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ABSTRACT
Here, we have discussed the molecular mechanisms of p53-responsive microRNAs
dysregulation in response to genotoxic stress in diffuse large B-cell lymphoma (DLBCL)
patients. The role of micro ribonucleic acids (microRNAs) in p53-signaling cellular
stress has been studied. MicroRNAs are the small non-coding RNAs, which regulate
genes expression at post-transcriptional level. Many of them play a crucial role
in carcinogenesis and may act as oncogenes or suppressor of tumor growth. The
understanding of the effect of p53-responsive microRNA dysregulation on oncogenesis
achieved in recent decades opens wide opportunities for the diagnosis, prediction and
of microRNA-based cancer therapy. Development of new bioinformatics tools and
databases for microRNA supports DLBCL research. We overview the studies on the
role of miRNAs in regulating gene expression associated with tumorigenesis processes,
with particular emphasis on their role as tumor growth-suppressing factors. The starting
point is a brief description of the classical microRNA biogenesis pathway and the role
of p53 in regulating the expression of these molecules. We analyze various molecular
mechanisms leading to this dysregulation, including mutations in the TP53 gene,
DNA methylation, changes in host-genes expression or microRNA gene copy number,
mutations in microRNA and microRNA biogenesis genes.

Subjects Bioinformatics, Genomics, Molecular Biology, Oncology, Translational Medicine
Keywords Diffuse Large B-cell Lymphoma (DLBCL), microRNA regulation, p53 response
elements, Gene expression, microRNA-based cancer therapy

INTRODUCTION
The TP53 gene plays a central role in limiting tumor development. The p53 protein
it encodes is involved cell cycle arrest and DNA repair to protect genome integrity or
irreversible activation of apoptosis/aging programs. This ensures the removal of irreparably
damaged and malignant cells and made possible by activating or suppressing transcription
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of several clusters of hundreds of functionally related genes having p53 response elements
(Capaccia et al., 2022).

In recent decades, the key role of micro ribonucleic acids (microRNAs) in p53-signaling
cellular stress has been established. MicroRNAs are the small non-coding RNAs, which
regulate genes expression at post-transcriptional level. Many of them play a crucial role
in carcinogenesis and may act as oncogenes or suppressor of tumor growth. The role of
microRNAs in tumors development has been actively studied in recent decades, because
they participate in all cell processes that modulate malignant cell potential, such as cell cycle
control, DNA damage response, DNA differentiation, proliferation, apoptosis, adhesion,
metabolic reprogramming, epithelial-mesenchimal transition, etc. (Ghosh et al., 2021).

The efforts of a numerous researchers have made it possible to identify a large set of
p53-responsive microRNAs (Ghatak et al., 2021; Madrigal et al., 2021; Grespi et al., 2016;
Smolarz et al., 2022). One or the other of them is down-regulated in different cancers
relative to appropriate normal tissue, further supporting the idea that they might be part
of a tumor-suppressing program (Voropaeva et al., 2020; La et al., 2018; Braun et al., 2008).
In recent review the authors have mentioned the importance of p53-microRNA network
in diagnostic and therapeutic approaches for numerous cancers (Sargolzaei, Etemadi &
Alyasin, 2020).

Understanding the effect of p53-responsive microRNA dysregulation on oncogenesis
achieved in recent decades opens up wide opportunities for the diagnosis, prediction and
of microRNA-based cancer therapy. The latter seems to be the most difficult. Despite the
encouraging results of a growing number of studies indicating the potential of microRNAs
as therapeutic agents or therapy targets, there are a number of problems that need to be
resolved (Winkle et al., 2021a; Seo et al., 2019; Ashrafizadeh et al., 2021; Hashemi & Gorji-
Bahri, 2020;Orlov et al., 2023), one ofwhich is as follows. The hypothesis of the usefulness of
using microRNAs as targets of therapy is largely based on in vitro experiments with cultures
of tumor cell lines. In these models took into account of one reason or another reason
of the studied microRNAs dysregulation (copy number alteration, nucleotide sequence
changes, epigeneticmodifications, etc.) (Peng et al., 2020;Chim et al., 2011a;Xu et al., 2022;
Fatema, Larson & Barrott, 2022). In experiments the elimination of this cause leads to the
restoration of normal microRNA expression, sensitivity to chemotherapy and apoptosis
neoplastic cells (Hedström et al., 2013; Larrabeiti-Etxebarria et al., 2019). At the same time,
various aberrations may be the basis for microRNA expression deregulation in the same
type of malignant neoplasm. The existing inter-patient and intra-tumor heterogeneity will
inevitably prevent the transfer of success achieved in preclinical conditions to real patients.

In this review, important issues concerning the molecular mechanisms of interested
microRNA dysregulation in response to genotoxic stress in diffuse large B-cell lymphoma
(DLBCL) patients are discussed. We provide an overview of previous studies on the role
of miRNAs in regulating gene expression associated with tumorigenesis processes, with
particular emphasis on their role as tumor growth-suppressing factors. The starting point
is a brief description of the classical microRNA biogenesis pathway and the role of p53 in
regulating the expression of these molecules. Subsequently, the results of studies showing
dysregulation of specific associated with the response to p53 microRNAs in DLBCL
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are discussed. We analyze various molecular mechanisms leading to this dysregulation,
including mutations in the TP53 gene, DNAmethylation, changes in host-genes expression
or microRNA gene copy number, mutations in microRNA and microRNA biogenesis
genes.

This cross-disciplinary review is intended for a wide range of readers, including
researchers and physicians in the fields of hematology, oncology, laboratory genetics,
and medicine.

METHODOLOGY SECTION
A search was conducted for publications in databases PubMed,Web of Science, Scopus with
the use of keywords and word combinations: DLBCL; p53-responsive microRNAs; TP53
gene; miR-34; miR-129; miR-203; miR-143; mir-145; biogenesis; expression; methylation;
mutations; deletion. We have analyzed publications issued from 2010 to 2024, limited our
search to studies conducted in humans and human cell lines and published in English.
A small number of earlier publications, including those of historical interest, have been
included in this review.

MicroRNA-target interactions for Homo sapiens were described according to
miRTarBase, which contains only experimentally validated data (Huang et al., 2022). The
data of the DLBCL standard karyotyping were obtained from the Mitelman Database of
Chromosome Aberrations and Gene Fusions in Cancer (https://mitelmandatabase.isb-
cgc.org/) (Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer,
2024). Cases of DLBCL with monosomy by chromosomes 1, 5, 7, 11, 14 or deletion
of 1p36, 5q32, 7q32, 11q23, 11p11, 14q32 loci were selected. The Affymetrix SNP 6.0
microarrays and NGS data were obtained from the cBioPortal for Cancer Genomics
database (https://www.cbioportal.org/) (Gao et al., 2013). Chromosomal copy-number
variation in the genome loci chr11:111,383,663-111,384,240 (MIR-34B/C gene),
chr7:127,847,925-127,847,996 (MIR-129-1 gene), chr11:43,602,944-43,603,033 (MIR-129-
2 gene), chr14:104,583,742-104,583,851 (MIR-203 gene), chr5:148,808,481-148,810,296
(MIR-143 andMIR-145 gene) according to GRCh37/hg19 assembly were analyzed.

A notion of the combined detection of the studied genes methylation was obtained using
the OncoPrinter tool (https://www.cbioportal.org/oncoprinter) (Gao et al., 2013).

Micro-RNAs biogenesis
Mature microRNAs are synthesized during multistage biogenesis. The canonical pathway
of this process includes the stages of the microRNA gene transcription by RNA polymerase
and formation of the primary microRNA transcript (pri-miR); cleavage of pri-miR in
the nucleus by nuclear RNase III Drosha and its cofactor DGCR8/Pasha to a microRNA
precursor (pre-miR), which is transported from the nucleus to the cell cytoplasm using
the exportin protein; cleavage of pre-miR in the cytoplasm using another RNase III Dicer
to a microRNA duplex consisting of mature and antisense microRNA (miR). One of the
duplex strands is subsequently included in the RNA-induced silencing complex (RISC)
by the Argonaute protein and serves to suppress the corresponding targets by repressing
translation or by directing mRNA degradation (Gulyaeva & Kushlinskiy, 2016).
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There are many reasons for the disruption of normal microRNA expression, which
are based on both genetic and epigenetic changes. All of them lead to disruption of the
processes of transcription and subsequent microRNA processing (Zhang, Liao & Tang,
2019).

Description of p53-responsive microRNAs
The p53-mediated cellular response to genotoxic stress is carried out due to changes
in the expression spectrum of microRNAs, namely the activation of tumor suppressor
microRNAs (miR-15a/16, miR-23a, miR-29, miR-107, miR-143, miR-145, miR-192,
miR-194, miR-215, miR-605, let-7 and other) and suppression of oncogenic microRNAs
(miR-17-92 cluster, miR-221/2222 and other), which is possible to implement both directly
through transcription-dependent mechanisms and indirectly (Capaccia et al., 2022; Zhang,
Liao & Tang, 2019; Jacques et al., 2020; Kaller et al., 2022).

A number of studies have shown a decrease in the level of tumor suppressor microRNAs
miR-34a, miR-34b, miR-34c, miR-129, miR-203, miR-145, miR-143 in DLBCL compared
with non-tumor lymphoid tissue (Hedström et al., 2013;Akao et al., 2007; lsaadi et al., 2021;
Yamagishi et al., 2015; Zheng et al., 2021; Leivonen et al., 2017; Larrabeiti-Etxebarria et al.,
2023). An increase in the expression of miR-145 and miR-143 in DLBCL tissue compared
to healthy B-lymphocytes has been recorded only in the study by Lawrie et al. (2009).

The listed microRNAs are p53-responsive. It is important to note that some of them
are involved in a feedback loop complex with p53, which contributes to enhanced, better
controlled and fine-tuning of the cellular response to genotoxic stress (Cabrita et al., 2016).
For example, miR34a may create a positive feedback loop with p53 by inhibiting the
deacetylase SIRT1, which lead to p53 acetylation and activation (Gong et al., 2023; Ong &
Ramasamy, 2018), whereas miR-129 and miR-145 directly target the anti-apoptotic factors
MDM2 and MDM4, and, thus, counteract the MDM2 and MDM4-mediated suppression
of p53 signaling (Yao et al., 2021; Zeinali et al., 2019).

According to miRTarBase, which contains data on microRNA-target interactions
validated experimentally by reporter assay, western blot, microarray and next-generation
sequencing experiments, p53-responsive microRNAs, such as microRNAs miR-34 family,
miR-143/145 cluster, miR-129 and miR-203 have many common targets, namely
pro-oncogenic transcription factors, positive regulators of the cell cycle at the G1/S
transition checkpoint, anti-apoptotic factors, neoangiogenesis factors, participants in
oncogenic signaling pathways, as well as DNA methyltransferases, which are significant in
lymphomagenesis and oncogenesis in general (Table 1) (Larrabeiti-Etxebarria et al., 2019).

TheMIR-34A gene is mapped on 1p36.22. TheMIR-34B/C gene is mapped on 11q23.1
and is responsible for the sequence of the bicistronic transcript, from which mature
microRNAs miR-34b and miR-34c are subsequently formed. MIR-34A and MIR-34B/C
are located in the host genes of long non-coding RNAs, such as EF570048 and BC021736,
respectively (Asmar et al., 2014).

MicroRNAs of the miR-34 family are characterized by a high degree of homology in the
seed sequence, which is necessary for binding to mRNA targets. Using bioinformatics and
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Table 1 Selected significant in lymphomogenesis oncogenic targets, according to miRTarBase (Ong &
Ramasamy, 2018).

MicroRNA MicroRNA targets

miR-34a MYC, CDK4/6, BCL2, NOTCH1/2, VEGFA, MAP3K9, SOX2
miR-34b MYC, CDK4/6, BCL2, NOTCH1/2, VEGFA, MAP2K1, SOX2
miR-34c MYC, CDK4/6, BCL2, MDM4, NOTCH1/4, PDGFRA/B, SOX2
miR-129 MYC, CDK6, NOTCH1, BCL2L2, MAPK6, MAP3K2, PDGFRA, SOX4
miR-143 BCL2, MDM2, KLF4, DNMT3A, MAPK1/7, MAP3K, PDGFRA, SOX2
miR-145 MYC, CDK4/6, CDKN1A, STAT1, KLF4/5, MAP3K3, MAP2K4,

MAP3K11, VEGFA, MDM2, SOX2/9/11

experimental studies, microRNAs of the miR-34 family have been shown to have a large
number of common targets (Zhang, Liao & Tang, 2019).

Human microRNA miR-129 is encoded by MIR-129-1 and MIR-129-2, which located
intergenic on 7q32.1 and 11p11.2, respectively (Yu et al., 2013). The targets of miR-129
are mRNAs of several oncogenes, the most studied of which are CDK6, PDGFRA, FOXP1,
HMGB1 and the stem cell transcription factors SOX4, EIF2C3 and CAMTA1 (Yu et al.,
2013;Wang, Luo & Guo, 2014; Voropaeva et al., 2022a).

The MIR-143 and MIR-145 genes are located 1.7 kb apart on 5q32. The host-gene of
this microRNA cluster is the CARMN non-coding RNA gene. It is assumed that miR-143
and miR-145 are formed from a common precursor and their functions are co-operated
(Pidíkova, Reis & Herichova, 2020). It has been shown that the levels of miR-143 and miR-
145 increase in response to stress through the PI3K/Akt and p53-mediated pathways. The
targets of miR-143 are such well-known oncogenes as SOX2, KLF4, DNMT3A, MAPK1/7,
MAP3K, BCL2, MDM2 and PDGFRA. miR-145 is involved in the post-transcriptional
regulation of SOX2/9/11, STAT1, CDKN1A, KLF4/5, MAP3K3, MAP2K4, MAP3K11,
MYC, CDK4/6, VEGFA, MDM2, etc. (Voropaeva et al., 2023d; Zhang et al., 2022).

TheMIR-203 gene is located in the intergenic region of the chromosomal locus 14q32.33.
Studies show that the microRNA miR-203 encoded by this gene, besides targeting CDK6,
SOX2/4, VEGFA, MYD88, MDM4, BCL2L2, is also involved in post-transcriptional
control of PI3K/AKT, SRC, RAS/MAPK and JAK/STAT3 signaling pathways participants.
Its predicted targets are proto-oncogenes such as DNMT3B and CREB1 (Voropaeva et al.,
2022a).

Impaired p53 function as a cause of deregulation of p53-responsive
microRNAs
Mutations of the TP53 gene are the commonest molecular genetic changes in malignant
neoplasms including DLBCL. A recent review has addressed the importance of TP53 gene
mutations in DLBCL that is relevant to poor prognosis. The better understanding of
abnormalities of p53 is meant for the basis of development of better therapeutic strategy
for DLBCL (Wen et al., 2024). Most of them affect the DNA-binding domain (Fig. 1A) and
can be divided into three types based on their effect: loss-of-function, gain-of-function and
dominant-negative. It is critically important because by its function the p53 protein is a
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transcription factor that is involved in the expression of numerous protein andmicroRNA-
coding genes (Wen et al., 2024). Over the years, several published research strongly
established the gain of function mutant p53 promoting aberrant expression of several
miRNAs leading to cells reprogramming and pluripotency, provoke chemoresistance and
cell survival to drive different cancer phenotypes (Ghatak et al., 2021;Madrigal et al., 2021).
On the other hand, the loss-of-function mutations lead to disruption of the ability of p53
to contact regulatory elements of canonical target microRNA genes (Strano et al., 2007). A
predominant repression effect on miRNA expression was found for p53 mutants (Madrigal
et al., 2021; Zhang et al., 2016).

Also, both wild type and mutant p53 may affect microRNA processing. Wild-type
p53 has been shown to regulate microRNA maturation by facilitating Drosha-mediated
processing of pri-miRNA into pre-miRNA (Liu et al., 2017) whereas mutant p53 may
break biogenesis and decrease production of mature microRNAs not only by inhibiting
the interaction between Drosha and pri-microRNA (Yao et al., 2021; Asmar et al., 2014;
Speciale et al., 2020; Navarro & Lieberman, 2015), but also by inhibiting p63 and reducing
Dicer expression (Liu et al., 2017).

MIR-34A, MIR-34B/C, MIR-129-1, MIR-129-2, MIR-143 and MIR-145 genes, which
contain the sequence of the corresponding microRNAs, are p53-responsive. It has been
proven that the promoters of all of these genes except MIR-203 contain p53-responsive
elements triggering transcription by binding of 53 protein (Asmar et al., 2014; Poli, Seclí
& Avalle, 2020; Rihani et al., 2015; Madrigal et al., 2021). The participation of p53 in the
regulation of expression at the post-transcriptional level has been described for microRNAs
miR-203 and the miR-143/145 cluster (Larrabeiti-Etxebarria et al., 2023; Yao et al., 2021;
Asmar et al., 2014; Davis-Dusenbery & Hata, 2010; Bruijn et al., 2023).

The decrease in the expression of microRNAs miR-34a, miR-34b, miR-34c, miR-129,
miR-203, miR-145, miR-143 in tumors with mutant p53 status has been shown (Navarro
& Lieberman, 2015; Poli, Seclí & Avalle, 2020; Fang et al., 2023). Unfortunately, there is
no large-scale current study of the expression repertoire of p53-responsive microRNAs
depending on the mutational status of TP53 in tumor samples from patients with DLBCL.

However, mutations in the TP53 gene are verified in 20% of cases of DLBCL at the time
of diagnosis, with an even higher frequency in relapsed lymphoma (Li et al., 2023).

Considering the mentioned above, impairment of p53 function as a result of mutations
could potentially be one of the significant reasons for the decrease in the level of p53-
responsive microRNAs of the miR-34, miR-203, miR-129 family and the miR-143/145
cluster described in DLBCL. An additional reason to think so is the fact that the most
common hot-spots of mutations in the TP53 gene in DLBCL are codons 175 and 248. The
mutations in codons 135 and 273 also commonly occur in this disease (Fig. 1A) (Bykov
et al., 2018; Gurtner et al., 2016; Muller et al., 2014). In studies on various malignancies,
missense mutations in these codons have been correlated with lower activity in processing
pri-miRNA to pre-miRNA. In particular, p53 is associated with Drosha/DGCR8 through
interaction with p68 and p72. Mutant p.C135Y, p.R175H, p.R273H and p.R248Q p53
disrupt the assembly of the complex with Drosha by sequestering p68, while mutant
p.R175H and p.R273H variants of p53 inhibit Drosha activity by direct binding proteins
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Figure 1 Somatic mutations in the TP53 gene in DLBCL. (A) Distribution and characteristics of muta-
tions in the TP53 gene in DLBCL according to the results of next generation sequencing (NGS) analysis of
1,295 samples presented in the cBioPortal for Cancer Genomics database (Gao et al., 2013); (B) impaired
maturation of pri-miRNA to pre-miRNA in the case of mutations in codons 135, 175, 248 and 273, which
are mutation hotspots in the TP53 gene.

Full-size DOI: 10.7717/peerj.18661/fig-1

p72 and p68 (Fig. 1B) (Gurtner et al., 2016). The observations of impaired processing
of pre-miR to microRNA duplex under the influence of Dicer in the cytoplasm due to
inhibition of p63 activity under the influence of p.R175H and p.R273Hmutant p53 protein
have been described (Muller et al., 2014).
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In addition to mutations, of course, there are other mechanisms for dysfunction of
the TP53 gene. However, they are less common in DLBCL. There are a small number of
published studies which purpose was to carry out assessment of other types of aberrations
that potentially lead to impairedmicroRNA expression in DLBCL. For example, it is known
that loss of 17p (locus of the TP53 gene location) occurs in 16% (according to standard
karyotyping) and TP53methylation—in 5–6% of cases at the time of diagnosis of DLBCL.
Often these aberrations are combined in lymphoma tissue (Voropaeva et al., 2019; Fiskvik
et al., 2013; Voropaeva et al., 2023a).

The relationship between p53-responsive microRNA expression and
host-gene expression
The relationship between p53-responsive microRNA expression and host-gene expression
seems to be a less studied aspect. Transcription of microRNA genes is carried out by RNA
polymerase (Pol II or Pol III). Intergenic miRNAs are transcribed independently using
their own promoters, whereas intragenic miRNAs ones may be co-transcribed with the host
gene. The dependence of miRNA expression on host gene expression and transcription
factors has been demonstrated in several tumors. However, experimental evidence of such
a correlation is still insufficient (Kaller et al., 2022).

The relationship between p53-dependent microRNAs expression and host gene
expression also appears to be extremely complex. The genes MIR-34A, MIR-34B/C, MIR-
145 andMIR-143, unlikeMIR-129-1, MIR-129-2 andMIR-203, have an intragenic location,
thus their expression potentially may depend on the expression host gene. However, at the
present time there is no evidence of a relationship between the expression of the analyzed
p53-responsive miRNA genes and their host genes in primary samples of DLBCL patients.
This may be due to the following. All of the listed genes have been found to have their
own promoters (Zhang et al., 2022; Cavard et al., 2023; Strmsek & Kunej, 2014; Tang et al.,
2016). For example, for the genes of the miR-143/145 cluster, separate promoter regions
and independent transcription factors have been identified (Zeinali et al., 2019; Pidíkova,
Reis & Herichova, 2020). This is why, when CARMN is knocked down, the expression of
miR-143 and miR-145 may decrease, but does not disappear completely (Zhang et al.,
2022). Moreover, the transcriptional regulation ofMIR-34B/C may be carried out not only
from the promoter of the host gene, but also from the promoter of the oppositely oriented
BTG4 gene (Cavard et al., 2023).

The significance of methylation of p53-responsive microRNA genes
The extensive analysis of genomic sequences of microRNA genes has shown that DNA
methylation is one of the most common mechanisms for disrupting their transcription in
malignant neoplasms (Zeinali et al., 2019). The microRNAs we describe are no exception.
The promoters MIR-34A, MIR-34B/C, MIR-129-2, MIR-203, MIR-143 and MIR-145,
unlike MIR-129-1 gene, also contain CpG islands, the aberrant methylation of which
causes a decrease in microRNA expression in a wide range of neoplasms (Voropaeva et
al., 2023d; Voropaeva et al., 2022b; Voropaeva et al., 2023c; Benati et al., 2017; Wong et al.,
2013; Gao et al., 2016; Hother et al., 2012; Chim et al., 2011; Voropaeva et al., 2023b).
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Methylation of microRNAs of the miR-34 family in DLBCL tumor tissue has been
analyzed in several studies. According to the obtained results, the frequency of methylation
in systemic DLBCL ranged from 23–28% for the MIR-34A gene and 55–78% for the
MIR-34B/C gene (Asmar et al., 2014; Voropaeva et al., 2022a; Wong et al., 2013), while in
DLBCL of central nervous system it was 57% and 95.2%, respectively (Munch-Petersen et
al., 2016). According to literature methylation frequencies in the studied DLBCL samples
were 65% for MIR-129-2 and 66% for MIR-203 (Voropaeva et al., 2022a). Moreover,
comprehensive study of the gene methylation status in DLBCL samples showed that
methylation of MIR-34A, MIR-34B/C, MIR-129-2 and MIR-203 in the tissue of affected
lymph nodes of patients with DLBCL was a tumor-specific and combined phenomenon
(Voropaeva et al., 2023a).

The works on quantitative assessment of the level of methylation of p53-responsive
microRNA genes are of great interest. In particular, the data obtained by the Reduced
Representation Bisulfite Sequencing method, which indicate an increase in the level of
methylation of genes encoding miR-129 and miR-203 in relapsed DLBCL samples in
comparison with diagnostic samples are very noteworthy and may signify an increasing
role of methylation during tumor progression of lymphoma (Leivonen et al., 2017).

The above data indicate that methylation of microRNA genes in DLBCL appears
to be a very promising therapeutic target. The reversibility of aberrant methylation
of the promoters of the described genes was demonstrated in lymphoid tumor cell lines.
Treatment of tumor cells with demethylating agents led to restoration of the level of mature
microRNAs, inhibition of cell proliferation and triggering of cell death by apoptosis (Wong
et al., 2013; Chim et al., 2011).

Thus, aberrant methylation may be one of the significant mechanisms of impaired
expression of microRNAs miR-203, mir-129, miR-34a, miR-34b and miR-34c in DLBCL.
At the same time, the methylation data for the miR-143/145 cluster are fundamentally
different. Studies of MIR-143 and MIR-145 methylation in lymphoid tissue have shown
that, on the one hand, the methylation of these genes occurs in reactive lymphadenopathy
and thus is not tumor-specific feature in DLBCL. On the other hand, quantitative analysis
has revealed a greater range of values of the average level of methylation of the MIR-143
gene in samples from patients with DLBCL, but in general it was significantly lower than
the values in samples from patients with reactive lymphadenitis (Voropaeva et al., 2023c;
Voropaeva et al., 2023b). This, along with the inconsistency of data on the direction of
changes in microRNA expression in DLBCL tumor tissue, indicates the need for further
research into the mechanisms of epigenetic regulation of miR-143/145 cluster (Akao et al.,
2007; Lawrie et al., 2009; Voropaeva et al., 2023c; Voropaeva et al., 2023b; Roehle et al., 2008;
Fischer et al., 2011; Vaisitti et al., 2018).

Copy number alteration in the loci of p53-responsive microRNA genes
According to recent data, up to half of all miRNA genes are located in genome regions that
undergo amplification, deletion, or other structural rearrangements (Zeinali et al., 2019),
and one of the possible reasons for the decreased expression of p53-responsive microRNAs
in DLBCL may be the loss of entire chromosomes or deletion of chromosomal loci. For
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example, the MIR-129-1 gene is located in the fragile FRA7H site of chromosome 7 and
is often lost in tumors (Gao et al., 2016), whereas recurrent chromosomal rearrangements
involving the long arm of chromosome 14, where theMIR-203 gene is located, and deletion
of 11p11.2, the location of the MIR-129-2 gene, are common in lymphomas including
DLBCL (Aya-Bonilla et al., 2011; Aya-Bonilla et al., 2013; Ricketts, Carter & Coleman,
2003). It is shown that four protein coding genes oncosuppressors, including p53-induced
protein (PIG11), also localized within 11p11.2-p12 (Ricketts, Carter & Coleman, 2003).

Interesting data from Zhu et al. (2000) showed that the deletion frequency of 11q23
(the location locus of MIR-34B/C) in a group of 17 DLBCL samples was very low (only
4.2%). At the same time, all three studied cases of transformation of indolent lymphoma
into DLBCL, called the Richter syndrome, had a deletion of 11q23. This may indicate that
gene loss is a late event in the evolution of lymphoma. In the work ofHezaveh et al. (2016),
whole-genome-derived copy number analysis did not reveal copy number violations in the
promoter regions or regions of the miR-143/145 cluster genes in any of the 19 analyzed
samples. As can be seen in the available literature, only a few studies of copy number
disturbances of the microRNA genes in small sets of samples are described, which increases
the practical significance of the analysis of available databases accumulating information
on the molecular genetic characteristics of tumors.

It should be noted that karyotyping is widely used in hematology and is themainmethod
used to search for and characterize chromosomal abnormalities in DLBCL (Hezaveh et al.,
2016; Wang & LaFramboise, 2019). In this regard, we analyzed data from the Mitelman
Database of Chromosome Aberrations and Gene Fusions in Cancer (Mitelman Database
of Chromosome Aberrations and Gene Fusions in Cancer, 2024), which provides data on
1,612 cases of DLBCL with cytogenetic abnormalities. We discovered that the loss of entire
chromosomes or deletions of their sections in the locations of the MIR-34A, MIR-34B/C,
MIR-129-1, MIR-129-2, MIR-203 genes and the miR-143/145 cluster occurred at 3.1%,
4.4%, 3.4%, 3.2%, 0.1% and 4.3%, respectively (Fig. 2A). In terms of all DLBCL cases
including cases without cytogenetic aberrations these values may seem even less significant.

However, the classical cytogenetic method is known to have limitations. In particular,
karyotyping does not allow detecting small chromosomal rearrangements that are outside
the resolution range of the method (Shah et al., 2017). In this regard, the data presented in
the cBioPortal for Cancer Genomics database are of great interest (Gao et al., 2013). The
results of profiling of 396 DLBCL samples using Affymetrix SNP 6.0 microarrays were
analyzed. It turned out that a decrease in genome copy number in the chr1:9,211,727-
9,211,836 locus (GRCh37/hg19 by NCBI Gene), where the MIR-34A gene is located,
occurred in 19% of cases. This value is lower than data by Gru et al. (2013), who described
a high incidence of microdeletion of the 1p36 region in non-Hodgkin lymphomas.
According to their data, nine out of 32 (28%) studied DLBCL cases had 1p36microdeletion
by fluorescence in situ hybridization (FISH) technique, not recognized by conventional
cytogenetics (Gru et al., 2013). Such differences in frequency may be primarily due to
different sample sizes and composition, as well as methodological approaches.
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Figure 2 Disturbance of genome copy number in the loci of p53-responsive microRNA genes. (A) The
frequency of detected chromosomal abnormalities (monosomies and deletions of microRNA gene loci)
according to a classic cytogenetic study of 1,612 DLBCL samples with cytogenetic defects presented in
the Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer (Mitelman Database of
Chromosome Aberrations and Gene Fusions in Cancer, 2024) (B) Cases with decrease in genome copy num-
ber in the loci of p53-responsive microRNA genes (rose color) presented in the cBioPortal for Cancer Ge-
nomics database (Gao et al., 2013).

Full-size DOI: 10.7717/peerj.18661/fig-2

Further, according to data, presented in the cBioPortal for Cancer Genomics database,
the reduction of genome copy number in the gene loci MIR-34B/C (chr11:111,383,663-
111,384,240), MIR-129-1 (chr7:127,847,925-127,847,996), MIR-129-2 (chr11:43,602,944-
43,603,0 33), MIR-203 (chr14:104,583,742-104,583,851), MIR-143 and MIR-145 genes
(chr5:148,808,481-148,810,296), were observed in 5%, 13%, 16%, 14% and 12% of
samples, respectively (Fig. 2B) (Gao et al., 2013; Taylor et al., 2018).

These data seem be extremely interesting. First, deletion or the loss of entire chromosome
are the causes of MIR-34B/C gene loss, whereas the decrease in copy number of other
described genes appears to be associated with microdeletions. Second, a decrease in copy
number as a cause of decreasedmicroRNA expressionmay have the greatest importance for
miR-34a microRNA, and to a lesser extent for miR-129, miR-143, miR-145 and miR-203,
whereas for miR-34b and miR-34c this mechanism may be insignificant. Third, as can be
seen from Fig. 3B, the combined loss of two or more genes of p53-responsive microRNAs
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Figure 3 Spectrum and frequency of detected aberrations in microRNA biogenesis genes according to
the analysis of 1295 DLBCL samples presented in the cBioPortal for Cancer Genomics database (Gao et
al., 2013).

Full-size DOI: 10.7717/peerj.18661/fig-3

often occurs in DLBCL. The combination of deletions is statistically significant even after
correction for multiple comparisons for the gene pairs indicated in Table 2.

Variants of the nucleotide sequence of p53-responsive microRNA genes
Until recently, very little attention was paid to changes in the nucleotide sequence of the
genome outside the locations of protein-coding genes, because currently it is extremely
difficult to assess their functional effect. The capabilities of bioinformatics for such an
assessment are extremely limited. In this regard, the data on the frequency, structural and
functional effect of somatic or germline variants of nucleotide sequence in miRNA genes
are currently very limited (Machowska, Galka-Marciniak & Kozlowski, 2022). However,
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Table 2 The analysis of the tested pairs among the genes losses by the OncoPrinter, according to the
cBioPortal for Cancer Genomics database (Navarro & Lieberman, 2015).

Gene 1 Gene 2 Log2 odds ratio p-value q-Value Tendency

MIR-129-2 MIR-203 2.669 <0.001 <0.001 Co-occurrence
MIR-129-2 MIR-34B/C >3 <0.001 <0.001 Co-occurrence
MIR-129-2 MIR-143/145 2.042 <0.001 <0.001 Co-occurrence
MIR-129-2 MIR-34A 1.766 <0.001 <0.001 Co-occurrence
MIR-143/145 MIR-34A 1.887 <0.001 <0.001 Co-occurrence
MIR-143/145 MIR-203 2.019 <0.001 <0.001 Co-occurrence
MIR-34A MIR-203 1.577 0.001 0.003 Co-occurrence
MIR-129-1 MIR-143/145 1.548 0.005 0.010 Co-occurrence
MIR-129-1 MIR-129-2 1.347 0.012 0.021 Co-occurrence
MIR-34B/C MIR-203 1.794 0.015 0.023 Co-occurrence

Notes.
The analysis of the combined microRNA genes losses was carried out using the one-sided Fisher’s exact criterion (p-value) and
multiple testing corrections with Benjamin–Hochberg procedure (q-value).

potential effects of mutations or single nucleotide polymorphisms in various parts of
the miRNA gene sequence may be changes in the processes of transcription, biogenesis
of miRNAs and their targets recognition. Thus, the decrease in miRNA expression may
occur due to the mutations in the microRNA gene promoter or any part of the microRNA
precursor sequence, including mutations in DROSHA/DICER1 cleavage sites or miRNA
duplex, mutations disrupting/creating new PB motifs, etc. (Machowska, Galka-Marciniak
& Kozlowski, 2022).

In the available literature, we have found only single descriptions of the spectrum of
microRNA mutations that were detected at both the DNA and RNA levels in DLBCL
samples. Using sequencing datasets from a large cancer genomics project, The Cancer
Genome Atlas (TCGA), 36 miRNA mutations were described in 37 DLBCL samples. Most
of them (92.7%) were found as substitutions, another 2.8% were nucleotide insertions. At
the same time, 40.5% of the samples did not have any microRNA mutation. Among the
mutated miRNA genes in DLBCL, the genesMIR-34A, MIR-34B/C, MIR-129-1, MIR-129-
2, MIR-203 and the miR-143/145 cluster are not included, unlike miR-1324 and miR-142
(Urbanek-Trzeciak et al., 2020; Galka-Marciniak et al., 2021). In one of the studies in a set
of 19 samples of DLBCL, the authors reported the detection of mutations in the genes of
only three microRNAs, namely miR-142, miR-612 and miR-4322 (Hezaveh et al., 2016).
In Kwanhian et al. (2012), no other mutations except in miR-142 were observed in the
analysis of 56 lymphoma samples (Kwanhian et al., 2012).

These data suggest that nucleotide sequence variants in the p53-responsive miRNA
genes we analyzed are at least a rare event in DLBCL. However, it is undoubtedly necessary
to conduct studies with a large sequencing depth and a large number of DLBCL samples
included as well as to develop new methods of statistical and bioinformatics processing in
order to clarify the frequency and improve understanding of the effects of genetic variants
in microRNA genes.

Voropaeva et al. (2025), PeerJ, DOI 10.7717/peerj.18661 13/28

https://peerj.com
http://dx.doi.org/10.7717/peerj.18661


Mutations in microRNA biogenesis genes
The regulation of miRNA biogenesis is complex, tightly controlled, and may be disrupted
by various factors such as mutations or epigenetic modifications, and the expression level is
the outcome of the transcription and subsequent biogenesis of microRNAs, in which a large
number of proteins are involved (Gulyaeva & Kushlinskiy, 2016). All microRNA biogenesis
genes are participants of several steps, namely nuclear step ofmiRNAbiogenesis (SMAD2/4,
FUS, SRSF3, DROSHA, DGCR8, DDX5/17 and GSK3B), export to cytoplasm (XPO5 and
RAN ), cytoplasmic step ofmiRNA biogenesis (DICER1, TARBP2, PRKRA, ADAR, KHSRP,
LIN28A/B, TUT4/7, DIS3L2) and miRNA functioning (TNRC6A, AGO1/2/3/4, FMR1,
MOV10, GEMIN4) (Galka-Marciniak et al., 2021; Annese et al., 2020). It has been reported
that mutation frequencies in some of these genes specifically and significantly increased
in certain types of cancer. However, none of the 29 microRNA biogenesis genes could be
classified as over mutated genes in DLBCL (Jafari et al., 2015).

Analysis of whole exome sequencing data sets of 37 paired tumor and normal samples
from patients with DLBCL, available in the TCGA repository, has shown the presence
of mutations in only seven (TNRC6A, MOV10, DGCR8, DIS3L2, GEMIN4, LIN28B and
RAN ) out of 29 microRNA biogenesis genes. In total, 16% of samples have had mutations
in microRNA biogenesis genes (Galka-Marciniak et al., 2021).

According to the analysis of high-throughput sequencing data of 1295 DLBCL samples
presented in the cBioPortal for Cancer Genomics database, aberrations rarely detected
in all genes except for three, namely MOV10, PRKRA and DDX5 (Mitelman Database of
Chromosome Aberrations and Gene Fusions in Cancer, 2024). A total of 6.9% of samples had
aberrations in microRNA biogenesis genes, while disorders that are presumably drivers of
the tumor process (missense and truncating mutations, deep deletions) were identified in a
small number of cases (Fig. 3). However, two samples of DLBCL are noteworthy, in which
a significant combination of aberrations was identified in six functionally related genes of
the nuclear (DROSHA, DGCR8 and GSK3B) and cytoplasmic (TUT4, LIN28 and ADAR)
stages of microRNA biogenesis.

The function of the affected in these two samples of DLBCL genes is briefly described
below. Drosha and DGCR8 are considered as major machinery components of miRNA
biogenesis nuclear steps (Jafari et al., 2015). The GSK3B gene encodes the GSK3 β kinase,
which has been shown recently to bind to DGCR8 and p72 in the microprocessor and thus
stimulate the Drosha-cofactor and Drosha-pri-miR interaction (Fletcher et al., 2017).

The Lin28a protein, whose biochemical activity is indistinguishable from that of the
homologue Lin28b, is a regulatory factor in the cytoplasmic stage of microRNA biogenesis.
Lin28 binds to pre-microRNAafter export from the nucleus to the cytoplasm. Subsequently,
another protein (TUT4 protein) recognizes the Lin28-pre-miRNA complex and performs
its uridylation, which makes the pre-miRNA resistant to Dicer processing. It has also been
reported that Lin28 proteins interfere with the processing of pri-miRNA to pre-miRNA by
Drosha (Heo et al., 2009). Abnormalities in the TUT4 and LIN28 genes, encoding specific
suppressors of miRNA biogenesis, are involved in carcinogenesis.

The adenosine deaminase acting on RNA (ADA) enzyme converts adenosine to inosine
in double-stranded RNAs, including microRNAs duplex, which leads to disruption of
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miRNAmaturation process and activity (Tomaselli et al., 2013). ADAR knockout can cause
hematological tumors in animal models (Correia De Sousa et al., 2019).

The mutations found in these genes are regarded as variants of unknown significance,
but their potential effect may be a disruption of the basic biogenesis of microRNAs, and
an additional study is required to prove it.

CONCLUSION AND FUTURE PERSPECTIVE
The research focused on microarray expression profiling of miRNAs shows that general
microRNA deregulation is a common event in neoplasms: tumors have their own spectrum
of microRNAs that is different from normal cells (Jones & Lal, 2012). In this regard
microRNAs are recognized markers with diagnostic and prognostic values, as well as
potential targets for the treatment of a wide range of tumors. At the same time, at the
present stage of scientific development, there is still a lack of full understanding of how
the expression of each of the microRNAs in normal cells is controlled in general, and
what underlies the disruption of its expression in various diseases, including malignant
neoplasms. It is known that one of the main characteristics of tumor cells is genetic
instability, manifested by the accumulation of damage at the different levels of the
organization of hereditary material: chromosomal aberrations, microsatellite instability,
gene mutations, as well as epigenetic changes (disturbances in methylation patterns,
histone modifications), etc. (Garnett & McDermott, 2012), which can lead to disruption
of microRNA expression deregulation at various levels. Arising from this inter-patient
and intra-tumor heterogeneity present in reality will inevitably prevent the transfer of
therapeutic success of correction of one or another cause of microRNA deregulation
achieved in experiments in cell lines to real patients.

Aberrant expression of microRNAs is also observed in lymphomas, including DLBCL—
the most frequent and aggressive variant of non-Hodgkin’s lymphomas. Not only
differences in the level of microRNAs in lymphoma cells and normal lymphoid tissue
have been shown, but also the possibility of dividing DLBCL into prognostically different
subgroups of the disease from cells of germinal origin and activated B cells, based on
analysis of the spectrum of expressed microRNAs (Larrabeiti-Etxebarria et al., 2019;
Larrabeiti-Etxebarria et al., 2023; Lawrie et al., 2009).

We are interested in some p53-responsive microRNAs miR-34a, miR-34b, miR-34c,
miR-129, miR-203, miR-145 and miR-143, which play tumor suppressor role in DLBCL.
Several studies have demonstrated a decrease in the expression of these microRNAs in
lymphoma tissue (Hedström et al., 2013; Akao et al., 2007; lsaadi et al., 2021; Yamagishi
et al., 2015; Zheng et al., 2021; Larrabeiti-Etxebarria et al., 2023; Mazan-Mamczarz &
Gartenhaus, 2013). Moreover, low miR-129 expression was found to be associated with
shorter survival in DLBCL patients both with and without R-CHOP treatment, containing
a combination of chemotherapy drugs cyclophosphamide, doxorubicin hydrochloride
(hydroxydaunomycin), and vincristine sulfate (oncovin), the targeted therapy drug
rituximab, and the steroid hormone prednisone (Hedström et al., 2013). Low miR-34a
level was also found to be associated with chemoresistance (Larrabeiti-Etxebarria et al.,
2019).

Voropaeva et al. (2025), PeerJ, DOI 10.7717/peerj.18661 15/28

https://peerj.com
http://dx.doi.org/10.7717/peerj.18661


Taking into account the fragmentation of available data, we reviewed a number of
potential molecular mechanisms in the disruption of these microRNAs expression in
DLBCL. The data presented in this review provide a more comprehensive, but far from
complete, understanding of the possible reasons for the decrease in the level of p53-
responsive microRNAs miR-34a, miR-34b, miR-34c, miR-129, miR-203, miR-145 and
miR-143 in DLBCL.

We can conclude that the disruption of microRNA biogenesis resulting from variants in
the nucleotide sequence of the genes encoding them or variants in the nucleotide sequence
of the genes of key proteins involved in miRNA biogenesis does not seem to have a
significant importance in DLBCL. On the contrary, changes in the number of somatic gene
copies may be significant for impaired expression of described p53-responsive microRNAs
in DLBCL except for miR-34b. For example, theMIR-34A gene is lost, mainly through the
mechanism of microdeletions in every fifth case, and theMIR-129-1, MIR-129-2, MIR-203
and miR-143/145 cluster genes are lost in DLBCL somewhat less frequently.

Also the aberrant methylation of the regulatory sequences of the genes MIR-34A,
MIR-34B/C, MIR-129-1, MIR-129-2 and MIR-203, but not MIR-145 and MIR-143, is the
most common, tumor specific and combined phenomenon among various mechanisms
of deregulation of described microRNAs expression in DLBCL. In recent years, liquid
biopsy has become increasingly important in oncology. Its capabilities are being studied
not only for the purpose of early diagnosis of tumors, but also to assess the depth of
response to treatment, monitor the level of minimal residual disease and early diagnosis
of disease recurrence (Talotta et al., 2023). As stated above, miRNAs genes methylation
associatedwithmiRNAs deregulation in tumor lymphoid tissue can be utilized as diagnostic
biomarker for DLBCL. Assessment of the methylation status of target microRNA genes by
free circulating tumor DNA requires further study and could become one of approaches
to liquid biopsy in patients with DLBCL in the future. The technical possibility of assessing
the status of DNA methylation in the framework of liquid biopsy in DLBCL was shown
earlier (Wedge et al., 2017).

Aberrant methylation of studied microRNAs genes has therapeutic implication, because
hypomethylating agents may be useful to eliminate such methylation. The reversibility
of methylation of the promoter MIR-203 and MIR-129-2 when treated with 5-Aza-
2′-deoxycytidine was shown on Hodgkin’s lymphoma and non-Hodgkin’s lymphoma
cell lines, which led to the restoration of expression of microRNAs encoded by these
genes, inhibition of cell proliferation or induction of tumor cell death (Peng et al., 2020;
Chim et al., 2011; Xu et al., 2022; Fatema, Larson & Barrott, 2022). Such hypomethylating
agents as azacitidine and decitabine have already been approved for the treatment of
blood malignancies, for example, myelodysplastic syndrome and acute myeloid leukemia,
associated with global genome hypermethylation phenomena (Zhou et al., 2020). However,
recent studies have shown that the global methylation level in DLBCL is characterized by
high variability (Chambwe et al., 2014). In particular, there are cases of lymphoma with
global genome hypomethylation (Wedge et al., 2017). These data indicate the need to
select patients with DLBCL for therapy with hypomethylating agents. Moreover, due
to the nonspecific nature of their action, simultaneously with a decrease in the level of
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methylation of CpG islands in the promoters of oncosuppressor genes, hypomethylating
agents can potentially cause a decrease in the level of methylation of proto-oncogenes,
which can contribute to the progression of the disease (Jun et al., 2019). Ongoing clinical
trials in combined hypomethylating agents therapy (high-dose chemotherapy or chimeric
antigen receptor (CAR) T-cell immunotherapy) with other treatments aim to determine
the optimal therapy dose and synergy effect in the treatment of in refractory/relapsed
DLBCL patients (Kalinkova et al., 2022).

Moreover, it can be assumed that the removal of aberrant methylation itself may not lead
to the desired effect in the case of combined disorders in the tumor that lead to disruption
of microRNA expression. Unfortunately, with rare exceptions, we were unable to find
information on a comprehensive analysis of several mechanisms of microRNA expression
disruption in DLBCL samples. From the available data it should be mentioned the study of
methylation of the MIR-34A, MIR-34B/C, MIR-129-2 and MIR-203 genes and aberrations
(mutations and destruction of the polyadenylation signal) in the TP53 gene in DLBCL
which has shown that in the tissue of the affected lymph nodes of DLBCL patients these
violations were independent (Fiskvik et al., 2013).

As shown in the previous section of the review mutations in the TP53 gene are verified
in 20% and more of DLBCL cases. Various genomic editing options including base
editing, prime editing and upcoming technologies, are applicable to correct mutations.
Although there has been an increase in the number of studies revealing the possibilities of
CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/Cas9) technology
for editing the TP53 gene, such approach seems practically feasible in the extremely distant
future (Mirgayazova et al., 2020).

Dysfunction of p53 as a cause of deregulation of p53-responsive microRNAs requires
further research, because the following data add additional complexity to the current
picture. Transcription of p53-responsive microRNAs may be regulated not only by p53,
but also by other transcription factors (Kaller et al., 2022; Asmar et al., 2014). The level of
microRNAs in cells changes through a feedback loop depending on the level of expression
of target mRNAs and is regulated by various modifications affecting the stability of these
molecules, for example, adenylation (Kaller et al., 2022). However, these factors have not
been studied at all in DLBCL and may vary depending on the type of cells and the level of
cell differentiation.

Resolving these issues and deepening the understanding of aberrant expression of
microRNAs in tumors, including DLBCL, can be achieved through comprehensive studies
of various causes of their deregulation using a single large set of tumor biospecimen.

Regardless of the cause of the microRNA expression disorder, a universal therapeutic
approach in DLBCL could potentially be microRNA mimics. Some such drugs including
MRX34 (miR-34 mimic in a liposome) are undergoing preclinical and clinical trials
(Winkle et al., 2021b; Hong et al., 2020; Chakraborty et al., 2020). Thus, the effects of miR-
34 restoration in cancer cells lines by transfected with miR-34 mimics or infected with
the lentiviral miR-34 expression system were as follows: reduced the expression of target
oncogenes (Bcl-2, Notch etc.), chemosensitized, impaired cell growth, accumulated the
cells in G1 phase, increased apoptosis (Ji et al., 2008). However, the results of such studies

Voropaeva et al. (2025), PeerJ, DOI 10.7717/peerj.18661 17/28

https://peerj.com
http://dx.doi.org/10.7717/peerj.18661


in human are still not encouraging due to large number of immune-related side effects
up to fatal outcomes and serious adverse events associated with miRNA overexpression
demanding data integration (Mirgayazova et al., 2020; Golebiewski et al., 2024). Obviously,
further advances in this field are possible provided that more natural analogues, safe and
effective strategies for targeted delivery of these therapeutic agents to the cells of interest
are developed, ensuring the specificity of their action (Huang et al., 2023).
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