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ABSTRACT
Over the past 10 years, microbial ecologists have largely abandoned sequencing 16S
rRNA genes by the Sanger sequencing method and have instead adopted highly
parallelized sequencing platforms. These new platforms, such as 454 and Illumina’s
MiSeq, have allowed researchers to obtain millions of high quality but short sequences.
The result of the added sequencing depth has been significant improvements in
experimental design. The tradeoff has been the decline in the number of full-length
reference sequences that are deposited into databases. To overcome this problem, we
tested the ability of the PacBio Single Molecule, Real-Time (SMRT) DNA sequencing
platform to generate sequence reads from the 16S rRNA gene.We generated sequencing
data from the V4, V3–V5, V1–V3, V1–V5, V1–V6, and V1–V9 variable regions from
within the 16S rRNA gene using DNA from a synthetic mock community and natural
samples collected from human feces, mouse feces, and soil. The mock community
allowed us to assess the actual sequencing error rate and how that error rate changed
when different curation methods were applied. We developed a simple method based
on sequence characteristics and quality scores to reduce the observed error rate for
the V1–V9 region from 0.69 to 0.027%. This error rate is comparable to what has
been observed for the shorter reads generated by 454 and Illumina’s MiSeq sequencing
platforms. Although the per base sequencing cost is still significantly more than that of
MiSeq, the prospect of supplementing reference databases with full-length sequences
from organisms below the limit of detection from the Sanger approach is exciting.

Subjects Biodiversity, Genomics, Microbiology, Molecular Biology
Keywords Microbial ecology, Sequencing error, Bioinformatics, Microbiome, 16S rRNA gene
sequencing, PacBio, Next generation sequencing

INTRODUCTION
Advances in sequencing technologies over the past 10 years have introduced considerable
advances to the field of microbial ecology. Clone-based Sanger sequencing of the 16S rRNA
gene has largely been replaced by various platforms produced by 454/Roche (e.g., Sogin
et al. (2006)), Illumina (e.g., Gloor et al. (2010)), and IonTorrent (e.g., Jünemann et al.
(2012)). It was once common to sequence fewer than 100 16S rRNA gene sequences from
several samples using the Sanger approach (e.g., McCaig et al. (1999)). Now it is common
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to generate thousands of sequences from each of several hundred samples (Human
Microbiome Consortium, 2012). The advance in throughput has come at the cost of read
length. Sanger sequencing regularly generated 800 nt per read and because the DNA was
cloned, it was possible to obtain multiple reads per fragment to yield a full-length sequence
from a representative single molecule. At approximately $8 (US) per sequencing read, most
researchers have effectively decided that full-length sequences are not worth the increased
cost relative to the cost of more recently developed approaches. There is still a clear need
to generate high-throughput full-length sequence reads that are of sufficient quality that
they can be used as references for analyses based on obtaining short sequence reads.

Historically, all sequencing platforms were created to primarily perform genome
sequencing. When sequencing a genome, it is assumed that the same base of DNA will be
sequenced multiple times and the consensus of multiple sequence reads is used to generate
contigs. Thus, an individual base call may have a high error rate, but the consensus
sequence will have a low error rate. To sequence the 16S rRNA gene researchers use
conserved primers to amplify a sub-region from within the gene that is isolated frommany
organisms. Because the fragments are not cloned, it is not possible to obtain high sequence
coverage from the same DNA molecule using these platforms. To reduce sequencing
error rates it has become imperative to develop stringent sequence curation and denoising
algorithms (Schloss, Gevers & Westcott, 2011; Kozich et al., 2013). There has been a tradeoff
between read length, number of reads per sample, and the error rate. For instance, we
recently demonstrated that using the Illumina MiSeq and the 454 Titanium platforms the
raw error rate varies between 1 and 2% ( Schloss, Gevers & Westcott, 2011; Kozich et al.,
2013). Yet, it was possible to obtain error rates below 0.02% by adopting various denoising
algorithms; however, the resulting fragments were only 250-nt long. In the case of 454
Titanium, extending the length of the fragment introduces length-based errors and in
the case of the Illumina MiSeq, increasing the length of the fragment reduces the overlap
between the read pairs reducing the ability of each read to mutually reduce the sequencing
error. Inadequate denoising of sequencing reads can have many negative effects including
limited ability to identify chimeras (Haas et al., 2011; Edgar et al., 2011) and inflation of
alpha- and beta-diversity metrics (Kunin et al., 2010; Huse et al., 2010; Schloss, Gevers &
Westcott, 2011; Kozich et al., 2013). Illumina’s MiSeq plaform enjoys widespread use in the
field because of the ability to sequence 15–20 million fragments that can be distributed
across hundreds of samples for less than $5,000 (US).

As these sequencing platforms have grown in popularity, there has been a decline in the
number of full-length 16S rRNA genes being deposited into GenBank that could serve as
references for sequence classification, phylogenetic analyses, and primer and probe design.
This is particularly frustrating since the technologies have significantly improved our ability
to detect and identify novel populations for which we lack full-length reference sequences.
A related problem is the perceived limitation that the short reads generated by the 454
and Illumina platforms cannot be reliably classified to the genus or species level. Previous
investigators have utilized simulations to demonstrate that increased read lengths usually
increase the accuracy and sensitivity of classification against reference databases (Wang et
al., 2007; Liu et al., 2008;Werner et al., 2011). There is clearly a need to develop sequencing
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technologies that will allow researchers to generate high-quality, full-length 16S rRNA gene
sequences in a high throughput manner.

New advances in single molecule sequencing technologies are being developed to
address this problem. One approach uses a random barcoding strategy to fragment,
sequence, and assemble full-length amplicons using Illumina’s HiSeq platform (Miller et
al., 2013; Burke & Darling, 2014). Although the algorithms appear to have minimized the
risk of assembly chimeras, it is unclear what the sequencing error rate is by this approach.
An alternative is the use of single molecule technologies that offer read lengths that are
thousands of bases long. Although the Oxford Nanopore Technology has been used to
sequence 16S rRNA genes (Benítez-Páez, Portune & Sanz, 2016), the platform produced
by Pacific Biosciences (PacBio) has received wider attention for this application (Fichot
& Norman, 2013; Mosher et al., 2013; Mosher et al., 2014; Schloss et al., 2015; Singer et al.,
2016). The PacBio Single Molecule, Real-Time (SMRT) DNA Sequencing System ligates
hairpin adapters (i.e., SMRTbells) to the ends of double-stranded DNA. Although the DNA
molecule is linear, the adapters effectively circularize the DNA allowing the sequencing
polymerase to process around the molecule multiple times (Au et al., 2012). According to
Pacific Biosciences the platform is able to generate median read lengths longer than 8 kb
with the P6-C4 chemistry; however, the single pass error rate is approximately 15%. Given
the circular nature of the DNA fragment, the full read length can be used to cover the DNA
fragment multiple times resulting in a reduced error rate. Therefore, one should be able to
obtain multiple coverage of the full 16S rRNA gene at a reduced error rate.

Despite the opportunity to potentially generate high-quality, full-length sequences, it
is surprising that the Pacific Biosciences platform has not been more widely adopted for
sequencing 16S rRNA genes. Previous studies utilizing the technology have removed reads
with mismatched primers and barcodes, ambiguous base calls, and low-quality scores
(Fichot & Norman, 2013) or screened sequences based on the predicted error rate (Singer et
al., 2016). Others have utilized the platform without describing the bioinformatic pipeline
that was utilized (Mosher et al., 2013; Mosher et al., 2014). The only study to report the
error rate of the platform for sequencing 16S rRNA genes with a mock community used
the P4-C2 chemistry and obtained an error rate of 0.32% (Schloss et al., 2015), which is
16-fold higher than has been observed using the MiSeq or 454 platforms (Schloss, Gevers
& Westcott, 2011; Kozich et al., 2013). In the current study, we assessed the quality of data
generated by the PacBio sequencer using the improved P6-C4 chemistry and on-sequencer
data processing. The goal was to determine whether this strategy could fill the need
for generating high-quality, full-length sequence data on par with other platforms. We
hypothesized that by modulating the 16S rRNA gene fragment length we could alter the
read depth and obtain reads longer than are currently available by the 454 and Illumina
platforms but with the same quality. To test this hypothesis, we developed a sequence
curation pipeline that was optimized by reducing the sequencing error rate of a mock
bacterial community with known composition. The resulting pipeline was then applied to
16S rRNA gene fragments that were isolated from soil and human and mouse feces.
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Table 1 Summary of the regions. Summary of the primer pairs used to generate the 16S rRNA gene fragment fragments and the characteristics of
each region.

Region Forward Reverse E. coli coordinates Amplicon length Sequences (N )

V4 GTGCCAGCMGCCGCGGTAA GGACTACHVGGGTWTCTAAT 515–806 253 21,934
V1–V3 AGRGTTTGATYMTGGCTCAG ATTACCGCGGCTGCTGG 8–534 490 36,545
V3–V5 CCTACGGGAGGCAGCAG CCCGTCAATTCMTTTRAGT 341–927 551 16,694
V1–V5 AGRGTTTGATYMTGGCTCAG CCCGTCAATTCMTTTRAGT 8–927 881 51,759
V1–V6 AGRGTTTGATYMTGGCTCAG ACRACACGAGCTGACGAC 8–1,078 1,033 64,599
V1–V9 AGRGTTTGATYMTGGCTCAG GGYTACCTTGTTACGACTT 8–1,510 1,464 61,721

MATERIALS AND METHODS
Community DNA
We utilized genomic DNA isolated from four communities. These same DNA extracts were
previously used to develop an Illumina MiSeq-based sequencing strategy (Kozich et al.,
2013). Briefly, we used a ‘‘Mock Community’’ composed of genomicDNA from 21 bacterial
strains: Acinetobacter baumannii ATCC 17978, Actinomyces odontolyticus ATCC 17982,
Bacillus cereus ATCC 10987, Bacteroides vulgatus ATCC 8482, Clostridium beijerinckii
ATCC 51743, Deinococcus radiodurans ATCC 13939, Enterococcus faecalis ATCC 47077,
Escherichia coli ATCC 70096, Helicobacter pylori ATCC 700392, Lactobacillus gasseri ATCC
33323, Listeria monocytogenes ATCC BAA-679, Neisseria meningitidis ATCC BAA-335,
Porphyromonas gingivalis ATCC 33277, Propionibacterium acnes DSM 16379, Pseudomonas
aeruginosa ATCC 47085, Rhodobacter sphaeroides ATCC 17023, Staphylococcus aureus
ATCC BAA-1718, Staphylococcus epidermidis ATCC 12228, Streptococcus agalactiae ATCC
BAA-611, Streptococcus mutans ATCC 700610, Streptococcus pneumoniae ATCC BAA-334.
The mock community DNA is available through BEI resources (v3.1, HM-278D). Genomic
DNAs from the three other communities were obtained using theMO BIO PowerSoil DNA
extraction kit. The human and mouse fecal samples were obtained using protocols that
were reviewed and approved by the University Committee on Use and Care of Animals
(Protocol #PRO00004877) and the Institutional ReviewBoard at theUniversity ofMichigan
(Protocol #HUM00057066). The human stool donor provided informed consent.

Library generation and sequencing
The DNAs were each amplified in triplicate using barcoded primers targeting the V4,
V1–V3, V3–V5, V1–V5, V1–V6, and V1–V9 variable regions (Table 1). The primers were
synthesized so that the 5′ end of the forward and reverse primers were each tagged with
paired 16-nt symmetric barcodes (https://github.com/PacificBiosciences/Bioinformatics-
Training/wiki/Barcoding-with-SMRT-Analysis-2.3) to allow multiplexing of samples
within a single sequencing run. Methods describing PCR, amplicon cleanup, and pooling
were described previously (Kozich et al., 2013). The SMRTbell adapters were ligated onto
the PCR products and the libraries were sequenced by Pacific Biosciences using the P6-C4
chemistry on a PacBio RS II SMRT DNA Sequencing System. Diffusion Loading was
used for regions V4, V1–V3, and V3–V5 and MagBead loading was used for regions
V1–V5, V1–V6, and V1–V9. Each region was sequenced separately using movies ranging
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in length between 180 and 360 min. The sequences were processed using pbccs (v.3.0.1;
https://github.com/PacificBiosciences/pbccs), which generates predicted error rates using
a proprietary algorithm.

Data analysis
All sequencing data were curated using mothur (v1.36) (Schloss et al., 2009) and analyzed
using the R programming language (R Core Team, 2016). The raw data can be obtained
from the Sequence Read Archive at NCBI under accession SRP051686, which are associated
with BioProject PRJNA271568. This accession and bioproject also contain data from
the same samples sequenced using the P4-C2 chemistry. Several specific features were
incorporated into mothur to facilitate the analysis of PacBio sequence data. First, because
non-ambiguous base calls are assigned to Phred quality scores of zero, the consensus fastq
files were parsed so that scores of zero were interpreted as corresponding to an ambiguous
base call (i.e., N) in the fastq.info command using the pacbio=T option. Second, because the
consensus sequence can be generated in the forward and reverse complement orientations,
a checkorient option was added to the trim.seqs command in order to identify the proper
orientation. These features were incorporated into mothur v.1.30. Because chimeric
molecules can be generated during PCR and would artificially inflate the sequencing
error, it was necessary to remove these data prior to assessing the error rate. Because
we knew the true sequences for the strains in the mock community we could calculate
all possible chimeras between strains in the mock community (in silico chimeras). If a
sequence read was 3 or more nucleotides more similar to an in silico chimera than it was to
a non-chimeric reference sequence, it was classified as a chimera and removed from further
consideration. Identification of in silico chimeras and calculation of sequencing error rates
was performed using the seq.error command in mothur (Schloss, Gevers & Westcott, 2011).
De novo chimera detection was also performed on the mock and other sequence data using
the abundance-based algorithm implemented in UCHIME (Edgar et al., 2011). Sequences
sequences were aligned against a SILVA-based reference alignment (Pruesse et al., 2007)
using a profile-based aligner (Schloss, 2009) and were classified against the SILVA (v123)
(Pruesse et al., 2007), RDP (v10) (Cole et al., 2013), and greengenes (v13_8_99) (Werner et
al., 2011) reference taxonomies using a negative Bayesian classifier implemented within
mothur (Wang et al., 2007). Sequences were assigned to operational taxonomic units using
the average neighbor clustering algorithmwith a 3%distance threshold ( Schloss & Westcott,
2011 ). Detailed methods including this paper as an R markdown file are available as a
public online repository (http://github.com/SchlossLab/Schloss_PacBio16S_PeerJ_2016).

RESULTS AND DISCUSSION
The PacBio error profile and a basic sequence curation procedure
To build a sequence curation pipeline, we first needed to characterize the error rate
associated with sequencing the 16S rRNA gene. Using the consensus sequence obtained
from at least 3 sequencing passes of each fragment, we observed an average sequencing
error rate of 0.65%. Insertions, deletions, and substitutions accounted for 31.2, 17.9, and
50.9% of the errors, respectively. The substitution errors were equally likely and all four
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Figure 1 Summary of errors in data generated using PacBio sequencing platform to sequence various
regions within the 16S rRNA gene. The predicted error rate using PacBio’s sequence analysis algorithm
correlated well with the observed error rate (Pearson’s R : −0.67; (A). Because of the large number of se-
quences, we randomly selected 5% of the data to show in (A). The sequencing error rate of the amplified
gene fragments increased with mismatches to the barcodes and primers (B). The sequencing error rate de-
clined with increased sequencing coverage; however, increasing the sequencing depth beyond 10-fold cov-
erage had no meaningful effect on the sequencing error rate (C). The scale of they y-axis in B and C are
the same.

bases were equally likely to cause insertion errors. Interestingly, guanines (39.4%) and
adenines (24.3%) were more likely to be deleted than cytosines (18.3%) or thymidines
(18.0%). The PacBio quality values varied between 2 and 93. Surprisingly, the percentage
of base calls that had the maximum quality value did not vary among correct base calls
(80.5%), substitutions (80.0%), and insertions (80.4%). It was not possible to use the
individual base quality scores to screen sequence quality as has been possible in past studies
using the Phred-based quality scores that accompany data generated using the 454 and
Illumina technologies. We did observe a strong correlation between our observed error
rate and the predicted error rate as calculated by the PacBio software (Pearson’s R: −0.67;
Fig. 1A).

We established a simple curation procedure by culling any sequence that had a string
of the same base repeated more than eight times or did not start and end at the expected
alignment coordinates for that region of the 16S rRNA gene. This reduced the experiment-
wide error rate from 0.68 to 0.65%. This basic procedure resulted in the removal of between
0.714 (V1–V3) and 9.47 (V1–V9)% of the reads (Table 2). Although the percentage of
reads removed increased with the length of the fragment, there was no obvious relationship
between fragment length and error rate (Fig. 2).

Identifying correlates of increased sequencing error
In contrast to the 454 and Illumina-based platforms where the sequencing quality decays
with length, the consensus sequencing approach employed by the PacBio sequencer is
thought to generate a uniform distribution of errors. This makes it impossible to simply
trim sequences to high-quality regions. Therefore, we sought to identify characteristics
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Figure 2 Change in error rate (A) and the percentage of sequences that were retained (B) when using
various sequence curationmethods. The condition that was used for downstream analyses is indicated by
the star. The plotted numbers represent the region that was sequenced. For example ‘‘19’’ represents the
data for the V1–V9 region.

Table 2 Summary of error rates. Summary of the error rates and number of observed OTUs for each region.

Region Error rate following (%) Reads remaining (%) Average no. of OTUsa

Basic Predicted Precluster Mockb Mockc Soil Mouse Human

V4 0.77 0.35 0.158 62.58 33.4 48.9 629.4 212.6 116.9
V1–V3 0.56 0.27 0.068 67.01 20.5 27.7 726.0 107.3 106.4
V3–V5 0.74 0.22 0.035 63.15 21.1 31.2 NA 112.3 83.8
V1–V5 0.57 0.21 0.019 59.29 19.8 27.2 694.4 65.9 84.9
V1–V6 0.60 0.21 0.031 59.90 20.0 46.5 693.0 75.8 89.4
V1–V9 0.68 0.21 0.027 51.33 19.5 40.4 NA 102.5 117.3

Notes.
aThe number of OTUs is based on rarefaction of each sample to 1,000 sequences per sample; cells labeled ND reflect samples that did not have at least 1,000 sequences.
bNumber of OTUs in the mock community when all chimeras were removed; in the absence of chimeras and sequencing errors, there should be 19 OTUs for all three regions.
cNumber of OTUs in the mock community when chimeras were removed using UCHIME.
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within sequences that would allow us to identify and remove those sequences with errors
using three different approaches. First, we hypothesized that errors in the barcode and
primer would be correlated with the error rate for the entire sequence.We observed a strong
relationship between the number of mismatches to the barcodes and primers and the error
rate of the rest of the sequence fragment (Fig. 1B). Although allowing no mismatches to the
barcodes and primers yielded the lowest error rate, that stringent criterion removed a large
fraction of the reads from the dataset. Allowing at most one mismatch only marginally
increased the error rate while retaining more sequences in the dataset (Fig. 2). Second, we
hypothesized that increased sequencing coverage should yield lower error rates. We found
that once we had obtained 10-fold coverage of the fragments, the error rate did not change
appreciably (Fig. 1C). When we compared the error rates of reads with at least 10-fold
coverage to those with less coverage, we reduced the error rate by 8.48–37.08% (Fig. 2).
Third, based on the observed correlation between the predicted and observed error rates,
we sought to identify a minimum predicted error rate that would allow us to reduce the
observed error rate. The average observed error rate for sequences with predicted error
rates between 0.01 and 0.10% was linear. We decided to use a threshold of 0.01% because
a large number of sequence reads were lost when we used a smaller threshold. When we
used this threshold, we were able to reduce the error rate by 51.4–70.0% (Fig. 2). Finally,
we quantified the effect of combining filters. We found that any combination of filters that
included the predicted error rate threshold had the most significant impact on reducing the
observed error rate. Furthermore, the inclusion of the mismatch and coverage filters had a
negligible impact on error rates, but had a significant impact on the number of sequences
included in the analysis. For instance, among the V1–V9 data, requiring sequences to have
a predicted error rate less than 0.01% resulted in a 69.2% reduction in error and resulted
in the removal of 53.5% of the sequences. Adding the mismatch or coverage filter had
no effect on the reduction of error, but resulted in the removal of 56.2 and 56.6% of the
sequences, respectively. Use of all filters had no impact on the reduction in the observed
error rate, but resulted in the removal of 59.1% of the sequences. The remainder of this
paper only uses sequences with a predicted error rate less than 0.01%.

Pre-clustering sequences to further reduce sequencing noise
Previously, we implemented a pre-clustering algorithm where sequences were sorted by
their abundance in decreasing order and rare sequences are clustered with amore abundant
sequence if the rare sequences have fewer mismatches than a defined threshold when
compared to the more abundant sequence (Huse et al., 2010; Schloss, Gevers & Westcott,
2011). The recommended threshold was a 1-nt difference per 100-nt of sequence data.
For example, the threshold for 250 bp fragment from the V4 region would be 2 nt or 14
for the 1,458 bp V1–V9 fragments. This approach removes residual PCR and sequencing
errors while not overwhelming the resolution needed to identify OTUs that are based
on a 3% distance threshold. The tradeoff of this approach is that one would be unable
to differentiate V1–V9 sequences that truly differed by less than 14 nt. When we applied
this approach to our PacBio data, we observed a reduction in the error rate between
33.0 (V1–V3) and 48.7% (V1–V9). The final error rates varied between 0.02 (V1–V5)
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and 0.2% (V4). The full-length (i.e., V1–V9) fragments had an error rate of 0.03% (Fig. 2;
Table 2), this is similar to what we have previously observed using the 454 and Illumina
MiSeq platforms (0.02%) (Schloss, Gevers & Westcott, 2011; Kozich et al., 2013).

Effects of error rates on OTU assignments
The sequencing error rate is known to affect the number of OTUs that are observed
(Schloss, Gevers & Westcott, 2011). For each region, we determined that if there were no
chimeras or PCR or sequencing errors, then we would expect to find 19 OTUs. When we
achieved perfect chimera removal, but allowed for PCR and sequencing errors, we observed
between 0.5 (V1–V9) and 14.4 (V4) extra OTUs (Table 2). The range in the number of
extra OTUs was largely explained by the sequencing error rate (Pearson’s R= 1.0). Next,
we determined the number of OTUs that were observed when we used UCHIME to
identify chimeric sequences. Under these more realistic conditions, we observed between
8.2 (V1–V5) and 29.9 (V4) extra OTUs. Finally, we calculated the number of OTUs in
the soil, mouse, and human samples using the same pipeline with chimera detection and
removal based on the UCHIME algorithm. Surprisingly, there was not a clear relationship
across sample type and region. Again, we found that there was a strong correlation between
the number of observed OTUs and the error rate for the mouse (R= 0.95) and human
samples (R= 0.60). These results underscore the effect of sequencing error on the inflation
of the number of observed OTUs.

Classification varies by region, environment, and database
We classified all of the sequence data we generated using the naïve Bayesian classifier using
the RDP, SILVA, and greengenes reference taxonomies (Fig. 3). In general, increasing the
length of the region improved the ability to assign the sequence to a genus or species.
Interestingly, each of the samples we analyzed varied in the ability to assign its sequences
to the depth of genus or species. Furthermore, the reference database that did the best job
of classifying the sequences varied by sample type. For example, the SILVA reference did
the best for the human feces and soil samples and the RDP did the best for the mouse
feces samples. An advantage of the greengenes database is that it contains information
for 2,514 species-level lineages for 11% of the reference sequences; the other databases
only provided taxonomic data to the genus level. There was a modest association between
the length of the fragment and the ability to classify sequences to the species-level for the
human samples; there was no such association for the mouse and soil samples. In fact, at
most 6.2% of the soil sequences and 4.3% of the mouse sequences could be classified to a
species. These results indicate that the ability to classify sequences to the genus or species
level is a function of read length, sample type, and the reference database.

Sequencing errors are not random
Above, we described that although there was no obvious bias in the substitution or insertion
rate, we did observe that guanines and adenines weremore likely to be deleted than cytosines
or thymidines. This lack of randomness in the error profile suggested that there might
be a systematic non-random distribution of the errors across the sequences. This would
manifest itself by the creation of duplicate sequences with the same error. We identified all
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Figure 3 Percentage of unique sequences that could be classified. Classifications were performed using
taxonomy references curated from the RDP, SILVA, or greengenes databases for the four types of samples
that were sequenced across the six regions from the 16S rRNA gene. Only the greengenes taxonomy refer-
ence provided species-level information.

of the mock community sequences that had a 1-nt difference to the true sequence (Fig. 4).
For these three regions, between 70.7 and 88.9 of the sequences with 1-nt errors were only
observed once. We found that the frequency of the most abundant 1-nt error paralleled the
number of sequences. Surprisingly, the same 1-nt error appeared 1,954 times (0.02%) in
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Figure 4 Percentage of 1-nt variants that occurred up to ten times. Sequences that were 1 nt different
from the mock community reference sequences were counted to determine the number of times each vari-
ant appeared by region within the 16S rRNA gene.

the V1–V6 mock data and another 1-nt error appeared 1,070 times (0.03%) in the V1–V9
mock data. Contrary to previous reports (Carneiro et al., 2012; Koren et al., 2012), these
results indicate that reproducible errors occur with the PacBio sequencing platform and
that they can be quite abundant. Through the use of the pre-clustering step described above
these 1-nt errors would be ameliorated; however, this result indicates that caution should
be used when attempting to use fine-scale OTU definitions.

CONCLUSIONS
The various sequencing platforms that are available to microbial ecologists are able to
fill unique needs and have their own strengths and weaknesses. For sequencing the 16S
rRNA gene, the 454 platform is able to generate a moderate number of high-quality
500-nt sequence fragments (error rates below 0.02%) (Schloss, Gevers & Westcott, 2011)
and the MiSeq platform is able to generate a large number of high-quality 250-nt
sequence fragments (error rates below 0.02%) (Kozich et al., 2013). The promise of the
PacBio sequencing platform was the generation of high-quality near full-length sequence
fragments. As we have shown in this study, it is possible to generate near full-length
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sequences with error rates that are slightly higher, but comparable to the other platforms
(i.e., 0.03%). With the exception of the V4 region (0.2%), the error rates were less than
0.07%. When we considered the shorter V4 region, which is similar in length to what is
sequenced by the MiSeq platform, the error rates we observed with the PacBio platform
were nearly 8-fold higher than what has previously been reported on the other platforms. It
was unclear why these shorter reads had such a high error rate relative to the other regions.
At this point, the primary limitation of generating full-length sequences on the PacBio
platform is the cost of generating the data and accessibility to the sequencers.

The widespread adoption of the 454 and MiSeq platforms and decrease in the use of
Sanger sequencing for the 16S rRNA gene has resulted in a decrease in the generation of the
full-length reference sequences that are needed for performing phylogenetic analyses and
designing lineage specific PCR primers and fluorescent in situ hybridization (FISH) probes.
It remains to be determined whether the error rates we observed for full-length sequences
are prohibitive for these applications. We can estimate the distribution of errors assuming
that the errors follow a binomial distribution along the length of the 1,500 nt gene with the
error rate that we achieved from the V1–V9 mock community data prior to pre-clustering
the sequences, which was 0.2%. Under these conditions one would expect 4.3% of the
sequences to have no errors and 50% of the sequences would have at least 3 errors. After
applying the pre-clustering denoising step, the error rate drops by 7.7-fold to 0.03%. With
this error rate, we would expect 66.3% of the sequences to have no sequencing errors. The
cost of the reduced error rate is the loss of resolution among closely related sequences.

Full-length sequences are frequently seen as a panacea to overcome the limitations
of taxonomic classifications. The ability to classify each of our sample types benefited
from the generation of full-length sequences. It was interesting that the benefit varied by
sample type and database. For example, using the mouse libraries, the ability to classify
each of the regions differed by less than 5% when classifying against the SILVA and
greengenes databases. The effect of the database that was used was also interesting. The
RDP database outperformed the other databases for the mouse samples and the SILVA
database outperformed the others for the human and soil samples. The three databases were
equally effective for classifying the mock community. Finally, since only the greengenes
database provided species-level information for its reference sequences it was the only
database that allowed for resolution of species-level classification. The sequences from
the mouse and soil libraries were not effectively classified to the species level (all less than
10%). In contrast, classification of the human libraries resulted in more than 40% of the
sequences being classified to a genus, regardless of the region. These data demonstrate that
for the samples we analyzed, the length of the sequence fragment was not as significant a
factor in classification as the choice of database.

The development of newer sequencing technologies continue to advance and there is
justifiable excitement to apply these technologies to sequence the 16S rRNA gene. Although
it is clearly possible to generate sequencing data from these various platforms, it is critical
that we assess the platforms for their ability to generate high-quality data and the particular
niche that the new approach will fill. With this in mind, it is essential that researchers
utilize mock communities as part of their experimental design so that they can quantify
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their error rates. The ability to generate near full-length 16S rRNA gene sequences is an
exciting advance that will hopefully expand our ability to improve the characterization of
microbial communities.
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