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ABSTRACT

Background: The trematode parasite Fasciola hepatica (liver fluke) can infect
livestock, wild mammals, and humans, generating serious economic losses
worldwide. Aquatic or amphibious snails of the Lymnaeidae family are the
intermediate host of this parasite. Both snail population dynamics and parasite
development are closely associated with temperature, although most field studies
have recorded air temperature rather than water temperature. Our aim was to
statistically model the population dynamics of lymnaeid snails and their infection by
F. hepatica under natural environmental conditions in Northwest Andean Patagonia.
Methods: For two years, we sampled snails monthly in four bodies of water, while
registering water and air temperature hourly, and assessing F. hepatica infection in
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snails. Hierarchical Bayesian modeling allowed us to estimate the functional
relationship between water temperature and population growth, the probability of
detecting snails, and infection by F. hepatica.

Results: A total of 1,411 Galba viatrix snails were collected, identified, and analyzed
for F. hepatica infection. All sites showed seasonal variation in the number of snails
collected and in water temperature as well as sharp variations in snail counts between
surveys adjacent in time. The hierarchical model revealed that water temperature
acts, at least, at two different time scales: water temperature at the time of sampling
determines snail detection probability, whereas the average water temperature
between sampling dates affects lymnaeid population growth. We found maximum
F. hepatica prevalences in snails of 40% (2/5 and 4/10), followed by 33% (65/197).
These are the highest prevalences recorded in G. viatrix populations in Argentina to
date. Our modeling evidenced that the positive effects of water temperature on
infection probability increases with snail size and prevalence on the previous survey,
while previous prevalence strongly enhances the effects of snail size.

How to cite this article Soler P, Gurevitz JM, Morales JM, Larroza M. 2024. Modeling the effects of water temperature on the population
dynamics of Galba viatrix and infection by Fasciola hepatica: a two-year survey in Andean Patagonia, Argentina. Peer] 12:¢18648
DOI 10.7717/peer;j.18648


http://dx.doi.org/10.7717/peerj.18648
mailto:soler.paula@�inta.gob.ar
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.18648
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/

Peer/

Conclusions: Our results underscore the high temporal and spatial variability in the
population of snails and the prevalence of F. hepatica, as well as the major impact
temperature has on detecting snails. Our models provide quantifications of the effects
of water temperature on the population growth of G. viatrix, its detection, and
infection under natural field conditions. These are crucial steps towards generating
mechanistic models of F. hepatica transmission that would facilitate the design and
simulation of potential interventions based on treatments and on environmental and
livestock management, taking into account the specific characteristics of each region.

Subjects Ecology, Parasitology, Veterinary Medicine, Zoology
Keywords Hierarchical model, Fasciola hepatica, Lymnaeid snail, population dynamics

INTRODUCTION

Fasciolosis is a plant-borne trematode zoonosis caused, in America, by the liver fluke
Fasciola hepatica (Trematoda: Digenea) (Mas-Coma, Bargues & Valero, 2005; Carmona ¢
Tort, 2017). It is a major livestock disease that causes serious economic losses due to
mortality, the disposal of parasitized livers in slaughterhouses, reduced production of
meat, milk, and wool, and increased expenditures in anthelmintics (Mas-Coma, Bargues ¢
Valero, 2005; Aguilar & Olaechea, 2014; Kamaludeen et al., 2019). Moreover, this disease is
of public health concern due to an increasing number of human cases being reported
(Mas-Coma, Bargues & Valero, 2005; Mas-Coma, Valero & Bargues, 2009; World Health
Organization, 2014; Motta et al., 2023).

The eradication of fasciolosis is not a realistic goal; instead, control needs to be aimed at
the reduction of the disease (Claxton et al., 1999; Torgerson ¢ Claxton, 1999; Mas-Coma,
Valero & Bargues, 2019). The development of an effective integrated control strategy
requires a thorough understanding of the epidemiology of F. hepatica, including the
population dynamics of intermediate hosts, snails of the family Lymnaeidae Gasteropoda:
Pulmonata (Malek, 1985), and how it relates to environmental factors and the climatic
conditions of each region (Malone et al., 1984; Yilma ¢» Malone, 1998; Fuentes et al., 1999;
Rojo Vasquez et al., 1999; Kleiman et al., 2007; Prepelitchi, 2009; Bargues et al., 2016).

Not all species of lymnaeids are equally susceptible to F. hepatica infection (Bargues
et al., 2012; Sanabria et al., 2012), therefore, their specific identification is essential
(Torgerson & Claxton, 1999; Alda et al., 2021; Soler, Abdala & Larroza, 2023; Vazquez
et al., 2023). The identification and systematics of lymnaeids have been controversial
(Hubendick, 1951; Remigio & Blair, 1997; Correa et al., 2010). In South America, all
lymnaeids have been re-classified into a subgroup under the name Galba (Lymnaea),
according to the International Code of Zoological Nomenclature (Correa et al., 2010;
Torres, 2022). In northern Patagonia, where fasciolosis is endemic, molecular identification
of lymnaeid species was conducted to detect cryptic species that may exhibit
morphological similarities and to determine their role in the transmission of liver fluke
(Standley et al., 2013; Soler, Abdala ¢ Larroza, 2023). To date, only G. viatrix has been
found infected with F. hepatica within this region (Rubel et al., 2005; Cucher et al., 2006;
Kleiman et al., 2007; Olaechea, 2007; Soler, 2018; Soler, Abdala ¢ Larroza, 2023). These
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studies, in conjunction with prior findings indicating a substantial prevalence of

F. hepatica infection in grazing animals within the area (60% in sheep and 70% in cattle
Abdala et al., 2022), substantiates the assertion that G. viatrix serves as the principal
intermediate host of F. hepatica (Soler, Abdala & Larroza, 2023).

To estimate the potential risk of infection in grazing livestock, it is essential to consider
G. viatrix population dynamics and the prevalence of F. hepatica stages within the snail
(Cucher et al., 2006). The prevalence of F. hepatica in its intermediate host ranges from
0.01% to 88.3% (Malone et al., 1984; Vazquez et al., 2023), exhibiting considerable
variability not only among different species but also within the same species across
different regions (Gutiérrez, Hernandez ¢ Sanchez, 2005; Sanabria et al., 2012). In
Patagonia, prevalences between 0.9% and 14% have been reported (Rubel et al., 2005;
Kleiman et al., 2007; Larroza et al., 2014).

Temperature and moisture not only play crucial roles in the development and survival
of snails but also influence the activity and abundance of lymnaeids. These snails can adopt
survival strategies such as hibernation and aestivation when temperature becomes limiting
(Boray, 1969; Ollerenshaw, 1971; Malone, 1995; Perera et al., 1995; Roberts, 1996; Kleiman
et al., 2007; Bargues et al., 2021). Temperature affects the development of snails and,
therefore, their size, which conditions the development of the parasite (Ollerenshaw ¢
Rowlands, 1959; Kendall & Ollerenshaw, 1963; Bargues et al., 2021). In the Andean valleys
of Patagonia, even though precipitation concentrates during winter, suitable habitats for
the intermediate host are available between spring and autumn, when temperatures reach
their maximum (Kleiman et al., 2007; Olaechea, 2007). It is widely assumed that the
dynamics of G. viatrix populations follow annual cycles, with increases during the warm
season and decreases during winter (Prepelitchi et al., 2003; Kleiman et al., 2007).

According to several authors, the critical temperature threshold that triggers snail
activity is a monthly average temperature of 10 °C for both G. truncatula (Ollerenshaw,
1971; Malone et al., 1984), and G. viatrix (Claxton et al., 1999; Boray, Hutchinson & Love,
2007). Nevertheless, the exact relationship between population growth and temperature
under field conditions has not yet been quantified. Furthermore, most field studies have
considered air temperature rather than water temperature (Kleiman et al., 2007).
Temperature can also affect the probability of finding snails during surveys given they are
present (Claxton et al., 1999; Kleiman et al., 2007; Bargues et al., 2021; Rodriguez Quinteros
et al., 2024), and thus detection probability as a function of temperature should be
considered when studying the snail population. The aim of this work is to study the
population dynamics of G. viatrix snails and their infection by F. hepatica under natural
environmental conditions in an endemic area of Northwest Andean Patagonia. This
knowledge is crucial for better understanding and predicting snail population dynamics,
abundance, and, ultimately, for guiding precise monitoring and control strategies
(Gurevitz et al., 2011; Larroza et al., 2018).
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MATERIALS AND METHODS

Study area

The study was conducted in the Andean valley of the Manso Inferior River (41°35’S;
71°26'W), within the Nahuel Huapi National Park, located in the southwest of Rio Negro
Province, Argentina (Fig. 1A). The area comprises permanent and temporary freshwater
environments. The former are represented by lagoons, rivers, and streams, while the latter
are represented by ponds, ditches, and water-saturated flat areas of varying extension,
which are known as ‘mallines’. Four sites were selected, each located in a different body of
water, considered suitable habitats for snails (Fig. 1B). The selection of these sites was
based on the presence of slow water currents, muddy soils, and year-round accessibility.
These characteristics were essential due to the frequent flooding, impassable paths, and
vegetation growth in the study area, which can obstruct access to certain locations. Sites
1-3 corresponded to watercourses with depths ranging from 25 to 50 cm. Site 4 was
7-10 cm deep and was connected to a small stream (Fig. 1C).

Snail survey

We conducted monthly searches for lymnaeid snails from October 2019 to September
2021. During each sampling month across both years, the four selected sites were
consistently sampled at the same time of day, between 11 a.m. and 3 p.m. During the colder
winter months (June to August), it was presumed that the snails aestivate (Boray, 1969;
Olaechea, 2007; Kleiman et al., 2007). To verify this phenomenon at our study site,
additional sampling was conducted in July.

A sampling event consisted of collecting all snails found in a 1-m* quadrat while
searching for 30 min (Relf et al., 2011) employing a metal scoop with pores 1-mm wide
(Rabinovich, 1980; Prepelitchi, 2009). At each of the four selected sites, 2-3 quadrats were
delimited for snail sampling and the geographical coordinates recorded. The number of
quadrats selected per site was based on the size of the water body. The quadrats were
randomly selected and marked on the GPS to avoid repetition, while encompassing the
diversity within the water body (at the shore, in the center, or in between), depending on
the characteristics of the water body. In subsequent samplings, different quadrats within
each site were selected, separated by a minimum distance of 3 m, to avoid bias from
previous searches and ensure accurate sampling of the lymnaeids (Fig. S1). Collected snails
were placed alive in labeled plastic containers and kept cool until returning to the
laboratory within 24 h of collection. All the surveys were done by the same individual
(Paula Soler).

Morphology and sizing

Snails were examined under a stereoscopic magnifying glass (x40) for morphological
identification based on shell shape (Castellanos ¢~ Landoni, 1981; Paraense, 1982; Samadi
et al., 2000). Lymnaeids were distinguished from other snails by their characteristic
smooth, dextral conical shells and their pair of triangular tentacles. Measurements were
made according to a standardized protocols for lymnaeid snails (Hubendick, 1951). Shell
length was measured for each individual using millimeter paper. Snails were classified into
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Figure 1 (A) Study area, (B) satellite image identifying the sampling sites, (C) four sampling sites.
Full-size £&] DOT: 10.7717/peer;j.18648/fig-1
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three size categories: juvenile (<2.5 mm), pre-adult (2.5-4.5 mm), and adult (>4.5 mm)
(Kendall, 1953; Relf et al., 2011).

Molecular identification

A total of six individuals were randomly selected for genotyping, and formed part of a
larger study of 12 different sites in the provinces of Neuquén, Rio Negro, and Chubut
(Soler, Abdala & Larroza, 2023). Separate PCRs were performed to amplify fragments of
the two nuclear internal transcribed spacers (ITS-1 and ITS-2) (Correa et al., 2010), and
the 18S rRNA gene (Duffy et al., 2009). The phylogenetic analysis showed that only

G. viatrix was found in northern Patagonia (Soler, Abdala ¢ Larroza, 2023).

Assessment of F. hepatica infection

F. hepatica infection in snails was assessed using the crushing technique with clamps on a
Petri dish containing water, followed by stereoscopic magnifying glass examination (x40)
for the presence of trematode larvae (rediae and cercariae) based on their morphology
(Prepelitchi et al., 2003; Relf et al., 2011). This technique has been used in other studies to
evaluate prevalence in lymnaeid populations both in the region and elsewhere (Kleiman
et al., 2007; Prepelitchi, 2009; Larroza et al., 2014). Additionally, F. hepatica cercariae were
identified to the family level and distinguished from other trematode cercariae found in
lymnaeid snails through microscopic examination (x100), based on their taxonomic and
morphological characteristics (Jones, 2005; Schell, 1970).

Weather data

Data on air and water temperature was registered using a data logger (iButtons/
Thermochron) placed in each sampling site. The sensors recorded temperature hourly.

Statistical modeling

Population dynamics

Describing (modeling) the relationship between water temperature and snail population
dynamics is fundamental to model and understand the ecology of F. hepatica transmission.
Within our study design, with periodical surveys, a model of the population dynamics of
snails should account for: (i) the effects of water temperature on snails, (ii) the population
size in the previous survey, and (iii) the possible (and likely) underdetection of snails
during surveys as a function of water temperature at the moment of sampling.

Our model consisted of two coupled time series, one for the dynamics of the snail
population and another for the observed number of snails, thus separating the ecological
process from its observation (Royle ¢» Dorazio, 2006; Gelman ¢ Shalizi, 2013). The
number of collected snails, y; ;x at survey ¢, in site j and quadrat k, was assumed to be a
random sample of the “real” (latent) population size (or density), Y;, under a
Beta-binomial distribution with an observation probability p; ;x and dispersion parameter
¢. The logit of pyj was a linear function of water temperature T}, (measured with a
thermometer) of the quadrat k of site j at the time of sampling t with slope h and
intercept g.

Soler et al. (2024), PeerJ, DOI 10.7717/peerj.18648 6/25


http://dx.doi.org/10.7717/peerj.18648
https://peerj.com/

Peer/

The population dynamics in the model was represented by the variation of the latent
variable Y; ;. This was assumed to follow a Poisson distribution with rate /; ;, which was a
linear function of the “real” population size Y;_;; at the previous survey with the overall
population growth rate f3, ; as slope, and intercept y. The rate f3, ; represented the joint
effects of birth, survival, and death, and was modelled as a Tt‘fjl-, the average water
temperature at site j between surveys t — 1 and ¢, with slope o and intercept 6.

Vijk ~ BetaBinomial (pt7j7k, Yij, qb)
logit(prjx) = g +hT},
Y, ; ~ Poisson (/)

Atj=btjYi 1j+7

Kj
(1 +eaT;3.+a)'

A hierarchical structure (random effects) at the site level was considered in x;, the

brj =

(asymptotic) maximum of the logistic function, representing possible variations in habitat
suitability for snail development. All priors were chosen to be weakly informative
(see Eq. S1).

Infection dynamics

We considered that water temperature, snail size, and the previous prevalence of

F. hepatica could have important effects on the infection probability of snails (Ollerenshaw
¢ Rowlands, 1959; Prepelitchi et al., 2003; Bargues et al., 2021). At each site, we selected
average water temperature between surveys as a measure of environmental effects on

F. hepatica infection in snails. The prevalence of F. hepatica in the previous survey (i.e., the
fraction of snails found infected in that survey) was used as an indicator of the availability
(or exposure) to infectious forms of F. hepatica for snails.

The model assumed that the value (0 or 1) of the infection status, z;;, of snail 7 at site j
followed a Bernoulli distribution with infection probability g; ;. The logit of this probability
was a linear function of water temperature (T};‘), snail size (s;;), and previous prevalence
(fij), together with their interactions. Site level random effects were included in the
intercept a; to account for possible variations in the suitability for infection at each site
(Bargues et al., 2021). Priors were chosen to be weakly informative (see Eq. S2).

zij ~ Bernoulli(q; )

logit(qi;) = a; + bssij + befij + b + byssigfij + bsrsiy T3 + berfiyTi; + bsersiifij 17 -

Models were fitted to data using Markov Chain Monte Carlo methods (Gelman ¢
Shalizi, 2013) using JAGS (Plummer, 2016) interfaced through R (R Core Team, 2022). The
population model used five chains, each with 15,000 total iterations, 4,800 burn-in
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iterations, and a thinning interval of 3, whereas the infection model used five chains, each
with 9,000 iterations, 3,000 burn-in iterations, and a thinning interval of 3. We checked for
convergence using r-hat (Gelman ¢ Shalizi, 2013). Model validity was assessed using
quantile-quantile plots of standardized residuals (as calculated by DHARMa package,
Hartig, 2022) for each model; very briefly, these Q-Q plots assess how much the values
predicted by the model (in our case, the posterior predicted distribution) differ from the
observed data. Collinearity was detected between water temperature at the time of
sampling and average water temperature between surveys (r = 0.74), something to be
expected due to the nature of these variables. However, as the fitting to data revealed, the
posterior samples of the parameters associated with each of these variables (h and a,
respectively) showed no significant correlation (r = 0.02). In the infection model, the
highest correlation was between previous prevalence and temperature (r = 0.38). This mild
correlation is also to be expected as increasing temperature favors parasite development in
snails; for this precise reason, temperature was included as a covariate in the model.
Nevertheless, no significant correlation was found between the posterior samples of the
respective parameters (r = —0.04). In both cases, the uncorrelated posterior samples implies
that the estimated parameters were independent between them and, thus, they can be
reasonably interpreted each on its own (McElreath, 2020).

Field experiments were approved by the National Parks Administration of Argentina
(Authorization No. IF-2019-89439453- APN-DRPN#APNAC).

RESULTS

Statistical modeling

Population dynamics

A total of 1,411 G. viatrix snails were collected in the 18 periodical samplings along two
years. Populations in all four sites tended to show seasonal variation in the number of
snails collected, as well as in water temperature. Site 4 showed consistently more snails
than the other sites. In all cases, noticeable differences could be observed between seasons
as well as sharp variations between surveys adjacent in time. Water temperature showed
two distinct dynamics according to the depth of the water bodies. In the deeper sites (1-3),
water buffered ambient temperature variations, with 90% of daily means within 8-14 °C
(Fig. 2). In contrast, the temperature of the shallower body of water (4) closely followed air
temperature, with 90% of daily averages ranging from 2 °C to 21 °C.

We successfully obtained posterior samples from all parameter as all MCMC chains
converged (r-hat < 1.1) and the effective sample sizes were >100, except for § (N eff = 89)
(Table 1). Posterior predictions showed low dispersion and included the observed data in
all cases (Fig. S2). Residuals distribution evidenced some underdispersion (Fig. S3), which
does not affect model validity; at most, it may imply confidence intervals too wide,
something apparently not relevant as all estimated parameters f showed values of virtually
1 (except 0 which was 0.86 nevertheless) (Harris, Yang ¢» Hardin, 2012). The model
allowed to estimate the posterior distribution of the “true” population abundance (or
density), a latent variable, at each time point. The dynamics of this variable provided an
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Figure 2 Relationship between daily mean air temperature and daily mean water temperature at each
sampling site. The broken line indicates identity (i.e., unity slope).
Full-size K&l DOT: 10.7717/peer;.18648/fig-2

idea of the slightly disjoint dynamics with respect to the observed snail abundance. The
“true” abundance tended to increase after the first observed increases in collected snails
and to decrease after the observed decreases, consistent with the cumulative effects of
temperature on snail development and, eventually, population growth.

Our model implies a specific mathematical relationship of the effects of water
temperature. In the case of the effects on the probability of collecting a snail given that it is
there, the model showed that water temperature below ~16 °C at the time of sampling
translated in almost null probabilities of finding snails (Fig. 3A). In fact, virtually all
samplings in sites 1-3 had very low observation probabilities due to low water
temperatures at the time of sampling (Fig. 3B). Instead, site 4 showed higher detection
probabilities for several surveys as those surveys had water temperatures >20 °C.

Regarding the effects of average water temperature between surveys on population
growth rate, the functional relationship changes among water bodies since the maximum
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Table 1 Model fit of the population dynamics of G. viatrix snails to water temperature at the time of
sampling and mean water temperature between surveys.

Parameter Mean Q2.5% Q97.5% f R-hat N eff
h 0.36 0.25 0.49 1 1 4,014
g -10.85 -14.39 -7.73 1 1 739
(0] 2.45 1.29 4.21 1 1.02 174
My 0.72 0.05 1.52 1 1.01 427
Oy 0.62 0.21 1.31 1 1 1,660
a 0.28 0.11 0.46 1 1.03 116
) -0.97 -2.54 1.02 0.86 1.04 89
y 3.33 0.89 6.85 1 1 1,166
Note:

The mean and 95% interquantile range of the posterior distribution of the corresponding model parameters are shown,
together with the fraction f of the posterior with the same sign as the mean, r-hat as indicative of convergence and ‘N eff,
the effective sample size.

of the corresponding logistic functions varied among water bodies. Thus, for sites 1-2,
where only low temperatures were registered (<14 °C) the model estimated that the
population never grew (f < 1, Fig. 4); however, site 3, which had similar temperature
values, achieved growth rates greater than 1. It should be noted that, exceptionally, at this
last site, the water depth was lower during February 2021, when many snails were collected
(Fig. S2A). Site 4, with a much wider range of water temperatures, showed winter surveys
with 8 < 1 and all other surveys with net population growth (8 > 1).

The frequency distribution of snail sizes showed high variability between surveys and
among sites (Fig. S4). Large snails (>9 mm) were only observed in sites 3 and 4, and mostly
during summer months. In all other months and sites, snail size ranged 3-9 mm. There
was no evident seasonal pattern for snails other than large ones.

Infection dynamics

Overall, infection by F. hepatica was detected in 11% of collected snails. Infection was
concentrated in 1-2 months per year and only when several snails could be collected
(Fig. 5C). Thus, site 3 showed a prevalence of 40% (2/5) in November 2019 and 18%
(36/204) in February 2021, whereas site 4 showed prevalence ranging 6-40% (12/197,
65/197, 36/289, and 4/10) in some summer months. No infection was detected in autumn
or winter. Prevalence of F. hepatica increased steadily with snail size, reaching 32% overall
in snails 9-10 mm long (Figs. 5A and 5B). Additionally, other trematode larvae were
detected in a total of 60 snails from sites 3 and 4. They were identified at the family level
based on the morphological characteristics of the cercariae, as Notocotylidae and
Stringeidae which have avian definite hosts. These were present during the same months
when we found F. hepatica and some times in the same individual snails.

The infection model successfully converged (r-hat < 1.1), with effective sample sizes
>1,000 (Table 2). Residuals distribution showed no over or underdispersion (Fig. S3). The
model revealed the joint effects of temperature, snail size, and previous prevalence on
infection probability. The positive effect of temperature on infection probability increased
with snail size and previous prevalence (Fig. 6). Roughly, for snails >6 mm long and with
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Full-size K&l DOI: 10.7717/peer;.18648/fig-3

low previous prevalence, infection probability was very close to zero when water
temperatures were <15 °C (Fig. 6A). With low previous prevalence and water temperature
>15 °C, only snails >5 mm showed infection probabilities different from zero (Fig. 6B).
Previous prevalence strongly shifted the effects of snail size. For instance, with a previous
prevalence of 40%, infection probabilities were >0.5 (for sites 1-3) and >0.25 (site 4) even
for small snails (<4 mm) at temperatures >15 °C. However, it is noteworthy that very few
observations were available for those combinations of values, particularly in sites 1-3. In
fact, the uncertainty in the estimated infection probability was greatest for high previous
prevalence and for sites 1 and 2 (those with fewer collected snails).

DISCUSSION

Using high-frequency data (monthly for snail monitoring and hourly for water
temperature), we were able to statistically model snail population growth rate, probability
of detection, and probability of infection by F. hepatica in snails. Our data show high
variability inherent to this system, both between dates (even within the same season and
site) and between sites and seasons. Although the four sampling sites were in the same area
and therefore exposed to the same air temperature, water temperature at each site
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exhibited different behaviors depending on the depth of the water body. This translated
into variability in detection and abundance of snails at each site.

Previous studies with have suggested that lymneids prefer shallow sites because they
require access to the surface to breathe (e.g., Ruppert ¢ Barnes, 1996). Here, we suggest that
water depth is also importand because it affects temperature and thus snail development.
Indeed, at sites 1-3, with greater depths (0.25 to 0.5 m), the buffering of air temperature
variations was higher, resulting in water temperatures being confined within a narrower
range throughout the year (monthly mean temperatures of 8-14 °C). This differs from
what was observed at site 4, which was very shallow (<0.1 m). There, water temperature
tended to be similar to air temperature, with pronounced seasonal fluctuations, reaching
much more extreme temperatures than those observed at the other sampled sites (monthly
mean temperatures ranging from 2 °C to 21 °C). According to our model, the consistently
more abundant population of G. viatrix at site 4 can be attributed to the higher water
temperatures compared to the other sites. In fact, 92.4% of the total collected snails were
found at site 4, and the highest prevalences of F. hepatica in snails were also found at this
site. This suggests that, in this study region, the increase in water temperature, associated

Soler et al. (2024), PeerJ, DOI 10.7717/peerj.18648 12/25


http://dx.doi.org/10.7717/peerj.18648/fig-4
http://dx.doi.org/10.7717/peerj.18648
https://peerj.com/

Peer

6001

No. of snails

2004

0<

11%

22%

a3 0% 0%

Size (mm)

10

15

o
N
A

Infected proportion

o
-
a

12
0.34
36
200 250
587

154

[
17 54 3 5 1
ool 7N L

5 10 15
Size (mm)

0.4+
0.3+
0.24
0.14
0.0+

} oS

0.4 1
0.3+

o
N
A

0.1+
0.0+

(AL

o
o
1

0.31
0.2
0.1+
0.0+

Infected proportion

€ oNS

0.4+
0.31
024
0.14
0.0+

3

31 14

197

2

v oS

289

144 8 30. 93 38 2 12

2020-01

2020-07

2021-01 2021-07

Figure 5 Fasciola hepatica infection and body size of Galba viatrix snails. (A) Number of collected snails according to snail size (rounded to the
nearest millimeter) and infection (red, infected; blue, uninfected). (B) Relative frequency of infected snails according to their body size.
(C) F. hepatica prevalence in each survey and site along time. The total number of collected snails (infected and uninfected) is indicated above

bars.

Full-size K&l DOT: 10.7717/peer;j.18648/fig-5

Soler et al. (2024), Peerd, DOI 10.7717/peerj.18648

I 0 13/25


http://dx.doi.org/10.7717/peerj.18648/fig-5
http://dx.doi.org/10.7717/peerj.18648
https://peerj.com/

Peer/

Table 2 Model fit of the F. hepatica infection dynamics to water temperature, snail size, and
F. hepatica prevalence in each previous survey.

Parameter Mean Q2.5% Q97.5% f r-hat N eff

Bye -0.70 -1.10 -0.33 1.00 1.00 1,029
bpre\, 0.10 -0.77 0.97 0.58 1.00 3,670
Bremp ~0.19 ~0.32 ~0.05 1.00 1.00 3,763
bise x prev 0.34 —0.46 1.14 0.80 1.00 10,000
baire x temp 0.07 0.04 0.1 1.00 1.00 1,403
Bprev = temp 0.72 0.27 1.17 1.00 1.00 6,771
Buize x prev x temp -0.04 -0.12 0.04 0.86 1.00 10,000
a; -3.27 -5.03 -1.55 1.00 1.00 6,938
a, -3.19 -5.04 -1.42 1.00 1.00 2,474
as -2.15 -3.38 -0.86 1.00 1.00 2,503
ay -3.85 -5.22 -2.44 1.00 1.00 5,856

Note:

The mean and 95% interquantile range of the posterior distribution of the corresponding model parameters are shown,
together with the fraction f of the posterior with the same sign as the mean, r-hat as indicative of convergence and ‘N eff,
the effective sample size.

with the shallow depth of the water bodies, facilitates the development of snails and

F. hepatica (Rodriguez Quinteros et al., 2024). Similar findings by Bargues et al. (2021) for
G. truncatula highlight water temperature as a crucial factor. Variations in water
temperature across sites impact the abundance and dynamics of lymnaeid populations,
with snail colonies showing less growth in deeper waters compared to shallow sites.

The model allowed us to estimate a curve depicting the effects of water temperature on
the probability of snail detection. Under the conditions of this study, there would be very
low chances of finding snails below ~16 °C. As the temperature rises above 16 °C, the
detection probability tends to increase, albeit with increasing uncertainty, reaching values
close to 1 at temperatures near 30 °C. Only this type of hierarchical models, with latent
variables, makes it possible to separately estimate the dynamics of population abundance
and the observation process. Both processes depended on water temperature but operated
at different temporal scales. Our results also show that temperature at the time of sampling
can strongly distort the estimation of population abundance: during summer, with high
monthly mean temperatures, if the temperature at the time of sampling was low (e.g.,
<20 °C), only a few snails were captured, even if the population at the site was abundant (as
demonstrated by samplings in adjacent months). This agrees with what has been found by
Rodriguez Quinteros et al. (2024) for this same species and region.

According to experimental studies, snail development does not occur below 10 °C
(Ollerenshaw, 1971; Aziz & Raut, 1996; Claxton et al., 1999). This is consistent with field
studies that found a monthly mean air temperature of 10 °C as limiting for snail activity
(Boray, 1964; Ollerenshaw, 1971; Malone et al., 1984; Claxton et al., 1999; Olaechea, 2007).
However, in this study, we assessed the effects of water temperature, rather than air
temperature, on lymnaeid populations, as snails are in contact with water rather than air.
In fact, our results showed active snails during spring (October-November), when the
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monthly mean air temperature was below 10 °C, but the monthly mean water temperature
was above this value (12-15 °C). Our results provide evidence, under field conditions, of a
threshold close to 10 °C for water temperature. However, precisely due to these field
conditions and the use of a site-specific hierarchical model, we observed that this value
may vary among sites, with some sites where no temperature guarantees a net population
growth. This suggests that specific characteristics of each site related to how favorable the
site is (beyond water temperature) for snail development also determine the population
dynamics of snails. On the other hand, references regarding the 10 °C limit for the
presence of lymnaeid snails have generally focused on studies of G. truncatula
(Ollerenshaw, 1971; Malone et al., 1984); however, few studies have focused on G. viatrix.
Considering that molecular analyses have revealed that the dominant species in the study
area is G. viatrix (Soler, Abdala & Larroza, 2023), it is important to understand what its
specific temperature preferences are and how the dynamics of these snails vary compared
to more widely studied genera.

The hierarchical model allowed to estimate the “true” snail abundance by using a latent
variable and considering a variable detection probability. In sites where abundant snails
were found one or more times (sites 3 and 4), the “true” abundance showed increasing
uncertainty, including higher abundances towards the end of our time series. As it was the
last portion of the time series, there were no data on future abundances. Additionally, the
last months correspond to winter, with expected lower “true” abundances, but even more
so, with very low detectability and therefore greater uncertainty in the estimation of “true”
abundance. Consequently, since the model does not consider any function that imposes
periodicity, it is expected that the model will achieve lower precision in the final segments
of the time series. In contrast, throughout the previous parts of the time series, the model
successfully captures seasonality in sites 3 and 4, as shown by the variations in “true”
abundance and the estimated population growth rate. All of this highlights the importance
of having long time series, spanning more than two years, to properly characterize these
cycles.

The observed seasonality of snail abundance coincides with previous studies in different
countries (Kendall & Ollerenshaw, 1963; Malone et al., 1984; Torgerson ¢ Claxton, 1999;
Prepelitchi, 2009; Bargues et al., 2021). The details of the seasonality may be specific to the
study area and possibly the region (Rubel et al., 2005; Kleiman et al., 2007; Olaechea, 2007;
Larroza et al., 2014). Nevertheless, the relationship with temperature could be extrapolated
to bodies of water in other areas, at least regarding G. viatrix. It is interesting to speculate
that the depth and, therefore, the degree of variability in water temperature will have a
different effect depending on the range of air temperature values.

Previous reports in Argentina show the wide range of values that the prevalence of
F. hepatica in G. viatrix snails can reach in the field, with prevalences of up to 14%
recorded during the summer months (Rubel et al., 2005; Kleiman et al., 2007; Larroza et al.,
2014; Vazquez et al., 2023). In this study, we found a maximum prevalence of 40% (2/5 in
November 2019 and 4/10 in February 2021), followed by 33% (65/197 in March 2020).
These are the highest prevalences recorded in G. viatrix populations naturally infected with
F. hepatica in Argentina to date. In fact, these prevalences can be compared with those
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reported in Peru (48%) for G. viatrix (Londofie et al., 2009), as well as with prevalences
reported in other species such as G. bulimoides (77%), and G. humilis (33%) in Mexico
(Cruz-Mendoza, Figueroa & Correa, 2004; Cruz-Mendoza, Ibarra & Quintero, 2005),

G. cousini (46%) in Ecuador (Celi-Erazo et al., 2020), Pseudosuccinea columella (41%) in
Peru (Londorie et al., 2009), and in large grazing areas in several countries in Europe and
Africa where G. truncatula is responsible for transmission (Vazquez et al., 2023). These
high values could be attributed to the presence of favorable environmental conditions for
the development of lymnaeid snail populations in areas endemic to fasciolosis, such as
perennial watercourses and continuous sheep grazing throughout the year. Indeed, these
definitive hosts are considered to be the primary contributors to the ongoing
contamination of pastures in Patagonia (Olaechea, 1994). Current climate change has
affected the seasonality and abundance of snails, as well as directly influenced the
reproduction rates of the parasites they carry (Mas-Coma, Valero & Bargues, 2009). This
could be occurring with lymnaeid populations in northern Patagonia, where there is
evidence of a recent increase in temperature (Barros ¢ Vera, 2014; Pessacg et al., 2020),
which could favor an increase in local prevalence and intensity and an expansion of their
geographical distribution (Seeber et al., 2024).

Considering the high prevalence found in snails and the high density detected per
square meter (288 snails in January 2021 in site 4), it would be expected that there is a high
risk of parasite transmission to animals in the studied area (Ollerenshaw ¢ Rowlands,
1959). Our model for F. hepatica infection in snails found important effects of temperature,
snail size, and previous infection in the site but we do not know what was the availability of
contaminated faeces from hosts in the environment. Also, we found strong seasonality in
population dynamics of snails and their infection. Some studies (Parr ¢ Gray, 2000; Jones
et al., 2017) have found an association between fluke infection levels in snails an in grazing
livestock. However, we speculate that infection risk in our system would persist throughout
the year due to the ability of metacercariae to remain infective for several months in the
environment (Amato et al., 1986; Olaechea, 2007). Further studies should consider host’s
seasonal space use in order to evaluate the importance of this component in the seasonality
of the F. hepatica life cycle.

Consistent with previous reports in the literature (Kendall, 1953; Relf et al., 2011), no
snails <4.5 mm long were found to be infected with F. hepatica. Above that size, the
prevalence increased as the size increased. Interestingly, the highest prevalences (>22%)
were found in the less common snail sizes (=9 mm), which were more abundant towards
the end of summer. These snail sizes are relevant in terms of environmental contamination
with F. hepatica in autumn and serve as a biological reservoir for the subsequent parasite
population expansion in spring (Pruzzo, 2019).

Regarding the other trematode larvae found in the analyzed snails, they were identified
as belonging to the families Notocotylidae and Stringeidae, which have avian species as
their definitive hosts. It is important to highlight that these findings occurred solely during
the summer. This suggests that, similar to what was observed with F. hepatica, the infection
of snails by other trematodes is also directly related to the increase in water temperature
and the availability of large snails.
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Although our research provides relevant information about the population dynamics of
G. viatrix snails in the studied region, it is important to note some limitations. Firstly, the
small number of sampled sites, among which only one showed a large snail population.
Additionally, there are challenges in making inferences about seasonality and variability
among years and sites, as the sampling was conducted for only two years. Another
limitation is the exclusive focus on water temperature as an environmental variable. While
temperature is a key factor for the development and survival of snails (Kleiman et al,
2007), other factors such as pH, water depth, soil type, vegetation, and water flow could
influence population dynamics (Boray, 1964, 1969; Yigezu et al., 2018; Bargues et al., 2021,
Roessler et al., 2022). However, since several of these variables tend to remain relatively
constant within a single site, a considerable number of sites would be required to achieve
adequate statistical power. The significant effort needed to conduct more extensive
sampling, both in terms of time and the number of sites, is essential for discerning the
underlying processes in such a variable system.

CONCLUSION

Overall, our results highlight the significant temporal and spatial variability in the
population dynamics of snails and the prevalence of F. hepatica in them. Our model
quantified the effects of water temperature on the detection probability and population
growth of G. viatrix. This is a crucial input for generating mechanistic models of

F. hepatica transmission that would facilitate the design and simulation of potential
interventions based on improved treatments and on environmental and livestock
management, taking into account the specific characteristics of each region.
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