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ABSTRACT

Background: The morphology and hunting behavior of thresher sharks make them
easily distinguishable. These species are distributed across the Tropical Pacific Ocean
feeding on squid and small fish. However, ontogenetic changes in their feeding
strategies and habitat use are still unknown in this region.

Methods: We examined the §"°C and 8'°N signatures in vertebral collagen from
populations of Alopias pelagicus and Alopias superciliosus inhabiting the Galapagos
Marine Reserve, focusing on three maturity stages: neonate, juvenile and adult. The
vertebrae samples were taken from the seizure of illegal fishing activities carried out
by a foreign fleet within the Galapagos archipelago. A total of thirty-three vertebrae
from A. pelagicus and twenty-one from A. superciliosus were analyzed.

Results: Both species displayed significant differences in their §'°N values

(p < 0.001), but not in §"°C (p = 0.230), suggesting a similar habitat use, but different
prey consumption. Throughout their ontogeny, A. pelagicus displayed isotopic
differences (p < 0.001), where neonates showed lower §'°C values and higher §"°N
values compared to juveniles, probably because they still reflect the isotopic
signatures of their mothers even after the first year of life. This study highlights
trophic differences between both species, accompanied by an ontogenetic variation in
A. pelagicus, aspects that allow us to understand the role of these species within the
dynamics of the Eastern Tropical Pacific ecosystem.

Subjects Aquaculture, Fisheries and Fish Science, Biodiversity, Conservation Biology, Ecology,
Marine Biology

Keywords Feeding strategies, Isotopic niche, Ontogenetic changes, Tropical Eastern Pacific,
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INTRODUCTION

Habitat utilization and movement of marine vertebrates are mainly driven by ontogenetic
shifts in their life-history priorities, such as survival, growth, and reproduction (Heupel,
Carlson & Simpfendorfer, 2007; Carlisle et al., 2015). This premise, coupled with
intraspecific and interspecific interactions, influences marine trophic dynamics, ecosystem
structure, and overall biodiversity (Werner ¢» Gilliam, 1984; Baum ¢ Worm, 2009). Thus,
ontogenetic shifts have been studied in elasmobranchs because of their predatorial roles in
most marine ecosystems (MacNeil, Skomal & Fisk, 2005; Estupinian-Montario et al., 2019).
In recent years, these studies have emphasized the necessity of implementing science-based
conservation management strategies (Shiffman et al., 2021; Cerutti-Pereyra et al., 2022), as
large pelagic fish populations have increasingly decreased, along with the negative impacts
of this phenomenon across numerous trophic levels (Baum ¢ Myers, 2004; Ferretti et al.,
2010; Bird et al., 2018).

Thresher sharks (Alopias spp) inhabit tropical and subtropical waters worldwide
(Compagno, 1984). These species have an elongated dorsal lobe on their caudal fin, nearly
as long as their body (Compagno, 1984), which is an essential part of their hunting
behavior (Sepulveda et al., 2005; Oliver et al., 2013). The overexploitation of thresher
sharks has threatened their survival (Worm et al., 2024), consequently, these species have
been listed under Appendix II of the Convention on International Trade in Endangered
Species of Wild Fauna and Flora (CITES). The International Union for Conservation of
Nature (IUCN) red list assessment also classifies thresher shark populations as
overexploited, leading to a decline in the global population (Rigby et al., 2019; Worm et al.,
2024). Currently, in the Ecuadorian Pacific, thresher sharks represent more than 70% of
the total shark catch (Raharjo, Hartati ¢» Redjeki, 2024), even reaching catches exceeding
150,000 individuals over the last years (Briones-Mendoza, Mejia ¢» Carrasco-Puig, 2022).

Despite this overexploitation, there is scarce knowledge about the life history of thresher
sharks in the Eastern Tropical Pacific. A low number of studies have examined their
feeding behavior in Ecuadorian waters (Polo-Silva et al., 2007; Polo-Silva, Rendon ¢
Galvan-Magafia, 2009; Polo-Silva et al., 2013; Pdez-Rosas et al., 2018; Calle-Mordn &
Galvan-Magaria, 2020). However, most of the research has focused on pelagic threshers
(Alopias pelagicus), due to their higher landing quota, which facilitates for the collection of
samples from fishing ports (Martinez-Ortiz et al., 2015; Briones-Mendoza, Mejia ¢
Carrasco-Puig, 2022). Therefore, most of these studies have been conducted in mainland
Ecuador, with the exception of Pdez-Rosas et al. (2018), who based their research on
pelagic threshers caught illegally in the Galapagos Marine Reserve (GMR). The GMR has
some of the largest global shark aggregations (Salinas-de-Ledn et al., 2016; Acufia-Marrero
et al., 2018), and maintains relatively intact food webs that support the presence of these
species (Pdez-Rosas et al., 2024). Consequently, this region becomes an exceptional
environment for shark research.

Stable isotope analysis (SIA) permits the quantification of changes in trophic
interactions during different periods of development based on the isotopic turnover rate of
the tissue (Bearhop et al., 2004; Hussey et al., 2012). Tissues with relatively low isotopic
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turnover rates (e.g., vertebral collagen) allow the inference of ontogenetic changes in
foraging patterns in elasmobranchs (Estrada et al., 2006; Carlisle et al., 2015); since
collagen is a metabolically inert tissue and is not resorbed after deposition (Campana,
Natanson ¢ Myklevoll, 2002). Therefore, successive layers of different density (i.e., annual
groups of growth layers) reflect the conditions under which they were secreted (Campana,
Natanson & Myklevoll, 2002), allowing to obtain a summary of feeding history and
migratory behavior of these predators (Carlisle et al., 2015; Shen et al., 2022). This
technique is based on the fact that isotopic signatures in consumer tissues are related to
diet and habitat use (Michener & Schell, 1994; Bearhop et al., 2004). The 8'3C values were
assessed based on the principle that primary productivity, dissolved CO, concentration,
algal diversity, and other physicochemical processes create a pronounced coastal-oceanic
gradient, resulting in a decrease in §'°C in offshore habitats (Michener ¢ Schell, 1994;
France, 1995; Newsome et al., 2007). And the principle that the §'°N of tissues increase as
one ascends the trophic level owing to enrichment in the consumer’s §'°N relative to its
prey (Adams & Sterner, 2000; Post, 2002).

Although ontogenetic studies of sharks in the GMR have been conducted (Estupiridn-
Montario et al., 2019; Salinas-de-Leodn et al., 2019; Pdez-Rosas et al., 2021; Cerutti-Pereyra
et al., 2022), there is still a lack of understanding about the trophic ecology of sharks in this
region. Therefore, this study aims to provide isotopic information differentiated by species,
sex and maturity stages that allows understanding the feeding patterns of two thresher
shark species (A. pelagicus and A. superciliosus) that inhabit the GMR. Furthermore, our
work contributes to existing knowledge regarding the ecology of sharks in the Tropical
Eastern Pacific and providing unprecedented insights into the trophic ecology of thresher
sharks in the GMR.

MATERIALS AND METHODS

Study area

The Galapagos Islands are in the Eastern Tropical Pacific Ocean, ~1,000 km from
mainland Ecuador. This island complex is home to the GMR, which is limited by a strip of
40 nautical miles, measured from a “baseline” that surrounds the archipelago and its
internal waters, generating a protected surface of ~138,000 km® (Heylings, Bensted-Smith
¢ Altamirano, 2002) (Fig. 1). Its remote location renders it susceptible to the impact of
several oceanic currents, which, together with other environmental factors, contribute to
their high endemism levels (Edgar et al., 2008; Salinas-de-Leon et al., 2020). The GMR is
influenced by four primary oceanic currents from different directions (i.e., Pert, Panama,
Equatorial, and Sub-equatorial or Cromwell currents), which are responsible for important
upwellings (Palacios et al., 2006; Schaeffer et al., 2008; Forryan et al., 2021), and the
existence of a strong seasonality (Sweet et al., 2007).

Sample collection

This research was undertaken under permits: PC-86-19 and was carried out following the
protocols of ethics and animal handling approved by the Galapagos National Park
Directorate and Ecuadorian laws.
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Figure 1 Map of the Galapagos Islands with the boundaries of the Galapagos Marine Reserve. The
mark signals the location where the illegal fishing fleet was taken for inspection at San Cristobal Island.
Full-size Kl DOT: 10.7717/peerj.18681/fig-1

On September 3, 2019, the Galapagos National Park officials, in collaboration with the
Ecuadorian Navy, intercepted five illegal fishing boats within the limits of the GMR. These
vessels were detained and transported to the nearest port, Puerto Baquerizo Moreno, on
the San Cristobal Island. After an identification of the captured individuals, it was
determined that there were over 300 individuals of Alopias spp. among the five illegal
boats, some of which could not be identified down to species level or maturity size due to
their condition. For this study, 33 individuals of A. pelagicus and 21 of A. superciliosus were
selected based on their preservation state, specifically selecting those that had a complete
head and tail fin. Sex was recorded and total length (TL) data were taken to estimate
precaudal length (PCL) based on established relationships. Finally, the first dorsal vertebra
of each individual was collected. All remaining shark materials were then destroyed, as
required by the Ecuadorian laws.

Sample processing

The cleaning process for vertebrae involved the use of solvents to remove the neural arch
and connective tissue. Subsequently, the vertebrae were sanded and polished before being
placed in paper bags for drying. Each bag was labeled and stored in the Galapagos Science
Center of the Universidad San Francisco de Quito. The diameter of each vertebrae was
measured to determine its radius, which allowed the establishment of maturity stages (i.e.,
neonate, juvenile and adult) based on age and growth information developed by Liu et al.
(1999) for A. pelagicus and Liu, Chiang ¢ Chen (1998) for A. superciliosus. Subsequently,
samples of vertebral collagen were collected from each growth section, using a micro drill
and a 0.7 mm drill bit. Three sets of collagen samples were collected from each vertebra,
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provided that the individual had reach sexual maturity. However, if the individual was a
juvenile, only two samples were obtained. In the case of A. pelagicus, 23 samples were
gathered from mature adults and 14 from juveniles, whereas for A. superciliosus, 13
samples were obtained from adults and eight from juveniles.

Vertebral collagen samples were transferred to the Stable Isotope Biochemistry
Laboratory of the Andalusian Institute of Earth Sciences IACT (CSIC-URG) in Granada,
Spain, where they were weighed using an analytical balance to ensure precision. Samples
weighing between 0.6 and 1 mg were stored in silver capsules and subjected to a
hydrochloric acid steam bath to degrade any inorganic carbonates that could contaminate
the analysis. This process was performed in a desiccator for 24 h. After being treated with
the acid, the silver capsules were taken to the isotope ratio mass spectrometer (DELTA plus
XL; Thermo Finnagen, Waltham, MA, USA) with 0.1%o error, in order to quantify the
8"°C and 8'°N values. The results, expressed in parts per thousand (%o), were obtained
using the equation: §"°C or §"°N = 1000([Reample/Rstandara] — 1), in which Rgymple and
Rytandara are the *C/*2C or ">N/'N ratios of the sample and the standard, respectively. The
standards used were Pee Dee Belemnite for §'°C and atmospheric N, for §'°N. Finally, we
measured the weight percentage of carbon and nitrogen concentrations in each sample and
used the C/N ratio as a proxy for protein content (Logan et al., 2008).

Data analysis

Shapiro-Wilk, Kolmogorov-Smirnov, Bartlett and Levene’s tests were employed to assess
the normality and homogeneity of the data for both species. Then, Welch’s t-test, Student’s
t-test, ANOVA, and Tukey’s test were applied to determine differences between species,
sexes, and maturity stages. All statistical analyses were performed in R software using a

significance level of p = 0.05.

The Bayesian standard ellipse areas (SEA) were used to estimate isotopic niche width
and overlap among thresher sharks’ groups using the package SIBER (Stable Isotope
Bayesian Ellipses in statistical software R) (Jackson et al., 2011). This Bayesian method
provides a measure of the isotopic niche area at the population level, expressed as the SEA
in units of area (%o”) and contains 95% of the data for each analysed group. Monte Carlo
simulations were employed to correct the bivariate ellipses (§'°C and §'°N) surrounding
the data points in the 95% confidence interval for the distributions of both isotopes
(Jackson et al., 2011). The magnitude of the isotopic overlap (%o0°) among species, sex and
life stages were estimated using the estimations of the ellipses via maximum probability
methods (Jackson et al., 2011).

RESULTS

The maximum length recorded for A. pelagicus and A. superciliosus were 2.99 and 2.86m
respectively, while the C/N ratio ranged from 3.22%o to 3.56%o (Table 1), corroborating
that the signatures were within the theoretical range established for the assimilation of
protein (McConnaughey ¢ McRoy, 1979).

Arnés-Urgellés et al. (2024), PeerdJ, DOI 10.7717/peerj.18681 5/19


http://dx.doi.org/10.7717/peerj.18681
https://peerj.com/

Peer/

Table 1 8">Cand 8'°N signatures (expressed as %o; mean + SD, and C/N relation) of A. pelagicus and
A. superciliosus in the Galapagos Marine Reserve.

Species Sex/Life stage 8"3C (mean + SD) 8"°N (mean + SD) C/N
A. pelagicus -14.7 + 1.18%o 9.5 + 1.18%o0 3.44
Females —14.5 + 0.8%o 9.9 + 0.7%o 3.49
Males -14.7 £ 0.7%o 9.5 £ 1.2%o 3.34
Neonates —-15.0 £ 1.0%o 9.3 £ 1.0%o 3.56
Juveniles —14.8 + 0.5%o0 9.5 + 1.3%0 343
Adults —14.3 £ 0.5%o 9.7 £ 1.1%0 3.22
A. superciliosus -14.9 + 1.6%0 8.0 + 1.31%o 3.56
Females -14.3 + 0.4%o0 7.6 £ 1.4%o0 3.40
Males -14.6 + 1.0%o0 8.1 + 1.3%o0 3.47
Neonates —14.5 £ 1.2%o0 8.6 + 0.8%o 3.53
Juveniles —-14.6 + 0.7%o 7.8 + 1.4%0 3.49
Adults -14.4 + 0.7%o 7.7 £ 1.4%o0 341

Note:
Isotopic signatures are categorized by sex and life stage in both species.

Isotopic comparison between species, sex and maturity stages

All isotopic values of both species were analyzed (Table 1), and interspecific differences
were observed in §'°N signatures (t = 6.4, df = 98.07, p < 0.001) but not in §"°C signatures
(t=-1.2,df = 94.58, p = 0.23). No differences were found in the 8N and 6'°C signatures
between sexes for both species (p > 0.05). However, intraspecific differences were observed
in 8"°C signatures between maturity stages of A. pelagicus (F (2.73) = 4.61, p = 0.01), but
not in 8"°N signatures (F (2.73) = 0.44, p = 0.64). For the maturity stages of A. superciliosus
there were no differences in 8"°C (F (2.48) = 0.32, p =0.72) and 8'°N (F (2.48) = 2.42,
p = 0.10) signatures. Given the dissimilarities in the §'°C signatures of the maturity stages
of A. pelagicus, Tukey’s test was performed; showing that there are differences between the
neonate vs. adult stages (-0.65%o, p = 0.01), and between juvenile vs. adult stages (—0.5%o,
p = 0.04).

Isotopic niche width and overlap
The SIBER test showed an isotopic niche overlap of 46% between both species (Fig. 2),
which can be considered moderate, since A. pelagicus showed higher §'°N values than
A. superciliosus (Fig. 2). A similar pattern was identified between sexes in both species
(Fig. 3), where there was a 44% overlap between females and males of A. pelagicus was
observed, while the overlap between females and males of A. superciliosus was 31%.
However, the corrected standard ellipse (SEAc) of females of A. pelagicus was wider
(5.3%07) than that of males (3.3%0°) (Fig. 3 and Table 2), demonstrating some trophic
flexibility in females. For A. superciliosus it was the opposite, with females showing a
narrower isotopic niche (1.4%0%) compared to males (3.9%0%) (Fig. 3 and Table 2).
Bayesian ellipses demonstrate that neonates of A. pelagicus exhibited a 54% overlap with
respect to juveniles and a 33% overlap with adults, whereas juveniles and adults shared an
overlap of 45% (Fig. 4). In contrast, the neonates of A. superciliosus displayed a 47%
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Figure 2 Isotopic niche area (8'>C and 8"°N) of A. pelagicus and A. superciliosus in the Galapagos
Full-size k&l DOL: 10.7717/peer;.18681/fig-2
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Figure 3 Isotopic niche area (§'>C and 8"°N) of A. pelagicus and A. superciliosus in the Galapagos

Marine Reserve. The ellipses area shows the degree of overlap within sex groups.
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Table 2 Total isotopic area (TA%o°), standard ellipse area (SEA%o°) and corrected standard ellipse
(SEAc%o?) recorded for A. pelagicus and A. superciliosus in the Galapagos Marine Reserve.

Species Sex/Life stage TA (%0°) SEA (%07 SEAc (%07)
A. pelagicus
Females 9.8 4.7 5.3
Males 15.9 3.3 34
Neonates 322 10.1 10.4
Juveniles 15.7 3.8 4.0
Adults 6.0 1.9 2.0
A. superciliosus
Females 2.3 1.3 1.4
Males 15.8 3.8 3.9
Neonates 14.8 55 58
Juveniles 10.0 32 34
Adults 7.1 3.2 33

Note:
Values are categorized by sex and life stage in both species.
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Figure 4 Isotopic niche area (§'>C and 8"°N) of A. pelagicus and A. superciliosus in the Galapagos

Marine Reserve. The ellipses area shows the degree of overlap within age categories in both species.
Full-size K&l DOT: 10.7717/peer;j.18681/fig-4

overlap with juveniles and a 40% overlap with adults, while juveniles and adults had an
80% overlap (Fig. 4). Finally, corrected standard ellipse (SEAc) of all age categories in both
species, showed that the isotopic niche of neonates is broader than that of juvenile and
adults (Table 2).
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DISCUSSION

Feeding patterns of thresher shark species

The §"°C and §"°N signatures suggests a consistent pattern of habitat use by A. pelagicus in
the GMR throughout their life. This species is known to prefer offshore ecosystems,
making its §'°C signatures depleted (Polo-Silva et al., 2013). The populations of

A. pelagicus inhabiting mainland Ecuador have more impoverished §'*C signatures (~2%o)
than those inhabiting the GMR (Polo-Silva et al., 2013; Pdez-Rosas et al., 2018), suggesting
the use from oceanic areas where there is less supply of nutrients. Although the
populations of A. pelagicus that inhabit the GMR could have a more coastal strategy, it
must also be considered that the shorelines of archipelago are characterized by having
mangrove ecosystems (Moity, Delgado ¢ Salinas-de-Leon, 2019). In general,
mangrove-dominated shorelines are rich in suspended particulate matter, dissolved
organic matter and nutrients (Cawley et al., 2012), which could be enriching the 8C
signatures of A. pelagicus in the GMR, and in turn favoring its permanence in this region.

The 8"°N signatures of A. pelagicus at the mainland Ecuador and GMR do not present
major differences (Polo-Silva et al., 2013), so both populations could be consuming similar
prey throughout the equatorial Pacific. The diet of A. pelagicus in mainland Ecuador
consists of three main prey: red flying squid, Ommastrephes bartramii; Humboldt squid,
Dosidicus gigas; and purpleback flying squid, Sthenoteuthis oualaniensis (Calle-Mordn ¢
Galvan-Magaria, 2020), species that are widely distributed throughout the Eastern
Tropical Pacific (Galvan-Magaria et al., 2013; Yu, Chen & Liu, 2021). Typically,

A. pelagicus migrates vertically during the day, spending most of the daylight period at
200-300 m in the mesopelagic zone, and most of the night at 50-150 m in the epipelagic
zone (Andrzejaczek et al., 2022). This vertical migration pattern suggests that A. pelagicus
may actively pursue prey (i.e., during the squid’s dial migrations) (Gonzdlez-Pestana et al.,
2019), however, It is possible that also feeds during the day at greater depths, following
prey to their deeper locations (Arostegui et al., 2020).

There were no isotopic differences between males and females of A. pelagicus,
suggesting that both sexes preferred similar habitats and feeding sources. This finding
coincides with previous studies conducted on this species in Ecuadorian Pacific (Polo-Silva
et al., 2013; Pdez-Rosas et al., 2018), as well on the west coast of the Baja California
Peninsula, Mexico (Sdnchez-Latorre et al., 2023). However, our results showed a moderate
overlap between sexes, where females had broader isotopic niches, so they could be using
other habitats unlike males. This condition could be related to the fact that females need to
expand their feeding areas to consume a high amount of key nutrients, such as fatty acids
and proteins (Liu et al., 1999), that are crucial for reaching sexual maturity and
maintaining the energy required for gestation (Liu et al., 1999). This species also exhibits
ovofagia, a process that directs its energy to produce fewer but larger and more mature
embryos, which decreases the risk of predation (Miller, Wails & Sulikowski, 2022).
Therefore, this reproductive strategy requires a lot of energy, which explains why
A. pelagicus females consume prey from different habitats, such as deep-sea squids
(Polo-Silva et al., 2013).
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Prior research has examined the diet of A. superciliosus in the Ecuadorian Pacific
(Polo-Silva et al., 2007; Polo-Silva, Rendon ¢ Galvin-Magaria, 2009). However, these
studies were conducted in mainland waters, making the current research in baseline
information for the GMR. Our isotopic signatures suggest the exploitation of inshore
habitats with high productivity within the GMR. A characteristic that coincides with the
dietary references of A. superciliosus, where they mention the consumption of benthic and
coastal fish (Polo-Silva et al., 2007; Polo-Silva, Rendén & Galvin-Magania, 2009). Thus,
based on isotopic signatures of both Alopias species we can infer that there is no
interspecific competition, despite using the same habitat within the GMR. This condition
would be supported by the Bayesian ellipses, which demonstrated a moderate overlap
between both species. Therefore, the consumption of squids by A. pelagicus would cause it
to migrate frequently to pelagic ecosystems to feed (Polo-Silva et al., 2013; Calle-Mordn ¢
Galvan-Magatia, 2020), while A. superciliosus would look for more coastal food sources
(Polo-Silva et al., 2007; Polo-Silva, Rendon ¢ Galvin-Magasia, 2009).

There were also no isotopic differences were found between males and females of
A. superciliosus, indicating a similar use of food sources. Polo-Silva et al. (2007) established
that female A. superciliosus remain in offshore areas, but can migrate to inshore ecosystems
to feed, while males remain in coastal areas due to a more specialized diet. Stomach content
analysis has revealed a more diverse diet in females (22 prey) compared to males (13 prey);
where both sexes have preference for demersal fish, however, female preferences also
extended to deep-water squids (Polo-Silva et al., 2007; Polo-Silva, Rendon ¢ Galvin-
Magania, 2009). Therefore, it is likely that A. superciliosus females migrate to offshore
ecosystems more frequently than males, particularly during gestation and parturition
periods. The isotopic niche had a low overlap between sex, confirming a differential
pattern in habitat use and potential prey. This could imply that although females and males
coexist in the same environment, they maintain varied feeding patterns as a strategy to
prevent potential intraspecific competition (Briones-Mendoza, Carrasco-Puig ¢ Toala-
Franco, 2021).

Ontogenetic feeding patterns
Neonates of A. pelagicus exhibited a more extensive isotopic niche breadth than other
groups. The observed variation in §'>C may reflect not only the environmental conditions
experienced by the neonates but also the maternal signal or a combination of influences. It
is generally challenging to assess 8'°C and 8'°N signatures in the early life stages of sharks,
unless the rate of maternal isotopic signal loss is measured for each species (Olin et al.,
2011; Broadhurst et al., 2019). However, there is evidence that at 1 year of age they would
have already lost their mother’s §'°C and §'°N signatures, reflecting a condition of
independent consumer (Olin, Shipley ¢» McMeans, 2018; Pdez-Rosas et al., 2021).
Juvenile sharks exhibited a more restricted habitat usage than neonates, which indicates
a shift from opportunists’ habits in neonates to more specialized habits as they grow.
Juvenile sharks prioritize meeting their high energy demands and invest this energy in
growing at a high rate to reach sexual maturity (Bethea, Buckel & Carlson, 2004; Crear
et al., 2021). However, in early stages, pelagic sharks do not yet exhibit specific
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discrimination between prey, so they could consume coastal prey from lower trophic levels
(e.g., mollusks and arthropods) and higher ones (e.g., pelagic and benthic fishes)
(Bethea, Buckel ¢ Carlson, 2004). Studies on the identification of juvenile sharks in the
GMR have revealed that A. pelagicus is typically found near coasts and bays, always as
solitary individuals in apparent feeding activities (Llerena-Martillo, Peiiaherrera-Palma ¢
Espinoza, 2018).

Adult and juvenile A. pelagicus demonstrated remarkably similar isotopic averages,
indicating comparable habitat use and prey consumption patterns. However, when
evaluating the isotopic niche areas, juveniles exhibited a larger amplitude compared to
adults. This difference is attributed to the consumption of lower trophic level prey by
juveniles and their more generalized habits compared to adults (Polo-Silva et al., 2013;
Sanchez-Latorre et al., 2023). In adults the reproduction becomes the most important
energetic target (Sims, 2005), so physiological adaptations of A. pelagicus also change as
they grow, allowing them to exploit deeper ecosystems (Andrzejaczek et al., 2022). This
condition allows them to prey at higher trophic levels, such as cephalopods (O. bartramii,
D. gigas, and S. oualaniensis), which comprise 90% of the diet of adult A. pelagicus from the
Equatorial Pacific (Galvdn-Magaiia et al., 2013; Calle-Mordn ¢ Galvan-Magafia, 2020).

No isotopic differences were detected among maturity stages (i.e., neonates, juveniles,
and adults) in A. superciliosus, however, isotopic niche areas suggest different feeding
patterns for each stage. Neonates of A. superciliosus exhibited a wide isotopic niche
indicating the utilization of offshore and inshore habitats. However, this isotopic niche
breadth may be related to the isotopic contribution of the mother, which suggests that
neonates’ isotopic signatures of A. superciliosus are affected by maternal inputs, even after
the first year of life (Hussey, MacNeil & Fisk, 2010; Olin et al., 2011).

Juveniles displayed a reduction in isotopic niche breadth associated with a change in
their feeding patterns, specifically in inshore environments. In contrast to the neonate
stage where the primary goal is to avoid predators, the juvenile stage is characterized by a
high growth rate (Branstetter, 1990). Therefore, this greater need for energy leads them to
consume high-calorie prey such as the coastal fish L. argentus and M. gayi (Polo-Silva et al.,
2007; Polo-Silva, Rendén ¢ Galvan-Magaria, 2009). Juveniles of A. superciliosus spend
more time foraging in shallow water during the day and in deeper water at night, whereas
adults engage in the reverse pattern (Fernandez-Coelho et al., 2015). Therefore, it is
possible that the difference in the use of shallow and deep habitats (Fernandez-Coelho
et al., 2015) is a strategy for avoiding potential competition between individuals of the
same species.

The juvenile and adult stages of A. superciliosus revealed a high degree of overlap, this
finding suggests that individuals of different sizes and sexes share the similar habitats.
However, as A. superciliosus progresses through different maturity stages, its feeding
strategies become increasingly specialized and focused on inshore habitats (Preti ef al.,
2008). Even research on vertical migration of this species has shown that adults can dive to
depths up to 700 m, where they complement their diet with myctophids and squids
(Nakano et al., 2003; Coelho, Fernandez-Carvalho ¢ Santos, 2015).
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CONCLUSIONS

Lamniformes are known to be present in coastal and oceanic ecosystems. However, unlike
A. pelagicus and A. vulpinus, A. superciliosus inhabits continental slopes, which
distinguishes it from other Alopias species (Estrada et al., 2003; Smith et al., 2008). The
outcomes of this research contribute to the knowledge on the trophic ecology of thresher
sharks in the GMR and provide data to establish their contribution within the ecological
dynamics of this region. However, it is challenging to accurately assess the status of Alopias
populations in the Ecuadorian Pacific, and to develop effective management strategies for
this species. Therefore, it is crucial to continue generating information to develop
sustainable fisheries and effective conservation measures for these populations.
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