
Submitted 11 July 2022
Accepted 17 November 2024
Published 11 February 2025

Corresponding author
Paul Holloway, paul.holloway@ucc.ie

Academic editor
Anastazia Banaszak

Additional Information and
Declarations can be found on
page 21

DOI 10.7717/peerj.18653

Copyright
2025 de la Torre Cerro et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Modelling asynchrony in phenology
considering a dynamic representation
of meteorological variables
Rubén de la Torre Cerro1,2,3, Gourav Misra4,5, Emily Gleeson6, Guy Serbin7,
Jesko Zimmermann8, Fiona Cawkwell1,2, Astrid Wingler2,9 and Paul Holloway1,2

1Department of Geography, University College Cork, Cork, Ireland
2 Environmental Research Institute, University College Cork, Cork, Ireland
3 School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne,
United Kingdom

4National Centre for Geocomputation, Maynooth University, Kildare, Ireland
5Department of Computer Science, Maynooth University, Kildare, Ireland
6Research and Applications Division, Met Éireann, Dublin, Ireland
7 EOanalytics Limited, Dublin, Ireland
8Department of Agrifood Business and Spatial Analysis, Rural Economy and Economic Development
Programme, Teagasc Ashtown Research Centre, Dublin, Ireland

9 School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland

ABSTRACT
Shifts in the timing of phenological events across many taxa and ecosystems are a
result of climate change. Within a trophic network, phenological mismatches between
interlinked species can have negative impacts for biodiversity, ecosystems, and the
trophic network. Here we developed interaction indices that quantify the level of
synchrony and asynchrony among groups of species in three interlinked trophic
levels, as well as accounting for a dynamic representation of meteorology. Insect
first flight, vegetation green-up and arrival of migrant birds were the phenological
indicators, obtained from a combination of spatially and temporally explicit species
observations from citizen science programmes and remote sensing platforms (i.e.,
Landsat). To determine phenological shifts in interlinked taxa we created and applied
several phenological indices of synchrony-asynchrony, combining information from
the phenological events and critical time windows of meteorological variables. To
demonstrate our method of incorporating a meteorological component in our new
interaction index, we implemented the relative sliding time window analysis, a stepwise
regression model, to identify critical time windows preceding the phenological events
on a yearly basis. The new indices of phenological change identified several asynchronies
within trophic levels, allowing exploration of potential interactions based on synchrony
among interlinked species. Our novel index of synchrony-asynchrony including a
meteorological dimension could be highly informative and should open new pathways
for studying synchrony among species and interaction networks.
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INTRODUCTION
Phenology is the study of cyclic and seasonal phenomena in organisms, such as leaf
unfolding, leaf senescence, flowering of plants, animal migration, and timing of the
breeding season. Quantifying temporal changes in phenology is imperative for biodiversity
conservation, as phenological variations can result in changes in ecosystem functioning
and services (Peñuelas & Filella, 2001; Peñuelas, Rutishauser & Filella, 2009; Le Quéré et
al., 2018). The impact of climate change on phenology is widely studied (Gordo &
Sanz, 2010; Jones & Cresswell, 2010; Primack et al., 2009; Roberts et al., 2015; Gordo &
Sanz, 2005; Visser, Holleman & Gienapp, 2006; O’Neill et al., 2012; Gordo & Sanz, 2006;
Dunn & Møller, 2014; Bateman et al., 2016; Chmura et al., 2023), with results typically
demonstrating the relationship between phenology and the variation in climatic drivers.
The effect of temperature rise is widely linked to advanced phenological events (Van
De Pol et al., 2016; Irons et al., 2017), and given projected global increases in temperature
(Seneviratne et al., 2021), there is the potential for significant phenological change across
ecosystems.

Phenological delays for a single species can have an extended impact across the trophic
network due to the complexity of interlinked ecosystems. Although phenological advances
resulting from climate change are well documented (i.e., earlier flowering and leaf unfolding
in spring—Mayor et al., 2017; Primack et al., 2009; Rafferty & Ives, 2011), sensitivity and
response to changes in meteorological conditions are expected to vary within groups and
species, as well as in space and time. Therefore, phenological asynchronies between different
trophic levels are expected (e.g., flowering time and pollinator activity; bird migration
and insect development) given species specific phenological sensitivity to weather and
climate (Thackeray et al., 2016; Kharouba et al., 2018; Youngflesh et al., 2023). Phenological
asynchronies result in a reduction in pollination services and supress interactions among
species (Both et al., 2009); however, to-date methods for studying phenological interactions
alongside climate drivers are scarce (de la Torre Cerro & Holloway, 2021).

Studies investigating spatiotemporal asynchronies in phenological events have
predominantly focused onmonitoring changes of a single species, or an array of species, that
are usually linked through the trophic network (Gordo & Sanz, 2006; Jones & Cresswell,
2010; O’Neill et al., 2012; Reed et al., 2013; Dunn & Møller, 2014). Spatial asynchronies
in the phenology of these interactor species can provide important information on
distributional ranges, while temporal asynchronies provide insight into potential trophic
cascades. Trophic indices of asynchrony have been traditionally developed between
producers and primary consumers or two directly connected levels using either direct
(biotic interactions) or indirect (co-existence) methods (Post & Forchammer, 2008; Mayor
et al., 2017). However, the exploration of trophic synchrony-asynchrony across more than
two levels through an index is rare (de la Torre Cerro & Holloway, 2021).

The variation of phenological events is often statistically related to a choice of
environmental variables (i.e., climate); however, these models might not capture the actual
variation simply due to an incorrect selection of abiotic drivers or their spatiotemporal
scale (Van De Pol et al., 2016). Selecting the appropriate temporal scale of environmental
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variables determining phenological sensitivity is neither an easy task, nor should it be a
factor of minor concern (Van De Pol & Bailey, 2019). Moreover, phenological sensitivity
to the environment varies across species, meaning interspecific interactions can be altered
due to asynchronies between trophic levels. This can result in negative effects on individual
species’ fitness, which could translate into implications at community and ecosystem
level (Donoso et al., 2016; Timberlake, Vaughan & Memmott, 2019). Therefore, selecting
the most informative environmental variables with an appropriate temporal resolution,
time window, and spatial extent is vital to enhance model performance and predictions
of a particular event of study (Van De Pol et al., 2016; Holloway, Kudenko & Bell, 2018;
Simmonds, Cole & Sheldon, 2019). Given the overarching effect of these environmental
drivers on phenological events and subsequent interactions, any interaction index must
consider the role of the environment within their quantification.

While interaction indices have been widely used (Donoso et al., 2016; Oleques, Overbeck
& de Avia Jr, 2017; Powell et al., 2024), there persists a need to investigate phenological
synchrony-asynchrony across multiple trophic levels. Moreover, given the importance of
environmental variables in determining the timing of these events, research is needed to
identify whether such variables can be incorporated into interaction indices to better inform
our understanding of phenology and support biodiversity conservation. Here we address
this research gap by using time series records of phenological events to model species
synchrony-asynchrony through the trophic network, while simultaneously including a
high-resolution meteorological dimension. This novel interaction index, which accounts
for (a) multiple trophic levels and (b) environmental variables, should open new pathways
for studying synchrony-asynchrony among species and interaction networks under climate
change. Secondary to this methodological development, our research also permits the
opportunity to ask questions related to meteorological drivers and their critical time
windows associated with phenological events over a 11-year period and whether these
windows of interaction alter or change across the three trophic levels.

METHODS
Study area and species
Ireland is situated in the north-west of Europe in the North-East Atlantic basin,
presenting a temperate maritime climate (McCarthy, Gleeson & Walsh, 2015). Future
annual temperatures (mean, maximum, minimum) and rainfall (annual, seasonal) are
expected to increase in both the short-term (2040) and long-term (2100) (O’Brien &
Nolan, 2023; O’Brien et al., 2024; Wang et al., 2024), which will have implications for the
timing of phenological events. The landscape is fragmented with a patchy configuration of
grassland pastures, agricultural areas, and forest, with the predominant types of woodland
being broad-leaved, bog, coniferous, mixed, and transitional woodland-shrub (Carlier et
al., 2021).

Changes in phenology in the Republic of Ireland (hereafter Ireland) arewell documented,
particularly advanced spring phenology for different species groups (O’Neill et al., 2012;
Donnelly, Salamin & Jones, 2006; Donnelly, Yu & Liu, 2015). For example, earlier time of
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Table 1 List of species and woodland vegetation habitats shown by group, illustrating the common
name of each species and the code each species or vegetation group was given in our study. GVW (Pieris
napi), LW (Pieris brassicae),MB (Maniola jurtina), PC (Aglais io), RA (Vanessa atalanta), RI (Aphantopus
hyperantus), SMW (Pieris rapae), ST (Aglais urticae), SPW (Pararge aegeria), BM (Opisthograptis lute-
olata), CMC (Dysstroma truncate), DA (Apamea monoglypha), ET (Selenia dentaria), FS (Ochropleura
plecta),HD (Agrotis exclamationis), LY (Noctua pronuba), SS (Diarsia rubi),WE (Spilosoma lubricipeda),
BS (Hirundo rustica), GW (Sylvia communis), NW (Oenanthe oenanthe) SW (Acrocephalus schoenobaenus)
andWW (Phylloscopus trochilus).

Species/Group Code Species/Group Code

Green Veined White GVW
Bog Woodland BW Large White LW
Mixed Broadleaf/Conifer Woodland MBC Meadow Brown MB
(Mixed) Broadleaf Woodland MBW Peacock PC
Oak-Ash-Hazel Woodland OAH Red Admiral RA
Oak-Birch-Holly Woodland OBH Ringlet RI
Wet Pedunculate Oak-Ash Woodland WOA Small Tortoiseshell ST
Wet Willow-Alder-Ash Woodland WAA Small White SMW

V
eg
et
at
io
n
G
ro
up

Bu
tt
er
fly

Sp
ec
ie
s

Speckled Wood SPW
Brimstone Moth BM
Common Marbled Carpet CMC

Barn Swallow BS Dark Arches DA
Greater Whitethroat GW Early Thorn ET
Northern Wheatear NW Flame Shoulder FS
Sedge Warbler SW Heart & Dart HD
Willow Warbler WW Large Yellow LY

Small Square SS

M
ig
ra
nt

Bi
rd
s

M
ot
h
Sp

ec
ie
s

White Ermine WE

emergence and extended flight season of moths (O’Neill et al., 2012), advancements and/or
delays in time of arrival and departure of migrant birds as well as extended length of stay
(Donnelly, Geyer & Yu, 2015) and earlier start and duration of growing season in trees
(Donnelly, Salamin & Jones, 2006). Consequently, we have selected Ireland as a case study
to apply our models for phenological research while emphasizing these methodologies
have a broad scope and can be applied to phenological systems elsewhere.

We explored phenological synchrony/asynchrony for three different trophic levels:
woodland vegetation, insects (lepidoptera; butterflies and moths), and birds. Species
selection for insects and birds was performed to select common and migrant species,
respectively, while screening for species with a high number of observations and preferably
those that are interlinked through the trophic network. Table 1 shows the common names
and codes used for animal species and woodland vegetation habitats. Indicator species for
the woodland habitats (canopy, shrub, and field layer) are listed by Perrin et al. (2008).

Species data
Start of season (hereafter, ‘‘green-up’’, ‘‘GU’’) dates were calculated from national scale
Landsat data. These data were obtained in a pre-processed form from the United States

de la Torre Cerro et al. (2025), PeerJ, DOI 10.7717/peerj.18653 4/29

https://peerj.com
http://dx.doi.org/10.7717/peerj.18653


Geological Survey (USGS) EROS Science Processing Architecture On Demand Interface
(ESPA) (https://espa.cr.usgs.gov/). Spatially and temporally explicit data on insects (first
flight) and birds (date of arrival) were collated from citizen science projects. Butterfly data
were obtained from The Irish Butterfly Monitoring Scheme from the National Biodiversity
Data Centre (https://www.biodiversityireland.ie), and moth data from MothsIreland
(http://www.mothsireland.com), and bird data from eBird (2017) (Sullivan et al., 2009) and
BirdTrack (https://www.bto.org/our-science/projects/birdtrack).

Meteorological data
Three meteorological drivers were selected for inclusion as explanatory variables in the
statistical models: maximum temperature (TMAX), minimum temperature (TMIN), and
total precipitation (TPPT). These variables were calculated using hourly values obtained
from Met Éireann’s ReAnalysis (MÉRA,Whelan, Gleeson & Hanley, 2018; Gleeson, Whelan
& Hanley, 2017) data set. This high resolution regional reanalysis spans an area covering
Ireland, the UK and part of northern France on a 2.5 km horizontal grid from 1981 to
August 2019. Daily precipitation totals and maximum temperatures were computed using
the sum andmaximum value respectively between the period 9UTC to 9UTC the following
day. Daily minimum temperatures were computed using theminimum temperature for the
same period, but the value is assigned to the following day. We utilised a high-resolution
(30 m) digital elevation model (DEM) dataset to apply a correction to the temperatures
(daily TMAX was too low and daily TMIN was too high on average), to account for a
mismatch between the orography in the HARMONIE-AROME (Bengtsson et al., 2017)
model used for MÉRA and the actual orography (Gleeson & Whelan, 2020). The DEM
dataset was firstly projected onto the MÉRA grid using the nearest neighbour method in
Climate Data Operators (CDO). The height differences between the MÉRA orography
and those of the DEM were used along with the international standard atmosphere lapse
rate of 6.49 K/km, as defined by the International Civil Aviation Organization (ICAO),
to apply temperature corrections based on the height differences between the model and
DEM orographies.

Data processing
Green-up dates in the form of Julian day were extracted from daily Normalised Difference
Vegetation Index (NDVI) values derived from Landsat imagery using the half-amplitude
method (Misra et al., 2018;White et al., 2009). Pre-processed Landsat time seriesNDVI data
masked for cloud cover for the years 2007–2018 (See Zenodo for detailed methodological
steps). The National Survey of Native Woodlands 2003–2008 (Perrin et al., 2008) and
Ancient Long-Established Woodlands (Perrin & Daly, 2010) survey-based polygons were
intersected to maximise the information available within each dataset obtained from the
National Parks and Wildlife Service, Ireland (NPWS, 2012; NPWS, 2019). The resulting
intersected polygons consisted of areas that have been pristine for the last two centuries,
have 100% coverage of trees and information on the dominant species. These polygons
were used to extract mean values of NDVI per raster layer and aggregated to monthly
maximum values to reduce the frequency of missing observations due to the previous

de la Torre Cerro et al. (2025), PeerJ, DOI 10.7717/peerj.18653 5/29

https://peerj.com
https://espa.cr.usgs.gov/
https://www.biodiversityireland.ie
http://www.mothsireland.com
https://www.bto.org/our-science/projects/birdtrack
https://doi.org/10.5281/zenodo.13991620
http://dx.doi.org/10.7717/peerj.18653


pre-processing (Fensholt & Proud, 2012). Residual missing observations in the NDVI time
series of each polygon were then filled using mean annual values, also referred to as
filling with climatology (Kandasamy et al., 2013). Each NDVI time series was subsequently
smoothed to remove spikes in the time series data and interpolated to daily values using a
LOESS function (Hufkens et al., 2019; Yuan et al., 2021).

First flight (FF) anddate of arrival (DA)were calculated for insects and birds, respectively.
To ensure sufficient species records to allow a robust sample size for use in the statistical
models and to overcome uncertainty associated with whether the first observation of species
sightings from the citizen science datasets was reflective of observer effort, we re-scaled
all data to a spatial resolution of 10 km × 10 km. We required a minimum of 3 species
sightings per 10 km grid to be included in the statistical analysis, with a minimum of 20
grids required per species and per year (see Zenodo). The number of grids represents the
sample size, herein referred to as N. This resulted in us merging the eBird and BirdTrack
datasets to ensure sufficient data of bird arrival. We took the first (i.e., earliest) date of
the species sighting as the date of the phenological event. We should note that the date in
which each phenological event is registered for the first time in a grid might differ within
grids and within years, and, consequently, the meteorological conditions in which the event
took place might be quite different to those experienced by the same species taking place
in another grid.

Synchrony-asynchrony index
To evaluate phenological asynchrony/synchrony between different trophic levels we used
the following interaction indices:

AL(a,b)= (DAai−FFbj) (1)

AL(a,c)= (DAai−GUck) (2)

AL(b,c)= (FFbj−GUck) (3)

where a, b, and c refer to the trophic levels incorporated in the analysis, respectively, which
are level 3 or secondary consumers (i.e., birds), level 2 or primary consumers (i.e., insects)
and level 1 or producers (i.e., woodland vegetation). DA refers to the date of arrival of
birds, FF refers to the date of first flight of insects, and GU refers to green up of vegetation.
i, j, and k refer to the different species incorporated in the index for trophic levels a,b, and
c , respectively.

When the phenological event for the higher trophic level takes place after the lower
levels, this index results in a positive number. This infers that the higher trophic level is
either exhibiting synchrony or delayed synchrony with the lower levels. Conversely, when
it takes place before, this index results in a negative number. This infers that the higher
trophic level is exhibiting asynchrony, or in other words birds are arriving before the insects
take flight.

For ease of interpretation, AL values were standardised between a consistent maximum
and minimum, with the maximum and minimum values for each group of species within
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a trophic level. Below is an example for trophic levels a and b.

AL′(a,b)=

(
AL(a,b)−min

(
AL(a,b)

))
(max

(
AL(a,b)

)
−min

(
AL(a,b)

)
)

(4)

Values close to 0 reflect asynchrony, 0.5 reflect perfect synchrony, and 1 reflect delayed
synchrony. Delayed synchrony means that species are undertaking their phenological
events in the anticipated order, but the delay between them may still result in trophic
cascades.

To assess interaction across the multiple trophic levels, we integrated Eqs. (1) and (3)
to estimate asynchrony among three trophic network levels using a qualitative integrated
(a)synchrony index (QAI) Eq. (5):

QAI =AL′(a,b)|AL
′

(b,c) (5)

We took the median value for AL’(a,b) and AL’(b,c) and substituted the numeric values
by ‘‘A’’ (asynchrony) when AL’ was lower than 0.5 or ‘‘S’’ (synchrony) when AL’ was equal
or greater than 0.5. We then put together those qualitative categories as shown in Eq. (5)
with the aim to easily identify whether synchrony was preserved over trophic levels, by
comparing bird-insect | insect-vegetation. We carried out a total of ninety combinations
for the QAI through 3 trophic levels. Qualitative combinations of QAI were: AS, AA, SS
or SA. For example, SS was reported when green up occurred before first flight, which
subsequently occurred before date of arrival, while AS was reported where green-up
occurred before first flight, but first flight occurred after date of arrival.

Interaction index of climate window movement
To evaluate changes in the sensitivity to meteorological variables and synchrony-
asynchrony, we developed the Interaction Index of Climate WindowMovement (IICWM).
This novel approach to quantifying synchrony-asynchrony includes a meteorological
dimension building on our AL index. For the purposes of this index, the use of climate
and meteorology can be considered synonymous, as the approach could be extended from
daily resolution weather data to decadal climate data. The meteorological dimension is
the critical time window for which a particular meteorological event resulted in the ‘best’
statistical model of the phenological event calculated using a relative sliding time window
(SWR) analysis from Climwin (Bailey & Van De Pol, 2016), in R (R Core Team, 2014).
Climwin fits all potential time windows within a selected range for each phenological
record and employs nested for-loops varying the start and end time of these windows. In
our case we wanted to test both the effect of spring phenology, but also if our models could
capture autumn signals. Therefore, we chose a temporal range of between 0 and 180 days
prior to the event. The meteorological dataset is then subset, only taking values that match
the tested window, providing a ‘‘window open’’ value and ‘‘window close’’ value. We ran
the relative sliding time window analysis for each species and year, across the study period.
For a full methodological account of the sliding time window analysis, please see Zenodo.

We then combined the synchrony-asynchrony index calculated through Eq. (1) with the
variation in the date of the opening critical time window for TMIN, TMAX, and TPPT, for
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each bird-insect interaction.

I ICWM=
(
AL(a,b)
WO

)
(6)

where WO refers to window open, calculated using Eq. (7). We used window open as
this parameter represents the initial date in which the model captures a signal from the
meteorological cue.

WO= (WO[TMINa]−WO[TMINb])

+(WO[TMAXa]−WO[TMAXb])+ (WO[TPPTa]−WO[TPPTb]) (7)

with the value a combination of the three environmental variables, TMIN, TMAX and
TPPT run iteratively for trophic levels a and b. Using the non-standardised AL(a,b) and
WO values for each particular year and species combination we identified three possible
categorisations (+,-,*) and two scenarios:

• Positive (+) IICWM represents a bird-insect combination that is synchronous, and
situations where bird time windows take place further in the past and/or insect windows
take place closer to first flight (scenario A).
• Asterisk (*) IICWM represents a bird-insect asynchronous combination together with
bird time windows taking place closer to DA or insect time windows taking place further
back before first flight (scenario B).
• Negative (-) IICWM will be returned in two cases: (1) when a particular bird-insect
combination is asynchronous in combinationwith scenarioA, or (2)when a synchronous
combination occurred together with scenario B.

RESULTS
Phenological events from 2008–2018
There was high variability in the timing of first flight, date of arrival, and green-up between
2008–2018 for all groups of species (Fig. 1). Five out of nine moth species took their first
flight between days 120–140 (Fig. 1A), while first flight among butterflies was more variable
(Fig. 1B). Four species of butterfly initiated first flight before day 100, while six species
showed similar median first flight values (Fig. 1B). In the case of birds, barn swallow,
and northern wheatear showed an early spring arrival while greater whitethroat and sedge
warbler showed arrivals later in the spring. Three species, willow warbler, sedge warbler,
and greater whitethroat presented an early median date of arrival (Fig. 1C). Vegetation
green-up dates showed the greatest variation, yet median dates were similar for four out of
seven vegetation groups (Fig. 1D).

When phenological events were analysed per species (Zenodo), certain trends emerged,
but the consistent result was varying phenology. For example, green-up dates showed great
variation during the period 2008–2018, with four vegetation groups (BW, MBC, OAH,
and WAA) advancing their phenology from 2008, two groups (MBW and OBH) delaying
their phenology, while one group (WOA) remained constant. Five moth species (BM,
DA, ET, HD, and WE) had a later first flight in 2018 than in 2008, while three (CMC, FS,
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Figure 1 Date of phenological events across the species between 2008–2018.Date of first flight for
moths (A) and butterflies (B), date of arrival of migrant birds (C), and green-up dates (D) for the period
2008–2018 at national level in Ireland. X axis represents each species within groups, Y axis represents the
date of the year, in ordinal number, in which the events took place. Boxes represent Julian days (ordinal
days) and whiskers represent standard deviation, showing median value for each date range (horizontal
line inside each box). Different colours represent different species within each group as shown in their re-
spective legends.

Full-size DOI: 10.7717/peerj.18653/fig-1

and SS) showed an earlier first flight across the decade. A similar result was observed in
butterflies, with five species presenting a later first flight in 2018. Arrival of migrant birds
also fluctuated, but date of arrival generally advanced over the decade for all species, except
for the greater whitethroat.

Synchrony-asynchrony indices of the trophic levels
The indices of synchrony-asynchrony between all birds and insects (AL(3,2)), insects
and woodland vegetation (AL(2,1)), and birds and woodland vegetation (AL(3,1)) were
performed for 251 species combinations. Median values across 2008–2018 showed that
77 species combinations were asynchronous (AL’ < 0.5) and 174 were synchronous (AL’
> 0.5). The most asynchronous interactions included barn swallow, northern wheatear,
sedge warbler, greater whitethroat, willow warbler, common marbled carpet, and early
thorn.

A network of potential species interactions at the national level for all 30 species was
developed using the median AL’ scores from 2008–2018 (Figs. 2–3). Species that were

de la Torre Cerro et al. (2025), PeerJ, DOI 10.7717/peerj.18653 9/29

https://peerj.com
https://doi.org/10.7717/peerj.18653/fig-1
http://dx.doi.org/10.7717/peerj.18653


Figure 2 Network of synchrony. Species represented are those that were considered as synchronous by
the different AL’ indices (AL’ ranged between 0.5–1). Different colours represent different trophic levels;
blue colour represents migrant birds, purple colour represent butterflies and moths, green colour repre-
sents vegetation. Lines represent synchrony between pairs of species. Line thickness represents synchrony
degree, the thicker the line the more synchronous the relationship (value closer to 0.5, considered as total
synchrony by our indices).

Full-size DOI: 10.7717/peerj.18653/fig-2

synchronous (Fig. 2) are potentially more likely to interact, but thinner lines represent
delayed synchrony. Species that were asynchronous (Fig. 3) show those that are occurring
in the ‘wrong’ order, with thicker lines showing a longer time discrepancy. Birds reported
the greatest asynchrony (Fig. 3) with several delayed relationships (i.e., thick lines) reported.
For example, barn swallow showed generalised asynchrony with AL’(3,2) ranging between
0.41–0.12 with all but two insect species, common marbled carpet (0.7) and early thorn
(0.63). The common marbled carpet showed asynchrony with all vegetation groups
with AL’(2,1) ranging from 0.47–0.43. Early thorn was asynchronous with three vegetation
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Figure 3 Network of asynchrony. Illustration of asynchrony degree among our study species according
to AL’ indices. Different colours represent different trophic levels; blue colour represents migrant birds,
purple colour represent butterflies and moths, green colour represents vegetation. Lines represent asyn-
chrony between pairs of species. Line thickness represents asynchrony degree, the thicker the line the more
asynchronous the relationship (value closer to 0, considered as total asynchrony by our indices) while nar-
rower lines represent lower degree of asynchrony.

Full-size DOI: 10.7717/peerj.18653/fig-3

groups, bog woodland,mixed broadleaved/conifer woodland, and wet pedunculate oak-ash
woodland, with AL’(2,1) ranging between 0.489–0.49.

Interaction index of climate window movement
Meteorological drivers & time windows of phenological events
Our climwin models illustrated a marked interannual variation in the timing of
phenological events. The opening and closing of relevant temporal windows were estimated
to influence the three meteorological variables at group and species level (Zenodo). For
example, in the case of woodland vegetation, all three meteorological variables showed
similar estimated influences for all seven types of vegetation, and Pc indicated statistical
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Table 2 Climwin results for OAH vegetation group showing yearly time windows in which green-up
was most influenced by each one of our meteorological variables.Window open reflects the number of
days prior to GU in which a driver started to influence GU, and takes place further back in time, while
window close (also shown in days prior GU) always takes place after window open, closer to the phenolog-
ical event. GU represents the Julian day of the year in which green-up took place at national level (in or-
dinal date). N means sample size, number of grids in which GU was measured. Asterisks denote statistical
significance showed by climwin Pc values.

Oak-ash-hazel woodland TMIN TMAX TPPT

Year N GU WOpen WClose WOpen WClose WOpen WClose

2008 129 64 168 147*** 179 108*** 89 56***

2009 129 38 165 118*** 179 121*** 82 42***

2010 129 57 175 141*** 142 89*** 147 96***

2011 129 42 175 140*** 151 78*** 60 1***

2012 129 41 179 144*** 72 19*** 90 57***

2013 129 54 15 0*** 169 152*** 89 49***

2014 129 37 177 148*** 175 97*** 56 6***

2015 129 37 46 5*** 77 9*** 61 33***

2016 129 35 178 144*** 179 118*** 76 12***

2017 129 32 180 159*** 60.5 27*** 29 1***

2018 129 45 37 7*** 143 123*** 92 14***

Notes.
*P-value < 0.5.
**P-value < 0.1.
***P-value < 0.001.

significance across drivers and windows (Pc < 0.5), as shown in Table 2 (see Zenodo for a
definition of Pc). Data for all time windows across all thirty species and their Pc estimates
are shown in Zenodo. Model coefficients showed a negative relationship with increased
TMAX, TMIN, and TPPT and green-up dates, indicating that an increase of 1 degree in
temperature (either maximum or minimum) and one mm3 of TPPT over the identified
time window is expected to advance green-up between 0.25 and 10 days.

In the case of the time windows of butterflies and moths, TMIN and TMAX were often
the meteorological variables that showed higher influence on first flight, while TPPT time
windows had less estimated influence, sometimes no better than random (see Zenodo).
Coefficients for all three meteorological variables fit for butterfly and moth phenology
showed high variation among species and years, with both significant positive and negative
effects on first flight (Zenodo). Time windows that influence bird date of arrival and model
significance was highly variable (Zenodo), with no clear trends in model coefficients for all
time windows across species (Zenodo).

The period that the meteorological time windows were open fluctuated across species
and groups between 2008–2018 (Figs. 4 and 5). Woodland vegetation time windows
presented the longest time lapse of critical influence of each meteorological driver across
all four groups, with the longest windows corresponding with TMIN, TPPT and TMAX,
respectively (Figs. 5D–5F). First flight of butterflies and moths showed a similar pattern in
the way each meteorological driver influenced their time windows (Figs. 4A–4F). TMIN
had a greater influence around 0-70 days prior to first flight, with the median window
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Figure 4 The most influential critical time windows derived from the SWRmodels performed with
climwin for migrant birds (A–C) and vegetation groups (D–F) over the period 2008–2018. Time win-
dows are shown by meteorological driver, TMIN (A, D), TMAX (B, E) and TPPT (C, F), window open
and close are shown on different colours as indicated in their respective legends. X axis shows species code,
Y axis shows the number of days prior to DA and GU, in which window open or close took place. Boxes
represent the range of dates expressed in Julian days (ordinal days), whiskers represent the maximum and
minimum range of values. Median values for all species window open and close are represented as hori-
zontal black lines inside each box.

Full-size DOI: 10.7717/peerj.18653/fig-4
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Figure 5 The most influential critical time windows derived from the SWRmodels performed with
climwin for moths (A–C) and butterflies (D–F) over the period 2008–2018. Time windows are shown by
meteorological driver, TMIN (A, D), TMAX (B, E) and TPPT (C, F), window open and close are shown
on different colours as indicated in their respective legends. X axis shows species code, Y axis shows the
number of days prior to FF in which window open or close took place. Boxes represent the range of dates
expressed in Julian days (ordinal days), whiskers represent the maximum and minimum range of values.
Median values for all species window open and close are represented as horizontal black lines inside each
box.

Full-size DOI: 10.7717/peerj.18653/fig-5

open (∼50 days prior) and window close (∼25 days prior) being particularly low (Figs. 4A,
4D). Among migrant bird species, the length of time windows varied (Fig. 5), with TMIN
median values for most species (Fig. 5A) ranging from 55 to 25 days prior to date of arrival.
For a detailed description of the time window results broken down into species across the
10-year period, see Zenodo.
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Table 3 IICWM index for 90 bird-insect species combinations. Qualitative AL’(x,y) values are provided to give a synchrony-asynchrony insight
from a tropic level perspective, bird –insect -vegetation. AL’3,2 shows the qualitative value of synchrony (S) or asynchrony (A) of the AL’(3,2) in-
dex for the given combination of species. AL’2,1 shows the qualitative value of synchrony (S) or Asynchrony between the given insect species and all
vegetation groups, numbers indicate total number of times insect species i was synchronous or asynchronous with all vegetation groups (i.e., AL’2,1
BS- ET = S4 A3, meaning ET was synchronous with 4 vegetation groups and asynchronous with 3 vegetation groups). IICWM indicate the positive
(+), asterisk (*) and negative (-) cases.

Species AL’ 3,2 AL’2,1 IICWM Species AL’ 3,2 AL’2,1 IICWM Species AL’ 3,2 AL’2,1 IICWM Species AL’ 3,2 AL’2,1 IICWM Species AL’ 3,2 AL’2,1 IICWM

BS - BM A S7 * GW - BM A S7 - NW - BM A S7 * SW - BM A S7 * WW - BM A S7 -

BS - CMC S A7 - GW - CMC S A7 - NW - CMC S A7 + SW - CMC S A - WW - CMC S A7 -

BS - DA A S7 * GW - DA A S7 - NW - DA A S7 - SW - DA A S7 - WW - DA A S7 *

BS - ET S S4 A3 + GW - ET S A7 + NW - ET S S4 A3 - SW - ET S S4 A3 - WW - ET S S4 A3 +

BS - FS A S7 * GW - FS A S7 * NW - FS A S7 - SW - FS A S7 * WW - FS A S7 -

BS -HD A S7 * GW -HD A S7 - NW -HD A S7 - SW -HD A S7 * WW -HD A S7 *

BS -LY A S7 * GW -LY A S7 * NW -LY A S7 * SW -LY A S7 * WW -LY A S7 -

BS - SS A S7 - GW - SS A S7 * NW - SS A S7 * SW - SS A S7 - WW - SS A S7 *

BS - WE A S7 * GW - WE A S7 * NW - WE A S7 * SW - WE A S7 - WW -WE A S7 *

BS -GVW A S7 - GW -GVW S S7 + NW -GVW A S7 - SW -GVW S S7 - WW -GVW A S7 -

BS-LW A S7 - GW-LW S S7 - NW-LW A S7 * SW-LW A S7 + WW-LW A S7 *

BS-MB A S7 - GW-MB A S7 - NW-MB A S7 * SW-MB A S7 - WW-MB A S7 -

BS –PC A S7 * GW - PC S S7 + NW - PC A S7 - SW - PC S S7 + WW - PC A S7 *

BS –RA A S7 * GW - RA S S7 + NW - RA A S7 * SW - RA S S7 - WW - RA A S7 *

BS –RI A S7 * GW - RI A S7 - NW - RI A S7 * SW - RI A S7 - WW - RI A S7 -

BS –ST A S7 - GW - ST S S7 - NW - ST A S7 * SW - ST S S7 + WW - ST A S7 -

BS - SMW A S7 - GW - SMW S S7 + NW - SMW A S7 * SW - SMW S S7 - WW - SMW A S7 -

BS - SPW A S7 * GW - SPW S S7 - NW - SPW A S7 * SW - SPW S S7 + WW - SPW A S7 -

IICWM results
We documented only 17 fully synchronous relationships across 90 combinations of birds-
insects when compared to the reported vegetation synchrony (Table 3). Among these,
sedge warbler and greater whitethroat were the only bird species that showed synchrony
with their two immediate lower trophic levels in more than one occasion, while willow
warbler showed synchrony with two species from its immediate lower trophic level and
barn swallow with just one species from its immediate lower trophic level. In turn, willow
warbler and barn swallow showed partial synchrony (bird-insect-producers) in one case
each.

Twelve instances of IICWM combinations were positive (+), which represents a bird-
insect combination that is synchronous, and situations where bird time windows take place
further in the past and/or insect windows take place closer to first flight. Most of these
positive instances matched with synchronous combinations between birds, insects, and
vegetation, while three of these combinations showed asynchrony between two immediate
levels (mainly insect-vegetation) and two showed partial asynchrony (S4A3).

Most (42 out of 90) of the IICWM combinations reported a negative scenario (-),
from which only five cases presented total synchrony between the three trophic levels,
but not with the meteorological windows, while the remaining cases showed asynchrony
between two trophic levels, mainly bird-insect combinations. Finally, we documented 36
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(*) cases which represented a bird-insect asynchronous combination together with bird
time windows taking place closer to date of arrival or insect time windows taking place
further back before first flight. In our results, all asynchronies were between the upper
levels (bird-insect) while the lower ones were synchronic in all cases (insect-vegetation).

DISCUSSION
The main aim of this research was to investigate spatiotemporal asynchrony/synchrony
between trophic levels while determining the importance of meteorological drivers in
phenological co-existence. In doing so, we aimed to address recent calls in the literature
to support decision-making related to the management and conservation of species
interactions, particularly related to shifting phenologies under climate change (de la Torre
Cerro & Holloway, 2021; Inouye, 2022; Bailey et al., 2022; Harvey et al., 2023). This is, to
our knowledge, the first study to investigate the effect of multiple trophic levels and
meteorological drivers at a daily scale on the phenology of many connected species.

Our results showed a tendency towards synchrony among the study species (Table 3,
Fig. 2); however, this was asymmetricwithin trophic levels (Figs. 2–3). Birds and insectswere
mainly synchronous with vegetation, with only two insects (common marbled carpet and
early thorn) showing asynchrony with vegetation green-up. In multi-canopy woodlands,
such as those analysed here, mixed signals early in the season can reflect predominantly
understorey development before the canopy closes (Doktor et al., 2008;Helman, 2018). It is
therefore not possible to relate phenology of individual plant species to animal phenology.
Instead, this study considers vegetation green-up overall as a primary source of food for
the animal consumers.

In contrast to synchrony between most of the animal species with vegetation, AL’(3,2)
showed a higher degree of asynchrony between primary- and secondary-consumers (Fig. 3).
We identified a trend towards phenological asynchrony within migrants and their prey
in agreement with previous research (Both et al., 2010; Mallord et al., 2017; Mayor et al.,
2017); however, the degree of asynchrony varied among bird-insect combinations and,
overall, only a few combinations were highly asynchronous (Fig. 3). The relevance of
asynchrony among species found in our results must be taken with caution as (1) not
all species are interdependent and (2) species-specific traits can buffer negative impacts.
Such buffering could occur if a bird species’ dietary range is wide enough to allow it to
switch to other prey (Donnelly, Geyer & Yu, 2015; Mallord et al., 2017). Despite this, our
results potentially point to a concerning trend of asynchrony, which was observed across
most combinations, suggesting future research is warranted to quantify the extent of this
potential trophic cascade.

Our results also suggested that date of arrival of migrant birds followed green-up in
all cases (Table 3, Fig. 2), corroborating the findings of Mayor et al. (2017). However, our
results suggest that the birds might not be tracking green-up events at a sufficient pace.
This was supported by cases where migrant birds and vegetation were classed synchronous
by our AL’ index, but the high values (close to 1) indicated a big gap between green-up
and date of arrival. In some cases, this could reflect delayed synchrony, leading to possible
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asynchronies. For Lepidoptera, most species showed AL’ synchrony values with green-up,
but again some species were more synchronous than others. This might be explained by
species specific life history-traits, such as overwintering strategies that influence the time
gap between green-up and first flight. For example, ringlet, dark arches, and common
marbled carpet overwinter as larvae, presenting high gaps between adult first flight and
green-up, while early thorn overwinters as pupa and its first flight showed high degree of
synchrony with green-up.

These asynchronies can have significant impacts on the trophic network, including
trophic cascades. With migrant birds arriving earlier on average each year (sometimes as
early as March; Zenodo), they are arriving oftentimes before the first flight of their insect
prey. This can result in a lack of food for these birds, impacting their fitness and capacity to
breed (Reed, Jenouvrier & Visser, 2013). Such shifts in the phenological network highlight
the importance of enacting conservation efforts that canwiden the inter-dependency among
species, especially in the case of asynchrony. For example, the targeted promotion of earlier,
later, or extended initiatives such as ‘No Mow May’ to coincide with maximal nectar sugar
resources for pollinators (Hemmings, Elton & Grange, 2022), and subsequently maximal
pollinator numbers (i.e., more insects), alongside projected arrival dates of migrant birds
could buffer the impact of any trophic mismatch.

The addition of the meteorological factors in our IICWM corroborated the importance
of such variables giving context to synchrony-asynchrony indices to fully understand
how species are interacting in relation with changes in the environment. Our IICWM
index showed high variation in the time windows that birds and insects followed over the
study period (Table 3). There was high inter-annual variation at group and species level,
emphasising the importance to consider a dynamic conceptualisation of meteorological
drivers. We found that time windows varied across groups of species and at species level,
supporting the hypothesis that phenological sensitivity to meteorological variables is
species-specific, and studies should thus aim to explore the impact of climate change on
species accordingly.

The IICWM is predicated on the assumption that if species follow the same
meteorological cues across years, values for the time window should remain relatively
constant, and therefore IICWM values would be similar to AL values. However,
meteorological conditions fluctuate abruptly among years (i.e., extreme meteorological
events), and thus we expected time windows to show this variation. Our results confirmed
this, with IICWM showing high variation when compared against AL (Tables 2 and 3),
indicating changes among the temporal influence of environmental drivers. Almost half
of the relationships identified in the IICWM reported a negative value, which identified at
least one asynchronous interaction among either birds-insects or insects-vegetation. The
addition of meteorological information to interaction indices provided the mechanism to
investigate the interlinked relationship between abiotic and biotic factors within phenology.
Subsequently, enhanced indices like the IICWM can improve our predictive ability of
trophic mismatches that could lead to biodiversity loss.

For example, colder temperatures during winter and spring have typically been
correlated with a later first flight (Gezon et al., 2018), while a trend of earlier first
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flight has been associated for butterflies and moths with increasing temperatures
worldwide (Bell et al., 2019; Cohen, Lajeunesse & Rohr, 2018; Maurer et al., 2018; van der
Kolk, WallisDeVries & Van Vliet, 2016). However, inter-specific variation in sensitivity to
changes in environmental conditions has been previously reported (Gezon et al., 2018;
Maurer et al., 2018). This aligns with our results showing different estimated sensitivity to
the threemeteorological variables across species and years (Zenodo). Since small ectotherms
have been demonstrated to track temperatures better than large taxa (Cohen, Lajeunesse
& Rohr, 2018), we suggest that the variation in these species’ weather time windows and
the peaks of early and delayed phenology found by our models may correspond with
abrupt changes in temperature or with extreme meteorological events. In a recent study
using daily maximum and minimum temperature and precipitation, Long et al. (2017)
demonstrated that extreme climate events played a significant role in butterfly phenology,
highly associated to species-specific life-history functional traits, such as overwintering
stage or voltinism. Moreover, optimal synchrony windows may change with temperature
increases, with new interactions created as part of these changing phenologies (Johnson et
al., 2010), meaning while trophic mismatches are possible, new interactions may buffer
or strengthen some interactions. Thus, extreme climate events and life-history functional
traits might explain species-specific response to our meteorological drivers. Therefore,
inter-annual variability in window open, close and window length might be driven by these
factors.

The selection of fine-scale temporal (i.e., daily, weekly) meteorological variables in
phenological studies is increasingly being utilised, as it more precisely captures the
variation in phenology that is explained by the relevant drivers at the appropriate temporal
and spatial scale (Van De Pol et al., 2016; Holloway, Kudenko & Bell, 2018; Simmonds,
Cole & Sheldon, 2019; Dai et al., 2023). We opted to use the relative sliding time window
approach, as opposed to other widely used methods (e.g., absolute sliding time windows)
to ensure that temporal dynamism was incorporated. This temporal dynamism can reflect
variation within the annual calendar of when phenological events occur, but also spatial
variation in the timing of events, as species that occupy large geographic ranges often cover
diverse environmental gradients that can reflect flexibility and intraspecific differences in
phenology (Gallinat et al., 2021). However, relative sliding time window analysis can report
highly variable results, especially when contrasted to other cue identification techniques
that use absolute windows (Simmonds, Cole & Sheldon, 2019). This can result from a
statistical artefact of the method, creating unexpected species-environment relationships.
For example, in a model that assesses meteorological conditions 180 days prior to the
phenological event, there will be more colder days in the model that occurred 180 days
beforeMarch 1 than 180 days beforeMay 1. This means the statistical approach can identify
specific weather conditions that are not necessarily biologically relevant, but statistically
significant (Simmonds, Cole & Sheldon, 2019).

To explore whether the variation over the individual years within the 11-year time
period was congruent with the signal across the dataset compiled of all 11-years, we ran
the SWR analysis for several species with aggregated data across this time period (Zenodo).
Our results were constant in terms of the time windows reported with the lowest delta
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AICc values (Zenodo), with the exception that for butterflies, moths and birds the TMIN
mean windows advanced closer to the event. Therefore, we are confident in the ability of
the SWR analysis to capture the broad trends over the period. Despite this, we acknowledge
that analysing annual phenological cues across time windows produces so many results
that it if a specific trend is not obvious, it can be hard to interpret in a biological way
(Zenodo). Subsequently, we refrain from any ecological interpretation related to shifting
phenological cues. This issue is further amplified by the fact that extreme climate events are
‘softened’ in aggregated statistics but are often considered one of primary cues or drivers
in ecological research (Johansson et al., 2020). Time-series analysis that quantifies the
periodic or sinusoidal variations found in the metrological data (e.g., exponential moving
average, frequency of max peak) could resolve the methodological challenge associated
with the subjective decision of defining time window length. This could mean that extreme
events or cues are accounted for in statistical parameterization. Despite this, the relative
sliding time window approach provided us with the opportunity to incorporate a dynamic
representation of meteorology in the IICWM, which was the primary aim of this research,
supporting a novel application of biodiversity conservation.

Due to the spatiotemporal nature of our study, we opted to use the first recorded value
of phenology, such as date of arrival and first flight. We explored the use of percentiles
(i.e., 5th, 10th first flight date) instead of the earliest value as has been used in phenological
research (Bell et al., 2015); however, due to the uneven samples within each 10 km grid,
and the fact that many grids had less than 10 observations, this meant all percentile values
under the 10th would have been the same. Unbalanced data collated as part of citizen
science projects are well recognised, along with their potential to support national climate
and ecosystem assessments, including phenology (Crimmins & Crimmins, 2022). While
accounting for spatial bias in citizen science data is well established (Millar, Hazell &
Melles, 2019), temporal bias is perhaps more limited and is often thought of analogous
to spatial bias (Callaghan et al., 2019). Temporal biases across seasons, particularly for
phenology data are obvious (Arab, Courter & Zelt, 2016), but even biases towards weekend
observations have been noted (Courter et al., 2013). Therefore, future research needs to
identify methods of bridging the spatial and temporal gaps in citizen science data, such that
larger datasets of phenology (or any ecological phenomenon) can be utilised to account
for ecological uncertainty.

The effect of weather conditions at breeding grounds influencing date of arrival has been
argued to be of little relevance particularly for long-distance migrants, while short-distance
migrants or species that migrate at a slower pace have been suggested to better track
environmental conditions at destination habitats (Hurlbert & Liang, 2012; Chmura et al.,
2019; Kullberg et al., 2015). However, some studies argue that long-distance migrants are
also capable of keeping pace with changing climatic conditions, advancing their arrival
time to breeding grounds because of phenological mismatch with food sources at these
breeding grounds, shorter stopovers or through mechanisms such as micro-evolution
or photoperiodic cues (Chmura et al., 2019; Helm et al., 2019; Jonzén et al., 2006; Jonzén,
Hedenström & Lundberg, 2007; Kolářová et al., 2017). Therefore, the choice of migrant
birds and the phenological indicator of date of arrival may not necessarily reflect the

de la Torre Cerro et al. (2025), PeerJ, DOI 10.7717/peerj.18653 19/29

https://peerj.com
https://doi.org/10.5281/zenodo.13991620
https://doi.org/10.5281/zenodo.13991620
http://dx.doi.org/10.7717/peerj.18653


most relevant aspect of phenology in terms of trophic interactions. For example, higher
abundances of insects may be more important during periods of chick raising rather
than upon arrival (Emmenegger, Hahn & Bauer, 2014), with studies noting that seabird
egg-laying and hatching does not correspond to temperature changes (Merkel et al., 2019).
Date of arrival ofmigrant birds can be considered a proxy, andwe refrain from commenting
on the role of meteorological variables in determining these dates to prevent compounding
understanding of their ecology. However, due to the sparsity on national scale datasets,
regarding other life-history traits, such as egg-laying dates or hatching dates, particularly
in Ireland we opted to incorporate these into our models. This supported the development
of a novel multi-level trophic interaction index, that could be replicated in different
systems across any phenological indicator. Therefore, the widely applied assumption that
it is meteorological conditions alone that are driving phenology should be revisited, with
research needed to incorporate and disentangle the role of both abiotic and biotic drivers
in phenology.

CONCLUSIONS
Phenological mismatches between interlinked species can have negative impacts for
biodiversity, ecosystems, and the trophic network. Here we developed novel interaction
indices that quantified the level of synchrony and asynchrony among groups of species
in three interlinked trophic levels, as well as accounting for a dynamic representation of
meteorology. The use of the relative sliding time window approach identified the critical
time windows of meteorology that influenced phenology, highlighting the potential to
incorporate both abiotic and biotic factors in such indices. The new indices of phenological
change identified several asynchronies within trophic levels, allowing exploration of
potential interactions based on synchrony among interlinked species. While most species
combinations were synchronous as per the results shown by our synchrony-asynchrony
indices, we found asynchronies typically between migrant birds and insects, and a possible
effect of ‘‘delayed synchrony’’ in some bird-woodland vegetation combinations. Our novel
index of synchrony-asynchrony including a meteorological dimension could be highly
informative and should open new pathways for studying synchrony among species and
interaction networks.
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The moth data is available at MothsIreland: http://www.mothsireland.com/maps-

overview/maps-macro-english.
The butterfly is available at the National Butterfly Monitoring Scheme: https:

//maps.biodiversityireland.ie/Dataset/316.
The vegetation data is available at Landsat: https://espa.cr.usgs.gov.
Themeteorological data is available atMet Éireann: https://www.met.ie/climate/available-

data/mera.
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