

Investigation of the relationships between peri-implant diseases, periodontal diseases, and conditions: a cross-sectional study

Tuğba Şahin

Division of Periodontology, Faculty of Dentistry, Abant Izzet Baysal University, Bolu, Turkey

ABSTRACT

Introduction: Peri-implant and periodontal conditions share common underlying factors, including risk factors, microbiology, immunology, and treatment approaches.

Aims: This study aims to investigate the potential co-occurrence of peri-implant and periodontal conditions.

Design: One hundred twenty-three implants were divided into three groups: peri-implantitis (41 implants), peri-implant mucositis (41 implants), and peri-implant health (41 implants). Peri-implant and periodontal statuses were assessed using the 2017 AAP/EFP World Workshop on Classification of Periodontal and Peri-implant Diseases and Conditions. All measurements were performed by a single clinician (T.Ş.). One-way analysis of variance was used to compare the study groups according to the data. An assessment was conducted regarding the coexistence of periodontal and peri-implant conditions.

Results: Patients with peri-implant mucositis predominantly had gingivitis, whereas those with peri-implant health exhibited periodontal health. In contrast, patients with peri-implantitis mostly had gingivitis, with a lower occurrence of periodontitis. A significant difference was observed between the peri-implant and periodontal groups ($p = 0.003$). Significant differences were observed between peri-implant and periodontal evaluations for plaque indices, gingival indices, probing depth, gingival recession, and clinical attachment level ($p = 0.001$), ($p = 0.006$).

Conclusions: The findings of this study underscore the intricate influence of implant treatment on periodontal health. This observation emphasizes the importance of elucidating the underlying factors to improve clinical management and outcomes in patients with periodontal and peri-implant diseases, highlighting the relevance and potential impact of this research in the field.

Submitted 18 September 2024
Accepted 18 November 2024
Published 3 December 2024

Corresponding author
Tuğba Şahin,
sahintugba1432@gmail.com

Academic editor
Carlos Fernando Mourão
Additional Information and
Declarations can be found on
page 13

DOI 10.7717/peerj.18663

© Copyright
2024 Şahin
Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Subjects Dentistry

Keywords Periodontal disease, Peri-implant health, Peri-implant mucositis, Peri-implantitis

INTRODUCTION

Establishing and maintaining oral health involves monitoring both peri-implant and periodontal conditions. Periodontal health and peri-implant health are defined by the absence of bleeding, swelling, or suppuration on probing, coupled with the absence of clinically evident inflammation. In peri-implant mucositis, akin to gingivitis in natural dentition, the initiation of inflammation occurs with microbial plaque accumulation;

however, there is no extension of increased probing depth to the alveolar bone (Berglundh *et al.*, 2018; Chapple *et al.*, 2018). Peri-implant mucositis is distinguished from peri-implantitis by triggering a localized inflammatory response and ultimately leading to the loss of supporting bone around the implant (Berglundh *et al.*, 2018; Renvert *et al.*, 2018; Lee & Wang, 2010). Similarly, periodontitis, an enduring inflammatory condition, is typified by dysbiotic plaque biofilms and immune-dysregulation that promotes the destruction of the periodontal ligament and alveolar bone (Sedghi, Bacino & Kapila, 2021; Papapanou *et al.*, 2018).

Periodontitis and peri-implantitis are inflammatory conditions caused by biofilms that can result in tooth and oral implant loss if not addressed (Lasserre, Brex & Toma, 2018). Compared with healthy areas in the same individual, inflamed regions (peri-implantitis and periodontitis) harbor unique dysbiotic subgingival microbial ecosystems (Barbagallo *et al.*, 2022). Periodontitis and peri-implantitis are reportedly associated with a notable increase in microbial stability within the subgingival microbiome (Zhang *et al.*, 2021). Studies investigating peri-implant biofilms have focused predominantly on recognized periodontal pathogens such as *Porphyromonas gingivalis* (*P. gingivalis*) and *Treponema denticola*. Furthermore, these results highlight the similarities between the subgingival microbiota of periodontitis patients and those of peri-implantitis patients (Kotsakis & Olmedo, 2021). In contrast, certain studies refute the notion of microbiota similarity between peri-implantitis and periodontitis (Koyanagi *et al.*, 2013; Maruyama *et al.*, 2014). In a broad sense, risk factors encompass patient-related, environmental, or practitioner-related elements. Patient-related risk factors include socio-economic status, smoking habits, substance abuse disorders, diabetes, dietary habits and supplementation, mental health conditions, advanced age, inadequate home dental care, limited understanding of the importance of proper oral hygiene, genetic polymorphisms, and medication usage (Darby, 2022; Kinane & Hart, 2003; Vaz *et al.*, 2012). Moreover, according to the report of the 6th Conference European Association for Osseointegration, prosthesis overcontouring and implant surface characteristics increase the risk of peri-implantitis (Schwarz *et al.*, 2021).

Individuals with a history of periodontitis are more susceptible to peri-implant infections and complications (Renvert & Persson, 2009; Ferreira *et al.*, 2018). A history of periodontitis can be assessed by evaluating periodontal bone loss on radiographs, examining dental records, or talking to the patient to determine the cause of tooth loss. It is reasonable to include the stage and extent of periodontal disease in this assessment as it influences the development and progression of peri-implant disease (Heitz-Mayfield, Heitz & Lang, 2020).

The peri-implant sulcus is histologically and immunologically distinct from the subgingival sulcus (Robitaille *et al.*, 2016). Increasing evidence has been obtained on the development and causes of periodontal and peri-implant disorders. Although there are some similarities in the host's reactions in both settings, their differences can be attributed to the distinct compositions of tooth-periodontium and implant-alveolar bone biointerfaces (Larsson *et al.*, 2022). The host response, which is pivotal in delineating the genetic basis of diseases like periodontitis and peri-implantitis, necessitates an examination

of cytokines, chemokines, growth factors, and their receptors, which is crucial in understanding the pathogenesis of periodontal and peri-implant diseases ([Turkmen & Firatli, 2022](#); [Genco, 1992](#)).

Periodontal and peri-implant diseases are managed mainly *via* manual instrumentation to reduce the bacterial load and improve the patient's at-home cleanliness ([Meffert, 1996](#)). If needed, further antibiotic therapies and laser treatments may be employed ([Mombelli & Lang, 1992](#); [Hammami & Nasri, 2021](#); [Diwan et al., 2024](#); [Ashnagar et al., 2014](#)).

Regenerative treatment can also be applied ([Larsson et al., 2016](#)). Periodontitis and peri-implantitis reportedly have similar etiologies and similar therapeutic interventions are performed in patients with these two entities ([Robitaille et al., 2016](#)).

In particular, frequent co-occurrence of periodontitis and peri-implantitis, the manifestation of gingivitis alongside peri-implant mucositis, and the observation of periodontal health alongside peri-implant health are anticipated. There is no comparison in the literature regarding the simultaneous occurrence of all periodontal and peri-implant conditions. The objective of this study is to investigate the potential relationships between periodontal and peri-implant conditions. Given the commonalities in primary factors, risk factors, microbiology, immunology, and treatment interventions, this study hypothesizes that there is a significant association between the presence of periodontitis and peri-implantitis, between gingivitis and peri-implant mucositis, and between periodontal health and peri-implant health. Specifically, this study aims to determine whether periodontitis is more prevalent among patients with peri-implantitis, gingivitis is more common among those with peri-implant mucositis, and periodontal health is associated with peri-implant health.

MATERIALS AND METHODS

Ethical statement

Participants were recruited from the patients who were previously examined for their periodontal or peri-implant status at Bolu Abant İzzet Baysal University between July 2022 and July 2023. Patient records were reviewed to identify potential participants who met the inclusion criteria. Patients who agreed to participate were contacted, and informed consent was obtained before any further assessments were conducted. The Bolu Abant İzzet Baysal University Clinical Research Ethics Committee approved the study (2022/163). The participants were informed about the procedures and signed an informed consent form. Compliance with the STROBE guidelines for cross-sectional studies was documented. This clinical study is registered retrospectively at [ClinicalTrials.gov](#) (NCT06128850/31.03.2023). This study complied with the World Medical Association Declaration of Helsinki for medical research ([Emanuel, 2013](#)).

Study design

A total of 167 patients were initially screened on the basis of their medical and dental records. The inclusion and exclusion criteria were applied during an initial screening of medical and dental records. The study included 123 implants in 69 patients with fixed prostheses who had survived for at least one year following functional prosthetic loading,

with the exception of patients with uncontrolled medical issues and referred clinical bruxism. The implants were 2–5 years old and the fixed prosthesis of the implant was 1.5–4.5 years old. Two hundred twenty-four patients were evaluated, and 123 implants from in sixty-nine people who met the inclusion criteria were included in the study.

Inclusion and exclusion criteria

This study included systemically healthy patients aged 18–70 years who had undergone at least one year and at most five years of functional prosthetic loading of one or more dental implants with a fixed prosthesis. Pregnant or lactating women, patients with a history of chronic use of anti-inflammatory agents, and those on immunosuppressive drugs or drugs that impact the mucosa and bones were not included in the study. Patients who underwent treatment for peri-implant disease after implant placement, those with residual cement residue and prosthesis design, and those with malpositioned implants were also excluded from the study. Patients who underwent active periodontal treatment or treatment after implantation, diabetic patients, patients with mucosal diseases, and smokers were excluded.

Sample size calculation

Three groups were planned according to the peri-implant health status in the study, and the sample size was calculated according to the methods of [Barwacz et al. \(2018\)](#).

According to the results of the power calculation *via* the F test, fixed effects, special effects, main effects, and interaction analysis (G * Power 3.1 software; Heinrich Heine University, Dusseldorf, Germany), with α (margin of error) = 0.05, power ($1 - \beta$) = 0.90 and effect size (f) = 0.4, the required sample size for the three groups was 123, and the required sample size for each subgroup was at least 41. The effect size value was determined according to the proposed large effect size convention.

Data collection and measurements

The plaque index ([Silness & Löe, 1964](#)), gingival index ([Loe & Silness, 1963](#)), probing depth, bleeding on probing ([Ainamo & Bay, 1975](#)), clinical attachment loss (CAL), and gingival recession were recorded for the teeth and implants of patients from the mesiobuccal, distobuccal, mid-buccal, mesiopalatinal/lingual, mid-palatinal/lingual, and distolingual/palatinal regions. The plaque index was evaluated through visual inspection of the plaque accumulated in the gingival area, and the plaque was categorized into one of four grades. The gingival index was determined on the basis of color and tissue consistency, reflecting the severity of inflammation in the marginal gingiva. Bleeding on probing was assessed by gently inserting a UNC-15 periodontal probe (PCP15; Hu-Friedy, Chicago, IL, USA) into the gingival sulcus. All indices were measured during the examination. Calibration of the examiner was performed prior to the study to ensure reliability in probing depth and other measurements. The peri-implant and periodontal health statuses of the patients were examined. Healthy gingiva, which display an intact periodontium, exhibit minimal bleeding on probing (<10%) and shallow periodontal pocket depths (≤ 3 mm). In contrast, gingivitis is characterized by increased bleeding on probing ($\geq 10\%$) with pocket depths

remaining ≤ 3 mm. Descriptions of periodontitis should encompass metrics such as the prevalence of bleeding on probing, the proportion of teeth with probing depths surpassing specified thresholds (commonly ≥ 4 mm and ≥ 6 mm), and teeth exhibiting CAL of ≥ 3 mm and ≥ 5 mm (Papapanou *et al.*, 2018). Peri-implant health was characterized by the absence of erythema, bleeding on probing, swelling, and suppuration. The main clinical characteristic of peri-implant mucositis is bleeding on gentle probing. Erythema, swelling, and/or suppuration may also occur. As outlined in the 2017 World Workshop on Periodontology guidelines, in cases where prior examination data is unavailable, diagnosing peri-implantitis may rely on concurrent indications such as bleeding or suppuration during gentle probing, probing depths measuring 6 mm or greater, and bone resorption levels reaching 3 mm or beyond apically from the most coronal aspect of the intraosseous section of the implant (Berglundh *et al.*, 2018). The implants were divided into three groups: peri-implantitis, peri-implant mucositis, and peri-implant health. Each group was evaluated according to periodontal status (periodontal health, gingivitis, and periodontitis). These parameters were chosen to test the hypotheses that peri-implantitis is correlated with periodontitis, that peri-implant mucositis is correlated with gingivitis, and that peri-implant health is associated with periodontal health. All the clinical examinations were conducted by a single clinician (T.S.) in a standardized manner to ensure consistency in data collection.

An assessment was conducted regarding the coexistence of periodontal and peri-implant conditions.

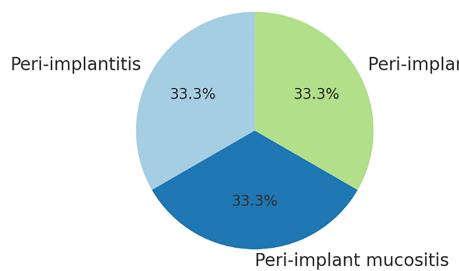
Statistical analyses

Research analysis was conducted *via* the SPSS 26 (SPSS Inc., Chicago, IL, USA) statistical program. Shapiro-Wilk normality tests were performed to determine whether the data met the parametric test criteria. The study compared the three groups according to peri-implant health status. Paired sample t-tests were used to compare the implant and periodontal index values for each group. 95% CI values are shown in the table with the means and standard deviations. Cohen's d values were also calculated to evaluate the effect size. Chi-square test analysis was performed to compare peri-implant health samples according to periodontal status. The level of significance was set at $p < 0.05$. A total of 123 implants were analyzed, with 41 implants in each group on the basis of their peri-implant health status.

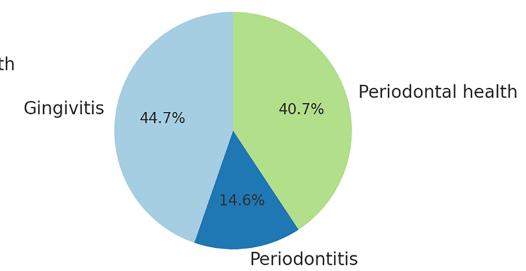
RESULTS

Demographic characteristic

The demographic characteristics of the study population are presented in Table 1.


Distribution of groups

The implants were most commonly placed at #16 (12.2%), #36 (11.4%), or #46 (8.9%). The peri-implantitis, peri-implant mucositis, and peri-implant health groups comprised an equal number of patients (Fig. 1).


Table 1 Demographic characteristics of participants.

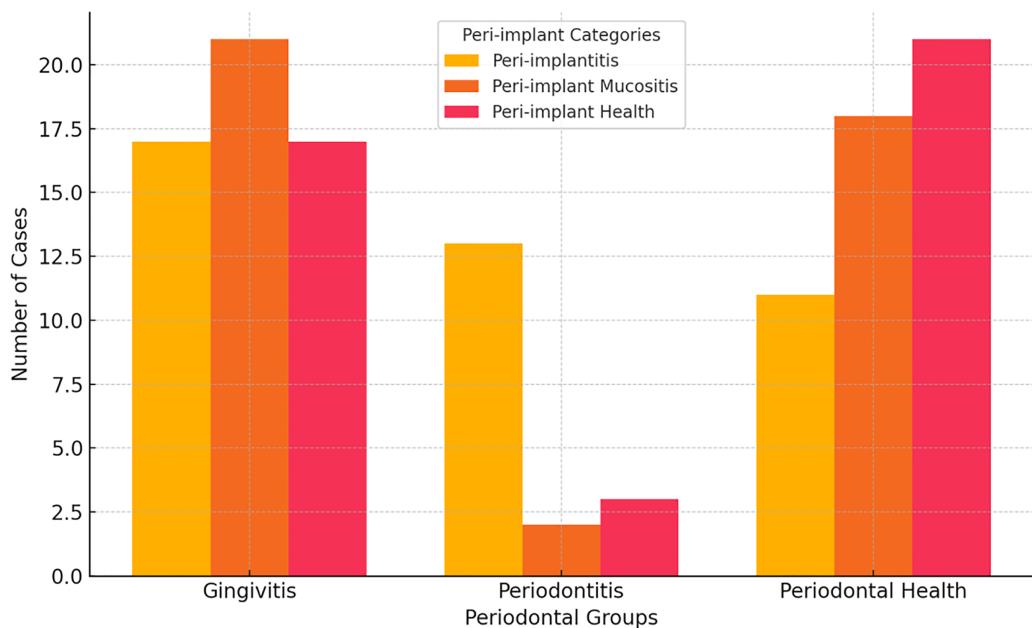
		f	%
Gender	Male	39	57.1
	Female	30	42.9
Education	Elementary school	15	21.4
	Middle school	8	11.4
	High school	18	25.7
Work status	University	28	40.0
	Working	48	68.5
	Nonworker	5	7.1
	Retired	16	22.9

Peri-implant Group

Periodontal Group

Figure 1 Distribution of examination groups.

Full-size DOI: 10.7717/peerj.18663/fig-1


Comparison of periodontal and peri-implant conditions

Individuals with peri-implantitis had higher rates of gingivitis and periodontitis, respectively. Periodontal health was more common in patients with peri-implant health, whereas gingivitis was common in those with peri-implant mucositis. Among those diagnosed with peri-implant mucositis, the most common findings were gingivitis and periodontal health. A significant difference in the prevalence of gingivitis and periodontal health was observed between the peri-implant and periodontal groups, with peri-implantitis patients showing higher rates of gingivitis and periodontitis compared with the periodontal group ($p = 0.003$) (Fig. 2).

Comparison of indices

Plaque index

When peri-implant health and conditions were analyzed concurrently for plaque indices a significant difference was observed between the peri-implant and periodontal evaluations ($p = 0.001$), (95% CI for II [0.05–0.13], 95% CI for PI [0.19–0.30]). The plaque index during periodontal evaluation was greater than that during implant evaluation (Table 2).

Figure 2 Comparison of peri-implant and periodontal groups.

[Full-size](#) DOI: 10.7717/peerj.18663/fig-2

Gingival index

A significant difference was observed in the context of gingival indices between peri-implant and periodontal evaluations in patients with peri-implantitis and peri-implant mucositis ($p = 0.001$), (95% CI for II [0.07–0.76], 95% CI for PI [0.07–0.14]). The gingival index during implant evaluation was greater than that during periodontal evaluation (Table 2).

Probing depth

In patients diagnosed with peri-implantitis, a statistically significant difference in probing depth was observed between assessments of the peri-implant and periodontal regions ($p = 0.001$) (95% CI for II [3.24–4.59], 95% CI for PI [2.09–2.25]). The probing depth during implant evaluation was greater than that during periodontal assessment. There was no significant difference in probing depth between the implant and periodontal assessments in patients with peri-implant mucositis and peri-implant health ($p = 0.165$), ($p = 0.837$), (95% CI for II [2.00–2.28], 95% CI for PI [1.70–2.26]), (95% CI for II [1.82–2.12], 95% CI for PI [1.98–2.14]) (Table 2).

Gingival recession

In the context of gingival recession, a significant difference was observed between peri-implant and periodontal recession in patients with peri-implantitis and peri-implant mucositis ($p = 0.001$), ($p = 0.014$), (95% CI for II [0.27–1.17], 95% CI for PI [0.06–0.31]), (95% CI for II [0.04–0.46], 95% CI for PI [0.05–0.18]). Periodontal evaluation revealed that gingival recession in implants was greater than that in teeth. Furthermore, no notable distinction was found regarding gingival recession between assessments of implants and

Table 2 Demographic characteristics of participants.

		Implant index		Periodontal index		<i>p</i>
		Mean \pm S.D.	95% CI (L-U)	Mean \pm S.D.	95% CI (L-U)	
Plaque index	Peri-implantitis	0.13 \pm 0.31	[0.03–0.23]	0.36 \pm 0.48	[0.21–0.52]	0.001*
	Peri-implant mucositis	0.09 \pm 0.24	[0.01–0.16]	0.21 \pm 0.22	[0.15–0.28]	0.002*
	Peri-implant health	0.06 \pm 0.14	[0.02–0.10]	0.16 \pm 0.19	[0.10–0.22]	0.025*
	Total	0.09 \pm 0.24	[0.05–0.13]	0.24 \pm 0.33	[0.19–0.30]	0.001*
Gingival index	Peri-implantitis	0.42 \pm 1.09	[0.07–0.76]	0.11 \pm 0.11	[0.07–0.14]	0.001*
	Peri-implant mucositis	0.26 \pm 0.50	[0.10–0.42]	0.14 \pm 0.17	[0.08–0.19]	0.023*
	Peri-implant health	0.16 \pm 0.42	[0.02–0.29]	0.09 \pm 0.16	[0.04–0.15]	0.412
	Total	0.28 \pm 0.74	[0.15–0.41]	0.11 \pm 0.15	[0.09–0.14]	0.001*
Probing on depth	Peri-implantitis	3.91 \pm 2.14	[3.24–4.59]	2.17 \pm 0.26	[2.09–2.25]	0.001*
	Peri-implant mucositis	2.14 \pm 0.44	[2.00–2.28]	1.98 \pm 0.88	[1.70–2.26]	0.165
	Peri-implant health	1.97 \pm 0.48	[1.82–2.12]	2.06 \pm 0.25	[1.98–2.14]	0.837
	Total	2.67 \pm 1.55	[2.40–2.95]	2.07 \pm 0.55	[1.97–2.17]	0.006*
Bleeding on probing	Peri-implantitis	0.66 \pm 0.37	[0.54–0.78]	0.23 \pm 0.25	[0.15–0.31]	0.001*
	Peri-implant mucositis	0.62 \pm 0.29	[0.53–0.71]	0.18 \pm 0.15	[0.13–0.23]	0.001*
	Peri-implant health	0.00 \pm 0.02	[0.00–0.01]	0.14 \pm 0.18	[0.09–0.20]	0.001*
	Total	0.43 \pm 0.40	[0.36–0.50]	0.18 \pm 0.20	[0.15–0.22]	0.001*
Gingival recession	Peri-implantitis	0.72 \pm 1.41	[0.27–1.17]	0.19 \pm 0.38	[0.06–0.31]	0.001*
	Peri-implant mucositis	0.25 \pm 0.66	[0.04–0.46]	0.12 \pm 0.20	[0.05–0.18]	0.014*
	Peri-implant health	0.16 \pm 0.42	[0.02–0.29]	0.23 \pm 0.47	[0.08–0.38]	0.410
	Total	0.38 \pm 0.96	[0.20–0.55]	0.18 \pm 0.37	[0.11–0.24]	0.001*
Clinical attachment level	Peri-implantitis	3.97 \pm 2.21	[3.28–4.67]	2.28 \pm 0.36	[2.16–2.39]	0.001*
	Peri-implant mucositis	2.09 \pm 0.55	[1.92–2.26]	1.98 \pm 1.02	[1.66–2.30]	0.869
	Peri-implant health	1.98 \pm 0.61	[1.79–2.17]	2.02 \pm 0.68	[1.80–2.23]	0.971
	Total	2.68 \pm 1.63	[2.39–2.97]	2.09 \pm 0.74	[1.96–2.22]	0.001*

Note:

* 95% confidence interval (Lower bound-upper bound).

periodontal health in patients diagnosed with peri-implant health ($p > 0.05$), ($p = 0.410$), (95% CI for II [0.02–0.29], 95% CI for PI [0.08–0.38]) (Table 2).

Clinical attachment loss

A significant difference was observed in clinical attachment loss (CAL) between peri-implant and periodontal evaluations in patients with peri-implantitis ($p = 0.001$), (95% CI for II [3.28–4.67], 95% CI for PI [2.16–2.39]). The CAL at the time of implant evaluation was greater than that at the time of periodontal evaluation. There was no notable contrast in attachment loss values identified between assessments of implants and periodontal conditions in patients diagnosed with either peri-implant mucositis or peri-implant health ($p = 0.869$), ($p = 0.971$), (95% CI for II [1.92–2.26], 95% CI for PI [1.66–2.30]), (95% CI for II [1.79–2.17], 95% CI for PI [1.80–2.23]) (Table 2).

Comparison of gingival recession among the peri-implant and periodontal groups

In the assessment of the implants, a notable distinction in gingival recession was observed among the peri-implant groups ($p = 0.016$). The peri-implantitis group presented the highest level of recession, which differed significantly from that of the other two groups, whereas the lowest gingival recession value was observed in the peri-implant health group.

Implant evaluation revealed a significant difference in gingival recession between the periodontal groups ($p = 0.020$). The periodontitis group had the highest gingival recession rate, which differed significantly from those of the other two groups, whereas the periodontal health group had the lowest gingival recession rate.

DISCUSSION

This study tested whether peri-implant and periodontal conditions occurred simultaneously. Gingivitis was detected mainly in patients with peri-implant mucositis and peri-implant health. These results indicate that while most patients with periodontitis also have peri-implantitis, most patients with peri-implantitis do not have concomitant periodontitis. Investigations into peri-implant biofilms consider the importance of implant-related environmental factors, such as material composition, surface roughness, corrosion/tribocorrosion processes, and the potential for systemic migration of metal particles, all of which can influence biofilm formation, the peri-implant tissue response, and the long-term success of the implant. These factors play crucial roles in facilitating effective, implant-driven therapies for peri-implantitis, which are essential for mitigating the health burden associated with implant-related inflammatory conditions (Kotsakis & Olmedo, 2021). The architectural characteristics of dental implants differ from those of natural teeth, including differences in morphology, surface material, texture, and energy (Robitaille et al., 2016). Furthermore, dental implants differ from natural teeth in that they are decay-resistant, lack pulps that could serve as early pathology indicators or contribute to endodontic lesions, and lack a periodontal membrane (Misch, 2014). Periodontal tissues attach teeth to alveolar bone via the periodontal ligament and suprabony connective tissues, which include collagen fibers anchored to the root cementum. In contrast, osseointegrated dental implants lack these connective tissue attachments, with direct bone contact and no intervening connective tissues (Klokkevold & Newman, 2000). Compared with implants to natural teeth, implants are typically conical screws made of titanium and/or ceramic, which are known for their increased surface roughness and decreased surface energy. Although roughness, energy, and composition are interrelated, each factor can independently influence bacterial colonization, gene expression, and community composition (Larsson et al., 2022). The presence of peri-implantitis in implants led to significantly elevated amounts of dissolved titanium in subgingival plaque compared to healthy implants. This finding indicates a strong association between titanium dissolution and peri-implantitis (Kotsakis & Olmedo, 2021). This titanium dissolution, when combined with factors such as mechanical stress, corrosion, and bacterial activity, may further exacerbate the inflammatory process, ultimately contributing to implant failure (Chaturvedi, 2009). Tribocorrosion and metal corrosion impact peri-implant biofilms,

potentially leading to peri-implant inflammation and implant failure through direct mechanisms (such as immune modulation) or indirect pathways (by disturbing the microbiome) (Kotsakis & Olmedo, 2021). Additional investigations are needed to elucidate the factors underlying titanium dissolution and the role of titanium corrosion byproducts in the progression of peri-implant inflammation (Safioti *et al.*, 2017). Owing to limited clinical data, the incidence and development of peri-implantitis do not differ between modified and non-modified implant surfaces (Schwarz *et al.*, 2021). Differences in the implant and natural tooth environments affect the simultaneous occurrence of periodontal and peri-implant diseases. In this study, these differences led to the occurrence of not only periodontitis but also gingivitis with peri-implantitis. In addition, contrary to the aforementioned studies and in support of the study hypothesis, patients with periodontal health in peri-implant health cases and patients with gingivitis in peri-implant mucositis cases were the most common findings.

Meffert (1996) reported that the bacterial flora linked to the implant and native tooth during illness are mostly identical and consist primarily of gram-negative pathogens, including *P. gingivalis*, *Porphyromonas intermedia*, and *A. actinomycetemcomitans*. These findings indicate that the subgingival microbiota compositions are quite comparable between the distinct periodontitis and peri-implantitis clinical groups. These similarities encompass potential “periodontopathogens”, such as *Prevotella*, *Porphyromonas*, *Tannerella*, *Bacteroidetes* (G5), and *Treponema* spp. (Yu *et al.*, 2019). In contrast, Dutra *et al.* (2023) observed a varied array of bacteria near infected implants, some of which were unculturable and previously unidentified. The presence of bacteria unrelated to periodontitis could instigate inflammation in peri-implant tissues, highlighting notable distinctions in the microbiota between periodontal and peri-implant regions. Additionally, a relatively high prevalence of opportunistic pathogens, such as *Staphylococcus* and *Candida* species, characterizes the microbiome associated with peri-implantitis (Iuşan *et al.*, 2022). The structure of biofilms in peri-implantitis is more intricate than that in periodontitis. Although various bacterial species have been identified as potential pathogens in peri-implantitis, periodontopathogenic bacteria are less prevalent (Koyanagi *et al.*, 2013). In periodontitis, bacteria from the red complex are vital pathogens, whereas they are not prevalent in peri-implant biofilms. There may be a confirmation bias in the dissemination of information regarding their presence (Kotsakis & Olmedo, 2021). Another study revealed no discernible difference in the occurrence of periodontal bacteria around implant sites in patients with peri-implant mucositis compared with patients with gingivitis (Salvi *et al.*, 2012). Host-bacterial interactions shape unique microbiomes in both periodontal and peri-implant environments, indicating that differences in microbial composition are associated with health and disease, both individually and at the core microbiome level. However, diseases can facilitate the migration of periodontal bacteria into peri-implant sulci, or periodontitis can progress to peri-implantitis (Robitaille *et al.*, 2016). As in the majority of studies, peri-implantitis was not found concurrently in the patient, which did not support the hypothesis of the study; however, periodontal health was observed in peri-implant health, and gingivitis was observed in peri-implant mucositis.

Various alterations in microbial populations influence the initiation and advancement of inflammatory reactions surrounding both natural teeth and dental implants. Furthermore, prior occurrences of periodontal disease exert an additional influence on modifying the immune reactions of peri-implant and periodontal tissues in response to the accumulation of biofilms (Dutra *et al.*, 2023). The majority of the cells in both entities tend to be plasma cells and lymphocytes. However, neutrophil granulocytes and macrophages have been reported to be more abundant in patients with peri-implantitis than in those with periodontitis (Berglundh, Zitzmann & Donati, 2011). Implant plaque control effectively inhibits the formation of bacterial plaques on titanium abutments. The absence of inflammatory cell infiltrates in the peri-implant mucosa further highlights the ability of the junctional epithelium at titanium surfaces to form a barrier, preventing the formation of a subgingival infection in the absence of supragingival plaque (Berglundh *et al.*, 1991). The mRNA levels of IL-6 and IL-1 β are elevated in tissues affected by both periodontal disease and peri-implantitis. However, no significant difference in the expression of metalloproteinases or their inhibitors was detected among the studied groups (Figueiredo *et al.*, 2020). Conversely, soft tissues around implants likely trigger more enhanced host immune responses, such as dominant macrophage infiltration, to promote osteoclastogenesis compared with those in periodontitis in another study (Yuan *et al.*, 2022). In addition, IL-1 and TNF- α serve as sensitive indicators of bone loss adjacent to both natural teeth and dental implants (Machtei, Oved-Peleg & Peled, 2006). Salvi *et al.* (2012) similarly reported that IL-1 β levels were the same in their study, while MMP-8 levels were greater around the peri-implant region. Although peri-implantitis and periodontitis share similarities in terms of clinical presentation and etiology, significant histopathological distinctions differentiate these two conditions (Berglundh, Zitzmann & Donati, 2011). These significant histopathological differences may affect the incidence of peri-implantitis and periodontitis at the same time. Histopathological studies do not support the hypothesis that peri-implantitis and periodontitis occur at the same time. The study results partly point in this direction.

Genetic variations in the Fmlp receptor (FPR1) gene are strongly linked to increased susceptibility to periodontitis and peri-implantitis (Turkmen & Firatli, 2022). The genetic variation within the IL-17A gene may influence the predisposition to peri-implant diseases (Talib & Taha, 2024). Additionally, alleles 1 and 2 of the IL-1A gene and alleles 1 and 2 of the IL-1B gene are statistically associated with the success or failure of dental implants (Vaz *et al.*, 2012). Ten genetic polymorphisms of inflammation-related molecules, including proinflammatory cytokines and protease inhibitors, may have substantially influenced periodontitis. An individual may inherit several relatively common high-risk polymorphisms, resulting in a cumulative high-susceptibility profile for periodontitis (Kinane & Hart, 2003). To date, specific genetic variations consistently associated with periodontitis in certain populations include those within ANRIL, COX2, IL1, IL10, and DEFB1 genes. However, many proposed candidate genes for periodontitis lack robust validation or replication (Loos *et al.*, 2015). According to a previous study, individuals carrying the G genotype exhibit increased susceptibility to periodontitis, whereas those

with the G/C genotype demonstrate a greater risk of peri-implantitis ([Turkmen & Firatli, 2022](#)). Genetic studies of peri-implantitis and periodontitis do not support this hypothesis. Due to the differentiation of the genetic profile in peri-implantitis and periodontitis, periodontitis may not be detected in every patient with peri-implantitis, as observed in this study. In addition, periodontitis is a risk factor for peri-implantitis.

Substantial evidence suggests an elevated risk of peri-implantitis among individuals with a previous history of chronic periodontitis, inadequate plaque control proficiency, or a lack of consistent post-implant therapy maintenance ([Schwarz et al., 2018](#)). Additionally, robust evidence indicates that periodontitis increases the probability of implant loss. Moreover, moderate evidence suggests that individuals affected by periodontitis exhibit elevated rates of implant-bone loss, thus establishing this condition as a predisposing factor for peri-implantitis ([Shiba et al., 2021](#)). Although the presence of periodontitis is a serious risk factor for peri-implantitis, this is not always the case, as found in this study.

Furthermore, it is imperative to consider immunological and histopathological distinctions when devising treatment strategies for peri-implantitis and periodontitis ([Berglundh, Zitzmann & Donati, 2011](#)). Following non-surgical interventions, the microbial makeup of periodontal and peri-implant sites is observed to undergo comparable alterations, transitioning from an abundance of periodontal pathogens to a composition akin to healthy sites ([Shiba et al., 2021](#)). Notably, in implants featuring rough surfaces, a previous history of periodontal disease negatively affects survival rates, despite the use of scaling and root planing procedures ([Young et al., 2021](#)). There have also been reports of disease progression or recurrence, as well as implant loss despite treatment ([Heitz-Mayfield & Mombelli, 2014](#)). Microbial, genetic, and immunological differences in peri-implantitis and periodontitis are reflected in the treatment of these diseases. The study's results confirm these differences, but they do not validate the study's hypothesis. Conversely, this hypothesis is supported primarily by patients with periodontal health among peri-implant health cases and patients with gingivitis among peri-implant mucositis cases.

This study has several limitations and strengths worth noting. A key limitation is the potential selection bias, as the sample was drawn from a single university clinic and may not represent the broader population. This bias could skew the results toward a more specific or narrower population, limiting the generalizability to a wider audience. The study population consisted solely of individuals from a university clinic, which may not represent the general population, particularly those from different socioeconomic or geographic backgrounds. Although random sampling and strict inclusion and exclusion criteria were employed, some bias likely remains, although its effect is probably small. Additionally, the study's cross-sectional design limits the ability to establish causal relationships between peri-implant and periodontal conditions. The limitation of this design is that it provides only a snapshot of the relationships at a single time point, making it impossible to infer long-term effects. Despite these limitations, the study has several important strengths. The use of well-established diagnostic criteria from the 2017 AAP/EFP World Workshop on Classification of Periodontal and Peri-implant Diseases and

Conditions ensures consistent and reliable assessments. Moreover, data collected by a single clinician, including various indices such as the plaque index, gingival index, probing depth, bleeding on probing, clinical attachment loss (CAL), and gingival recession, provide a comprehensive evaluation of the conditions. Importantly, this study contributes valuable insights into the co-occurrence of peri-implant and periodontal conditions. The finding that peri-implantitis is often absent in patients with periodontitis suggests a complex relationship between implant treatment and periodontal health, warranting further investigation.

CONCLUSIONS

The higher incidence of gingivitis among patients with peri-implant mucositis and peri-implantitis in patients with periodontitis underscores the relationship between peri-implant and periodontal conditions. These findings indicate a close relationship between maintaining good periodontal health and peri-implant health, which could enhance the long-term stability of dental implants. A comprehensive approach, especially for patients with peri-implantitis, that addresses both conditions through preventive care and patient education is essential for achieving optimal outcomes. Further research exploring the distinct characteristics of peri-implantitis and periodontitis will help refine treatment strategies, paving the way for a more tailored and effective management of peri-implant diseases.

ACKNOWLEDGEMENTS

The AJE and Editage Editing Service performed the English editing. This study was presented as a poster at The European Association for Osseointegration Congress on 24-26 October 2024.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

The author received no funding for this work.

Competing Interests

The author declares that they have no competing interests.

Author Contributions

- Tuğba Şahin conceived and designed the experiments, performed the experiments, analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the article, and approved the final draft.

Human Ethics

The following information was supplied relating to ethical approvals (*i.e.*, approving body and any reference numbers):

Bolu Abant İzzet Baysal University Clinical Researches Ethics Committee.

Data Availability

The following information was supplied regarding data availability:

The raw data is available in the [Supplemental File](#).

Supplemental Information

Supplemental information for this article can be found online at <http://dx.doi.org/10.7717/peerj.18663#supplemental-information>.

REFERENCES

Ainamo J, Bay I. 1975. Problems and proposals for recording gingivitis and plaque. *International Dental Journal* 25:229–235.

Ashnagar S, Nowzari H, Nokhbatolfoghahaei H, Yaghoub Zadeh B, Chiniforush N, Choukhachi Zadeh N. 2014. Laser treatment of peri-implantitis: a literature review. *The Journal of Lasers in Medical Sciences* 5:153–162.

Barbagallo G, Santagati M, Guni A, Torrisi P, Spitale A, Stefani S, Ferlito S, Nibali L. 2022. Microbiome differences in periodontal, peri-implant, and healthy sites: a cross-sectional pilot study. *Clinical Oral Investigations* 26(3):2771–2781 DOI [10.1007/s00784-021-04253-4](https://doi.org/10.1007/s00784-021-04253-4).

Barwacz CA, Stanford CM, Diehl UA, Cooper LF, Feine J, McGuire M, Scheyer ET. 2018. Pink esthetic score outcomes around three implant-abutment configurations: 3-year results. *International Journal of Oral & Maxillofacial Implants* 33(5):1126–1135 DOI [10.11607/jomi.6659](https://doi.org/10.11607/jomi.6659).

Berglundh T, Armitage G, Araujo MG, Avila-Ortiz G, Blanco J, Camargo PM, Chen S, Cochran D, Derkx J, Figuero E, Hämmmerle CHF, Heitz-Mayfield LJA, Huynh-Ba G, Iacono V, Koo KT, Lambert F, McCauley L, Quirynen M, Renvert S, Salvi GE, Schwarz F, Tarnow D, Tomasi C, Wang HL, Zitzmann N. 2018. Peri-implant diseases and conditions: consensus report of workgroup 4 of the 2017 world workshop on the classification of periodontal and peri-implant diseases and conditions. *Journal of Periodontology* 89(1):S313–S318 DOI [10.1111/jcpe.12957](https://doi.org/10.1111/jcpe.12957).

Berglundh T, Lindhe J, Ericsson I, Marinello CP, Liljenberg B, Thomsen P. 1991. The soft tissue barrier at implants and teeth. *Clinical Oral Implants Research* 2(2):81–90 DOI [10.1034/j.1600-0501.1991.020206.x](https://doi.org/10.1034/j.1600-0501.1991.020206.x).

Berglundh T, Zitzmann NU, Donati M. 2011. Are peri-implantitis lesions different from periodontitis lesions? *Journal of Clinical Periodontology* 38(Suppl 11):188–202 DOI [10.1111/j.1600-051X.2010.01672.x](https://doi.org/10.1111/j.1600-051X.2010.01672.x).

Chapple ILC, Mealey BL, Van Dyke TE, Bartold PM, Dommisch H, Eickholz P, Geisinger ML, Genco RJ, Glogauer M, Goldstein M, Griffin TJ, Holmstrup P, Johnson GK, Kapila Y, Lang NP, Meyle J, Murakami S, Plemons J, Romito GA, Shapira L, Tatakis DN, Teughels W, Trombelli L, Walter C, Wimmer G, Xenoudi P, Yoshie H. 2018. Periodontal health and gingival diseases and conditions on an intact and a reduced periodontium: consensus report of workgroup 1 of the 2017 world workshop on the classification of periodontal and peri-implant diseases and conditions. *Journal of Periodontology* 89(1):S74–S84 DOI [10.1002/JPER.17-0719](https://doi.org/10.1002/JPER.17-0719).

Chaturvedi T. 2009. An overview of the corrosion aspect of dental implants (titanium and its alloys). *Indian Journal of Dental Research* 20(1):91–98 DOI [10.4103/0970-9290.49068](https://doi.org/10.4103/0970-9290.49068).

Darby I. 2022. Risk factors for periodontitis & peri-implantitis. *Periodontology 2000* 90(1):9–12 DOI [10.1111/prd.12447](https://doi.org/10.1111/prd.12447).

Diwan A, Dodani K, Rajpoot AS, Goswami P, Soni VR, Abraham JJ. 2024. Efficacy of laser-assisted periodontal therapy vs conventional scaling and root planing. *Journal of Pharmacy and Bioallied Sciences* **16**(Suppl 1):S880–S882 DOI [10.4103/jpbs.jpbs_1072_23](https://doi.org/10.4103/jpbs.jpbs_1072_23).

Dutra TP, Freitas Monteiro M, França-Grohmann IL, Casarin RCV, Casati MZ, Silvério Ruiz KG, Kumar PS, Sallum EA. 2023. Clinical, immunological and microbiological evaluation of experimental peri-implant mucositis and gingivitis in subjects with Grade C, stage III/IV periodontitis background. *Journal of Clinical Periodontology* **51**(2):209–221 DOI [10.1111/jcpe.13896](https://doi.org/10.1111/jcpe.13896).

Emanuel EJ. 2013. Reconsidering the declaration of Helsinki. *Lancet* **381**(9877):1532–1533 DOI [10.1016/S0140-6736\(13\)60970-8](https://doi.org/10.1016/S0140-6736(13)60970-8).

Ferreira SD, Martins CC, Amaral SA, Vieira TR, Albuquerque BN, Cota LOM, Esteves Lima RP, Costa FO. 2018. Periodontitis as a risk factor for peri-implantitis: systematic review and meta-analysis of observational studies. *Journal of Dentistry* **79**:1–10 DOI [10.1016/j.jdent.2018.09.010](https://doi.org/10.1016/j.jdent.2018.09.010).

Figueiredo LC, Bueno-Silva B, Nogueira CFP, Valadares LC, Garcia KMM, Filho GCDL, Milanello L, Esteves FM, Shibli JA, Miranda TS. 2020. Levels of gene expression of immunological biomarkers in peri-implant and periodontal tissues. *International Journal of Environmental Research and Public Health* **17**(23):9100 DOI [10.3390/ijerph17239100](https://doi.org/10.3390/ijerph17239100).

Genco RJ. 1992. Host responses in periodontal diseases: current concepts. *Journal of Periodontology* **63**(4S):338–355 DOI [10.1902/jop.1992.63.4s.338](https://doi.org/10.1902/jop.1992.63.4s.338).

Hammami C, Nasri W. 2021. Antibiotics in the treatment of periodontitis: a systematic review of the literature. *International Journal of Dentistry* **2021**(8):6846074 DOI [10.1155/2021/6846074](https://doi.org/10.1155/2021/6846074).

Heitz-Mayfield LJA, Heitz F, Lang NP. 2020. Implant disease risk assessment IDRA—a tool for preventing peri-implant disease. *Clinical Oral Implants Research* **31**(4):397–403 DOI [10.1111/clr.13585](https://doi.org/10.1111/clr.13585).

Heitz-Mayfield LJ, Mombelli A. 2014. The therapy of peri-implantitis: a systematic review. *International Journal of Oral & Maxillofacial Implants* **29**(Supplement):325–345 DOI [10.11607/jomi.2014suppl.g5.3](https://doi.org/10.11607/jomi.2014suppl.g5.3).

Iuşan SAL, Lucaciu OP, Petrescu NB, Mirică IC, Toc DA, Albu S, Costache C. 2022. The main bacterial communities identified in the sites affected by periimplantitis: a systematic review. *Microorganisms* **10**(6):1232 DOI [10.3390/microorganisms10061232](https://doi.org/10.3390/microorganisms10061232).

Kinane DF, Hart TC. 2003. Genes and gene polymorphisms associated with periodontal disease. *Critical Reviews in Oral Biology & Medicine* **14**(6):430–449 DOI [10.1177/154411130301400605](https://doi.org/10.1177/154411130301400605).

Klokkevold PR, Newman MG. 2000. Current status of dental implants: a periodontal perspective. *International Journal of Oral and Maxillofacial Implants* **15**:56–65.

Kotsakis GA, Olmedo DG. 2021. Peri-implantitis is not periodontitis: scientific discoveries shed light on microbiome-biomaterial interactions that may determine disease phenotype. *Periodontology 2000* **86**(1):231–240 DOI [10.1111/prd.12372](https://doi.org/10.1111/prd.12372).

Koyanagi T, Sakamoto M, Takeuchi Y, Maruyama N, Ohkuma M, Izumi Y. 2013. Comprehensive microbiological findings in peri-implantitis and periodontitis. *Journal of Clinical Periodontology* **40**(3):218–226 DOI [10.1111/jcpe.12047](https://doi.org/10.1111/jcpe.12047).

Larsson L, Decker AM, Nibali L, Pilipchuk SP, Berglundh T, Giannobile WV. 2016. Regenerative medicine for periodontal and peri-implant diseases. *Journal of Dental Research* **95**(3):255–266 DOI [10.1177/0022034515618887](https://doi.org/10.1177/0022034515618887).

Larsson L, Kavanagh NM, Nguyen TVN, Castilho RM, Berglundh T, Giannobile WV. 2022. Influence of epigenetics on periodontitis and peri-implantitis pathogenesis. *Periodontology 2000* **90**(1):125–137 DOI [10.1111/prd.12453](https://doi.org/10.1111/prd.12453).

Lasserre JF, Brex MC, Toma S. 2018. Oral microbes, biofilms and their role in periodontal and peri-implant diseases. *Materials* **11**(10):1802 DOI [10.3390/ma11101802](https://doi.org/10.3390/ma11101802).

Lee A, Wang HL. 2010. Biofilm related to dental implants. *Implant Dentistry* **19**(5):387–393 DOI [10.1097/ID.0b013e3181effa53](https://doi.org/10.1097/ID.0b013e3181effa53).

Loe H, Silness J. 1963. Periodontal disease in pregnancy. I. Prevalence and severity. *Acta Odontology Scandivica* **21**(6):533–551 DOI [10.3109/00016356309011240](https://doi.org/10.3109/00016356309011240).

Loos BG, Papantonopoulos G, Jepsen S, Laine ML. 2015. What is the contribution of genetics to periodontal risk? *Dental Clinics of North America* **59**:761–780 DOI [10.1016/j.cden.2015.06.005](https://doi.org/10.1016/j.cden.2015.06.005).

Machtei EE, Oved-Peleg E, Peled M. 2006. Comparison of clinical, radiographic and immunological parameters of teeth and different dental implant platforms. *Clinical Oral Implants Research* **17**(6):658–665 DOI [10.1111/j.1600-0501.2006.01282.x](https://doi.org/10.1111/j.1600-0501.2006.01282.x).

Maruyama N, Maruyama F, Takeuchi Y, Aikawa C, Izumi Y, Nakagawa I. 2014. Intraindividual variation in core microbiota in peri-implantitis and periodontitis. *Scientific Reports* **4**(1):6602 DOI [10.1038/srep06602](https://doi.org/10.1038/srep06602).

Meffert RM. 1996. Periodontitis vs. peri-implantitis: the same disease? The same treatment? *Critical Reviews in Oral Biology and Medicine* **7**(3):278–291 DOI [10.1177/10454411960070030501](https://doi.org/10.1177/10454411960070030501).

Misch CE. 2014. An implant is not a tooth: a comparison of periodontal indices. *Dental Implant Prosthetics-E-Book* 2:46–55.

Mombelli A, Lang NP. 1992. Antimicrobial treatment of peri-implant infections. *Clinical Oral Implants Research* **3**(4):162–168 DOI [10.1034/j.1600-0501.1992.030402.x](https://doi.org/10.1034/j.1600-0501.1992.030402.x).

Papapanou PN, Sanz M, Buduneli N, Dietrich T, Feres M, Fine DH, Flemmig TF, Garcia R, Giannobile WV, Graziani F, Greenwell H, Herrera D, Kao RT, Kebusch M, Kinane DF, Kirkwood KL, Kocher T, Kornman KS, Kumar PS, Loos BG, Machtei E, Meng H, Mombelli A, Needleman I, Offenbacher S, Seymour GJ, Teles R, Tonetti MS. 2018. Periodontitis: consensus report of workgroup 2 of the 2017 world workshop on the classification of periodontal and peri-implant diseases and conditions. *Journal of Periodontology* **89**(S1):S173–S182 DOI [10.1002/JPER.17-0721](https://doi.org/10.1002/JPER.17-0721).

Renvert S, Persson GR. 2009. Periodontitis as a potential risk factor for peri-implantitis. *Journal of Clinical Periodontology* **36**(s10):9–14 DOI [10.1111/j.1600-051X.2009.01416.x](https://doi.org/10.1111/j.1600-051X.2009.01416.x).

Renvert S, Persson GR, Pirih FQ, Camargo PM. 2018. Peri-implant health, peri-implant mucositis, and peri-implantitis: case definitions and diagnostic considerations. *Journal of Clinical Periodontology* **45**(S20):S278–S285 DOI [10.1111/jcpe.12956](https://doi.org/10.1111/jcpe.12956).

Robitaille N, Reed DN, Walters JD, Kumar PS. 2016. Periodontal and peri-implant diseases: identical or fraternal infections? *Molecular Oral Microbiology* **31**(4):285–301 DOI [10.1111/omi.12124](https://doi.org/10.1111/omi.12124).

Safioti LM, Kotsakis GA, Pozhitkov AE, Chung WO, Daubert DM. 2017. Increased levels of dissolved titanium are associated with peri-implantitis—a cross-sectional study. *Journal of Periodontology* **88**(5):436–442 DOI [10.1902/jop.2016.160524](https://doi.org/10.1902/jop.2016.160524).

Salvi GE, Aglietta M, Eick S, Sculean A, Lang NP, Ramseier CA. 2012. Reversibility of experimental peri-implant mucositis compared with experimental gingivitis in humans. *Clinical Oral Implants Research* **23**(2):182–190 DOI [10.1111/j.1600-0501.2011.02220.x](https://doi.org/10.1111/j.1600-0501.2011.02220.x).

Schwarz F, Alcoforado G, Guerrero A, Jönsson D, Klinge B, Lang N, Mattheos N, Mertens B, Pitta J, Ramanauskaitė A, Sayardoust S, Sanz-Martin I, Stavropoulos A, Heitz-Mayfield L. 2021. Peri-implantitis: summary and consensus statements of group 3. The 6th EAO consensus conference 2021. *Clinical Oral Implants Research* **32**(S21):245–253 DOI [10.1111/clr.13827](https://doi.org/10.1111/clr.13827).

Schwarz F, Derkx J, Monje A, Wang HL. 2018. Peri-implantitis. *Journal of Clinical Periodontology* 45(S20):S246–S266 DOI 10.1111/jcpe.12954.

Sedghi LM, Bacino M, Kapila YL. 2021. Periodontal disease: the good, the bad, and the unknown. *Frontiers in Cellular and Infection Microbiology* 11:766944 DOI 10.3389/fcimb.2021.766944.

Shiba T, Watanabe T, Komatsu K, Koyanagi T, Nemoto T, Ohsugi Y, Michi Y, Katagiri S, Takeuchi Y, Ishihara K, Iwata T. 2021. Non-surgical treatment for periodontitis and peri-implantitis: longitudinal clinical and bacteriological findings—a case report with a 7-year follow-up evaluation. *SAGE Open Medical Case Reports* 9:2050313x211029154 DOI 10.1177/2050313X211029154.

Silness J, Löe H. 1964. Periodontal disease in pregnancy II. Correlation between oral hygiene and periodontal condition. *Acta Odontology Scandivica* 22(1):121–135 DOI 10.3109/00016356408993968.

Talib EQ, Taha GI. 2024. Involvement of interlukin-17A (IL-17A) gene polymorphism and interlukin-23 (IL-23) level in the development of peri-implantitis. *BDJ Open* 10(1):12 DOI 10.1038/s41405-024-00193-9.

Turkmen M, Firatli E. 2022. The study of genetic predisposition on periodontitis and peri-implantitis. *Nigerian Journal of Clinical Practice* 25(11):1799–1804 DOI 10.4103/njcp.njcp_19_22.

Vaz P, Gallas MM, Braga AC, Sampaio-Fernandes JC, Felino A, Tavares P. 2012. IL1 gene polymorphisms and unsuccessful dental implants. *Clinical Oral Implants Research* 23(12):1404–1413 DOI 10.1111/j.1600-0501.2011.02322.x.

Young L, Grant R, Brown T, Lamont T. 2021. Does a history of periodontal disease affect implant survival? *Evidence-Based Dentistry* 22(1):24–25 DOI 10.1038/s41432-021-0152-8.

Yu XL, Chan Y, Zhuang L, Lai HC, Lang NP, Keung Leung W, Watt RM. 2019. Intra-oral single-site comparisons of periodontal and peri-implant microbiota in health and disease. *Clinical Oral Implants Research* 30(8):760–776 DOI 10.1111/clr.13459.

Yuan S, Wang C, Jiang W, Wei Y, Li Q, Song Z, Li S, Sun F, Liu Z, Wang Y, Hu W. 2022. Comparative transcriptome analysis of gingival immune-mediated inflammation in peri-implantitis and periodontitis within the same host environment. *Journal of Inflammation Research* 15:3119–3133 DOI 10.2147/JIR.S363538.

Zhang Y, Li Y, Yang Y, Wang Y, Cao X, Jin Y, Xu Y, Li SC, Zhou Q. 2021. Periodontal and peri-implant microbiome dysbiosis is associated with alterations in the microbial community structure and local stability. *Frontiers in Microbiology* 12:785191 DOI 10.3389/fmicb.2021.785191.