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ABSTRACT

The mechanisms that regulate minor and trace element biomineralization in the
echinoid skeleton can be primarily controlled biologically (i.e., by the organism and
its vital effects) or by extrinsic environmental factors. Assessing the relative role of
those controls is essential for understanding echinoid biomineralization, taphonomy,
diagenesis, and their potential as geochemical archives. In this study, we (1) contrast
geochemical signatures of specimens collected across multiple taxa and environmental
settings to assess in situ the effects of environmental and physiological factors on skeletal
biomineralogy; and (2) analyze the nanomechanical properties of the echinoid skeleton
to assess potential linkages between magnesium/calcium (Mg/Ca) ratios and skeletal
nanohardness. Live specimens of sand dollars and sea biscuits (Mellita tenuis, Encope
spp.,» Leodia sexiesperforata, and Clypeaster subdepressus) were collected from three
different salinity regimes: (1) a coastal region of Cedar Key influenced by freshwater
input from Suwannee River, with low and fluctuating salinity; (2) St. James Bay with
less fluctuating, higher salinity; and (3) Florida Keys with stable, fully marine salinity
conditions. No clear relationship was found between the bulk skeletal barium/calcium
(Ba/Ca), zinc/calcium (Zn/Ca), sodium/calcium (Na/Ca), cadmium/calcium (Cd/Ca),
copper/calcium (Cu/Ca), phosphorous/calcium (P/Ca), lead/calcium (Pb/Ca),
boron/calcium (B/Ca), manganese/calcium (Mn/Ca) ratios pooled across all taxa.
In contrast, bulk Mg/Ca, strontium/calcium (Sr/Ca), sulfur/calcium (S/Ca) and
lithium/calcium (Li/Ca) ratios exhibited notable differences between the three regions,
indicating that distribution of these elements can be at least partly influenced by
environmental factors such as salinity. However, such patterns were highly variable
across taxa and regions, indicating that both environmental and physiological factors
influenced geochemical signatures to varying degrees, depending on the species and
environmental setting. In addition, regardless of species identity, different types of
stereom within single tests were characterized by distinct skeletal Mg/Ca ratios and
nanohardness. The inner galleried and coarse labyrinthic stereom typically exhibited

How to cite this article Gorzelak P, Torres Jr. L, Kotbuk D, Grun TB, Kowalewski M. 2025. Geochemical signatures and nanomechani-
cal properties of echinoid tests from nearshore habitats of Florida: environmental and physiological controls on echinoid biomineralization.
Peer] 13:e18688 http://doi.org/10.7717/peer].18688


https://peerj.com
mailto:pgorzelak@twarda.pan.pl
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.18688
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://doi.org/10.7717/peerj.18688

Peer

a lower Mg/Ca ratio and nanohardness than the outer imperforate stereom layer that
locally forms tubercles. Such heterogeneity in Mg distribution within single specimens
cannot be ascribed solely to environmental changes, indicating that these echinoids
actively regulate their intraskeletal Mg content: the higher magnesium concentration
at the tubercles relative to that of the underlying stereom may be interpreted as a
strategy for enhancing their mechanical strength to withstand surface friction and wear.
The results suggest that the trace element composition of echinoid tests is a complex
outcome of environmental and physiological factors.

Subjects Biochemistry, Bioengineering, Marine Biology, Paleontology, Ecotoxicology
Keywords Echinoderms, Echinoidea, Stereom, Geochemistry, Nanomechanics, Skeleton, Salinity

INTRODUCTION

Echinoderms produce magnesium (Mg) calcite skeletons with a unique trabecular
microstructure (stereom) of mesodermal origin. There is growing evidence that the ultimate
skeletal chemistry in echinoderms is a result of a complex interplay between environmental
and physiological factors (e.g., Weber, 1969; Weber, 1973; Solovjev, 2014; Smith et al., 2016;
Iglikowska et al., 2020; Azcdrate-Garcia, Avila & Figuerola, 2024). Yet the extent to which
these factors control the incorporation of minor and trace elements into the echinoderm
skeleton is poorly known. Whereas a number of insightful experimental studies under
controlled laboratory conditions have been performed (e.g., Ries, 2004; Borremans et al.,
2009; Hermans et al., 2010; Asnaghi et al., 2014; Duquette et al., 2018; Kotbuk et al., 2019;
Kolbuk et al., 2020; Kotbuk et al., 2021), interpretations of such experimentally collected
data are nontrivial due to potential pitfalls related to the short time-scale of experiments
(e.g., Knapp et al., 2012), constraints on other factors that may influence biomineralization
in natural systems, and “shock” effects of the treatments. Conversely, contrasting specimens
collected from the environments they inhabited provide natural experimental settings for
assessing the effect of environmental parameters on skeletal chemistry in situ. However,
in natural settings environmental parameters often covary and species assemblies vary in
taxonomic composition, hampering research design and hypothesis testing.

Most previous studies, both experimental and those based on field-collected specimens,
primarily focused on the concentrations of major elements within the calcite skeleton of
echinoderms, namely magnesium (e.g., Chave, 1954; Weber, 1969; Weber, 1973; Richter ¢
Bruckschen, 1998; Smith et al., 2016; Kotbuk et al., 2020; Azcdrate-Garcia, Avila & Figuerola,
2024). Overall, these studies have demonstrated that the skeletal magnesium/calcium
(Mg/Ca) ratio in echinoderms can be positively correlated to environmental parameters,
such as ambient Mg/Ca sea water ratio, temperature, and salinity. However, echinoderms
from the same locations may display a wide range of skeletal Mg contents (e.g., Chave,
1954; Weber, 1969; Gorzelak et al., 2013; Iglikowska et al., 2017; Iglikowska et al., 2018),
which may vary at hierarchical scales (within a single stereom trabecula, within ossicle,
among ossicles within a single individual, and at higher taxonomic levels). Therefore,
genetic factors are also important in modulating magnesium distribution. Notably, Mg/Ca
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ratios in echinoderm skeletons can be affected by the type of diet (Asnaghi et al., 2014;
Kotbuk et al., 2020), as well as the type and quantity of the intra-stereomic organic matrix
involved in biomineralization (Hermans et al., 2011; Gorzelak et al., 2013).

Apart from magnesium, the echinoderm skeleton contains various admixtures of minor
and trace elements, but only a few studies have dealt with their analyses (Lebrato et al., 2013)
and/or their possible connections with environmental parameters. For instance, in the case
of strontium, it has been experimentally shown that the skeletal strontium/calcium (Sr/Ca)
ratio in asteroids can be positively linked to temperature and salinity (Borremans et al.,
2009). Conversely, the species-specific trace element composition in Arctic echinoderms
was interpreted as indicative of biological control, though accumulation of some metals
and minor elements was primarily shaped by ambient conditions (Iglikowska et al., 2020).

Here, we report the bulk ratios of selected minor and trace elements in the skeletons of
clypeasteroids (Clypeasteroidea) and scutelloids (Scutelloida), commonly known as sand
dollars and sea biscuits, which were collected from various salinity regimes throughout
Florida in order to assess the extent to which these ratios are environmentally controlled,
with particular focus on salinity. It is assumed here that significant differences in elemental
ratios among environmental settings, especially within a given species, may be indicative
of the influence of extrinsic factors. Conversely, significant differences in geochemical
signatures between sympatric species or comparable signatures for conspecific specimens
from different environmental settings may be indicative of physiological controls.

Sand dollars are flat, shallow burrowing sea urchins that have been extensively studied
in the context of their ecology, taphonomy and skeletal morphology (e.g., Li et al., 2013;
Guilherme, Brustolin ¢ Bueno, 2015; Brustolin et al., 2016; Grun ¢ Nebelsick, 2016; Grun
& Nebelsick, 2018; Mancosu ¢ Nebelsick, 2017; Nebelsick, 2020; Lin et al., 2021; Cleveland
¢ Pomory, 2022). However, relatively little attention has been given to their skeletal
chemistry (Clarke ¢ Wheeler, 1922; Chave, 1954; Weber, 1969; Macqueen, Ghent & Davies,
19745 Solovjev, 20145 Smith et al., 20165 Perricone et al., 2021). This paper aimed at filling this
gap. Our data are supplemented by micro-scale spot elemental analyses aimed at assessing
the possible intraskeletal variation in Mg/Ca ratio, and its relation to nanomechanical
properties (nanohardness) of the stereom. This allows us to verify data obtained from
experiments (e.g., Gorzelak et al., 2024) suggesting that impurities of some elements (such
as Mg) may affect mechanical properties of echinoid biocalcite, which may be of functional
and adaptive significance.

MATERIALS & METHODS

Study systems and data collection

Live echinoid specimens were collected via SCUBA expeditions from 15 sites (Table 1) in
three regions along the western and southern coasts of Florida: (1) central Florida Keys
(FK), (2) Cedar Key (CK), and (3) Apalachee Bay at the northern Gulf coast of Florida
(NG) (Fig. 1). All surveying and collecting activities were carried out within the scope
of the collecting permits SAL-18-1294A-SR, SAL-19-2195-SR, SAL-19-2195A-SR, SAL-
22-2195-SR, and SAL-22-2195A-SR issued by the Florida Fish and Wildlife Conservation
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Table 1 Summary of sampling sites.

Region Site Latitude Longitude Depth Clypeaster Encope Leodia Mellita
[m] subdepressus spp- sexiesperforata tenuis
by site
Northern Gulf” CK-2 28.99317 —83.1371 7.6 1 0 0 1
Cedar Key CK-5 28.9946 —83.1424 4 0 0 0 3
Cedar Key CK-6 29.06557 —83.0656 0.9 0 0 0 3
Florida Keys FK-17 24.81612 —80.7353 6.1 0 0 4 0
Florida Keys FK-3 24.78605 —80.8829 1.8 0 0 3 0
Florida Keys FK-5 24.74398 —80.7988 8.5 1 0 0 0
Florida Keys FK-9 24.74689 —80.7945 8.2 0 2 2 0
Northern Gulf AP-10 29.76553 —84.5447 12.2 0 3 0 0
Northern Gulf AP-15 29.61218 —84.3702 20.7 0 3 0 0
Northern Gulf AP-17 29.83326 —84.5276 7.6 0 0 0 5
Northern Gulf AP-19 29.73817 —84.2415 14 1 0 0 0
Northern Gulf AP-8 29.8427 —84.2712 11 0 1 0 0
Northern Gulf CB-4 29.8042 —84.4941 7 2 0 5 0
Northern Gulf CB-5 29.81896 —84.4758 7.3 0 0 0 1
Northern Gulf ST-1 29.50526 —83.6723 11.3 0 2 0 0
by region
Cedar Key 2 sites N/A N/A N/A 0 0 0 6
Florida Keys 4 sites N/A N/A N/A 1
Northern Gulf 9 sites N/A N/A N/A 4 7
Total (n=43) 5 11 14 13
Notes.

" Encope spp. include sister taxa Encope michelini and Encope aberrans.
"CK-2 is an offshore site off Cedar Key located outside the direct Suwannee River influence and is classified as “Northern Gulf” with salinity estimates based on a comparable site

located southward of Cedar Key (see text for more details).

Relative to CK-2 and CK-6, CK-5 is an intermediate site shallower and more proximal to the estuary than CK-2, but more offshore and deeper than CK-6. It was classified in the

main analysis as “Northern Gulf” but was reclassified as “Cedar Key” and assigned “Cedar Key” salinity in the supplementary analyses. The results of alternative salinity/region

assignments influence minor interpretative and statistical details, but do not alter any of the major conclusions of the study.
Commission. A total of 43 specimens were analyzed for bulk geochemical analysis and
four of those specimens were also subject to nanoindentation and fine scale microprobe
analyses.

The three regions notably differ in salinity and, to a smaller extent, in temperature. FK is
characterized by the highest and least variable salinity and temperature, NG is characterized
by relatively lower and more variable salinity and temperature, and CK sites, influenced
by Suwannee estuary, have the lowest salinity (Fig. 2) and temperature comparable to
FK. The FK sites represent carbonate sand bottoms, whereas CK and NG sites represent
mixed siliciclastic-carbonate sand bottoms. All sites occur in shallow-water, coastal areas
with water depth ranging from 1 to 21 m (Table 1). The offshore site off Cedar Key (site
CK-2) is outside the direct influence of Suwannee river and thus more comparable to
other Northern Gulf sites. Salinity estimates for CK-2 were obtained from a comparably
offshore, non-estuarine site off Crystal River with salinity estimates consistent with an in
situ measurement of 31%o collected at CK-2 during field work. In all analyses, site CK-2 is
classified as ‘Northern Gulf’ (Table 1). The shallower offshore site (CK-5) was classified as
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Figure 1 Study area map with the sampling sites color-coded by region. Abbreviations: FK, Florida
Keys; CK, Cedar Key; NG, Northern Gulf. Map plotted in R (R Core Team, 2023) using publicly available
NOAA coordinates downloaded from https:/gnome.orr.noaa.gov/goodsfools/GSHHS/coast_subset. Points
marking sampling sites are color-coded by region: green, Cedar Key sites; orange, Florida Key sites; gray,
Northern Gulf sites. The site symbols are semi-transparent and darker shade indicate multiple sites plot-
ting at the same position at the coarse spatial resolution of the map.

Full-size & DOI: 10.7717/peer;j.18688/fig-1

‘Cedar Key’ with salinity the same as CK-6. The alternative results, with CK-5 assigned to
“Northern Gulf” using the same salinity estimates as for the nearby CK-2, are also reported
below. In addition, the CK-5 specimens are highlighted with special symbols on the key
figures included below. Reassigning regional membership and salinity for sites CK-5 and
CK-2 changes slightly some of the plots and values of statistics reported below, but does
not change any of the major conclusions of this study. Reassignments of CK-5 and CK-2
to different regions and salinity estimates were performed interactively during the analysis
(see R script in Data S1), whereas the values archived in Data S2 are original values prior
to the reassignment.

Four irregular echinoid taxa were selected based on their common presence in the studied
regions and adequately large test size. All taxa included here possess an endoskeleton (test)
consisting of interlocking plates made of high-Mg calcite.

Clypeaster subdepressus (family Clypeasteridae) is a relatively large echinoid common in
soft-bottom sandy habitats of the Gulf of Mexico. The species is a mobile, semi-infaunal to
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Figure 2 Comparison of the three study systems (FK, Florida Keys; CK, Cedar Keys, and NG, Northern
Gulf) in terms of temperature and salinity. Variation in surface temperature (horizontal axis) across the
study systems. Large dots represent mean annual temperature values, small dots represent seasonal (win-
ter, spring, summer, fall) estimates, and bars represent seasonal temperature range. Variation in salinity
(vertical axis) across the three study systems. Large dots represent mean annual salinity values and bars
represent interquartile salinity ranges. Temperature and salinity data extracted from NOAA (2024) and
Gulf of Mexico Ocean Observation (GCOOS)(2019) are provided in Data S2. Symbols and bars color-coded
by region: green, Cedar Key sites; orange, Florida Key sites; gray, Northern Gulf sites.

Full-size & DOI: 10.7717/peer;j.18688/fig-2

epifaunal detritivore. During collecting, the specimens were typically observed only partly
buried under sediment surface with the aboral side protruding above sediment surface (see
also Telford, Mooi & Harold, 1987). C. subdepressus ingests coarse sand-sized particles and
mostly feeds on dead algae, seagrass, and coral fragments (Telford, Mooi ¢ Harold, 1987).

Encope spp. include two species of sand dollars: E. michelini and E. aberrans (family
Mellitidae). Juveniles and subadults of these two species are difficult to distinguish
morphologically and the molecular phylogeny indicates that they represent closely related
species (Kroh ¢ Mooi, 2024) that split ~6 million years ago (Coppard ¢ Lessios, 2017).
These two species are similar in size, mode of life, feeding, and habitat preferences. They are
common in soft-bottom sandy habitats of the Gulf of Mexico and often occur sympatrically.
Similarly to C. subdepressus, they are mobile, semi-infaunal to epifaunal detritivores. The
fossil record of the two species dates back to the middle-to-late Pleistocene (Coppard &
Lessios, 2017).
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Mellita tenuis is a sand dollar (family Mellitidae) common in the eastern Gulf of Mexico,
where it often occurs in dense congregations (e.g., Cleveland ¢» Pomory, 2022). The species
is a mobile epifaunal to shallow infaunal detritivore that ingests sand-sized grains. The
species is known from the Pleistocene of Florida (Coppard, Zigler ¢ Lessios, 2013).

Leodia sexiesperforata is a sand dollar (family Mellitidae) that is widespread in the Gulf
of Mexico. This species is a mobile, infaunal detritivore that occurs in shallow-water
soft-bottom sandy habitats, often in dense congregations (Grun ¢ Kowalewski, 2022). The
species is known from the late Pleistocene fossil record of Florida (Mooi ¢ Peterson, 2000;
Portell ¢ Oyen, 2002) and Jamaica (Mitchell, James ¢ Brown, 2006).

Environmental estimates (salinity and temperature)

The temperature estimates used here were downloaded from NOAA (2024) using seasonal
datasets with the highest available resolution (0.1°). To derive the most relevant temperature
estimates, the NOAA sectors nearest to our sampling sites were selected based on the nearest
geographic distance calculated using R package ‘geosphere’ (Hijmans, 2022). The distances
varied from ~2 to ~40 km. Because all sites represent shallow water settings with fully
mixed waters, water temperatures were effectively depth invariant within sites and surface
water temperatures can serve as proxies regardless of the site’s depth. This assumption
was confirmed by the analysis of the NOAA (2024) database: the temperature range in
0-to-25 m depth range averaged 0.05 °C and only 5% of NOAA sectors exceeded 1 °C
difference within the top 25 m of the water column. Annual temperature was estimated as
the arithmetic mean of the four seasonal means, while range of seasonal means was used
as a measure of annual variability in temperature (Fig. 2; Data S2).

Salinity data were downloaded from Gulf of Mexico Ocean Observation (GCOOS) (2019),
an online-accessible aggregator of salinity data for the Gulf of Mexico. The GCOOS sites
most proximal to our sampling sites were selected based on the nearest geographic distance
calculated using R package ‘geosphere’ (Hijmans, 2022). Mean and median salinity values
were calculated based on all measurements available for the most proximal GCOOS station
(Data S2). The distance varied from ~0.4 to ~21 km. The variation in salinity was measured
as the interquartile range of all available measurements.

Bulk geochemical analyses

All analyzed specimens (n = 43) were live-collected individuals kept on ice and subsequently
fixed in 95% scientific-grade isopropanol. Approximately 1/5 of each specimen (posterior
sector cut through ambulacral lunules and running through the center of the petals,
excluding lantern) (Fig. 3) were shortly bleached with sodium hypochlorite and split out
into smaller fragments. These fragments were mechanically cleaned for the presence of
soft tissue remnants, bleached again, and then washed with the aid of Milli-Q Water in the
ultrasonic bath. These samples were finally dried at 50 °C, powdered and homogenized
using an agate mortar and pestle. The resulting 43 aliquots (~1 g) were analyzed separately
for each specimen using the AQ250-EXT package (ultratrace aqua regia/ICP-AES and MS;
Inductively Coupled Plasma Emission Spectrometry-Mass Spectrometry) at a commercial
geochemical laboratory (Bureau Veritas Minerals). The entire set of analyzed elements
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Figure 3 Echinoid taxa examined in this study. (A) Mellita tenuis, (B) Leodia sexiesperforata. (C) Encope
spp. (D) Clypeaster subdepressus. Red fine dotted lines indicate regions sampled for bulk ICP-AES and MS
analyses. Green thick dotted lines show sections analysed via nanoindentation. Scale bars 1 cm.

Full-size Gal DOI: 10.7717/peerj.18688/fig-3

(n=53), along with their detection limits, can be found in Data S3. However, in this
paper, we focus on discussing a subset of elements (Mg, strontium (Sr), barium (Ba),
sulfur (S), lithium (Li), lead (Pb), zinc (Zn), nickel (Ni), cobalt (Co), manganese (Mn),
boron (B), cadmium (Cd), sodium (Na)) that have often been used as environmental
proxies (e.g., Iglikowska et al., 20205 Ulrich et al., 2021) and/or yielded estimates above the
detection limits. All elements were converted to molar concentrations, and, as is commonly
practiced, normalized to Ca concentration and expressed as element/Ca (mmol/mol). For
the nanoindentation analysis described below, Mg/Ca ratios were reported using mol/mol
ratios. Data quality was monitored by blind insertion of sample duplicates, internal
reference materials, and the certified reference materials (including STD OREAS262 and
STD BVGEOOL1). Analytical accuracy was within 2.5% of the value of the certified reference
material for Mg, Sr, S, Na, P and within 5% of the standard value for Mn, Pb, Ba, Li, Cd,
Cu and Zn.

Because the specimens were subject to destructive analyses, the remaining fragmentary
material was not archived in a formal museum collection. However, it is available upon
request from the first author.
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Nanoindentation and fine scale microprobe analyses

Two specimens of Leodia sexiesperforata and two specimens of Encope michelini were
selected for nanoindentation analyses. One fragment of each test, representing the
peripheral side posterior sector, were embedded in epoxy resin, cut perpendicularly to
the test margin through the interambulacral plates, and ultra-polished. A nanoindenter
(NanoTest Vantage; Micro Materials, Wrexham, UK) with a Berkovitch tip was used to
determine nanomechanical properties (i.e., nanohardness [H] = the material’s resistance
to permanent or plastic deformation at the nano-micro level, in GPa) of the stereom
following Oliver ¢ Pharr (1992). The maximum load of 2 mN, resulting in the maximum
penetration depth of ~200 nm, was applied. Three microstructurally distinct regions from
each specimen were analyzed separately, namely (1) the outermost solid, imperforate to
perforate stereom layer (tubercles), (2) inner galleried stereom, and (3) inner massive
and coarse labyrinthic stereom. For each stereom type, three microregions were analyzed
resulting in nine separate analyses for each specimen (three analysis per region, three
regions per specimen) for a total of 36 nanoscale analyses (Data S4, S5). Following the
nanoindentation analysis, spot elemental measurements (Mg/Ca) in the same microregions
were determined (Data S4, S5) with the aid of wavelength-dispersive spectroscopy
(WDS) performed on a CAMECA SX100 electron microprobe at the Micro-Area Analysis
Laboratory, Polish Geological Institute-National Research Institute in Warsaw, Poland.
The following conditions were used: accelerating voltage: 15 kV; beam current: 5 nA for
calcium and 20 nA for other elements; a beam diameter: ~5 pwm; standard: ‘NIST’ (serial
number: 12570). Detection limit for Mg under this method was ~0.01 wt %.

Analytical methods

The relatively small sample sizes, which reflect prohibitive costs and the time-consuming
nature of both nano-scale analyses and in situ collecting of often sparse echinoid populations
via SCUBA, limits the statistical power and application of multi-factor models, which
otherwise would have been highly appropriate here. Consequently, only simple descriptors
and tests are feasible, including simple descriptors of central tendency, two-sample tests
based on medians, bivariate correlation and semi-partial correlation analyses (partialling
out interactions between salinity, temperature, and depth), and exploratory ordination
methods. Correlation analyses (Pearson r) were limited to assessment of individual trace
element ratios against extrinsic, independently derived environmental variables (salinity,
temperature, depth). Semi-partial correlations (Pearson rsp) were estimated separately for
each trace element ratio against the three extrinsic environmental variables partialled out
against each other. Semi-partial correlations were performed using the R package “pcor”
(Kim, 2015).

Multivariate analyses included exploratory principal component analysis (PCA) analyses
based on z-standardized data (i.e., correlation PCA) to remove the effect of huge differences
in variance across variables. PCA analysis was supplemented by correlation plots, loading
plots, and bootstrap analysis of eigenvalues. The criterion 0.7*L, where L is a sum
of proportional eigenvalues divided by number of variables (i.e., mean proportional
eigenvalue), was used to decide which principal components should be considered in the
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interpretation (Jolliffe, 2002). It should be noted here that PCA is a parametric method that
is not optimal for compositional data with variables affected by constant-sum-constraint
(an issue further amplified here by Ca normalization). However, for high-dimensional
data (as is the case here: 53 variables total) those effects tend to be less severe (Kucera
& Malmgren, 1998). We selected PCA analysis mainly for comparative purposes as this
method was previously employed for analyzing trace element ratios in echinoderm skeletons
(Iglikowska et al., 2020). However, to evaluate the robustness of the results, the analysis was
supplemented with nonmetric multi-dimensional scaling (NMDS). The NMDS analysis
was performed on z-standardized variables using Euclidean-distance dissimilarity matrix
and k =2 dimensions (the stress <0.2 was used as our criterion for acceptable stress).
NMDS was performed using the function metaMDS in the package ‘vegan’ (Oksanen et
al., 2024). As shown below, the NMDS and PCA ordinations produced highly consistent
ordination patterns.

In the case of nanoscale analyses, two-sample comparisons based on single factors
(echinoid skeletal zone and echinoid species) were applied. Whereas single-factor analyses
ignore confounding effects of other factors (e.g., taxon), the balanced sampling design
mitigates this issue. For example, in the case of nano-scale analyses, both taxa include the
same set of measurements across the same set of three microstructural zones, and outer
and inner zones have the same number of measurements for each taxon. In addition, in the
case of the nano-scale analysis, the two taxa came from different localities/environments
and thus effect ‘taxon” may reflect environmental parameters or vital effects (a conundrum
explicitly considered in the interpretations below). These issues impose limitations on
interpretations of effects and significance tests. Pearson correlation coefficient was used to
assess the strength of association between Mg/Ca ratios and nanohardness.

To ensure conservative statistical interpretations, a Bonferroni correction was applied
when appropriate with significance alpha [«] set to Bonferroni-corrected value of
ap = 0.05/k, where k is the total number of tests of a given type performed in the study.
All figures (except Fig. 3) and analyses were performed in R version 4.3.1 (R Core Team,
2023). R script is provided in Data S1 and custom functions for PCA used in the script are
provided in Data S6, S7. Raw bulk geochemical data (not used in the analyses) are provided
in Data S3. SEM images of echinoids showing sampling points for nanoscale analyses are
included in Data S5.

RESULTS

Trace element analysis

Correlations between the analyzed element ratios, salinity and temperature varied across
elements (Table 2; Fig. 4). However, salinity and temperature were strongly correlated with
each other across the sites (r = 0.84, p < 0.0001). In addition, water depth was weakly
associated with lower temperature (r = —0.31, p = 0.04), but not salinity (r = —0.05,

p = 0.74). After partialling out interactions between salinity, temperature, and water
depth (Table 2), no notable or significant semi-partial correlations are observed for
temperature (Table 2). However, after accounting for the temperature and water depth
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Table 2 Pearson correlations and semi-partial correlation coefficients (accounting for interactions be-
tween temperature, salinity, and depth) for thirteen elemental ratios versus temperature, salinity, and

depth.
Temperature Salinity Water depth
X/Caratio r P r P r P
correlation (Pearson)
Mg 0.64 <0.00001" 0.70 <0.00001" —0.04 0.800
Sr 0.49 0.0008" 0.59 0.00003" 0.15 0.345
Ba 0.07 0.661 0.01 0.967 —0.31 0.041°
S 0.35 0.023° 0.67 <0.00001" 0.41 0.007
Li 0.45 0.003 0.72 <0.00001 " 0.33 0.029
Pb 0.46 0.002° 0.44 0.003 0.01 0.963
Zn 0.48 0.001" 0.47 0.001" —0.28 0.074"
Mn —0.38 0.013 —0.21 0.166 0.23 0.147
Na —0.23 0.139 —0.25 0.106 0.19 0.226
B 0.39 0.010" 0.52 0.0003" 0.32 0.039°
P 0.15 0.343 0.16 0.296 —0.01 0.970
Cd —0.27 0.080" —0.31 0.046 0.26 0.089"
Cu 0.34 0.026° 0.28 0.072" —0.04 0.809
semi-partial correlation (Pearson)
Mg 0.29 0.067" 0.30 0.053" 0.05 0.765
Sr 0.21 0.183 0.29 0.068" 0.20 0.209
Ba 0.03 0.833 —0.08 0.610 —0.22 0.166
S 0.02 0.907 0.55 0.0002" 0.42 0.006"
Li 0.15 0.353 0.50 0.0008" 0.38 0.013°
Pb 0.25 0.117 0.06 0.702 0.12 0.464
Zn 0.16 0.331 0.17 0.277 —0.20 0.208
Mn —0.27 0.082" 0.16 0.326 0.03 0.847
Na —0.01 0.931 —0.14 0.375 0.17 0.297
B 0.23 0.143 0.18 0.267 0.36 0.020°
P 0.03 0.871 0.10 0.553 —0.01 0.962
Cd 0.03 0.877 —0.22 0.161 0.26 0.100
Cu 0.20 0.204 —0.02 0.925 0.07 0.673
Notes.

Symbols: r - Pearson correlation or semi-partial correlation coefficient, p - significance value for the null hypothesis r =0.

p-values significant without Bonferroni correction.

 p-values marginally significant without Bonferroni correction (0.1 < p < 0.05).

" p-values significant with the stringent Bonferroni correction (p < 0.05/39 < 0.0013).

effects, S and Li still displayed positive and significant or marginally significant semi-partial

correlations with salinity (Fig. 4; Table 2) with a notable effect size (rsp > 0.5). However,

these correlations decrease and cease to be highly significant (Table 3) when salinity for site

CK-5 is reassigned (see ‘Material and Methods’). The subsequent analyses focus primarily

on salinity (Fig. 4).

Comparisons of taxa within regions suggested that sympatric species from Florida Keys,

where salinity was highest, differed in geochemical signatures for some elements. This was

particularly notable for Mg/Ca and Li/Ca ratios in Florida Keys, with all L. sexiesperforata
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Full-size &l DOI: 10.7717/peerj.18688/fig-4
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Table 3 Pearson correlations and semi-partial correlation coefficients (accounting for interactions be-
tween temperature, salinity, and depth) for thirteen elemental ratios versus temperature, salinity, and

depth.
Temperature Salinity Water depth
X/Caratio r P r 4 r p
correlation (Pearson)
Mg 0.64 <0.00001" 0.64 <0.00001" —0.04 0.800
Sr 0.49 0.0008" 0.51 0.0005 " 0.15 0.345
Ba 0.07 0.661 0.01 0.925 —0.31 0.041°
S 0.35 0.023 0.51 0.0005 " 0.41 0.007
Li 0.45 0.003 0.60 0.00002" 0.33 0.029°
Pb 0.46 0.002 0.43 0.004" 0.01 0.963
Zn 0.48 0.001" 0.47 0.001" —0.28 0.074"
Mn —0.38 0.013 —0.28 0.073" 0.23 0.147
Na —0.23 0.139 —0.33 0.030 0.19 0.226
B 0.39 0.010° 0.44 0.003 0.32 0.039°
P 0.15 0.343 0.13 0.395 —0.01 0.970
Cd —0.27 0.080" —0.33 0.031° 0.26 0.089"
Cu 0.34 0.026 0.29 0.058" —0.04 0.809
semi-partial correlation (Pearson)
Mg 0.31 0.050 0.16 0.326 0.13 0.401
Sr 0.25 0.119 0.14 0.368 0.28 0.079"
Ba 0.07 0.682 —0.12 0.437 —0.23 0.148
S 0.15 0.349 0.28 0.072" 0.47 0.002
Li 0.21 0.193 0.30 0.059" 0.45 0.003’
Pb 0.24 0.132 0.04 0.823 0.14 0.381
Zn 0.16 0.327 0.13 0.424 —0.18 0.264
Mn —0.23 0.143 0.10 0.517 0.07 0.669
Na 0.08 0.607 —0.26 0.096 0.22 0.173
B 0.28 0.081" 0.03 0.842 0.43 0.005
P 0.05 0.768 0.05 0.768 0.02 0.904
Cd 0.07 0.682 —0.26 0.104 0.27 0.084"
Cu 0.18 0.247 —0.01 0.950 0.07 0.667
Notes.

The same analysis as in Table 2, but with the salinity estimate for site CK-5 based on estimates for site CK-2 rather than CK-
6. See text and the footnote in Table 1. Symbols: r - Pearson correlation or semi-partial correlation coefficient, p - significance

value for the null hypothesis r = 0.
"p-values significant without Bonferroni correction.

 p-values marginally significant without Bonferroni correction (0.1 < p < 0.05).

" p-values significant with the stringent Bonferroni correction (p < 0.05/39 < 0.0013).

specimens having much higher values when compared to Encope spp. and C. subdepressus

specimens (Figs. 4A, 4E). Similar, if less pronounced offsets were observed for Ba/Ca (Fig.
4C), Pb/Ca (Fig. 4F), Zn/Ca (Fig. 4G), B/Ca (Fig. 4]), and Cu/Ca (Fig. 4M). In contrast,
the offsets in those geochemical signatures were notably smaller or absent in the case of

specimens collected from the lower salinity setting of the Northern Gulf.
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Table 4 Intraspecific comparisons of trace element ratios for Leodia sexiesperforata from two regions
with different salinity regimes.

Trace element ratio Florida Northern 4 Offset Standardized
keys Gulf offset
Mg/Ca (mmol/mol) 170.06 146.49 0.001"" 23.57 0.15
Sr/Ca (mmol/mol) 2.55 2.39 0.001" 0.17 0.07
Ba/Ca (mmol/mol) 0.0084 0.0055 0.003" 0.0029 0.42
S/Ca (mmol/mol) 11.34 10.64 0.012° 0.70 0.06
Li/Ca (mmol/mol) 0.0696 0.0638 0.003" 0.0058 0.09
Pb/Ca (mmol/mol) 0.000233 0.000038 0.001" 0.0002 1.44
Zn/Ca (mmol/mol) 0.0174 0.005 0.007° 0.0124 1.11
Mn/Ca (mmol/mol) 0.0237 0.129 0.001"  —0.11 —1.38
Na/Ca (mmol/mol) 29.68 28.28 0.518 1.39 0.05
B/Ca (mmol/mol) 0.73 0.59 0.001" 0.14 0.22
P/Ca (mmol/mol) 0.39 0.08 0.002" 0.31 1.3
Cd/Ca (mmol/mol) 0.000046 0.000045 0.797 0.000001 0.02
Cu/Ca (mmol/mol) 0.0041 0.0012 0.003" 0.0029 1.09
Notes.

Median elemental ratio values are reported separately for each region. Statistical significance (p) estimated using non-
parametric two-sample Wilcoxon rank test. The offset estimated by the difference between medians of the regions, with
positive values indicating higher median ratio for Florida Keys specimens and negative values indicating higher median ratio
for Northern Gulf specimens. Standardized offset estimated as offset divided by midpoint of the two median values. The values
set in bold print indicate trace element ratios that are significantly higher (with or without Bonferroni correction) for Florida
Keys (the higher salinity region).

*p-values significant without Bonferroni correction.

" p-values significant with the stringent Bonferroni correction (p < 0.05/13 < 0.0038).

Within-species comparisons across different regions suggest consistent offsets in multiple
element ratios. L. sexiesperforata from Florida Keys displayed higher trace element ratios
(except for Mn/Ca ratio) when compared to conspecific specimens from the lower salinity
settings in Northern Gulf, and in many cases those offsets were significant (Table 4).
Similarly, M. tenuis displayed consistently higher Mg/Ca (Fig. 4A), Sr/Ca (Fig. 4B), S/Ca
(Fig. 4B), Li/Ca (Fig. 4E), and Pb/Ca (Fig. 4K) ratios in Northern Gulf compared to the
lower salinity sites at Cedar Key (although a formal analysis could not be carried out due
to small sample size and uncertainty related to the salinity estimates for the site CK-5).
In some cases, high intraspecific variation was observed within the same region/salinity
regime, especially for Ba/Ca and Zn/Ca ratios in L. sexiesperforata (Figs. 4C, 4G).

Despite confounding effects of interspecific and intraspecific variability, when data are
pooled across taxa and the specimens from the high-salinity region of Florida Keys is
compared to specimens from the lower salinity regimes of Northern Gulf and Cedar Key
(combined), the majority of trace element ratios are higher for Florida Key specimens
(Table 5), including Mg/Ca (Fig. 4A), Sr/Ca (Fig. 4B), S/Ca (Fig. 4D), Li/Ca (Fig. 4E),
Pb/Ca (Fig. 4F), Zn/Ca (Fig. 4G), B/Ca (Fig. 4]), and Cu/Ca (Fig. 4M). The Mn/Ca ratios
are a notable exception showing a reverse trend (Fig. 4H; Table 5).

Principal component analyses of z-standardized elemental ratios produced an ordination
consistent with correlation analyses by highlighting the distinctness of environmental
settings (the three regions) and the presence of inter- and intraspecific variation within
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Table 5 Inter-regional comparison of trace element ratios. Data pooled across all taxa. The Northern
Gulf and Cedar Key specimens were pooled together to represent the lower salinity “Gulf” data to be con-
trasted against the high salinity Florida Key specimens. Median elemental ratio values are reported sepa-
rately for each region. Statistical significance (p) estimated using non-parametric two-sample Wilcoxon
rank test. The offset estimated by the difference between medians of the regions, with positive values in-
dicating higher median ratio for Florida Keys specimens and negative values indicating higher median ra-
tio for Gulf specimens. Standardized offset estimated as offset divided by midpoint of the two median val-
ues. The values set in bold print indicate trace element ratios that are significantly higher (with or without
Bonferroni correction) for Florida Keys (the higher salinity region).

Trace Element Ratio  Florida Gulf P Offset Standardized
keys (median) offset
(median)
Mg/Ca (mmol/mol) 168.21 131.37 0.00004 36.84 0.25
Sr/Ca (mmol/mol) 2.53 2.39 0.0004 0.14 0.06
Ba/Ca (mmol/mol) 0.01 0.01 0.85 —0.001 —0.11
S/Ca (mmol/mol) 11.32 10.33 0.00007" 1.00 0.09
Li/Ca (mmol/mol) 0.069 0.062 0.0001" 0.0070 0.11
Pb/Ca (mmol/mol) 0.00020 0.00006 0.002" 0.00014 1.06
Zn/Ca (mmol/mol) 0.013 0.006 0.007 0.007 0.79
Mn/Ca (mmol/mol) 0.024 0.116 0.000002  —0.092 —1.32
Na/Ca (mmol/mol) 31.09 30.81 0.58 0.28 0.01
B/Ca (mmol/mol) 0.70 0.49 0.002" 0.21 0.35
P/Ca (mmol/mol) 0.26 0.17 0.076" 0.093 0.43
Cd/Ca (mmol/mol) 0.00004 0.00006 0.14 —0.00002 —0.32
Cu/Ca (mmol/mol) 0.00380 0.00080 0.005 0.0030 1.30
Notes.

“p-values significant without Bonferroni correction.
 p-values marginally significant without Bonferroni correction (0.1 < p < 0.05).
" p-values significant with the stringent Bonferroni correction (p < 0.05/13 < 0.0038).

environmental settings (Fig. 5A). The first two principal components accounted for 51% of
variance in the data and variables were moderately or strongly correlated either with PC1
or PC2, or both components (Fig. 5B). The long arrows that approach the outer blue circle
(‘circle of correlation’; sensu Abdi ¢ Williams, 2010) indicate the variables for which almost
all variance was captured by the first two principal components. Conversely, the loading
plot indicated that the variance explained by the first two components was partitioned
relatively evenly across all variables (Fig. 5C). The bootstrap analysis of eigenvalues
suggested that the first four principal components may be potentially informative (Fig.
5D). The correlation plot (Fig. 5B) indicated that specimens with high PC1 scores tended
to have higher elemental ratios for all elements except Ba and Mn that were uncorrelated
with PC1 scores. Specimens with high PC2 scores had low Ba/Ca and high Mn/Ca scores.
PC2 scores were also negatively correlated with Pb/Ca and Zn/Ca ratios and showed less
pronounced positive relationships with S/Ca, Sr/Ca, and Li/Ca ratios (Fig. 5B). Among the
external variables, salinity displayed strong correlation with PC1 (r = —0.74, p < 0.0001).
Temperature also displayed notable correlation with PC1 (r =0.61, p < 0.0001), but based
on semi-partial correlation analysis (Tables 2 and 3), this correlation reflected co-variation
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Full-size &l DOI: 10.7717/peerj.18688/fig-5

of temperature with salinity. All other correlation coefficients of environmental variables

with PC1 and PC2 were <0.5 thus accounting at most for 25% of variance in the PC scores.

The ordination (Fig. 5A) indicated that the three regions were distinct in geochemical

signature, with the three environmental settings largely separating along PC1 indicating

that most element ratios increased with salinity. High intra-regional, intra-specific
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variability was observed for L. sexiesperforata from Florida Keys. Intra-regional interspecific
differences in element ratios were evident in multiple cases, including differences between
L. sexiesperforata and Encope spp. in Florida Keys and M. tenuis and C. subdepressus in
Cedar Key (Fig. 5A). Specimens of the same species from different regions differed in
geochemical signatures in the case of M. tenuis and L. sexiespeforata (Fig. 5A). In contrast,
all five specimens of C. subdepressus plotted in the upper central part of the ordination
indicating relatively comparable geochemical signatures regardless of the environmental
setting.

Whereas PC3 and PC4 axes may be potentially informative (Fig. 5D), ordination plots of
those higher components (Figs. 6B and 6C) do not indicate any notable changes to patterns
observed in the first two dimensions (Figs. 5A or 6A). The NMDS ordination (Fig. 6D) is
remarkably consistent with the PCA ordination indicating that the results are reproducible
using multivariate ordination methods that are methodologically disparate.

A comparison of Mg/Ca and S/Ca, illustrates all above mentioned patterns for the two
element ratios (Fig. 7), highlighting consistent interregional offsets within species (M.
tenuis for Northern Gulf versus Cedar Key and L. sexiesperforata for Florida Keys versus
Northern Gulf), high within-species within-region variability (L. sexiesperforata in Florida
Keys), interspecific differences within regions (L. sexiesperforata versus other species in
Florida Keys), and intraspecific invariance across regions with different salinities (Encope
spp. and C. subdepressus showing similar values for Florida Keys and Northern Gulf).

Although there is a substantial variation in body size, both among and within the four
echinoid taxa, the body size was not correlated notably or significantly with element ratios
after accounting for interactions with environmental variables (semi-partial correlation
r <0.3, p > 0.05, in all cases). Consistently with those results, specimens in the PCA
ordinations (Fig. 5) did not ordinate according to size. For example, the two species with
smaller body sizes (M. tenuis and L. sexiesperforata) plotted on the opposite ends of PC1
axis and were distributed widely along PC2 axis (Fig. 5). Body size was not correlated
notably or significantly with PC1 (r = 0.28, p = 0.10) and showed low correlation with
PC2 scores (r =—0.36, p = 0.03).

Micro- and nano-scale analysis

A total of 36 nano-scale analyses (Data 54), with simultaneous nano-scale measurements
of Mg/Ca mmol/mol ratios (Mg) and hardness (H) were obtained for four echinoid tests
(nine analyses per specimen), including two specimens of Encope michelini (one from
Northern Gulf and one from Florida Keys) and two specimens of Leodia sexiesperforata
(both from Florida Keys), which were also used for bulk geochemical analyses.

When data were pooled across the two analyzed taxa, notable and statistically significant
differences were observed in all comparisons between the nano-scale measurements for
the outer and inner zones of echinoid tests (Fig. 8). The imperforate stereom of the outer
zone was characterized by significantly elevated Mg/Ca and H values when compared to
the thin galleried and coarse labyrinthic stereom of the inner zone: (1) Mg/Ca: median
(outer) = 0.193, median (inner) = 0.168, W =59.5, p = 0.005; (2) H: median (outer) =
4.54, median (inner) = 3.98, W =15.5, p = 0.00002 (g = 0.05/6 = 0.008; two-sample
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Figure 6 Additional ordination plots. (A—C) PCA ordination plots for the first four principal compo-
nents based on the elemental ratios obtained in bulk geochemical analysis with values z-standardized prior
to analysis (correlation PCA). (A) Ordination plot for PC1 and PC2 (the same as Fig. 5A). (B) Ordination
plot for PC1 and PC2 (the same as Fig. 5A). (C) Ordination plot for PC1 and PC2 (the same as Fig. 5A).
(D) Nonmetric Multi-Dimensional Scaling (NMDS) for k = 2 dimensions based on dissimilarity matrix
of Euclidean distances for z-standardized trace element ratios. In all PCA and NMDS plots, symbols rep-
resent individual specimens color-coded by region. Specimens of Mellita tenuis from the site CK-5, which
could be alternatively classified as a “Northern Gulf” site with higher salinity, are marked by additional
black dots inside the symbols (green triangles). All symbols are scaled by salinity estimates for a site from
which a given specimen was collected. Larger symbols indicate specimens collected from a relatively higher
salinity regime.
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Wilcoxon rank test). The median values of Mg/Ca and H were also higher for the outer
zone compared to the inner zone when data were split by taxon (Table 6).

The comparison of two taxa (Table 6) for all data indicated that median Mg was
significantly higher for L. sexiesperforata than for E. michelini (median (L. sexiesperforata)
= 0.192, median (E michelini) = 0.158, W =25, p = 0.0002, o = 0.05/6 = 0.008;
two-sample Wilcoxon rank test). In contrast, median values of H were indistinguishable
statistically between the two taxa: (1) H: median (L. sexiesperforata) = 4.25, median (E.
michelini) = 4.03, W = 149, p = 0.69. The consistent differences in Mg between the two
taxa persisted when per-taxon median values were computed for each zone separately,
with higher median values observed for L. sexiesperforata when compared to E. michelini
for both the inner and outer zones (Table 6).

Mg/Ca ratios and nanohardness H were positively correlated, with moderate-to-high
correlation coefficient (Fig. 9; Table 7). For pooled data and for each taxon separately, these
correlations were highly significant at Bonferroni-corrected significance level (ag = 0.05/9
= 0.0055; Table 7). In the case of E. michelini, the values obtained for specimens from
Northern Gulf appeared systematically offset toward lower Mg/Ca ratios, but nanohardness
was comparable for the two specimens.

Univariate analyses (Table 6, Fig. 8) and correlation analyses (Table 7, Fig. 9) summarized
above consistently indicated that Mg and H were elevated for the outer zone of the echinoid
test when compared to the inner zone. Concurrently, there was a consistent offset in Mg/Ca
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Table 6 A univariate summary for Mg/Ca and H nano-scale measurements grouped by skeletal zone
(inner and outer test), taxon (Encope michelini and Leodia sexiesperforata), and taxon-zone combina-
tion.

Median Mean Standard Number of
deviation observations
Mg/Ca (mol/mol)
Inner (all data) 0.168 0.169 0.023 24
Outer (all data) 0.193 0.195 0.019 12
E. michelini (all data) 0.158 0.160 0.019 18
L. sexiesperforata (all data) 0.192 0.195 0.015 18
E. michelini (inner) 0.152 0.149 0.009 12
L. sexiesperforata (inner) 0.190 0.189 0.010 12
E. michelini (outer) 0.185 0.183 0.010
L. sexiesperforata (outer) 0.200 0.207 0.017
H
Inner (all data) 3.980 3.992 0.241 24
Outer (all data) 4.540 4.515 0.189 12
E. michelini (all data) 4.030 4.139 0.385 18
L. sexiesperforata (all data) 4.250 4.193 0.285 18
E. michelini (inner) 3.955 3.920 0.228 12
L. sexiesperforata (inner) 4.020 4.063 0.241 12
E. michelini (outer) 4.575 4.578 0.206
L. sexiesperforata (outer) 4.510 4.452 0.164

ratio between the two taxa, with Mg values elevated for L. sexiesperforata when compared
to E. michelini (Figs. 8—9). However, a joint comparison of the offsets between inner
and outer zones for L. sexiesperforta, and E. michelini suggested that while the two taxa
differed in Mg/Ca ratios, the nano-physical properties H were very similar (Fig. 10). The
nanohardness H values of the inner and outer zones were nearly identical for the two taxa
despite notable interspecific differences in Mg/Ca ratios, and the magnitude of the offset in
H was also comparable between the two taxa (Fig. 8). Bootstrap-based confidence intervals
around medians indicated substantial uncertainty (Figs. 8—10), but this uncertainty is not
sufficient in magnitude to nullify those differences.

DISCUSSION

Because of the logistically-imposed data limitations, the results reported here should be
viewed as tentative and primarily serve as a guideline toward future studies by highlighting
multiple intriguing outcomes with variable statistical support.

For element ratios of Ba/Ca, Pb/Ca, Cd/Ca, Cu/Ca, Zn/Ca, P/Ca and Mn/Ca, bulk
geochemical analyses pooled across all taxa and environments revealed a heterogeneous
distribution without any discernible patterns (Fig. 4). Previous studies on some echinoderm
species have demonstrated that the bioaccumulation of some of these elements can
be directly related to their concentrations in the environment (seawater, sediment
and/or food), and thus they may serve as useful bioindicators of temporal variations
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in environmental contaminants (e.g., Temara et al., 1997; Temara et al., 1998; Gorzelak

et al., 2017; Iglikowska et al., 2020). Likewise, Na/Ca and B/Ca ratios showed no obvious
trends, which may be somewhat surprising because these element ratios in biogenic calcite
(mostly in foraminifers) were previously proposed as good proxies for salinity (e.g., Allen
et al., 2011; Wit et al., 2013). However, other studies indicated that these ratios are not
straightforward salinity proxies because they can also be sensitive to other environmental
variables (e.g., Henehan et al., 2015; Gray et al., 2023). Nevertheless, the intraspecific and
inter-regional comparisons of trace element ratios reported in this study from two regions
with different salinity regimes revealed statistically higher trace element ratios (including
B/Ca) than those from the lower salinity settings (Tables 4 and 5).

For Mg, Sr, S and Li, a systematic coupling of these elements at least for some species
is notable, which suggest a simultaneous uptake and incorporation of these elements
during skeleton formation. The results suggest that both physiological and environmental
factors may be influencing geochemical signatures of echinoid tests. Extrinsic controls are
suggested by differences within some species between regions (i.e., increased ratios of these
elements in M. tenuis and L. sexiesperforata from regions with increased salinity), similarities
between species within some regions (especially the Northern Gulf), and overall differences
in bulk geochemical compositions observed in multivariate ordinations (Figs. 5 and 6).
In contrast, the lack of differences between regions within some species (i.e., Encope spp.
and C. subdepressus both display high variability in geochemical signatures) and distinct
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geochemical signatures of sympatric species (L. sexiesperforata vs. Encope spp. in Florida
Keys) are indicative of species-intrinsic physiological effects. Considered jointly, these
findings are consistent with some previous studies (e.g., Borremans et al., 2009; Hermans et
al., 20105 Smith et al., 2016; Iglikowska et al., 2020) documenting that both environmental
and intrinsic biological (vital) factors can influence geochemical signatures to various
degrees depending on the species and environment. In particular, at high-salinity regimes,
some of the analyzed species exerted a differential vital effect on element fractionation
during the stereom formation, but this physiological control over element such as Mg
and Sr appears to be stronger for some taxa (Encope spp. and C. subdepressus), but less
pronounced (or perhaps marginal) for other (M. tenuis and L. sexiesperforata).

The differences in elemental ratios among the four species are consistent with
experimental studies that revealed different patterns in element fractionation in various
echinoderm species. For instance, Borremans et al. (2009) observed a positive linear
relationship between Sr/Ca in asteroid skeletons and salinity (0.94-1.69 (mmol/mol)/psu,
i.e.,, ~1% to ~1.5%/psu), the estimates similar in magnitude to the salinity effect observed
for M. tenuis and L. sexiesperforata; Fig. 4). Similarly, Hermans et al. (2010), demonstrated
that the skeletal strontium/calcium (Sr/Ca) ratios in an echinoid species Paracentrotus
lividus were linked to salinity. In contrast, Pilkey ¢ Hower (1960) noted that the skeletal
Sr/Ca ratios in tests of the echinoid genus Dendraster appeared unaffected by salinity.
Similarly, the temperature effects on the skeletal Mg/Ca ratios may vary across echinoderm

Gorzelak et al. (2025), PeerJ, DOI 10.7717/peerj.18688 22/32


https://peerj.com
https://doi.org/10.7717/peerj.18688/fig-9
http://dx.doi.org/10.7717/peerj.18688

Peer

Table 7 Pairwise correlation coefficients and associated significance tests for the two nano-scale vari-
ables (Mg and H) obtained concurrently for 36 nano-sites.

95% confidence intervals

r Lower Upper n P
limit limit
Pooled data - Mg vs H 0.611 0.353 0.782 34 0.00008"
E. michelini - Mg vs H 0.830 0.593 0.935 16 0.00002
L. sexiesperforata - Mg vs H 0.769 0.472 0.909 16 0.00019°
Notes.

Symbols: r - Pearson correlation coefficient, n - sample size, and p - significance value.
“Statistically significant correlations at Bonferroni-corrected significance level, oy = 0.05/3 = 0.0166.
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Figure 10 Comparative bivariate plot of Mg/Ca ratios and H (nano-hardness) of Encope michelini and
Leodia sexiesperforata. Gray dots indicate median values for inner and outer zones with Bootstrap 95%
confidence intervals indicated by thin black lines. Bootstrap confidence intervals estimated using the func-
tion MedianClI, package DescTools (Signorell, 2024). Arrows indicate offsets between the inner and outer
zones shown separately for the two taxa.
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species (e.g., Hermans et al., 2010; Duquette et al., 2018). The variable effects of salinity on

different echinoid taxa from the same system are thus consistent with previous studies

indicating that different species respond differently to salinity changes. Overall, these

species-specific fractionation patterns impose limitations on the use of echinoderms (as a

whole) in paleoenvironmental reconstructions, suggesting that salinity estimates based on

skeletal element ratios may not be possible for all echinoderm species.
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Our results showed that not only Mg and Sr but also, in particular, S and Li can be
positively linked to salinity in some species. In the case of sulfur, this can be a spurious
relationship because the concentration of sulfur, partly associated with the sulphated
fraction of the organic matrix, tends to correlate with magnesium (Gorzelak et al., 2013).
However, previous studies also suggested that biological control on the sulfur uptake in
echinoderms may potentially override environmental influence (Iglikowska et al., 2020).
In the case of Li, some biological control during Li incorporation into the skeletons of
some invertebrates was suggested in previous studies, indicating a possible link of Li/Ca to
salinity (e.g., Marriott et al., 2004). Our results suggest that a similar relationship may exist
for at least some echinoid species.

The absence of strong effects of body size on element ratios suggests that variation in body
size variation within and across species is not playing a major role in controlling geochemical
signatures. However, specimens analyzed here are primarily adults so ontogenetic effects
observed for heavily biomineralized taxa when contrasting juvenile and adult specimens
(e.g., Rosenberg, 1989) cannot be evaluated in this study.

The micro/nano-scale analyses of the two species (L. sexiesperforata and E. michelini)
indicated the presence of systematic differences in Mg/Ca ratios between different zones
within a single test. For both species, the outer imperforate stereom layers that locally
form tubercles, were enriched in Mg, and such enrichment may strengthen the outer zone
of the test. This was confirmed for both species by nanoindentation analyses indicating
that within the same individuals the outer stereom layers exhibited significantly higher
nanohardness than the inner stereom microfabrics. These results are consistent with
theoretical and empirical studies showing a positive effect of Mg impurities on mechanical
properties in biominerals (e.g., Kunitake et al., 2013; Bianco-Stein et al., 2022; Gorzelak et
al., 2024). Thus, increased Mg contents in the outer stereom layers may be indicative of
active physiological regulation to enhance the mechanical strength of the outermost test
parts (tubercles), which undergo constant surface friction and wear. On the other hand,
elevated Mg contents are expected to increase skeletal solubility (e.g., Morse, Andersson ¢
Mackenzie, 2006), which may be detrimental, especially in the case of spine loss and/or when
epidermis is degraded within acidified sediment. However, the higher density of the outer
stereom (with much reduced surface-to-volume ratio) relative to that of the underlying
stereom appears to mitigate the potential effect of increased skeletal solubility imposed by
the elevated Mg content (e.g., Dery et al., 2014). The slight offset in Mg/Ca ratios observed
between the two specimens of E. michelini collected from different environmental settings
(Northern Gulf vs. Florida Keys) suggests possible influence of salinity on Mg/Ca values
(Fig. 7), consistent with the bulk analysis of other specimens (Fig. 4A). However, this offset
is minor compared to offsets between the two species suggesting stronger physiological
control.

Intriguingly, nearly identical nanohardness values for the two investigated taxa, despite
notable differences in the Mg/Ca ratios of their tests suggest that nano-physical properties
may be also controlled by factors other than just Mg. The comparable nanohardness of
the two specimens of E. michelini, which were collected from different salinity regimes
and had different Mg/Ca ratios (Fig. 8), further supports the notion that nanohardness
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is not exclusively controlled by magnesium. We posit a hypothesis that these species
may use different strategies to achieve similar nanohardness. It has been previously
demonstrated that nanoindentation hardness can be also affected by nanoscopic organic
inclusions, i.e., amino acid content (Kim et al., 2016). Indeed, echinoderm biominerals
have a nanocomposite structure consisting of tightly aggregated 20-100 nm spherical
particles often surrounded by organic macromolecules (Gorzelak et al., 2013), and the
quantity and quality of this intra-stereomic organic matrix (IOM) may vary by species
(e.g., Ameye et al., 2001; Hermans et al., 2011). Thus, it is possible that E. michelini achieved
nanohardness comparable to that observed for L. sexiesperforata (Figs. 8—10) by modifying
its intra-stereomic matrix to compensate for relatively lower magnesium levels. This
mechanism could also explain the comparable nanohardness observed for E. michelini
specimens from different salinity regimes (Figs. 9 and 10). In summary, the nano-scale
analyses suggest a substantial physiological control on Mg/Ca ratios across different zones
of the test that appear remarkably consistent in nanohardness for the two analyzed species.

The joint consideration of bulk and nano-scale analyses suggests that both physiological
and extrinsic factors play a significant role in controlling geochemical signatures of the
four analyzed echinoid species, but their relative role varies depending on the element,
taxon, and habitat. Geochemical signatures archived in echinoid tests may thus contain
both extrinsic environmental and intrinsic biological information that may be difficult to
disentangle given our current knowledge.
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