 187 The species richness of bdelloid rotifers across different bryophyte species ranged from 1 to 8 188 and did not differ significantly (ANOVA, p = 0.43). Lejeunea adpressa and Schiffneriolejeunea

tumida var. haskarliana contained the most diverse bdelloid rotifer species (8 species), followed 189

by Cololejeunea planissima and Microlejeunea punctiformis (7 species), although the diversity 190

index of Lejeunea adpressa was highest, followed by Cololejeunea planissima (Table 5). 191

192 In addition, the bdelloid rotifer species richness found in liverworts (14 species) was higher than

193 in mosses (10 species), which is in agreement with the trend in the diversity index, although

these differences were not significantly (t-test, p = 0.11) (Table 6). Moreover, the highest species 194

195 richness was observed in bryophytes with a mat life form, which supported 14 species, followed

by turf with 8 species and cushion with 3 species, although the differences were not statistically 196 significant (t-test, p = 0.46). This finding largely aligns with the trends observed in the diversity 197 index, with the exception of the cushion life form, which exhibited the highest evenness value. 198 Additionally, large-lobule liverworts displayed the highest richness, also at 14 species; however, 199 200 this was not significantly different from the richness found in small-lobule species, which had 8 species (t-test, p = 0.91). Similarly, mosses with leaves that curl when dry supported 9 species, 201 which did not differ significantly from the species richness of mosses whose leaves do not curl 202 when dry, which had 5 species (t-test, p = 0.27). Notably, the highest diversity index was 203 recorded for large-lobule bryophytes (1.93), followed by small-lobule bryophytes (1.68) (Table 204 6). Furthermore, species richness among the three periods exhibited significant differences 205 (ANOVA, p = 0.05). The low rainfalls period had the highest species richness and diversity 206 index, with 14 species and a diversity index of 1.85. This was followed by the high rainfalls 207 period with 9 species and a diversity index of 1.67, and the moderate rainfalls period with 8 208 209 species and a diversity index of 1.52 (Table 6).

210211

233234

Notes on taxonomy of some unidentified bdelloid rotifers

- Of the 22 recorded taxa, 6 species remain unidentified: *Adineta* sp.1, *Adineta* sp.2, *Habrotrocha* sp., *Macrotrachela* sp., *Didymodactylos* sp., and *Pleuretra* sp. (Figs. 5A–N) due to insufficiently detailed characteristics. Additionally, some of these species exhibit characters that do not align with other members of their genera.
- Adineta sp.1 is notably small, measuring approximately 74.04 μm (Fig. 5A), while Adineta sp.2
 is larger, measuring 176.92–197.12 μm (Fig. 5B), although it is still smaller than A. vaga (200–
- 218 700 µm, according to Donner, 1965). Adineta sp.2 has an oval head that is wider than its trunk,
- but the rake apparatus is not clearly visible (Fig. 5C), and its foot is relatively short. These
- 220 distinctive characteristics suggest that both Adineta sp.1 and Adineta sp.2 differ significantly
- from A. vaga. Additionally, the morphology of Didymodactylos sp. differs from the only known
- species in the genus, *Didymodactylos carnosus* (Fig. 5D-F), notably lacking the bulbous base on
- the spurs characteristic of *D. carnosus* (Fig. 5E). *Habrotrocha* sp. has a shuttle-shaped body,
- with a neck nearly half the body length (Fig. 5G). Small pellets inside the stomach are visible.
- 225 The spurs are short with 3 toes (Fig. 5H), and the trophi are relatively large with 3/4 teeth. In
- 226 Macrotrachela sp., it is unclear whether the body is fully extended, as the first segment of the
- trunk is swollen (Fig. 5I). The spurs are short with 3 toes (Fig. 5J), and the trophi are small, with
- 228 2/2 teeth. *Pleuretra* sp. exhibits distinct morphological differences from known species and is
- 229 considered a putative new species. It has a short head and neck, with a stiff, sculptured trunk
- 230 covered in broad, blunt spines (Fig. 5K). The first trunk segment shows triangular processes in
- dorsal view (Fig. 5L). The foot and spurs are short, with four toes (Figs. 5M–N), and the trophi
- are small and symmetrical, with 3/3 teeth.

Bdelloid rotifer community in bryophytes

235 The PCA results indicate a correlation between the species composition of bdelloid rotifers and bryophytes, life forms, and seasons. The first two PCA axes explained 15.43% and 11.37% of 236 the total variation, respectively. Notably, the similarity among most bdelloid rotifer groups, life 237 forms, characteristics, and seasons was less than 60%. The bdelloid rotifer species associated 238 239 with mosses and liverworts exhibited a 41% similarity, with the majority found in liverworts and only a few species distributed across both mosses and liverworts. In total, eight bdelloid rotifer 240 species were specifically associated with bryophytes, either mosses or liverworts. Five of these 241 species were exclusive to liverworts, including Adineta cf. glauca, Didymodactylos sp., H. 242 gracilis, Macrotrachela papillosa, and Scepanotrocha simplex. The remaining three species were 243 found only in mosses: Adineta sp.1, Habrotrocha sp., and Macrotrachela sp. (Fig. 6, Table S2). 244 At the species level, bryophytes exhibited similarities ranging from 0% to 67%, with bdelloid 245 rotifers distributed among various bryophyte species, categorized into four distinct groups. 246 Notably, one species of moss (Frullania ericoides) and one species of liverwort (Taxithelium 247 248 instratum) were found to host the same bdelloid rotifer species (Fig. 7, Table S3). Furthermore, species composition among life forms showed the lowest similarity, with the cushion form being 249 the most dissimilar from the others, exhibiting only 10% similarity with the turf form and 21% 250 similarity with the mat form. The life forms can be divided into two groups: mat and turf. Most 251 species are distributed among the mat life forms, while cushion life forms do not show a clear 252 grouping (Fig. 8, Table S4). Moreover, the similarity in species composition based on the 253 characteristics of mosses was only 40%. Most bdelloid rotifers are distributed in leaves that curl 254 when dry, with some species exhibiting both types of character distributions. The first two axes 255 of the PCA explained 20.82% and 17.55% of the variability, respectively (Fig. 9, Table S5). In 256 257 contrast, the similarity in species composition for the characteristics of liverworts was 57%. Most bdelloid rotifer species are found only in large lobules or in both small and large lobules. 258 Six species—Adineta cf. glauca, Didymodactylos sp., Habrotrocha cf. alacris, H. gracilis, 259 Macrotrachela papillosa, and Philodina verrucosa—were found exclusively in the large lobules, 260 261 whereas other bdelloid rotifers were distributed in both small and large lobules. The first two axes of the PCA explained 24.01% and 13.93% of the variability, respectively (Fig. 10, Table 262 263 264 In addition, bdelloid rotifer species exhibit seasonal similarities ranging from 44% to 55%, 265 which can be grouped into three seasons, with most species occurring during periods of low rainfalls. The first two PCA axes in these relationships explained 15.43% and 11.37% of the total 266 variation, respectively. Specifically, Adineta cf. glauca, Adineta sp. 1, Habrotrocha cf. alacris, 267 H. flaviformis, H. gracilis, and Philodina verrucosa were found exclusively during low rainfall, 268 while Macrotrachela sp. was observed only in moderate rainfalls. Didymodactylos sp. and 269 Habrotrocha sp. were identified only during high rainfalls. Other bdelloid rotifers were 270 distributed across both low and moderate rainfalls or were found in all seasons (Fig. 11, Table 271 272 S6). 273

Ind indices and Habitat preference degree

PeerJ

- 275 All bdelloid rotifer species exhibited indicator values for bryophyte groups (mosses and liverworts) of less than 30%, indicating that these species are generally low indicators of mosses 276 and liverworts. Although most bdelloid rotifers showed non-specific habitat preferences for 277 bryophyte species, Scepanotrocha simplex and Habrotrocha cf. alacris displayed strong habitat 278 279 preferences (IndVal ≥ 50%) for the liverwort species Cheilolejeunea ceylanica and Schiffneriolejeunea tumida var. haskarliana, respectively (Table 7). 280 281 **Discussion** 282 **Species diversity** 283 284 The surprising species richness and distribution patterns of rotifers support the suggestion that different processes determine how they are dispersed. A total of 22 taxa were found in the 285 present study, accounting for about 4% of bdelloid species worldwide (Seger, 2007; Jersabek & 286 Leitner, 2024). Moreover, 14 new records have increased the number of bdelloid rotifers in 287 Thailand from 16 to 30 species (Sa-Ardrit, Pholpunthin & Segers, 2013; Maiphae, 2017; 288 289 Jaturapruek et al., 2018; Jaturapruek et al., 2021). Therefore, the present study confirms the rich 290 diversity of bdelloid rotifers in terrestrial habitats. These results reveal that *Habrotrocha flaviformis*, *Philodina verrucosa*, and *Scepanotrocha* 291 simplex, which were recorded for the first time in the Oriental region, have a broader distribution 292 293 range than other species. Moreover, most species found in this study were reported for the first time in liverworts, except for Habrotrocha angusticollis and Macrotrachela multispinosa 294 (Donner, 1965). Macrotrachela multispinosa and Rotaria sordida, found in every region except 295 Antarctica (Segers, 2007), were the most numerous and frequently encountered in the present 296 bryophyte samples. In particular, R. sordida has been recognized as a successful anhydrobiotic 297 species (Eyres et al., 2015), suggesting it is an effective disperser that may have colonized this 298 area before spreading more widely. However, the degree of tolerance to environmental variables 299 300 of each species also contributes to the explanation of its distribution and abundance (Ricci, 301 1998). The results showed that more bdelloid species inhabit liverworts than mosses, possibly because 302 liverworts offer a more suitable habitat for bdelloid rotifers. Liverworts often have a thinner and 303 more delicate structure compared to mosses, which can provide more intricate and varied 304 microhabitats for bdelloids. The surface of liverworts may possess specialized structures, such as 305 306 underleaves, imbricate leaves, or lobules, that offer hiding places or protection for small organisms (Inuthai, 2007; Kraichak, 2012). There have been reports of high numbers of bdelloid 307 308 rotifer species inhabiting lobules, whether the lobule was characterized as a sac (Puterbaugh, Skinner & Miller, 2004) or not (Glime, 2017a). Microlejeunea punctiformis, which has large 309
- 310 lobules and small leaves but a higher number of leaves than other species, was found to maintain
- 310 lobules and small leaves but a higher number of leaves than other species, was found to maintain
- 311 a high number of bdelloid rotifer species. Therefore, these characteristics might increase
- 312 microhabitat diversity or complexity. However, *Lejeunea adpressa*, characterized by its small
- 313 lobules and simple lobule shape, also supports a high number of bdelloid rotifer species. This

314 suggests that other factors, such as phytochemicals, may play a significant role in determining habitat suitability (Puterbaugh, Skinner & Miller, 2004; Xie & Lou, 2009). 315 Additionally, while the complexity of the bryophyte is an important factor, moisture content 316 likely contributes to the greater richness and abundance of individuals observed (Hirschfelder et 317 318 al., 1993). Unfortunately, moisture content was not measured in the present study, making it a crucial consideration for future research. Furthermore, liverworts were frequently found in areas 319 protected by trees, which helped slow water loss, whereas mosses were found in more open 320 areas, increasing the risk of desiccation. Moreover, most liverworts found in the present study 321 grew in a mat life form, which retains moisture well (Proctor, 1990). This moisture retention is 322 323 crucial for many invertebrates that require high humidity levels to survive, especially in dry environments (Schwarz et al., 1993; Ricci & Fontaneto, 2009; Velasco-Castrillón et al., 2014; 324 Devetter et al., 2017). Additionally, it has been reported that liverworts tend to decompose more 325 readily than mosses, releasing nutrients into the environment at a faster rate (Lang et al., 2009). 326 327 This decomposition process supports a diverse community of microorganisms and detritivores, which in turn attract various invertebrates that feed on them or utilize them as a resource. Some 328 invertebrates directly consume liverwort tissues or use them as a substrate for feeding and 329 reproduction (Haines & Renwick, 2009). Liverworts may offer a richer source of food or organic 330 matter compared to mosses in certain ecosystems. Further study on the effect of food availability 331 in liverworts and mosses on bdelloid rotifers and other invertebrates is needed. 332 However, surprisingly, in periods with moderate and high rainfalls, which are characterized by 333 high humidity, fewer species were found. One possible explanation is that during the dry season, 334 the availability of water and suitable habitats may be limited. Under these conditions, bryophytes 335 336 can serve as refuges for bdelloid rotifers, offering protection from desiccation and potentially reducing competition with other organisms. Additionally, the reduced water volume and simpler 337 community structure in bryophyte-associated microhabitats during the dry season may lower 338 predation and parasite pressure on bdelloid rotifers, allowing for higher species diversity to be 339 340 sustained (Wilson, 2011; Wilson & Sherman, 2013). Moreover, the observed patterns in lowrainfalls tropical regions may be similar to those found in other environments (Fontaneto, 341 Iakovenko & De Smet, 2015). However, this hypothesis should be further tested in tropical 342 ecosystems. Another possible reason is that bdelloid rotifers have unique adaptations, such as 343 344 desiccation tolerance and dormancy strategies, that allow them to survive the harsh environmental conditions characteristic of the dry season (Caprioli & Ricci, 2001; Hespeels et 345 al., 2023). For example, *Habrotrocha gracilis*, found during the low rainy season, can secrete 346 mucus to cover its body or combine with detritus to form a nest (Donner, 1965; Song & Kim, 347 2000). This trait, commonly found in this genus, may help *Habrotrocha gracilis* survive in harsh 348 environments (Kutikova, 2003). Additionally, *Philodina verrucosa* has a thick and rough 349 integument (Donner, 1965), a feature often seen in species that live in dry environments 350 (Kutikova, 2003). These adaptations enable rotifers to persist within bryophytes despite 351 fluctuating moisture levels and other environmental stressors, thereby contributing to sustained 352 353 species diversity. In addition, the seasonal dynamics of bryophyte-associated habitats, influenced

by moisture availability and temperature fluctuations, may create temporal niches that favour different stages of bdelloid rotifers (Ricci, Pagani & Bolzern, 1989). Consequently, this temporal variation can enhance species diversity by supporting a succession of bdelloid rotifer species adapted to varying ecological conditions throughout the dry season.

357 358 359

360

361

362 363

364

365

366 367

368

369

370

371

372

373

374

375376

377

378

379 380

381

382

383 384

385

386

387

388 389

390

354

355

356

Habitat preference

The similarities in species composition among bryophyte groups, life forms, and bryophyte characteristics are low. These results confirm the narrow distribution of bdelloid rotifers in this limnoterrestrial habitat, which may be due to several factors, including habitat characteristics and the species' capacities for surviving desiccation, achieving long-term colonization, and being dispersed by wind and raindrops (Burger, 1948; Örstan, 1998; Fontaneto et al., 2007; Bielańska-Grainer, Mieczan & Cieplok, 2017). Bryophytes provide a moist environment, which is crucial for bdelloid rotifers and other microorganisms, as they rely on water films to move and feed (Hingley, 1993). Moreover, the dense structure of bryophytes offers protection against environmental stressors such as UV radiation and desiccation, while bdelloid rotifers contribute to nutrient cycling within the bryophyte ecosystem by feeding on detritus, bacteria, and other microorganisms (Glime, 2017b). In the present study, the cushion form of bryophytes showed the lowest similarity in species composition with other forms. This may be because the cushion form has a more complex structure that supports different species compared to the more uniform structures of mats and turfs. Additionally, cushions may maintain more varied moisture levels. microclimates, and food resources, attracting specialized species and leading to distinct bdelloid communities. In this study, only Macrotrachela pinnigera and Pleuretra sp. were highly abundant in the cushion form. It has been reported that both species can disperse well in moss. Therefore, the cushion form, which is most likely to have high internal moisture, may be a suitable habitat for the growth of these two species (Donner, 1965; Ricci & Melone, 2000; Glime, 2017c). Additionally, we detected the genus *Adineta* only in the low rainy season, though with low abundance. This common genus, which is highly desiccation-tolerant (Örstan, 1995; Ricci, 1998; Hespeels et al., 2020), may prefer to avoid competition and predation in the high rainy season and disperse more in the low rainy season (Ricci & Melone, 2000; Ricci & Covino, 2005). Our results showed no specificity between bdelloid rotifer species and bryophytes, except for Scepanotrocha simplex and Habrotrocha cf. alacris, which were found only in liverworts (i.e., Cheilolejeunea ceylanica and Schiffneriolejeunea tumida var. haskarliana, respectively). However, neither species has previously been reported in liverworts. S. simplex has been observed in soil and leaf litter (De Koning, 1947; Donner, 1965), and *Habrotrocha* cf. alacris has been documented in mosses (Milne, 1916; Donner, 1965). Nevertheless, due to the low abundance observed in both species, it cannot be concluded that they are specific to these two species of liverworts unless further studies are conducted. Therefore, to better understand the impact of these factors on the species composition of bdelloid rotifers, more research is needed.

391 392 393

Conclusions

394 The distribution pattern of small animals on a micro scale remains a subject of debate. The results of the present study on bdelloid rotifers in bryophytes confirm their limited distribution 395 across different microhabitats and seasons. Regardless of lobule size, bryophytes with mat life 396 forms, particularly liverworts, were the primary habitat for most bdelloid rotifers found. In 397 398 contrast, mosses exhibited high species diversity only in those with leaves that curl when dry. Additionally, bdelloid species diversity was higher during periods of low rainfalls, likely due to 399 their desiccation tolerance. Bdelloid rotifers showed low similarity in species composition across 400 different bryophyte species, forms, and characteristics, generally exhibiting no specific 401 relationship with bryophyte species, with a few exceptions. Therefore, further studies are needed 402 403 to fully evaluate their potential as ecological indicators. While more research is required, the current findings suggest a possible relationship between bdelloid rotifer species and bryophyte 404 characteristics. 405

406 407

Acknowledgements

We would like to thank the editor and the reviewers for their time and effort in reviewing our manuscript. We sincerely appreciate all the valuable comments and suggestions that contributed to improving its quality. We are also grateful to Dr. Patsakorn Tiwutanon and Assoc. Prof. Dr. Ekaphan Kraichak from Kasetsart University for their assistance with bryophyte identification.

412 413

References

- Bahuguna YM, Gairola S, Semwal DP, Uniyal PL, Bhatt AB. 2013. Bryophytes and Ecosystem.
 In: Gupta RK, Kumar M, eds. *Biodiversity of Lower Plants*. New Delhi: IK International
 Publishing House Pvt. Ltd., 279-296.
- Bielańska-Grajner I, Mieczan T, Cieplok A. 2017. Ecology of moss-dwelling rotifers in a raised
 bog: Differentiation of rotifer communities in microhabitats. *Biologia* 72: 175-183 DOI:
 10.1515/biolog-2017-0014.
- Budke JM, Bernard E, Gray DJ, Huttunen S, Piechulla B, Trigiano RN. 2018. Introduction to the
 Special Issue on Bryophytes. *Critical Reviews in Plant Sciences* 37(2-3):102-112 DOI:
 10.1080/07352689.2018.1482396.
- Burger A. 1948. Studies on the Moss Dwelling Bdelloids (Rotifera) of Eastern Massachusetts.
 Transactions of the American Microscopical Society 67(2):111-142 DOI:
 10.2307/3223491.
- Caprioli M, Ricci C. 2001. Recipes for successful anhydrobiosis in bdelloid rotifers.
 Hydrobiologia 446:13-17 DOI: 10.1023/A:1017556602272.
- De Koning P. 1947. Nieuwe Bdelloide Rotatorien. *Biologisch Jaarboek (Dodonaea)* 14:184-205
- Debortoli N, Laender FD, Doninck KV. 2018. Immigration from the metacommunity affects bdelloid rotifer community dynamics most. *bioRxiv* 450627 DOI: 10.1101/450627.
- Devetter M, Háněl L, Řeháková K, Doležal J. 2017. Diversity and feeding strategies of soil microfauna along elevation gradients in Himalayan cold deserts. *PLOS ONE*
- 433 12(11):e0187646 DOI: 10.1371/journal.pone.0187646.

- 434 Donner J. 1965. Ordnung Bdelloidea (Rotifera, Rädertiere). Berlin: Akademie Verlag.
- Dražina T, Špoljar M, Primc B, Habdija I. 2013. Small-scale patterns of meiofauna in a
- bryophyte covered tufa barrier (Plitvice Lakes, Croatia). *Limnologica* 43(6):405-416
- 437 DOI: 10.1016/j.limno.2013.01.004.
- Dufrêne M, Legendre P. 1997. Species Assemblages and Indicator Species: The Need for a
- Flexible Asymmetrical Approach. *Ecological Monographs* 67(3):345-366 DOI:
- 440 10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2.
- Eyres I, Boschetti C, Crisp A, Smith TP, Fontaneto D, Tunnacliffe A, Barraclough TG. 2015.
- Horizontal gene transfer in bdelloid rotifers is ancient, ongoing and more frequent in
- species from desiccating habitats. *BMC Biology* 13(90):1-17 DOI: 10.1186/s12915-015-
- 444 0202-9.
- Fenchel T, Finlay BJ. 2004. The Ubiquity of Small Species: Patterns of Local and Global
- 446 Diversity. *Bioscience* 54(8):777-784
- 447 DOI: 10.1641/0006-3568(2004)054[0777:TUOSSP]2.0.CO;2.
- Finlay BJ. 2002. Global Dispersal of Free-Living Microbial Eukaryote Species. *Science* 296:1061-1063 DOI:10.1126/science.1070710.
- Fontaneto D. 2011. *Biogeography of microscopic organisms is everything small everywhere?*New York: Cambridge University Press.
- Fontaneto D. 2019. Long-distance passive dispersal in microscopic aquatic animals. *Movement Ecology* 7:10 DOI: 10.1186/s40462-019-0155-7.
- Fontaneto D, Barraclough TG, Chen K, Ricci C, Herniou EA. 2008. Molecular evidence for
- broad-scale distributions in bdelloid rotifers: everything is not everywhere but most
- things are very widespread. *Molecular Ecology* 17(13):3136-3146 DOI: 10.1111/j.1365-294X.2008.03806.x.
- 458 Fontaneto D, Herniou EA, Barraclough TG, Ricci C. 2007. On the Global Distribution of
- 459 Microscopic Animals: New Worldwide Data on Bdelloid Rotifers. *Zoological Studies* 460 46(3):336-346
- Fontaneto D, Hortal J. 2013. At least some protist species are not ubiquitous. *Molecular Ecology* 22:5053-5055 DOI: 10.1111/mec.12507.
- Fontaneto D, Iakovenko N, De Smet WH. 2015. Diversity gradients of rotifer species richness in Antarctica. *Hydrobiologia* 761:235-248 DOI: 10.1007/s10750-015-2258-5.
- Fontaneto D, Melone G, Ricci C. 2003. Structure of bdelloid rotifer metacommunities in two alpine streams in northern Italy. *Studi Trentini di Scienze Naturali, Acta Biologica* 78:23-
- 467 26
- 468 Fontaneto D, Ricci C. 2006. Spatial gradients in species diversity of microscopic animals: the
- case of bdelloid rotifers at high altitude. *Journal of Biogeography* 33(7):1305-1313 DOI:
- 470 10.1111/j.1365-2699.2006.01502.x.
- 471 Fontaneto D, Westberg M, Hortal J. 2011. Evidence of Weak Habitat Specialisation in
- 472 Microscopic Animals. *PLOS ONE* 6(8):e23969 DOI: 10.1371/journal.pone.0023969.

- Gerson U. 1982. Bryophytes and Invertebrates. In: Smith AJE, ed. *Bryophyte Ecology*.
 Dordrecht: Springer, 291-332.
- Glime JM. 2017a. Invertebrates: Rotifers. In: Glime JM, ed. *Bryophyte Ecology Volume 2: Bryological Interaction*. Houghton: Michigan Technological University, 1-57.
- Glime JM. 2017b. The Fauna: A Place to Call Home. In: Glime JM, ed. *Bryophyte Ecology Volume 2: Bryological Interaction*. Houghton: Michigan Technological University, 1-15.
- Glime JM. 2017c. Adaptive Strategies: Growth and Life Forms. In: Glime JM, ed. *Bryophyte Ecology*. Houghton: Michigan Technological University, 1-25.
- Haines WP, Renwick JAA. 2009. Bryophytes as food: comparative consumption and utilization
 of mosses by a generalist insect herbivore. *Entomologia Experimentalis et Applicata* 133(3):296-306 DOI: 10.1111/j.1570-7458.2009.00929.x.
- Heatwole H, Miller WR. 2019. Structure of micrometazoan assemblages in the Larsemann Hills,
 Antarctica. *Polar Biology* 42:1837-1848 DOI: 10.1007/s00300-019-02557-6
- Hespeels B, Fontaneto D, Cornet V, Penninckx S, Berthe J, Bruneau L, Larrick JW, Rapport E,
 Bailly J, Debortoli N, Iakovenko N, Janko K, Heuskin A-C, Lucas S, Hallet B, Doninck
 KV. 2023. Back to the roots, desiccation and radiation resistances are ancestral characters
 in bdelloid rotifers. *BMC Biology* 21(1):72 DOI: 10.1186/s12915-023-01554-w.
- Hespeels B, Penninckx S, Cornet V, Bruneau L, Bopp C, Baumlé V, Redivo B, Heuskin AC,
 Moeller R, Fujimori A, Lucas S, Van Doninck K. 2020. Iron Ladies How Desiccated
 Asexual Rotifer *Adineta vaga* Deal With X-Rays and Heavy Ions? *Front Microbiol* 11:1792. DOI:10.3389/fmicb.2020.01792.
- 494 Hingley M. 1993. *Microscopic Life in Sphagnum*. England: Richmond Publishing, Co. Ltd.
- Hirschfelder A, Koste W, Zucchi H. 1993. Bdelloid rotifers in aerophytic mosses: influence of habitat structure and habitat age on species composition. *Hydrobiologia* 255/256:343-344.
- Hydro-Informatics Institute (Public Organization). World Wide Web electronic publication.
 https://tiwrm.hii.or.th/v3/, accessed {01-02-2021}
- Iakovenko NS, Smykla J, Convey P, Kašparová E, Kozeretska IA, Trokhymets V, Dykyy I,
 Plewka M, Devetter M, Duriš Z, Janko K. 2015. Antarctic bdelloid rotifers: diversity,
 endemism and evolution. *Hydrobiologia* 761:5-43 DOI: 10.1007/s10750-015-2463-2.
- Inuthai J. 2007. Preliminary surveys on bryophytes of terrestrial plant community on coastal sandbars in Peninsula of Thailand. Senior Project, Prince of Songkla University.
- Jaturapruek R, Fontaneto D, Mammola S, Maiphae S. 2021. Potential niche displacement in species of aquatic bdelloid rotifers between temperate and tropical areas. *Hydrobiologia* 848(20):4903-4918 DOI: 10.1007/s10750-021-04681-z.
- Jaturapruek R, Fontaneto D, Meksuwan P, Pholpunthin P, Maiphae S. 2018. Planktonic and
 periphytic bdelloid rotifers from Thailand reveal a species assemblage with a
 combination of cosmopolitan and tropical species. *Systematics and Biodiversity*
- 511 16(2):128-141 DOI: 10.1080/14772000.2017.1353554.

- Jersabek CD, Leitner MF. Rotifer World Catalog. World Wide Web electronic publication.
- 513 http://www.rotifera.hausdernatur.at/, accessed {09-02-2024}
- Kaya M. 2013. Terrestrial bdelloid rotifers from Erzurum (Eastern part of Turkey). *Turkish*
- *Journal of Zoology* 37(4):413-418. DOI: 10.3906/zoo-1211-32
- 516 Kaya M, De Smet WH, Fontaneto D. 2010. Survey of moss-dwelling bdelloid rotifers from
- middle Arctic Spitsbergen (Svalbard). *Polar Biology* 33(6):833-842 DOI:
- 518 10.1007/s00300-009-0761-8.
- Kaya M, Erdoğan S. 2015. Testing the habitat selectivity of bdelloid rotifers in a restricted area.
- *Turkish Journal of Zoology* 39(6):1132-1141 DOI: 10.3906/zoo-1410-46.
- 521 Koste W. 1975. Die Rädertiere Mitteleuropas, begründet von Max Voigt: Monogononta.
- Gebrüder Borntraeger, Berlin, 673 pp.
- 523 Koste W. 1978a. Rotatoria: Die Rädertiere Mitteleuropas. Ein Bestimmungswerk, begründet von
- Max Voigt. I. Textband. Gebrüder Borntraeger, Berlin, 234 pp.
- Koste W. 1978b. Rotatoria: Die Rädertiere Mitteleuropas. Ein Bestimmungswerk, begründet von
- Max Voigt. II. Tafelband. Gebrüder Borntraeger, Berlin, 234 pp.
- 527 Kraichak E. 2012. Asexual propagules as an adaptive trait for epiphylly in tropical leafy
- liverworts (Lejeuneaceae). *American Journal of Botany* 99(9):1436-1444 DOI:
- 529 10.3732/ajb.1200120.
- Kutikova LA. 2003. Bdelloid Rotifers (Rotifera, Bdelloidea) as a Component of Soil and Land
- Biocenoses. *Biology Bulletin* 30:271-274 DOI: 10.1023/A:1023811929889.
- Lang SI, Cornelissen JHC, Klahn T, Van Logtestijn RSP, Broekman R, Schweikert W, Aerts R.
- 533 2009. An experimental comparison of chemical traits and litter decomposition rates in a
- diverse range of subarctic bryophyte, lichen and vascular plant species. *Journal of*
- 535 *Ecology* 97(5):886-900 DOI: 10.1111/j.1365-2745.2009.01538.x.
- Maiphae S. 2017. Species diversity of meiofauna (rotifers, cladocerans and copepods) in
- peatswamps, Thailand. Kasetsart University. p 1-44.
- McCune B, Mefford MJ. 2016. PC-ORD. Multivariate analysis of Ecological Data, Version 7.0
- for Windows. Oregon: MjM Software Design.
- 540 Milne W. 1916. On the bdelloid Rotifera of South Africa. Part II. *Journal of The Quekett*
- 541 *Microscopical Club* 13:149-184 DOI: 10.5962/bhl.part.9296.
- Nelson DR, Adkins RG. 2001. Distribution of Tardigrades within a Moss Cushion: Do
- Tardigrades Migrate in Response to Changing Moisture Conditions? *Zoologischer*
- 544 Anzeiger A Journal of Comparative Zoology 240(3–4):493-500. 10.1078/0044-5231-
- 545 00058.
- Song MO, Lee C-H. 2017. A new and five rare bdelloids from Korea. *Zootaxa* 4242(3):529-547.
- DOI: 10.11646/zootaxa.4242.3.6
- Song MO, Kim W. 2000. Bdelloid rotifers from Korea. *Hydrobiologia* 439(1):91-101. DOI:
- 549 10.1023/A:1004181414535
- Song MO, Min G-S. 2015. A new species and ten new records of bdelloid rotifers from Korea.
- 551 *Zootaxa* 3964(2):211-227. DOI: 10.11646/zootaxa.3964.2.3

- Örstan A. 1995. Desiccation survival of the eggs of the rotifer *Adineta vaga* (Davis, 1873).
 Hydrobiologia, 313/314: 373-375.
- 554 Örstan A. 1998. Microhabitats and dispersal routes of bdelloid rotifers. *Scientiae Naturae* 1:27-555 36
- Peters U, Koste W, Westheide W. 1993. A quantitative method to extract moss-dwelling rotifers. *Hydrobiologia* 255/256:339-341.
- Proctor MCF. 1990. The physiological basis of bryophyte production. *Botanical Journal of the Linnean Society* 104(1-3):61-77 DOI: 10.1111/j.1095-8339.1990.tb02211.x.
- Puterbaugh MN, Skinner JJ, Miller JM. 2004. A Non random Pattern of Rotifers Occupying
 Lobules of the Hepatic, *Frullania eboracensis*. *The Bryologist* 107(4):524-530 DOI:
 10.1639/0007-2745(2004)107[524:ANPORO]2.0.CO;2.
- Ramsay BPL, Marley NJ, Bilton DT, Rundle SD, Ramsay PM. 2021. The structure of tardigrade communities at fine spatial scales in an Andean Polylepis forest. *Neotropical Biodiversity* 7(1):443-454. DOI: 10.1080/23766808.2021.1943216.
- Ricci C. 1998. Anhydrobiotic capabilities of bdelloid rotifers. *Hydrobiologia* 387:321-326 DOI:
 10.1023/A:1017086425934.
- Ricci C, Caprioli M. 2005. Anhydrobiosis in bdelloid species, populations and individuals. *Integrative and Comparative Biology* 45(5):759-763 DOI: 10.1093/icb/45.5.759.
- Ricci C, Covino C. 2005. Anhydrobiosis of *Adineta ricciae*: costs and benefits. *Hydrobiologia* 546:307-314 DOI: 10.1007/s10750-005-4238-7.
- Ricci C, Fontaneto D. 2009. The importance of being a bdelloid: Ecological and evolutionary consequences of dormancy. *Italian Journal of Zoology* 76(3):240-249 DOI: 10.1080/11250000902773484.
- Ricci C, Melone G. 2000. Key to the identification of the genera of bdelloid rotifers. *Hydrobiologia* 418:73-80 DOI: 10.1023/A:1003840216827.
- Ricci C, Pagani M, Bolzern AM. 1989. Temporal analysis of clonal structure in a moss bdelloid population. *Hydrobiologia* 186:145-152 DOI: 10.1007/BF00048906.
- Sa-Ardrit P, Pholpunthin P, Segers H. 2013. A checklist of the freshwater rotifer fauna of
 Thailand (Rotifera, Monogononta, Bdelloidea). *Journal of Limnology* 72(s2):361-375
 DOI: 10.4081/jlimnol.2013.s2.e18.
- Schmid-Araya JM. 1995. New records of rare Bdelloidea and Monogononta rotifers in gravel
 streams. *Arch Hydrobiologia* 135:129-143. Schwarz AMJ, Green JD, Green TGA,
 Seppelt RD. 1993. Invertebrates associated with moss communities at Canada Glacier,
 southern Victoria Land, Antarctica. *Polar Biology* 13:157-162 DOI:
 10.1007/BF00238925.
- Segers H. 2007. Annotated checklist of the rotifers (Phylum Rotifera), with notes on nomenclature, taxonomy and distribution. *Zootaxa* 1564(1):1-104 DOI:
 10.11646/zootaxa.1564.1.1.
- Segers H, De Smet WH. 2008. Diversity and endemism in Rotifera: a review, and *Keratella* Bory de St Vincent. *Biodiversity and Conservation* 17:303-316 DOI: 10.1007/s10531-007-9262-7.

- Song MO, Kim W. 2000. Bdelloid rotifers from Korea. *Hydrobiologia* 439:91-101 DOI:
 10.1023/A:1004181414535.
- Song MO, Lee C-H. 2017. A new and five rare bdelloids from Korea. *Zootaxa* 4242(3):529-547
 DOI: 10.11646/zootaxa.4242.3.6.
- Song MO, Min G-S. 2015. A new species and ten new records of bdelloid rotifers from Korea.
 Zootaxa 3964(2):211-227 DOI: 10.11646/ZOOTAXA.3964.2.3.
- Suren A. 1993. Bryophytes and associated invertebrates in first-order alpine streams of Arthur's
 Pass, New Zealand. New Zealand Journal of Marine and Freshwater Research
 27(4):479-494 DOI: 10.1080/00288330.1993.9516589.
- Suren AM. 1991. Bryophytes as invertebrate habitat in two New Zealand alpine streams.

 Freshwater Biology 26(3):399-418 DOI: 10.1111/j.1365-2427.1991.tb01407.x.
- Suwanmala O, Chantanaorrapint S. 2016. Bryophytes of terrestrial plant community on coastal sandbar, Thai Mueang District, Phangnga Province. *Thai Journal of Botany* 8(2):279-294
- Velasco-Castrillón A, Page TJ, Gibson JAE, Stevens MI. 2014. Surprisingly high levels of
 biodiversity and endemism amongst Antarctic rotifers uncovered with mitochondrial
 DNA. *Biodiversity* 15(2-3):130-142. DOI: 10.1080/14888386.2014.930717
- Velasco-Castrillón A, Schultz MB, Colombo F, Gibson JAE, Davies KA, Austin AD, Stevens
 MI. 2014. Distribution and Diversity of Soil Microfauna from East Antarctica: Assessing
 the Link between Biotic and Abiotic Factors. *PLOS ONE* 9(1):e87529 DOI:
 10.1371/journal.pone.0087529.
- Wang W, Yang Y, Cui Z, Chen M, Ma X, Wang Q. 2023. High diversity and strong habitat preference of bdelloid rotifers in the moss and leaf litter from a small area of urban plain and adjacent hill in China. *Biodiversity and Conservation* 32:2769-2789 DOI: 10.1007/s10531-023-02630-x.
- Wilson CG. 2011. Desiccation-tolerance in bdelloid rotifers facilitates spatiotemporal escape
 from multiple species of parasitic fungi. *Biological Journal of the Linnean Society* 104(3):564-574 DOI: 10.1111/j.1095-8312.2011.01737.x.
- Wilson CG, Sherman PW. 2013. Spatial and temporal escape from fungal parasitism in natural
 communities of anciently asexual bdelloid rotifers. *Proceedings of the Royal Society B* 280(1765):20131255 DOI: 10.1098/rspb.2013.1255.
- Wolda H. 1981. Similarity indices, sample size and diversity. *Oecologia* 50:296-302 DOI: 10.1007/BF00344966.
- Xie C-F, Lou H-X. 2009. Secondary metabolites in bryophytes: An ecological aspect. *Chemistry & Biodiversity* 6(3):303-312 DOI: 10.1002/cbdv.200700450.
- 627 Zawierucha K, Kašparová EŠ, McInnes S, Buda J, Ambrosini R, Devetter M, Ficetola GF,
- Franzetti A, Takeuchi N, Horna P, Jaroměřská TN, Ono M, Šabacká M, Janko K. 2023.
- Cryophilic Tardigrada have disjunct and bipolar distribution and establish long-term
- stable, low-density demes. *Polar Biology* 46:1011-1027 DOI: 10.1007/s00300-023-
- 631 03170-4.

PeerJ

632	Zeng Y, Maxwell S, Runting RK, Venter O, Watson JEM, Carrasco LR. 2020. Environmental
633	destruction not avoided with the Sustainable Development Goals. Nature Sustainability
634	3:795-798 DOI: 10.1038/s41893-020-0555-0.

Table 1(on next page)

Bryophyte species that were used for data analysis

Bryophyte species	Groups	Seasons	Life forms	Characters
Acrolejeunea recurvata Gradst.	liverwort	low rainfalls	mat	large lobule
Cheilolejeunea ceylanica (Gottsche) R.M.Schust. & Kachroo	liverwort	low rainfalls	mat	large lobule
Cheilolejeunea cf. intertexa	liverwort	low rainfalls	mat	large lobule
Cololejeunea planissima (Mitt.) Abeyw.	liverwort	low, moderate, high rainfalls	mat	large lobule
Frullania ericoides (Nees) Mont.	liverwort	moderate rainfalls	mat	large lobule
Lejeunea adpressa Nees	liverwort	low, moderate, high rainfalls	mat	small lobule
Lejeunea cocoes Mitt.	liverwort	high rainfalls	mat	small lobule
Microlejeunea punctiformis (Taylor) Steph.	liverwort	low, moderate, high rainfalls	mat	large lobule
Schiffneriolejeunea cumingiana (Mont.) Gradst.	liverwort	low rainfalls	mat	small lobule
Schiffneriolejeunea tumida var. haskarliana (Gottsche) Gradst. & Terken	liverwort	low, high rainfalls	mat	large lobule
Brachymenium sp.	moss	moderate rainfalls	cushion	leaves curl when dry
Calymperes erosum Müll. Hal.	moss	moderate, high rainfalls	turf	leaves curl when dry
Calymperes tenerum Müll. Hal.	moss	low, moderate rainfalls	turf	leaves curl when dry
Octoblepharum benitotanii Salazar Allen & Chantanaorr.	moss	moderate, high rainfalls	turf	leaves do not curl when dry
Octoblepharum poscii Magill & B. H. Allen	moss	moderate rainfalls	turf	leaves do not curl when dry
Taxithelium instratum (Brid.) Broth.	moss	moderate, high rainfalls	mat	leaves do not curl when dry

Table 2(on next page)

Bdelloid rotifer species found in the present study and their distribution in mosses.* = new records in Thailand

Mosses

Bdelloid rotifer species				itotanii	й	ш
	Brachymenium sp.	Calymperes erosum	Calymperes tenerum	Octoblepharum benitotanii	Octoblepharum poscii	Taxithelium instratum
Adineta sp.1			+			
<i>Habrotrocha angusticollis</i> (Murray, 1905)		+		+		+
*H. bidens (Gosse, 1851)		+	+	+		
Habrotrocha sp.		+				
*Macrotrachela multispinosa Thompson, 1892		+	+	+	+	+
M. pinnigera (Murray, 1908)	+					
Macrotrachela sp.				+		
*P. verrucosa Song & Lee, 2020			+			
Pleuretra sp.	+					
*Rotaria sordida (Western, 1893)	+		+		+	+

Table 3(on next page)

Bdelloid rotifer species found in the present study and their distribution in liverworts.* = new records in Thailand

Liverworts									
Cheilolejeunea ceylanica	Acrolejeunea recurvata	Cheilolejeunea cf. intertexa	Cololejeunea planissima	Frullania ericoides	Lejeunea adpressa	Lejeunea cocoes	Microlejeunea punctiformis	Schiffneriolejeunea cumingiana	Schiffneriolejeunea tumida var. haskarliana
		+			,	,	•	-	
		'					+		
			+	+	+		+		+
									+
		_	_		_		_		+
		Т	Т		Т		Т		T
			+		+				+
+		+							
+			+	+	+	+	+		+
+			+				+		+
	+				+				
					·				
									+
			+		+	+			
+	+	+	+	+	+	+	+	+	
	+ +	+ + +	+ + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +

(Western, 1893)
*Scepanotrocha simplex
De Koning, 1947
+ + + +

Table 4(on next page)

Bdelloid rotifer species found in the present study and their distribution in mixed bryophyte species samples.* = new records in Thailand

Bdelloid rotifer species

*A. vaga (Davis, 1873)

Adineta sp.2

Habrotrocha angusticollis (Murray, 1905)

*H. bidens (Gosse, 1851)

*H. cf. brocklehursti Murray, 1911

*H. flaviformis De Koning, 1947

*Macrotrachela multispinosa Thompson, 1892

*M. papillosa Thompson, 1892

M. pinnigera (Murray, 1908)

*M. cf. plicata (Bryce, 1892)

*Philodina rugosa Bryce, 1903

*P. verrucosa Song & Lee, 2020

Pleuretra sp.

*Rotaria sordida (Western, 1893)

Table 5(on next page)

Shannon Diversity of bdelloid rotifer species that are found in each bryophyte species. Bold number indicated the highest value.

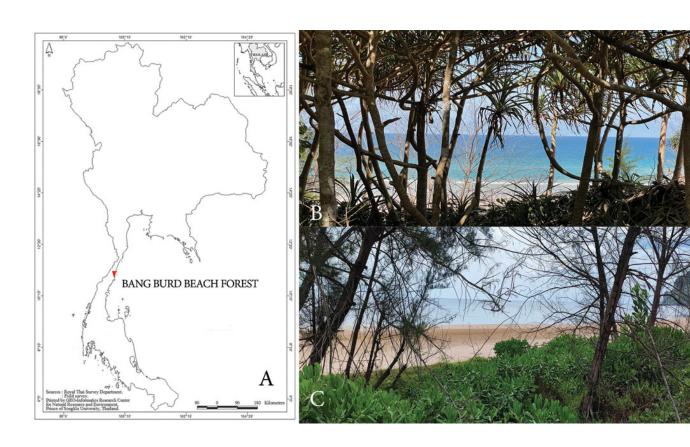
Bryophyte species	Species richness	Shannon Diversity Index	Evenness	
Acrolejeunea recurvata	2	0.33	0.47	
Brachymenium sp.	3	1.03	0.94	
Calymperes erosum	4	0.87	0.63	
C. tenerum	5	1.00	0.62	
Cheilolejeunea ceylanica	5	1.49	0.93	
C. cf. intertexa	4	1.21	0.87	
Cololejeunea planissima	7	1.58	0.81	
Frullania ericoides	3	0.85	0.77	
Lejeunea adpressa	8	1.73	0.83	
L. cocoes	3	1.04	0.95	
Microlejeunea punctiformis	7	1.40	0.72	
Octoblepharum benitotanii	4	0.95	0.69	
O. poscii	2	0.45	0.65	
Schiffneriolejeunea cumingiana	1	0	0	
S. tumida var. haskarliana	8	1.54	0.74	
Taxithelium instratum	3	0.72	0.66	

Table 6(on next page)

Diversity Index of bdelloid rotifer species in each group, life forms, characters and seasons. Bold number indicated the highest value.

Devanhytes	Species	Shannon Diversity	Evenness	
Bryophytes	richness	Index		
Groups				
mosses	10	1.61	0.70	
liverworts	14	1.97	0.75	
Life forms				
cushion	3	1.03	0.94	
mat	14	1.87	0.71	
turf	8	1.54	0.74	
Characters				
leaves curl when dry	9	1.67	0.76	
leaves do not curl when dry	5	1.22	0.76	
large lobule	14	1.93	0.73	
small lobule	8	1.68	0.81	
Seasons				
low rainfalls	14	1.85	0.70	
moderate rainfalls	8	1.52	0.73	
high rainfalls	9	1.67	0.76	

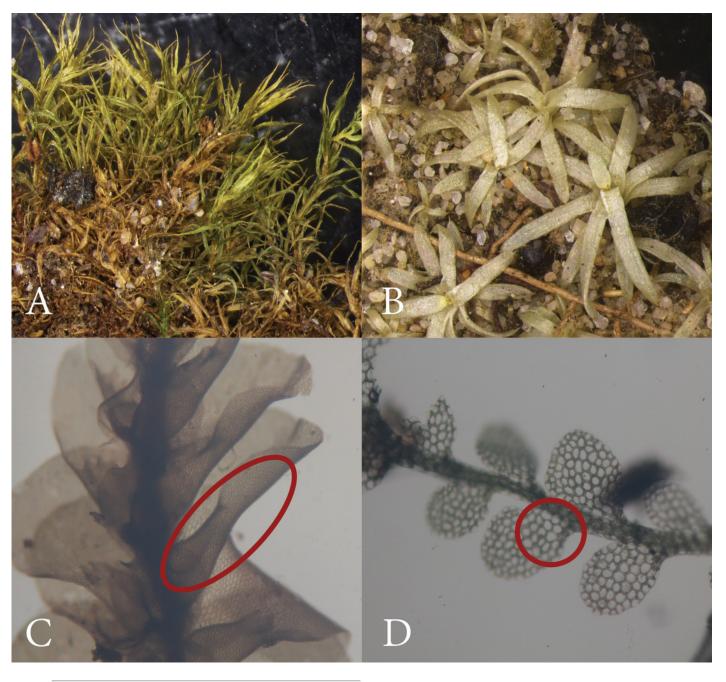
Table 7(on next page)


IndVal value and habitat preferences of species found in bryophyte species.

Bdelloid rotifer species	Relative abundance		IndVal (%) in bryophyt e group	IndVal (%) in bryophyt e species	Bryophyte species preference	Preference degree in bryophyte species	
	mosse	liverwort	_ 0 group	c species			
4 6 1	<u>s</u>	S 0.25	2.22	22.22	*.1		
A. cf. glauca	0	0.35	3.33	33.33	without preference	moderate	
Adineta sp.	0.79	0	4.55	14.29	without preference	low	
Didymodactylos sp.	0	0.35	3.33	14.29	without	low	
					preference		
H. angusticollis	26.19	4.55	22.90	38.41	without	moderate	
II		0.27	2.22	7 0.00	preference		
H. cf. alacris	0	0.35	3.33	50.00	S. tumida	high	
					var.		
					haskarlian		
H. bidens	4.76	0.00	16.24	11.30	<i>a</i> without	law	
H. Diaens	4.70	9.09	10.24	11.30		low	
U flaviformia	0	1.40	10.00	27.70	preference without	low	
H. flaviformis	U	1.40	10.00	21.10	preference	IOW	
H. gracilis	0	3.5	6.67	29.41	without	low	
11. gracius	U	5.5	0.07	27.71	preference	10 W	
Habrotrocha sp.	1.59	0	4.55	33.33	without	moderate	
marotrocha sp.	1.57	U	4.33	33.33	preference	model ate	
M. multispinosa	33.33	11.19	29.56	24.06	without	low	
1.1. minuspinosu	55.55	11113	23.00	2	preference	10 ,,	
M. papillosa	0	2.45	16.67	35.61	without	moderate	
					preference		
M. pinnigera	2.38	19.58	2.95	32.74	without	moderate	
2 0					preference		
Macrotrachela sp.	1.59	0	4.55	33.33	without	moderate	
-					preference		
P. verrucosa	0.79	0.35	4.08	17.51	without	low	
					preference		
Pleuretra sp.	1.59	8.04	10.57	27.65	without	low	
					preference		
R. sordida	26.98	23.78	26.33	17.64	without	low	
					preference		
S. simplex	0	15.03	16.67	55.17	<i>C</i> .	high	
					ceylanica		

Sampling site

(A) Sampling site at Bang Berd Beach Forest, Chumphon Province, Thailand and (B-C) Bang Berd Beach Forest environment area.


Bryophyte life forms.

(A) cushion (Brachymenium sp.). (B) turf (Calymperes erosum). (C) mat (Frullania ericoides).

Bryophyte characters

(A) leaves curl when dry (*Taxithelium instratum*). (B) leaves do not curl when dry (*Octoblepharum benitotanii*). (C) large lobule (*Schiffneriolejeunea tumida* var. *haskarliana*).(D) small lobule (*Lejeunea adpressa*). Red circles indicate lobules.

The number of bryophyte samples found for each bdelloid rotifer taxon

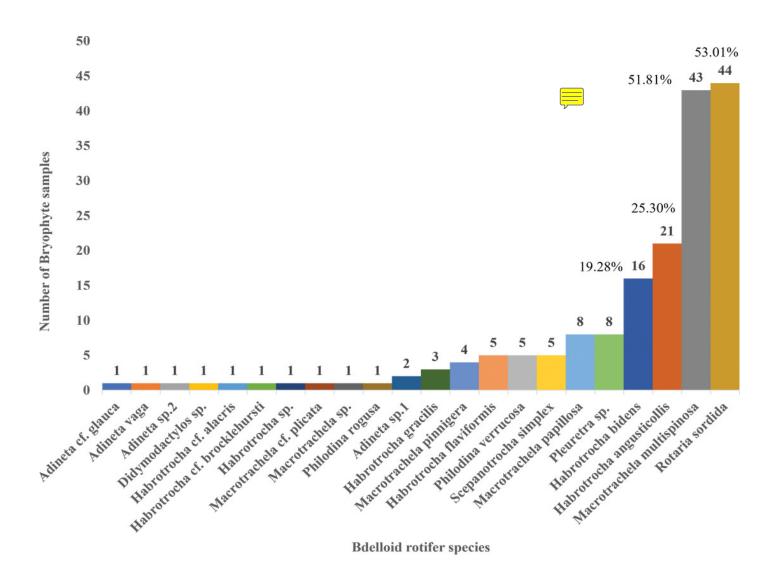
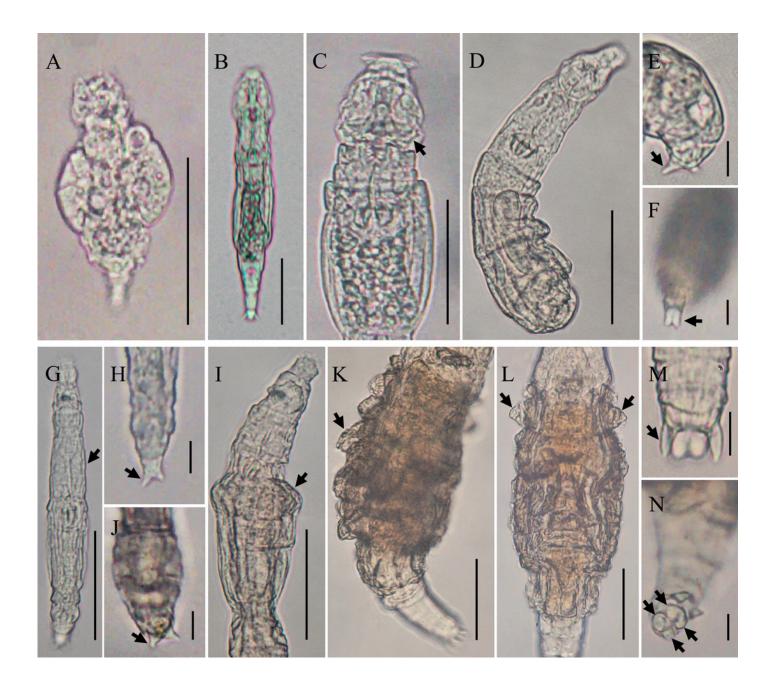
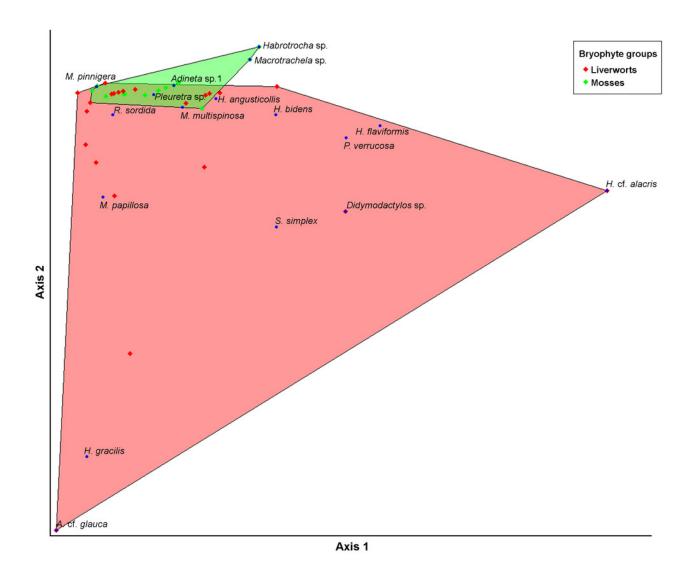
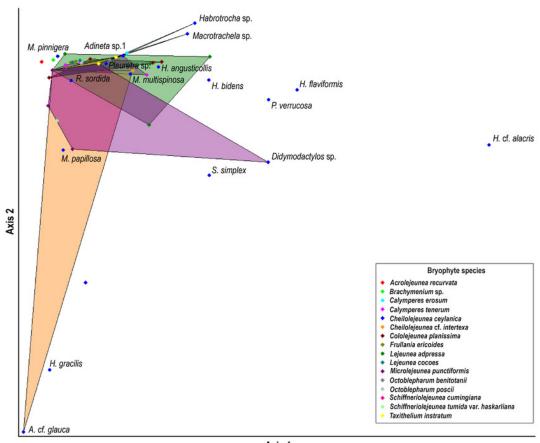



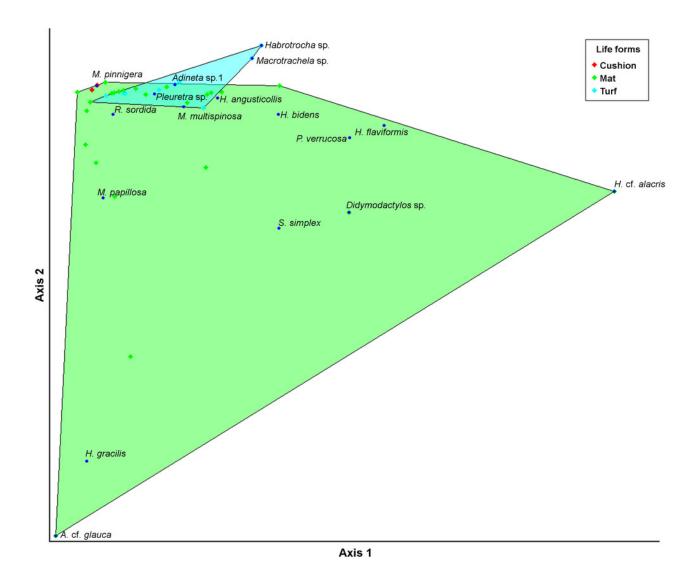
Photo of some bdelloid species


Adineta sp.1 (A) feeding, dorsal view. Adineta sp.2 (B) creeping, dorsal view; (C) creeping head, dorsal view. Didymodactylos sp. (D) creeping, dorsal view; (E) foot and spurs, lateral view; (F) toes, ventral view. Habrotrocha sp. (G) creeping, dorsal view; (H) foot and spurs, dorsal view. Macrotrachela sp. (I) creeping, dorsal view; (J) foot and spurs, dorsal view. Pleuretra sp. (K) trunk, lateral view; (L) trunk, dorsal view; (M) foot and spurs, dorsal view; (N) toes, ventral view (scale bars: B, E-F, H-I, M-N = $10~\mu m$; A, C, D, G, J, K-L = $50~\mu m$). The explanation of the arrows is given in the text.

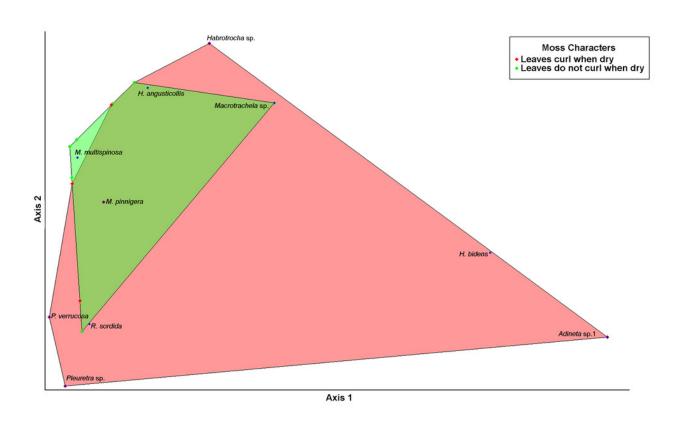
Principal Components Analysis (PCA) illustrates the distribution of bdelloid rotifers among bryophyte groups. The first two PCA axes explain 15.43% and 11.37% of the total variation, respectively. The polygons represent groups of bryophytes, differentiate


The first two PCA axes explain 15.43% and 11.37% of the total variation, respectively. The polygons represent groups of bryophytes, differentiated by color. Blue circles indicate bdelloid rotifer species.

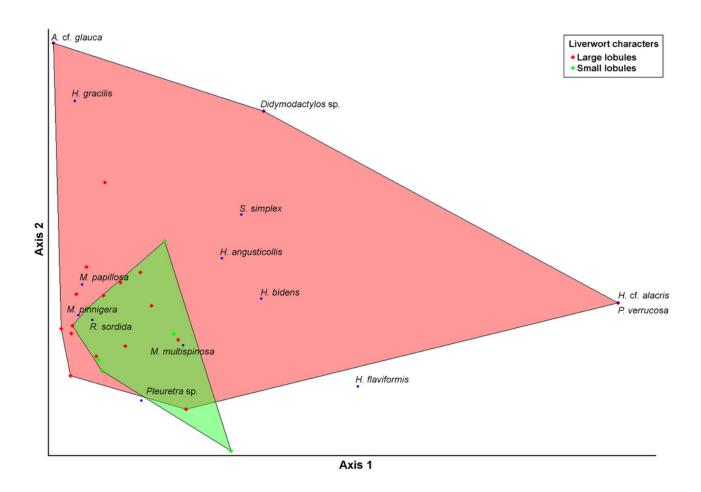
Principal Components Analysis (PCA) illustrates the relationship between bdelloid rotifers and bryophyte species. The first two PCA axes explain 15.43% and 11.37% of the total variation, respectively. The polygons represent groups of bryophyte species, di

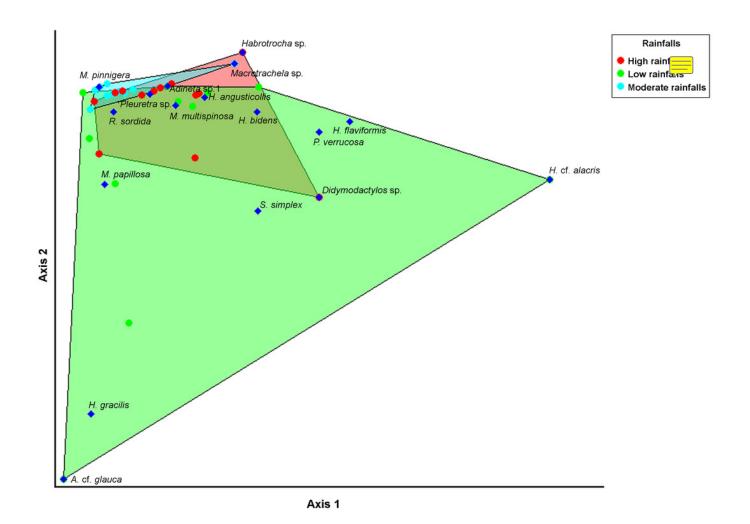

The first two PCA axes explain 15.43% and 11.37% of the total variation, respectively. The polygons represent groups of bryophyte species, differentiated by color. Blue circles indicate bdelloid rotifer species.

Principal Components Analysis (PCA) illustrates the distribution of bdelloid rotifers among various life forms. The first two PCA axes explain 15.43% and 11.37% of the total variation, respectively. The polygons represent groups of life forms, differentia


The first two PCA axes explain 15.43% and 11.37% of the total variation, respectively. The polygons represent groups of life forms, differentiated by color. Blue circles indicate bdelloid rotifer species.

Principal Components Analysis (PCA) illustrates the distribution of bdelloid rotifers among moss characters.


The first two axes of the PCA explained 20.82% and 17.55% of the variability, respectively. The polygons represent groups of moss characters, differentiated by color. Blue circles indicate bdelloid rotifer species.


Principal Components Analysis (PCA) illustrates the distribution of bdelloid rotifers among liverwort characters. The first two axes of the PCA explained 24.01% and 13.93% of the variability, respectively. The polygons represent groups of liverwort charac

The first two axes of the PCA explained 24.01% and 13.93% of the variability, respectively. The polygons represent groups of liverwort characters, differentiated by color. Blue circles indicate bdelloid rotifer species.

Principal Components Analysis (PCA) illustrates the distribution of bdelloid rotifers among seasons. The first two PCA axes explained 15.43% and 11.37% of the total variation, respectively. The polygons represent groups of seasons, differentiated by color

The first two PCA axes explained 15.43% and 11.37% of the total variation, respectively. The polygons represent groups of seasons, differentiated by color. Blue circles indicate bdelloid rotifer species.

