Techniques for determining Elasmobranch body size: a review for evaluation and enhancing current methodologies. (#100369)

First revision

Guidance from your Editor

Please submit by 8 Sep 2024 for the benefit of the authors .

Literature review article

Please read the 'Structure and Criteria' page to understand the reviewing criteria for this Literature review article.

Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the <u>materials page</u>.

- 1 Tracked changes manuscript(s)
- 1 Rebuttal letter(s)
- 3 Table file(s)

ï

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. STUDY DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready <u>submit online</u>.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Is the review of broad and cross-disciplinary interest and within the scope of the journal?
- Has field been reviewed recently. It there a good reason for this review (different viewpoint, audience etc.)?
- Introduction adequately introduces the subject and makes audience and motivation clear.

STUDY DESIGN

- Article content is within the <u>Aims and Scope</u> of the journal.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.
- Is the Survey Methodology consistent with a comprehensive, unbiased coverage of the subject? If not, what is missing?
- Are sources adequately cited? Quoted or paraphrased as appropriate?
- Is the review organized logically into coherent paragraphs/subsections?

VALIDITY OF THE FINDINGS

- Impact and novelty is not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- Conclusions are well stated, linked to original research question & limited to supporting results.
- Is there a well developed and supported argument that meets the goals set out in the Introduction?
- Does the Conclusion identify unresolved questions / gaps / future directions?

Standout reviewing tips

The best reviewers use these techniques

Т	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Techniques for determining Elasmobranch body size: a review for evaluation and enhancing current methodologies.

Ana S Ferreira Corresp., 1, Márcia A Naré 2, Joana I Robalo 3, Núria D Baylina 1

Corresponding Author: Ana S Ferreira Email address: anaferreira@oceanario.pt

There is global awareness that several species within the *Elasmobranchii* subclass have life history characteristics that make them susceptible to overexploitation. The study of these animals both in-situ and ex-situ is critical, as it contributes to increasing knowledge of these specimens and aids in their conservation. Particularly, growth rate, age, and size at maturity are key parameters for defining management and conservation strategies in elasmobranchs. Biometric data collection allows these parameters to be determined and considered in the evaluation of population demography. Over the last decades, several methodologies for measuring elasmobranch size have evolved, progressing from traditional capture-based methods to sophisticated, non-intrusive techniques. The present review aims to understand and analyze all the existing non-invasive techniques that currently allow the collection of zoometric data in elasmobranchs and, later, to highlight the advantages and limitations of each technique, with comments on their application to field work. To this end, 49 articles were selected, representing seven measurement techniques: photogrammetry using distance to the individual, bar photogrammetry, laser photogrammetry, stereo-DOV, stereo-BRUV, stereo-ROV, and aerial photogrammetry. Globally, the last four techniques are excellent alternatives to methods that imply animal capture or death, as they are practical, simple to use, minimally invasive, and highly accurate. Technique's requirements related to equipment and cost, limitations, and distinctive features are here presented and summarized to guide researchers on what's available and how to select the best fit for their studies.

¹ Oceanário de Lisboa, Lisbon, Portugal

² Instituto Universitário de Ciências Psicológicas, Sociais e da Vida (ISPA), Lisbon, Portugal

Marine and Environmental Sciences Centre/ ARNET - Aquatic Research Network, Instituto Universitário de Ciências Psicológicas, Sociais e da Vida (ISPA), Lisbon, Portugal

T	recriffiques for determining Elasmobranch body size: a review for evaluation and emiancing
2	current methodologies.
3	
4	Ana Santos Ferreira ¹ , Márcia Alves Naré ² , Joana Isabel Robalo ³ , Núria Dias Baylina ¹
5	¹ Oceanário de Lisboa, Esplanada D. Carlos I, 1990-005, Lisbon, Portugal
6	² Instituto Universitário de Ciências Psicológicas, Sociais e da Vida (ISPA), Rua Jardim do Tabaco
7	34, 1100-304, Lisbon, Portugal
8	³ MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, ISPA
9	- Instituto Universitário de Ciências Psicológicas, Sociais e da Vida, Rua Jardim do Tabaco, 34,
10	1149-041 Lisboa, Portugal
11	
12	Corresponding author:
13	Ana Santos Ferreira ¹
14	Esplanada D. Carlos I, 1990-005, Lisbon, Portugal
15	
16	Email address: anaferreira@oceanario.pt
17	
18	ABSTRACT
19	There is global awareness that several species within the Elasmobranchii subclass have life
20	history characteristics that make them susceptible to overexploitation. The study of these
21	animals both in-situ and ex-situ is critical, as it contributes to increasing knowledge of these

22	specimens and aids in their conservation. Particularly, growth rate, age, and size at maturity are
23	key parameters for defining management and conservation strategies in elasmobranchs.
24	Biometric data collection allows these parameters to be determined and considered in the
25	evaluation of population demography. Over the last decades, several methodologies for
26	measuring elasmobranch size have evolved, progressing from traditional capture-based
27	methods to sophisticated, non-intrusive techniques. The present review aims to understand
28	and analyze all the existing non-invasive techniques that currently allow the collection of
29	zoometric data in elasmobranchs and, later, to highlight the advantages and limitations of each
30	technique, with comments on their application to field work. To this end, 49 articles were
31	selected, representing seven measurement techniques: photogrammetry using distance to the
32	individual, bar photogrammetry, laser photogrammetry, stereo-DOV, stereo-BRUV, stereo-ROV,
33	and aerial photogrammetry. Globally, the last four techniques are excellent alternatives to
34	methods that imply animal capture or death, as they are practical, simple to use, minimally
35	invasive, and highly accurate. Technique's requirements related to equipment and cost,
36	limitations, and distinctive features are here presented and summarized to guide researchers
37	on what's available and how to select the best fit for their studies.
38	Keywords: <i>Elasmobranchii</i> ; Biometry; Stereo-video; Photogrammetry; Non-invasive techniques.

Introduction

41

40

42	The cartilaginous fishes, Chondrichthyans , comprises sharks, rays, and chimaeras. Compared to
43	bony fishes, the class Chondrichthyes is relatively small, with 1294 (and rising) valid known
44	living species, and the group of rays covers more than half of this number (Cailliet et al., 2005;
<mark>45</mark>	Serena et al.; 2020, Ebert et al., 2021, Jorgensen et al., 2022, Fricke et al., 2024). Concerning
46	body shape, chimaeras and most sharks have fusiform bodies, while rays and some sharks have
47	flattened bodies. The subclass <i>Elasmobranchii</i> (sharks and batoids) comprise the most common
48	living Chondrichthyans (Ebert et al., 2021) and the number of known species raises each year
49	(Fricke et al., 2024). Most elasmobranchs are marine and may be present at various depths.
50	Although most species have a relatively restricted distribution, it is possible to find species from
51	coastal areas to > 2000m in depth across the globe and, occupying a wide range of habitats
52	(Cailliet et al., 2005; Ebert et al., 2021). It is widely reported that Elasmobranchs' life history
53	traits (such as slow-growth with late maturity, high longevity, low fertility, low productivity, and
54	long gestation) makes them extremely vulnerable to overexploitation and to recover from
55	population decreases (Dulvy et al., 2014, 2021; Ebert et al., 2021). Accurate biometric data
56	collection is therefore key to fill the gaps on this specimen's biology and crucial to apply on
57	fishing regulations and effective conservation actions to prevent their extinction (Dulvy et al.,
58	2014, Jorgensen et al., 2022).
59	The study and identification of specimen characteristics are defined as biometrics. Biometric
60	measurements cover a large set of features such as height, weight, fingerprints, and facial
61	recognition (Jain & Pankanti, 2006). Some of these measurements can also be performed in
62	animals, where different characteristics are used for their identification, such as physiological,
63	morphological, behavioral and biochemical. The shape and structure of marine organisms vary,

64 therefore morphological measurements may vary according to different groups (Dineshbabu et 65 al., 2014; Kumar et al., 2017). Zoometry is the area of animal biometry that focuses on 66 specifically collecting and analysing the dimensions of an animal's body. Currently, this is a widely used and growing research area with a significant demand for non-invasive techniques, 67 which are the major focus of this study, without major disadvantages or known associated 68 69 problems (Bugge et al., 2011; Petso et al., 2022). In elasmobranchs, when one intends to evaluate the demography of a population to define 70 71 management and conservation strategies, the most important parameters are the growth rate, 72 age and size at maturity, fecundity, and reproduction. Ideally these data should be collected in 73 individuals in their natural habitat however, this is not always feasible. Therefore, studying these individuals' ex-situ is the next best option, acknowledging that the growth patterns differ 74 75 from those collected in the natural habitat (Jañez et al., 2018; Nielsen et al., 2020; Jorgensen et 76 al., 2022). Some examples of studies conducted in artificial conditions include life cycles, 77 ecology, behavior, reproduction, disease, and conservation. These projects, in addition to 78 helping institutions improve their husbandry practices, also complement in-situ conservation 79 programs (i.e., in the natural habitat), thus contributing to species conservation (Conde et al., 80 2019; Da Silva et al., 2019; Kögler et al., 2020; Boggio-Pascua et al., 2022; IUCN SSC, 2023). Capturing elasmobranchs is a complex and demanding process, which involves the use of 81 82 specialized professionals and equipment, and it can be hazardous for handlers since these 83 animals are usually wild specimens whose behavior is unpredictable and many of them are large and with powerful jaws, and poisonous spikes. Due to all these factors, different 84 methodologies for measuring elasmobranchs, both in-situ and ex-situ were explored over time 85

to reduce the previously mentioned risks (Klimley & Brown, 1983; Dunbrack, 2006; Delacy et al.,

- 87 2017; Raoult et al., 2019).
- 88 The present review is an innovative study that aims to assess the non-invasive techniques
- 89 available for measuring elasmobranchs, and analyze each method's requirements, associated
- 90 errors, and distinctive features (positive and negative) to provide guidance on the most
- advantageous and reliable ones to use, according to the research purposes.

Survey methodology

This review was based on a literature search using Google Scholar and ISI Web of Knowledge databases. The following expressions/keywords, were searched for: "simple field method length measurement", "size measurement of elasmobranch", "measuring elasmobranch", "size measurement of sharks", "size estimates in elasmobranch", "measuring skates body size", "length measurement skates", "remote measurement elasmobranch", "stereo systems to measure elasmobranch length", "stereo systems to remote measurement of sharks", "stereo-video to assess body size in elasmobranch", "stereo systems to remote measurement elasmobranch", "baited remote systems in sharks", "BRUV length Batoidea", "BRUV for measuring sharks", "ROV for measuring elasmobranchs"; "using diver operated stereo-video system to measure sharks", "stereo-DOV for remote measurement of elasmobranch", "aerial photogrammetry for measuring elasmobranchs", "the use of drones for elasmobranch measurements", "remote techniques for

measuring sharks and rays ", "parallel lasers remote measurements in elasmobranch",

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

"determination of size "laser photogrammetry"", "using lasers to measure elasmobranch", "laser photogrammetry in elasmobranch", "laser photogrammetry in sharks", "measurement with parallel lasers in sharks", "measuring sharks using bar photography", "measuring sharks body size with bar". Additionally, an analysis of the bibliography of the collected articles was undertaken to increase the number of relevant articles to include in this revision. Bibliographic research was restricted to peer-reviewed articles that referred to body measurement methods and techniques specifically applicable to *Elasmobranchii*. Papers on other species, measurement techniques by "eye", capture and/ or death of individuals, works focused on population counts, species abundance, behavioral studies and articles that rely exclusively on the photo-identification of individuals were excluded. Microsoft Office Excel Software was used to organise the data during the bibliographic collection. The seven photogrammetry techniques analyzed are presented and briefly described in Table 1 and for each one, a summary of its requirements and distinctive features (positive and negative) are presented in Table 2. The selected articles' information was organised in a table where the technique, title, authors, publication date, species under study, search engine, keywords and link to the article were included. This information was subsequently compiled to present the technique used in each study, the authors and publication date, main goals, reported error when present, the main outcomes, and limitations of each study, mentioned by its authors (Table 3).

127

128

Conclusions

129

130	This review is the first to identify the more representative, non-invasive techniques that have
131	been used so far, for measuring elasmobranchs.
132	The 49 articles selected for further analysis (from the 68 initially found) allowed the
133	identification of seven techniques reported to measure Elasmobranchii : photogrammetry
134	using distance to the individual; bar photogrammetry; laser photogrammetry; diver operated
135	stereo-video system (stereo-DOV), stereo baited remote underwater video system (stereo-
136	BRUV), stereo-video remoted operated vehicle (stereo-ROV) and aerial photogrammetry using
137	Unmanned Aerial Vehicles (UAVs, commonly mentioned as drones). A brief description of each
138	technique is available in Table 1. Still, it was possible to verify that from these, only five
139	techniques are currently being used. Photogrammetry using distance to the individual and bar
140	photogrammetry, although being the first steps towards developed photogrammetry
141	methodologies are obsolete and limited, not presently being chosen. The studies integrated in
142	the present review were published between 1983 and 2023 and considered 42 shark and 7 ray
143	species. This finding corroborates previous studies indicating that population trend assessments
144	are heterogeneously distributed. Sharks, particularly Lamniformes and Carcharhiniformes, are
145	much more extensively assessed compared to batoids and less charismatic species (Dulvy et al.,
146	2014; Flowers et al., 2020; Jorgensen et al., 2022). The complete list of papers analyzed can be
147	found in the review references section. Table 2 presents the main requirements and distinctive
148	features of each technique, and Table 3 summarizes the information retrieved from the 49
149	analyzed articles.
150	Inspection of Table 3 revealed that <i>Rhincodon typus</i> (Smith, 1828) was the more frequently
151	studied species (12 studies). For the rays, Mobula alfredi (Krefft, 1868) was the most cited, in

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

three articles. From all studies considered, only two were carried out in controlled conditions (Govender et al., 1991; Delacy et al., 2017). Regarding the used techniques, one article referred to photogrammetry using the distance to the individual, one used bar photogrammetry, 17 applied laser photogrammetry, eight the stereo-DOV, 17 the stereo-BRUV, two the stereo-ROV and three used aerial photogrammetry (Table 3). Further inspection of this table in a cost/ benefit approach allows the identification of two techniques (photogrammetry using distance to the individual and bar photogrammetry) that are more limited and obsolete although implying lower application cost, while the other five (laser photogrammetry, stereo-DOV, stereo-BRUV, stereo-ROV, and aerial photogrammetry) are more accurate, allowing for larger and broader sampling but also requiring a considerable cost in terms of equipment and time to process the images. Although not 100% accurate, the methodologies listed represent excellent alternatives to other methods, such as visual censuses (e.g. Moreno et al., 2021) or those involving the capture or killing of individuals (e.g. Merly et al., 2019). Thus, they hold great potential for application both *in situ* and *ex situ*. It is noteworthy that these approaches can be used for various purposes such as studies of population's abundance or structure (Barley et al., 2017, Tuya et al., 2021), photoidentification (Bansemer & Bennett, 2009; O'Connell & Leurs, 2016), growth patterns (e.g., Perry et al., 2018), reproductive ecology (e.g., Deakos, 2012), and morphometric traits (Carrier et al., 2019; Rastoin-Laplane et al., 2020). They can even be applied to other marine species, e.g., blue whales (Durban, 2016), pilot whales (Wong, J. B., & Auger-Méthé, M. (2018), bottlenose dolphins (Aswegen, 2019) and various teleost fish (Schramm et al., 2020). The versatility of these methodologies is so extensive that they have also been applied in ex situ

environments, mostly in aquaculture facilities and targeting teleost fish (Harvey et al., 2003; 174 175 Costa et al., 2009). The main objective of this review is to describe the least invasive methods 176 used to measure elasmobranchs, highlighting their advantages, requirements, limitations, and applications. 177 178 The limitations of laser photogrammetry, such as the requirement for individuals to be 179 perpendicular to the device, at the same level as the observer, and without body flexion, make sampling complex and time-consuming to obtain high-quality images for measurement. 180 181 Overcoming these challenges implies investing in expensive equipment to ensure the lasers' 182 distance and parallel alignment, as well as advanced software to process the images. This 183 investment reduces the primary advantage of this technique, which is its low cost. Lasers have 184 also been used ex-situ with fair results (error ≈5%) (Rogers et al. 2017) although published 185 studies are scarce. New technologies provide a three-dimensional and more realistic approach thus, laser photogrammetry will probably be replaced with more advanced methods (Pulido 186 187 Mantas et al., 2023). No article using this technique was found published in the last five years, corroborating this evidence. 188 Based on the articles and techniques described, and considering their advantages and 189 190 disadvantages, it is evident that stereo-DOVs have a vast field of application in the wild when the sampling area is within a diver's reach and the diver's presence has minimal impact on the 191 192 target species. The pioneering use of Stereo-DOV was reported in 1983 by Klimley and Brown, 193 and this technique is now widely applied. It also has great potential for use in environments such as aquariums, where many of the issues described (see Table 2) become less relevant: 194 good visibility of the individuals, large aquariums to accommodate the diver's presence, 195

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

desensitization of animals to their environment reducing flight risk, and the availability of technical and financial resources. Stereo-BRUVS solve the depth limitations and might present bias results related to the use of bait and additional lights. This technique is suitable to wild environments but has low potential for use in controlled conditions. A similar situation applies to stereo-ROVs, where the accurate measurements require a higher investment in equipment and training. These robust devices are mostly designed to sample at greater depths and according to literature, for different survey purposes than biometrics, like fish assemblages' visual assessments (Sward et al., 2019) or industry inspections and opportunistic sightings (Todd, 2020). Considering a reasonably small and affordable apparatus, the complex logistics and the limitations of stereo-ROVs should not make this technique preferable to a stereo-BRUV or to a stereo-DOV sampling method (Schramm et al., 2020). Aerial surveys using drones, sample large areas, require considerable altitude space and analyze animals close to the surface. This recent technique is being used in situ, to assess species that best fit these requirements (mostly marine mammals), but has mainly been applied to studies of abundance, distribution, behavior, and shark-human interactions (Butcher et al., 2021; Whitehead et al., 2022). The initial costs associated with video techniques are often considered high compared with more traditional biometric data collection methods and may probably be the cause of their scarce application in some research fields. However, several authors mentioned that the costs may be off-set by a reduction in field time, staff needed, observer bias, and providing a permanent visual record that allows archived images to be revisited and contrasted directly against time series data for the detection of spatial and temporal variability of a vast range of

species (e.g., Bennett et al., 2016, Langlois et el., 2020). Moreover, reduced costs of cameras
and monitoring procedures made the use of video techniques more accessible to researchers
over the past decades (Bennett et al., 2016; Delacy et al., 2017; Pulido Mantas et al., 2023).
Non-invasive techniques for biometric data collection are of extreme importance for
elasmobranch studies as explored in the present review. They represent accurate, accessible,
and versatile methodologies that contribute effectively to elasmobranchs' management and
conservation.

225

226

234

235

236

REFERENCES

- Aswegen, M. V., Christiansen, F., Symons, J., Mann, J., Nicholson, K., Sprogis, K., &
 Bejder, L. (2019). Morphological differences between coastal bottlenose dolphin
 (*Tursiops aduncus*) populations identified using non-invasive stereo-laser.
 photogrammetry. Scientific Reports, 9, 12235. doi.org/10.1038/s41598-019-48419-3.
- Barley, S. C., Meekan, M. G., & Meeuwig, J. J. (2017). Species diversity, abundance,
 biomass, size and trophic structure of fish on coral reefs in relation to shark abundance.
 Marine Ecology Progress Series, 565, 163-179.
 - 3. Bennett, K., Wilson, S. K., Shedrawi, G., McLean, D. L., & Langlois, T. J. (2016). Can diver operated stereo-video surveys for fish be used to collect meaningful data on benthic coral reef communities? Limnology and Oceanography: Methods, 14(12), 874-885.
- Boggio-Pasqua, A., Bassos-Hull, K., Aeberhard, W. H., Hoopes, L. A., Swider, D. A.,
 Wilkinson, K. A., & Dureuil, M. (2022). Whitespotted eagle ray (*Aetobatus narinari*) age

and growth in wild (in situ) versus aquarium-housed (ex situ) individuals: Implications for 239 240 conservation and management. Frontiers in Marine Science, 9, 960822. 5. Bugge, C. E., Burkhardt, J., Dugstad, K. S., Enger, T. B., Kasprzycka, M., Kleinauskas, A., 241 Myhre, M., Scheffter, K., Strom, S., & Vetlesen, S. (2011). Biometric methods of animal 242 243 identification. Course, Laboratory Animal Science at the Norwegian School of Veterinary Science, 1-6. 244 6. Butcher, P. A., Colefax, A. P., Gorkin III, R. A., Kajjura, S. M., López, N. A., Mourier, J., 245 246 Purcell, C. R., Skomal, G. B., Tucker, J. P., Walsh, A. J., Williamson, J. E. & Raoult, V. (2021). The drone revolution of shark science: A review. *Drones*, 5(1), 8. 247 7. Cailliet, G., Musick, J., Simpfendorfer, C., & Stevens, J. (2005). Ecology and Life History 248 Characteristics of Chondrichthyan Fish. Em S. Fowler, R. Cavanagh, M. Camhi, G. 249 Burgess, G. Cailliet, S. Fordham, C. Simpfendorfer & J. Musick (Eds.), Sharks, Rays and 250 251 Chimaeras: The Status of the Chondrichthyan Fishes (pp. 12-18). Oxford, Reino Unido: **IUCN** Publications Services Unit. 252 8. Carrier, J. C., Heithaus, M. R., & Simpfendorfer, C. A. (Eds.). (2019). Shark research: 253 emerging technologies and applications for the field and laboratory. CRC Press. 254 9. Conde, D. A., Staerk, J., Colchero, F., Da Silva, R., Schöley, J., Baden, H. M., ... & Vaupel, J. 255 256 W. (2019). Data gaps and opportunities for comparative and conservation biology. 257 Proceedings of the National Academy of Sciences, 116(19), 9658-9664. 10. Costa, C., Scardi, M., Vitalini, V., Cataudella, S. (2009). A dual camera system for 258 259 estimating fish size, distance, and three-dimensional coordinates in underwater experiments. Aquacultural Engineering, 40(2), 98-104. 260

- 11. Da Silva, R., Pearce-Kelly, P., Zimmerman, B., Knott, M., Foden, W., & Conde, D. A.
- 262 (2019). Assessing the conservation potential of fish and corals in aquariums globally.
- Journal for Nature Conservation, 48, 1-11.
- 12. Dineshbabu, A. P., Sasikumar, G., Rohit, P., Thomas, S., Rajesh, K. M., & Zacharia, P. U.
- 265 (2014). Methodologies for studying finfish and shellfish biology. Central Marine Fisheries
- Research Institute (Indian Council of Agricultural Research), 91(2), 13-33.
- 13. Dulvy, N. K., Fowler, S. L., Musick, J. A., Cavanagh, R. D., Kyne, P. M., Harrison, L. R., ... &
- 268 White, W. T. (2014). Extinction risk and conservation of the world's sharks and rays.
- 269 Elife, 3, e00590.
- 270 14. Dulvy, N. K., Pacoureau, N., Rigby, C. L., Pollom, R. A., Jabado, R. W., Ebert, D. A., ... &
- Simpfendorfer, C. A. (2021). Overfishing drives over one-third of all sharks and rays
- toward a global extinction crisis. Current Biology, 31(21), 4773-4787.
- 15. Durban, J. W., Moore, M. J., Chiang, G., Hickmott, L. S., Bocconcelli, A., Howes, G., ... &
- LeRoi, D. J. (2016). Photogrammetry of blue whales with an unmanned hexacopter.
- 275 Marine Mammal Science, 32(4), 1510-1515. DOI: 10.1111/mms.12328.
- 16. Ebert, D. A., Dando, M., & Fowler, S. (Eds.) (2021). A pocket guide to sharks of the world
- 277 (Vol. 23). Princeton University Press.
- 17. Flowers, K. I., Heithaus, M. R., & Papastamatiou, Y. P. (2020). Buried in the sand:
- 279 Uncovering the ecological roles and importance of rays. Fish and Fisheries, 22(1), 105-
- 280 127.
- 18. Fricke, R., Eschmeyer, W. N. & Van der Laan, R. (eds) 2024. ESCHMEYER'S CATALOG OF
- 282 FISHES: GENERA, SPECIES, REFERENCES.

283		(http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp)
284		Electronic version accessed on the 25 th of July 2024.
285	19.	Harvey, E., Cappo, M., Shortis, M., Robson, S., Buchanan, J., & Speare, P. (2003). The
286		accuracy and precision of underwater measurements of length and maximum body
287		depth of southern bluefin tuna (<i>Thunnus maccoyii</i>) with a stereo-video camera system.
288		Fisheries Research, 63(3), 315-326.
289	20.	IUCN SSC 2023. Position Statement on the role of botanic gardens, aquariums, and zoos
290		in species conservation. IUCN Species Survival Commission (SSC), Gland, Switzerland. 8
291		pp.
292	21.	Jain, A., & Pankanti, R. (2006). Introduction to biometrics. Em A. Jain & R. Pankanti
293		(Eds.), Biometrics, personal identification in Networked society (pp. 1-42). Estados
294		Unidos da América: Springer.
295	22.	Jañez, J. A., Meijide, F. J., Lucifora, L. O., Abraham, C., & Argemi, F. (2018). Growth and
296		reproduction in captivity unveils remarkable life-history plasticity in the smallnose
297		fanskate, Sympterygia bonapartii (Chondrichthyes: Rajiformes). Neotropical Ichthyology
298		16(4): e180013. DOI: 10.1590/1982-0224-20180013.
299	23.	Jorgensen, S. J., Micheli, F., White, T. D., Van Houtan, K. S., Alfaro-Shigueto, J.,
300		Andrzejaczek, S., & Ferretti, F. (2022). Emergent research and priorities for shark and
301		ray conservation. Endangered species research, 47, 171-203.
302	24.	Kögler, J., Pacheco, I. B., & Dierkes, P. W. (2020). Evaluating the quantitative and
303		qualitative contribution of zoos and aquaria to peer-reviewed science. Journal of zoo
304		and Aquarium Research, 8(2), 124-132.

305 25. Kumar, S., Singh, S., Singh, R., & Singh, A. (2017). Animal Biometrics: Techniques and 306 applications. Singapura: Springer. 26. Langlois, T., Goetze, J., Bond, T., Monk, J., Abesamis, R. A., Asher, J., ... & Harvey, E. S. 307 (2020). A field and video annotation guide for baited remote underwater stereo-video 308 309 surveys of demersal fish assemblages. Methods in Ecology and Evolution, 11(11), 1401-1409. 310 27. Merly, L., Lange, L., Meÿer, M., Hewitt, A. M., Koen, P., Fischer, C., Muller, J., Schilack, V., 311 312 Wentzel., M., & Hammerschlag, N. (2019). Blood plasma levels of heavy metals and trace elements in white sharks (Carcharodon carcharias) and potential health 313 314 consequences. Marinepollution bulletin, 142, 85-315 2.doi.org/10.1016/j.marpolbul.2019.03.018. 28. Moreno, J., Solleliet-Ferreira, S. E., & Riera, R. (2021). Distribution and abundance of 316 317 coastal elasmobranchs in Tenerife (Canary Islands, NE Atlantic Ocean) with emphasis on 318 the bull ray, Aetomylaeus bovinus. Thalassas: An International Journal of Marine Sciences, 1-9. 319 320 29. Nielsen, R. O., Da Silva, R., Juergens, J., Staerk, J., Sørensen, L. L., Jackson, J., ... & Conde, D. A. (2020). Standardized data to support conservation prioritization for sharks and 321 batoids (Elasmobranchii). Data in Brief, 33, 106337. 322 323 30. Petso, T., Jamisola Jr, R. S., & Mpoeleng, D. (2022). Review on methods used for wildlife species and individual identification. European Journal of Wildlife Research, 68(1), 3. 324 325 31. Pulido Mantas, T., Roveta, C., Calcinai, B., di Camillo, C. G., Gambardella, C., Gregorin, C., Copari, M., Marroco, T., Puce, S., Riccardi, A. & Cerrano, C. (2023). Photogrammetry, 326

327	from the land to the sea and beyond: A unifying approach to study terrestrial and
328	marine environments. Journal of Marine Science and Engineering, 11(4), 759.
329	32. Rastoin-Laplane, E., Goetze, J., Harvey, E. S., Acuña-Marrero, D., Fernique, P., & Salinas-
330	de-León, P. (2020). A diver operated stereo-video approach for characterizing reef fish
331	spawning aggregations: the Galapagos marine reserve as case study. Estuarine, Coastal
332	and Shelf Science, 243, 106629.
333	33. Raoult, V., Williamson, J. E., Smith, T. M., & Gaston, T. F. (2019). Effects of on-deck
334	holding conditions and air exposure on post-release behaviors of sharks revealed by a
335	remote operated vehicle. Journal of Experimental Marine Biology and Ecology, 511, 10-
336	18.
337	34. Schramm, K. D., Harvey, E. S., Goetze, J. S., Travers, M. J., Warnock, B., & Saunders, B. J.
338	(2020). A comparison of stereo-BRUV, diver operated and remote stereo-video transects
339	for assessing reef fish assemblages. Journal of Experimental Marine Biology and
340	Ecology, 524, 151273.
341	35. Serena, F., Abella, A. J., Bargnesi, F., Barone, M., Colloca, F., Ferretti, F., & Moro, S.
342	(2020). Species diversity, taxonomy and distribution of Chondrichthyes in the
343	Mediterranean and Black Sea. The European Zoological Journal, 87(1), 497-536.
344	36. Sward, D., Monk, J., & Barrett, N. (2019). A systematic review of remotely operated
345	vehicle surveys for visually assessing fish assemblages. Frontiers in Marine Science, 6,
346	134.

- 37. Todd, V. L., Lazar, L., Williamson, L. D., Peters, I. T., Hoover, A. L., Cox, S. E., ... & McLean, 347 348 D. L. (2020). Underwater visual records of marine megafauna around offshore anthropogenic structures. Frontiers in Marine Science, 7, 230. 349 38. Tuya, F., Aguilar, R., Espino, F., Bosch, N. E., Meyers, E. K., Jiménez-Alvarado, D., ... & 350 351 Haroun, R. (2021). Differences in the occurrence and abundance of batoids across an oceanic archipelago using complementary data sources: Implications for conservation. 352 Ecology and Evolution, 11(23), 16704-16715. 353 354 39. Wheeler, C. R., Irschick, D. J., Mandelman, J. W., & Rummer, J. L. (2023). Non-lethally assessing ontogenetic shifts in energetics in an elasmobranch. Journal of Fish Biology. 355 40. Wong, J. B., & Auger-Méthé, M. (2018). Using laser photogrammetry to measure long-356 357 finned pilot whales (Globicephala melas). Proceedings of the Nova Scotian Institute of Science, 49(2), 269-291. 358 359 **REVIEW REFERENCES**
- 1. Acuña-Marrero D., Smith A. N. H., Hammerschlag N., Hearn A., Anderson M. J., Calich H.,
 Pawley, M., Fischer, C., & Salinas-de-León, P. (2017). Residency and movement patterns of an
 apex predatory shark (*Galeocerdo cuvier*) at the Galapagos. Marine Reserve. PLoS ONE, 12(8):
 e0183669. doi.org/10.1371/journal.pone.0183669.
- 2. Araujo G., Lucey A., Labaja J., So C. L., Snow S., Ponzo A. (2014). Population structure and residency patterns of whale sharks, *Rhincodon typus*, at a provisioning site in Cebu, Philippines. PeerJ, 2: e543. doi.org/10.7717/peerj.543.

- 367 3. Asher, J., Williams, I. D., & Harvey, E. (2017). An Assessment of Mobile Predator
- 368 Populations along Shallow and Mesophotic Depth Gradients in the Hawaiian Archipelago.
- 369 Scientific Reports, 7, 3905 doi.org/10.1038/s41598-017-03568-1.
- 4. Asher, J., Williams, I. D., & Harvey, E. S. (2019). Is seeing believing? Diver and video-
- 371 based censuses reveal inconsistencies in roving predator estimates between regions. Marine
- 372 Ecology Progress Series, 630, 115-136. doi.org/10.3354/meps13107.
- 373 5. Bansemer, C. S., & Bennett, M. B. (2009). Reproductive periodicity, localised movements
- and behavioral segregation of pregnant Carcharias taurus at Wolf Rock, southeast Queensland,
- Australia. Marine Ecology Progress Series, 374, 215-227. DOI: 10.3354/meps07741.
- 376 6. Barker, S. M., & Williamson, J. E. (2010). Collaborative photo-identification and
- 377 monitoring of grey nurse sharks (Carcharias taurus) at key aggregation sites along the eastern
- coast of Australia. Marine and Freshwater Research, 61(9), 971-979. DOI: 10.1071/MF09215.
- 7. Deakos, M. H. (2010). Paired-laser photogrammetry as a simple and accurate system for
- measuring the body size of free-ranging manta rays *Manta alfredi*. Aquatic Biology, 10(1), 1-10.
- 381 DOI: 10.3354/ab00258.
- 382 8. Deakos, M. H. (2012). The reproductive ecology of resident manta rays (*Manta alfredi*)
- off Maui, Hawaii, with an emphasis on body size. Environmental Biology of Fishes, 94(2), 443-
- 384 456. https://doi.org/10.1007/s10641-011-9953-5.
- 385 9. Delacy, C. R., Olsen, A., Howey, L. A., Chapman, D. D., Brooks, E. J., & Bond, M. E. (2017).
- 386 Affordable and accurate stereo-video system for measuring dimensions underwater: a case

- 387 study using oceanic whitetip sharks Carcharhinus longimanus. Marine Ecology Progress Series,
- 388 574, 75-84. DOI: 10.3354/meps12190.
- 389 10. Devine, B. M., Wheeland, L. J., & Fisher, J. A. D. (2018). First estimates of Greenland
- 390 shark (Somniosus microcephalus) local abundances in Arctic waters. Scientific Reports, 8(1),
- 391 974-. doi:10.1038/s41598-017-19115-x.
- 392 11. Dunbrack, R. L. (2006). *In situ* measurement of fish body length using perspective-based
- remote stereo-video. Fisheries Research, 82(1-3), 327–331. doi:10.1016/j.fishres.2006.08.017.
- 394 12. Dunbrack, R., & Zielinski, R. (2005). Body Size Distribution and Frequency of
- 395 Anthropogenic Injuries of Bluntnose Sixgill Sharks, Hexanchus griseus, at Flora Islets, British
- 396 Columbia. The Canadian Field-Naturalist, 119(4), 537–540. doi:10.22621/cfn.v119i4.184.
- 397 13. Goetze, J. S., & Fullwood, L.A. F. (2013). Fiji's largest marine reserve benefits reef sharks.
- 398 Coral Reefs, 32, 121-125. DOI 10.1007/s00338-012-0970-4.
- 399 14. Goetze, J. S., Langlois, T. J., McCarter, J., Simpfendorfer, C. A., Hughes, A., Leve, J. T., &
- 400 Jupiter, S. D. (2018). Drivers of reef shark abundance and biomass in the Solomon Islands. PloS
- 401 One, 13(7), e0200960. https://doi.org/10.1371/journal.pone.0200960.
- 402 15. Govender, A., Kistnasamy, N., & Van Der Elst, R. P. (1991). Growth of spotted ragged-
- 403 tooth sharks Carcharias taurus (Rafinesque) in captivity. South African Journal of Marine
- 404 Science, 11(1), 15–19. doi:10.2989/025776191784287718.
- 405 16. Guttridge, T. L., Van Zinnicq Bergmann, M. P., Bolte, C., Howey, L. A., Finger, J. S., Kessel,
- 406 S. T., Brooks, J. L., Winram, W., Bond, M. E., Jordan, L. K., Cashman, R. C., Tolentino, E. R.,

- 407 Grubbs, R. D., & Gruber, S. H. (2017). Philopatry and regional connectivity of the great
- 408 hammerhead shark, Sphyrna mokarran in the US and Bahamas. Frontiers in Marine Science, 4:
- 409 3. doi: 10.3389/fmars.2017.00003.
- 410 17. Harasti, D., Davis, T., Williams, J., & Bradford, R. (2019). Estimating growth in juvenile
- 411 white sharks using stereo baited remote underwater video systems (stereo-BRUVs). Report to
- the National Environmental Science Program, Marine Biodiversity Hub, 1-23.
- 413 18. Harasti, D., Lee, K. A., Laird, R., Bradford, R., & Bruce, B. (2016). Use of stereo baited
- remote underwater video systems to estimate the presence and size of white sharks
- 415 (Carcharodon carcharias). Marine and Freshwater Research, 68(7), 1391–1396.
- 416 doi:10.1071/MF16184.
- 417 19. Hearn, A. R., Green, J., Román, M. H., Acuña-Marrero, D., Espinoza, E., & Klimley, A. P.
- 418 (2016). Adult female whale sharks make long-distance movements past Darwin Island
- 419 (Galapagos, Ecuador) in the Eastern Tropical Pacific. Marine Biology, 163(10), 214.
- 420 https://doi.org/10.1007/s00227-016-2991-y.
- 421 20. Jeffreys, G.L., Rowat, D., Marshall, H., Brooks, K. (2013). The development of robust
- 422 morphometric indices from accurate and precise measurements of free-swimming whale sharks
- 423 using laser photogrammetry. Journal of the Marine Biological Association of the United
- 424 Kingdom, 93(2), 309–320. doi:10.1017/S0025315412001312.
- 425 21. Klimley, A. P., & Brown, S. T. (1983). Stereophotography for the field biologist:
- 426 measurement of lengths and three-dimensional positions of free-swimming sharks. Marine
- 427 Biology, 74(2), 175–185. doi:10.1007/bf00413921.

- 428 22. Klimley, P. A. (1987). The determinants of sexual segregation in the scalloped
- hammerhead shark, *Sphyrna lewini*. Environmental Biology of Fishes, 18(1), 27–40.
- 430 doi:10.1007/bf00002325.
- 431 23. Lacey, C., Leaper, R., Moscrop, A., Gillespie, D. M., McLanaghan, R., & Brown, S. (2010).
- 432 Photo-grammetric measurements of swimming speed and body length of basking sharks
- observed around the Hebrides, Scotland. Journal of the Marine Biological Association of the
- 434 United Kingdom, 90(2), 361-366. DOI: 10.1017/S0025315409000769.
- 435 24. Letessier, T. B., Meeuwig, J. J., Gollock, M., Groves, L., Bouchet, P. J., Chapuis, L., Vianna,
- 436 G. M.S., Kemp, K., Koldewey, H. J. (2013). Assessing pelagic fish populations: The application of
- demersal video techniques to the mid-water environment. Methods in Oceanography, 8, 41–
- 438 55. doi:10.1016/j.mio.2013.11.003.
- 439 25. Leurs, G., Kimlell, C. P., Andreotti, S., Rutzen, M., & Vonk N. H. (2015). Risks and
- 440 advantages of using surface laser photogrammetry on free-ranging marine organisms: a case
- study on white sharks Carcharodon carcharias. Journal of Fish Biology, 86(6), 1713–1728.
- 442 doi:10.1111/jfb.12678.
- 443 26. Lewis, R., Dawson, Steve & Rayment, W. (2023). Size structure of broadnose sevengill
- 444 sharks (Notorynchus cepedianus) in Sawdust Bay, Rakiura/Stewart Island, estimated using
- 445 underwater stereo-photogrammetry, New Zealand Journal of Marine and Freshwater Research,
- 446 57:1, 104-118. DOI: 10.1080/00288330.2021.1968010

- 447 27. May C., Meyer L., Whitmarsh S., & Huveneers C. (2019). Eyes on the size: accuracy of
- visual length estimates of white sharks, *Carcharodon carcharias*. Royal Society Open Science.
- 449 6:190456. http://dx.doi.org/10.1098/rsos.190456.
- 450 28. McLean, D. L., Taylor, M. D., Ospina, A. G., & Partridge, J. C. (2019). An assessment of
- 451 fish and marine growth associated with an oil and gas platform jacket using an augmented
- remotely operated vehicle. Continental Shelf Research, 179, 66-84.
- 453 29. Meekan, M. G., Taylor, B. M., Lester, E., Ferreira, L. C., Sequeira, A. M., Dove, A. D., Birt,
- 454 M. J., Aspinall, A., Brooks, K., & Thums, M. (2020). Asymptotic growth of whale sharks suggests
- sex-specific life-history strategies. Frontiers in Marine Science, 7, 575683. doi:
- 456 10.3389/fmars.2020.575683.
- 457 30. O'Connell, C. P., & Leurs, G. (2016). A minimally invasive technique to assess several life-
- 458 history characteristics of the endangered great hammerhead shark Sphyrna mokarran. Journal
- 459 of Fish Biology, 88(3), 1257–1264. doi:10.1111/jfb.12900.
- 460 31. Oleksyn, S., Tosetto, L., Raoult, V., & Williamson, J. E. (2020). Drone-based tracking of
- 461 the fine-scale movement of a coastal stingray (Bathytoshia brevicaudata). Remote Sensing,
- 462 13(1), 40.
- 463 32. Perry, C. T., Figueiredo, J., Vaudo, J. J., Hancock, J., Rees, R., & Shivji, M. (2018).
- 464 Comparing length-measurement methods and estimating growth parameters of free-swimming
- 465 whale sharks (*Rhincodon typus*) near the South Ari Atoll, Maldives. Marine and Freshwater
- 466 Research, 69 (10). doi:10.1071/mf17393

- 467 33. Pimentel, C. R., Andrades, R., Ferreira, C. E. L., Gadig, O. B. F., Harvey, E. S., Joyeux, J-C.,
- 468 & Giarrizzo, T. (2019). BRUVS reveal locally extinct shark and the way for shark monitoring in
- 469 Brazilian oceanic islands. Journal of Fish Biology, 96(2), 539-542.
- 470 https://doi.org/10.1111/jfb.14228.
- 471 34. Pinte, N., Parisot, P., Martin, U., Zintzen, V., De Vleeschouwer, C., Roberts, C. D., &
- 472 Mallefet, J. (2020). Ecological features and swimming capabilities of deep-sea sharks from New
- 473 Zealand. Deep Sea Research Part I: Oceanographic Research Papers, 156, 103187.
- 474 35. Rezzolla, D., Boldrocchi, G., Storai, T. (2014). Evaluation of a low-cost, non-invasive
- 475 survey technique to assess the relative abundance, diversity and behavior of sharks on
- 476 Sudanese reefs (Southern Red Sea). Journal of the Marine Biological Association of the United
- 477 Kingdom, 94(3), 599–606. DOI:10.1017/S0025315413001781.
- 478 36. Rogers, T. D., Cambiè, G., & Kaiser, M. J. (2017). Determination of size, sex and maturity
- 479 stage of free swimming catsharks using laser photogrammetry. Marine Biology, 164, 1-11.
- 480 37. Rohner, C. A., Richardson, A. J., Marshall, A. D., Weeks, S. J., & Pierce, S. J. (2011). How
- 481 large is the world's largest fish? Measuring whale sharks *Rhincodon typus* with laser
- 482 photogrammetry. Journal of Fish Biology, 78(1), 378–385. doi:10.1111/j.1095-
- 483 8649.2010.02861.x.
- 484 38. Rohner, C. A., Richardson, A. J., Prebble, C. E., Marshall, A. D., Bennett, M. B., Weeks, S.
- 485 J., Cliff, G., Wintner, S., & Pierce, S. J. (2015). Laser photogrammetry improves size and
- demographic estimates for whale sharks. PeerJ life & environment, 3: e886.
- 487 https://doi.org/10.7717/peerj.886.

- 488 39. Rowat, D., Brooks, K., March, A., McCarten, C. Jouannet, D., Riley, L., Jeffreys, G., Perri,
- 489 M., Vely, M., & Pardigon, B. (2011). Long-term membership of whale sharks (*Rhincodon typus*)
- 490 in coastal aggregations in Seychelles and Djibouti. Marine and Freshwater Research, 62(6), 621–
- 491 627. doi:10.1071/MF10135.
- 492 40. Ryan, L. A., Meeuwig, J. J., Hemmi, J. M., Collin, S. P., & Hart, N. S. (2015). It is not just
- 493 size that matters: shark cruising speeds are species-specific. Marine Biology, 162(6), 1307–
- 494 1318. doi:10.1007/s00227-015-2670-4.
- 495 41. Salinas-de-León P., Acuña-Marrero D., Rastoin E., Friedlander A. M., Donovan M. K., Sala
- 496 E. 2016. Largest global shark biomass found in the northern Galápagos Islands of Darwin and
- 497 Wolf. PeerJ- Life & Environment, 4:e1911. https://doi.org/10.7717/peerj.1911.
- 498 42. Santana-Garcon, J., Braccini, M., Langlois, T. J., Newman, S. J., McAuley, R. B., &
- 499 Harvey, E. S. (2014a). Calibration of pelagic stereo-BRUVs and scientific longline surveys for
- sampling sharks. Methods in Ecology and Evolution, 5(8), 824–833. doi:10.1111/2041-
- 501 210x.12216.
- 502 43. Santana-Garcon, J., Newman, S. J., Langlois, T. J., & Harvey, E. S. (2014b). Effects of a
- 503 spatial closure on highly mobile fish species: an assessment using pelagic stereo-BRUVs. Journal
- of Experimental Marine Biology and Ecology, 460, 153-161.
- 505 doi.org/10.1016/j.jembe.2014.07.003.
- 506 44. Sequeira A. M. M., Thums M., Brooks K., & Meekan M. G. (2016). Error and bias in size
- 507 estimates of whale sharks: implications for understanding demography. Royal Society open
- 508 Science, 3: 150668. http://dx.doi.org/10.1098/rsos.150668.

- 509 45. Setyawan, E., Stevenson, B., Izuan, M., Constantine, R., & Erdmann, M. (2022). How Big
- 510 Is That Manta Ray? A Novel and Non-Invasive Method for Measuring Reef Manta Rays Using
- 511 Small Drones. Drones, 6(3), 63. DOI: 10.3390/drones6030063.
- 512 46. Tickler, D. M., Letessier, T. B., Koldewey, H. J., & Meeuwig, J. J. (2017). Drivers of
- 513 abundance and spatial distribution of reef-associated sharks in an isolated atoll reef system.
- 514 PloS One, 12(5), e0177374. https://doi.org/10.1371/journal.pone.0177374.
- 515 47. Vögler, R., Sellanes, J., Gorny, M., & Milessi, A. C. (2022). First in situ record of the deep-
- sea shark *Hexanchus griseus* (Chondrichthyes: Hexanchidae) off Rapa Nui (Easter Island, Chile),
- and management implications. Latin American Journal of Aquatic Research, 50(1), 135-138.
- 518 48. Whitehead, D.A., Ayres, K.A., Gayford, J.H., Ketchum, J.T., Galván-Magana, F.,
- 519 Cristiansen, F. (2022). Aerial photogrammetry of whale sharks (Rhincodon typus) in the Bay of
- La Paz, using an unoccupied aerial vehicle. Marine Biology 169, 94. DOI: 10.1007/s00227-022-
- 521 04085-0.
- 522 49. Yon, A., Meekan, M. G., Andrzejaczek, S., Martinez, S., & Speed, C. W. (2020). Shark and
- ray community structure in a turbid, nearshore coral reef habitat. Marine and Freshwater
- 524 Research, 71(9), 1194-1204. https://doi.org/10.1071/MF19301.

Table 1(on next page)

Name and brief description of non-invasive photogrammetry techniques analysed for the measurement of elasmobranchs.

Table 1 - Name and a brief description of each non-invasive photogrammetry technique analysed for the measurement of elasmobranchs.

Table 1 - Name and a brief description of each non-invasive photogrammetry technique analysed for the
 measurement of elasmobranchs.

3

Technique	Brief description
Photogrammetry using distance to the individual	It involves estimating the size and shape of elasmobranchs by measuring the distance from the camera to the individual. It requires precise distance measurement tools to ensure accurate scaling of the images.
Bar photogrammetry	This technique uses a calibrated bar of known length placed in the camera's field of view, serving as a reference scale for measuring the size of the elasmobranchs captured in the images.
Laser photogrammetry	Utilizes parallel and calibrated laser pointers projected onto the elasmobranchs, forming a scale of known distance on the animal's body. The spacing between the laser points provides a reference for accurate size measurements.
Stereo-DOV	Involves divers using calibrated stereo camera systems to record video of elasmobranchs. The two cameras capture images from slightly different angles, allowing for three-dimensional measurements of the animals.
Stereo-BRUV	This method employs stereo camera systems mounted on baited frames. The bait attracts elasmobranchs into the field of view, enabling the capture of stereoscopic images for size and behaviour analysis.
Stereo-ROV	Uses stereo cameras mounted on remotely operated vehicles to capture three-dimensional images of elasmobranchs in their natural habitat, providing accurate measurements and detailed observations without diverintervention.
Aerial photogrammetry (UAV)	Involves unmanned aerial vehicles (drones) equipped with cameras to capture images of surface-swimming elasmobranchs surveying large areas from above.

4

Table 2(on next page)

Summary of the 49 articles analyzed. Publication details, applied techniques, main outcomes and limitations of each study, and associated error.

Table 3 - Summary of the 49 articles analyzed. Publication details: authors, year of publication and applied technique (¹ Photogrammetry using distance to the individual, ² Bar photogrammetry, ³ Laser photogrammetry, ⁴ Stereo-DOV, ⁵ Stereo-BRUV, ⁶ Stereo-ROV, ² Aerial photogrammetry); species studied; goals; main outcomes and limitations, and associated error (when mentioned). Errors are presented as follows: coefficient of variation (CV), standard deviation (SD), average error (AE), standard error (SE), mean absolute error (MAE), mean error (ME), and maximum error (MXE). Main limitations of each study are also presented.

Table 3 - Summary of the 49 articles analyzed. Publication details: authors, year of publication and applied technique (¹ Photogrammetry using distance to the individual, ² Bar photogrammetry, ³ Laser photogrammetry, ⁴ Stereo-DOV, ⁵ Stereo-BRUV, ⁶ Stereo-ROV, ¬ Aerial photogrammetry); species studied; goals; main outcomes and limitations, and associated error (when mentioned). Errors are presented as follows: coefficient of variation (CV), standard deviation (SD), average error (AE), standard error (SE), mean absolute error (MAE), mean error (ME), and maximum error (MXE). Main limitations of each study are also presented.

Publication	Species studied	Goals	Main outcomes and associated error	Main limitations of the study
Lacey et al. (2010) ¹	Cetorhinus maximus (Gunnerus, 1765)	To study the relationship between body length and swimming speeds in basking sharks.	Large sample collection without capture.	Individuals sampled must be at the surface.
Govender et al. (1991) ²	Carcharias taurus (Rafinesque, 1810)	To evaluate the growth of <i>C. taurus</i> in controlled conditions.	Robust for size estimation. Error 5%.	Light refraction through different media introduced error.
Araujo et al. (2014) ³	Rhincodon typus (Smith, 1828)	To describe the presence of Whale Sharks in Oslob, analysing population structure and residence patterns.	Effective and efficient technique.	Only perpendicular photographs were used; weather and camera vision limited full photographs and length estimates for females.
Bansemer & Bennett (2009) ³	Carcharias taurus (Rafinesque, 1810)	To Investigate pregnant females' aggregation of <i>C. taurus</i> in Wolf Rock evaluating their reproductive periodicity and behavior.	Detailed monitoring of adult females' reproductive cycle. Error 5%.	Individuals needed to be perpendicular and without body flexion for laser measurements; poor weather shortened tracking sessions.
Barker & Williamson (2010) ³	Carcharias taurus (Rafinesque, 1810)	To determine abundance and movement of <i>C. taurus</i> , evaluating methods with contributions from the community.	First web-based data request method for retrospective analysis. Added individuals to the data base. Lasers proved to be accurate. Error 3%.	Laser measurements began in the second year; community participation was inconsistent; image distortion increased error.

Deakos (2010) ³	Mobula alfredi (Krefft, 1868)	To analyse the accuracy and effectiveness of laser photogrammetry in a resident population of <i>M. alfredi</i> in Hawaii.	Effective for <i>M. alfredi</i> measurement, with the conversion of disc length to disc width by applying a ratio function. AE 0.38% and CV 0.54%.	Difficulty incorporating target species into camera view; individuals had to be fully stretched; reactions to divers and less accurate disc width measurements occurred.
Deakos (2012) ³	Mobula alfredi (Krefft, 1868)	To study the reproductive cycle of <i>M. alfredi</i> and the role of body length in their reproductive ecology.	Evaluated multiple factors of <i>M. alfredi's</i> reproductive ecology.	Individuals had to be fully stretched to avoid underestimating length.
Devine et al. (2018) ³	Somniosus microcephalus (Bloch & Schneider, 1801)	To estimate the abundance of the Greenland Shark in the Canadian Arctic Archipelago.	Local and regional abundance of <i>S. microcephalus</i> demonstrated.	Only individuals in full field of vision with aligned lasers were measured.
Guttridge et al. (2017) ³	Sphyrna mokarran (Rüppell, 1837)	To investigate the residence of <i>S. mokarran</i> and its movements and connectivity between the US and the Bahamas.	Philopatric behavior of S. mokarran demonstrated.	Only perpendicular images were selected for measurement.
Hearn et al. (2016) ³	Rhincodon typus (Smith, 1828)	To report the marking and movements of large <i>R</i> . <i>typus</i> females on Darwin Island.	Tagged large R. typus females.	Some tagging devices were unsuccessful.
Jeffreys et al. (2013) ³	Rhincodon typus (Smith, 1828)	To build an accurate laser photogrammetry system to measure <i>R. typus</i> during the mating season.	The device demonstrated ease of calibration, robustness, and reliability, with reduced costs, and safely provided accurate measurements in water. CV2.44%	Photographs had to be taken at the same level and perpendicular; factors like body movement contributed to error.
Leurs et al. (2015) ³	Carcharodon carcharias (Linnaeus, 1758)	To evaluate size of <i>C. carcharias,</i> while comparing visual measurements with laser photogrammetry.	The non-invasive technique effectively evaluated species size and growth, showing	Larger deviation from actual length with increasing reference angle; measurements required visible calibrated lasers, and minimal

			superiority over visual estimates, and enhancing photo-identification using dorsal fins. Error 1.3%.	body curvature.
O'Connell & Leurs (2016) ³	Sphyrna mokarran (Rüppell, 1837)	To determine whether notch coding was a good identification method. To combine laser photogrammetry and photo-identification for sizing.	Laser photogrammetry was effective for <i>S. mokarran</i> measurements, aiding future studies on growth rates and site fidelity.	Only perpendicular photographs with visible lasers and no body curvature were selected; site fidelity analysis was not possible.
Perry et al. (2018) ³	Rhincodon typus (Smith, 1828)	To evaluate the accuracy of three measurement methods. To determine size and growth patterns among whale sharks in the Maldives.	Laser and tape measure techniques had lower errors and were more accurate than visual estimates. CV 2.03%.	Study conducted over 10 years; photographs had to be perpendicular to individuals.
Rezzolla el al. (2014) ³	Sphyrna lewini (Griffith & Smith, 1834), Carcharhinus amblyrhynchos (Bleeker, 1856)	To present the first observations of the behavior, and size composition of shark groups on the reefs of Sudan.	Low-cost, continuous, non- invasive equipment effectively monitored species' ecology, producing substantial data in challenging environments over a brief study period.	Laser measurements were limited to seven individuals due to selective sampling.
Rogers et al. (2017) ³	Scyliorhinus canicula (Linnaeus, 1758)	To combine different techniques to identify morphometric indices that predict <i>S. canicula's</i> maturity stages and sex.	This study was the first to use allometry changes to detect shark maturity, with laser measurements proving accurate. SE 5.2% and CV 1.8%.	Increasing distance from individuals increased measurement error; limited results for estimating male maturity stages of <i>S. canicula</i> .
Rohner et al. (2011) ³	Rhincodon typus (Smith, 1828)	To demonstrate the accuracy of laser photogrammetry in	Laser photogrammetry was economical and accurate for measuring <i>R</i> .	Photographs required sharks to be fully stretched and lasers visible and aligned; limited to low

		measuring R. typus.	typus in natural habitats,	turbidity conditions.
			surpassing visual methods.	
Rohner et al. (2015) ³	Rhincodon typus (Smith, 1828)	Describe the size ranges and sex ratios of sharks at these sites. Assess maturity length. To test whether photogrammetry can detect estimated growth rates over a 1–3 year period.	The technique enhanced size estimation accuracy for whale sharks compared to visual methods. AE 3.2cm and CV 0.17%.	Lasers had to be parallel and visible; photographs taken at the same level and perpendicular; technique not effective for short-term growth rate analysis.
Rowat et al. (2011) ³	Rhincodon typus (Smith, 1828)	Compare the membership periods of the Djibouti aggregation between size classes.	Laser photogrammetry provided more accurate length assessments than visual or tape measurements by divers.	Disparities in sampling periods between sites; lower research actions in initial years.
Delacy et al. (2017) ⁴	Carcharhinus longimanus (Poey, 1861)	To test the effectiveness of a stereo system in a controlled environment and in the field, comparing with other studies.	Simple equipment and software yielded accurate measurements, with 2D calibration proving as effective as 3D calibration. MAE 0.34% (calibration), 0.33% controlled tests, and 1.6% between techiniques.	Controlled environment tests showed increased error with a higher bar angle to the camera.
Goetze et al. (2018) ⁴	Aetobatus ocellatus (Kuhl, 1823), Carcharhinus amblyrhynchos (Bleeker, 1856), C. melanopterus (Quoy & Gaimard, 1824), Negaprion acutidens (Rüppell, 1837), Taeniura lessoni (Last, White & Naylor, 2016), Triaenodon obesus (Rüppell, 1837) and Urogymnus granulatus	To assess reef shark abundance and biomass in the Solomon Islands. To provide information on shark and ray abundance, and assess key drivers of abundance/biomass.	This study first quantified shark and ray abundance, biomass, and diversity in the Solomon Islands. Over 100 sharks were measured.	Some species were removed due to low sampling; lower relative abundance levels compared to other Pacific areas but higher observation rate per hour.

	(Macleay, 1883).			
Klimley (1987) ⁴	Sphyrna lewini (Griffith & Smith, 1834)	Describe some traces of life history, differences in diet, segregation and growth between sexes, in <i>S. lewini</i> .	First study to describe sex segregation in <i>S. lewini</i> . Females mature at a larger size and grow more rapidly than males.	
Klimley & Brown (1983) ⁴	Sphyrna lewini (Griffith & Smith, 1834)	To describe a stereo system technique to study group positioning in <i>S. lewini. To</i> explain how the method was modified to provide accurate measurements and the three-dimensional position of an active individual.	The portable measurement method with two cameras was effective for <i>S. lewini</i> size and position determination. MXE 5%.	Only parallel individuals were measured; weather conditions often hindered accuracy.
May et al. (2019) ⁴	Carcharodon carcharias (Linnaeus, 1758)	To obtain the exact length of <i>C. carcharias</i> . To determine the observer's ability to visually estimate total length, and to assess how length, observer experience, and gender affected estimates.	Visual estimates by experienced observers were validated for <i>C. carcharias</i> studies. SE 0.63 m	Stereo photographs for measurements were minimally addressed.
Meekan et al. (2020) ⁴	Rhincodon typus (Smith, 1828)	To assess the growth of the Whale Shark population on the Ningaloo Coast. Using data from previous studies to identify previously measured individuals. To	Studies on sex-specific life history patterns provided insights into species' ecology. Different average asymptotic total length between males and	Sampling error potential with slow- growing sharks; fast growers less likely to be sighted.

		examine specific patterns of size and growth.	females.	
Salinas-de- León et al. (2016) ⁴	Miscellaneous (not all species observed and measured were specified, nor whether they were analyzed by the DOV or by visual census).	Establish comprehensive abundance estimates for sharks and predatory fish assemblages on Darwin and Wolf Islands. It was also intended to use this information to make recommendations for this species protection.	The first quantitative fish survey using stereo-video improved length estimate accuracy and highlighted the ecological value of Darwin and Wolf Islands.	Biomass results from visual censuses and DOV showed relevant average differences.
Sequeira et al. (2016) ⁴	Rhincodon typus (Smith, 1828)	Compare length estimates derived through stereo measurement techniques and visual estimates, to obtain estimates of the whale shark population that has reached sexual maturity.	The stereo system accurately estimated <i>R. typus</i> length.	Visual estimates had high error; stereo device was large and heavy.
Acuña- Marrero et al. (2017) ⁵	<i>Galeocerdo cuvier</i> (Peron & Lesueur, 1822)	Investigate the spatial ecology of Tiger Sharks by focusing on residence patterns in relation to Green Turtle nesting beaches. BRUVs, satellite telemetry and acoustics were used.	First study on tiger sharks' movement and habitat uses in the Galapagos, revealed large sharks fidelity to sea turtles nesting areas	Some satellite and acoustic tracks failed; BRUV sampling was limited and focused on frequently sighted locations.

Asher et al. (2017) ⁵	* Carcharhinus galapagensis (Snodgrass & Heller, 1905) and Triaenodon obesus (Rüppell, 1837)	Compare the relative abundances and length-based distributions of the main species contributing to predator assemblages. Investigate mesophotic habitats that remain inaccessible to visual censuses.	BRUV offered benefits over diver surveys for assessing predator populations at greater depths.	Obstructed footage was excluded; BRUV had limitations in vertical habitats.
Asher et al. (2019) ⁵	* Carcharhinus galapagensis (Snodgrass & Heller, 1905) and Triaenodon obesus (Rüppell, 1837)	Quantify the subregional level differences in predator abundance rates at ≤30m depth. To incorporate and compare methods covering different depths. To evaluate the size distribution of predators using four techniques.	This large-scale predator comparison using BRUVs and RUVs showed benefits over diver-based methods, especially beyond 30m depth.	Towed diver counts were negatively biased due to boat noise and movement; bait type influenced results.
Dunbrack (2006) ⁵	Hexanchus griseus (Bonnaterre, 1788)	To describe the performance of a stereovideo in line measurement system, designed to obtain length frequency data for a population of <i>H. griseus</i> .	The technique was relatively insensitive to camera alignment changes, providing accurate length measurements for demersal species. AE 1.6%.	Na
Dunbrack & Zielinski (2005) ⁵	Hexanchus griseus (Bonnaterre, 1788)	To collect quantitative behavioral and population data of <i>H. griseus</i> using a non-invasive system. A stereo-video technique was used to analyze the body length-frequency relation.	The minimally invasive, remote technique provided significant data on <i>H. griseus'</i> populations. AE 2%, MXE 4.9%.	Vertical device placement sometimes obscured individuals: measurements limited to visible individuals.

Goetze & Fullwood (2013) ⁵	Carcharhinus albimarginatus (Rüppell, 1837), C. amblyrhynchos (Bleeker, 1856), C. melanopterus (Quoy & Gaimard, 1824), Stegostoma fasciatum (Hermann, 1783) and Triaenodon obesus (Rüppell, 1837).	To assess the relative abundance and biomass of reef sharks, inside and outside the Namena Marine Reserve, using BRUV systems.	The study demonstrated the positive impact of a Marine Reserve on reef shark biomass, showing BRUVs' suitability for sampling.	Camera obstructions and failures prevented some measurements.
Harasti et al. (2016) ⁵	Carcharodon carcharias (Linnaeus, 1758)	To assess the size and presence of great whites through the use of BRUVs.	BRUVs effectively monitored <i>C. carcharias'</i> juvenile abundance and size over 24 months. SE 1.19 cm.	The measurements' accuracy was unclear due to the absence of premeasured tagged sharks. BRUVs' low position affected measurements by cutting off the top of the caudal fin in the video.
Harasti et al. (2019) ⁵	Carcharodon carcharias (Linnaeus, 1758)	To use BRUVs for reliably testing juvenile Great Whites' growth and size frequency.	BRUVs demonstrated success in monitoring <i>C. carcharias</i> juveniles, showcasing practicality for long-term assessments. SE 0.4 cm.	Population abundance estimation was not possible due to data lack; reobserved individuals appeared smaller in second measurements.
Letessier et al. (2013) ⁵	Not all measured species are specified.	To develop a technique that produces relevant data for the implementation and monitoring of pelagic species in large marine protected areas (MPAs).	The system offered a low-cost, efficient tool for fast, non-extractive monitoring of pelagic fish and shark populations. Mean CV 6.1%.	Some species were only identified to the family level; short BRUV deployment times hindered measurements.
Lewis et al. (2023) ⁵	Notorynchus cepedianus (Peron, 1807)	To obtain data on the size and sex structure of broadnose sevengill sharks, present in southern New Zealand, using low cost equipment for the development of a BRUV system.	The system had a small error and produced accurate, repeatable measurements. ME 0.63%, MXE 1.13%, and CV 0.3%.	Small sample size: total length estimated from pre-dorsal length, leading to biases.

Pimentel et al. (2019) ⁵	Carcharhinus falciformis (Müller & Henle, 1839), C. galapagensis (Snodgrass & Heller, 1905), C. perezi (Poey, 1876), Galeocerdo Cuvier (Péron & Lesueur, 1822), Ginglymostoma cirratum (Bonnaterre, 1788) and Sphyrna lewini (Griffith & Smith, 1834).	To present records of sharks obtained from surveys using remote underwater video systems (BRUVs) in the Brazilian oceanic islands of Trindade and in the São Pedro and São Paulo archipelago (ASPSP).	BRUV was a useful complement to other non-invasive methods.	Na
Pinte et al. (2020) ⁵	Centrophorus harrissoni (McCulloch, 1915), C. squamosus (Bonnaterre, 1788), Centroscymnus owstonii (Garman, 1906), Dalatias licha (Bonnaterre, 1788), Deania calcea (Lowe, 1839), Etmopterus granulosus (Günther, 1880), E. molleri (Whitley, 1939) and Proscymnodon plukenti (Waite, 1910).	using BRUVs. These deployments made it possible to measure ecological characteristics such as size, swimming speed and tail-beat	First <i>in-situ</i> study of deepsea species' swimming speeds. 253 speed and 135 size measurements from 28 species. Error 0.91 cm.	Individuals were sometimes not fully visible in the camera.
Ryan et al. (2015) ⁵	Carcharhinus albimarginatus (Rüppell, 1837), C. amblyrhynchos (Bleeker, 1856), C. brevipinna (Müller & Henle, 1839), C. plumbeus (Nard, 1827), C. obscurus (Lesueur, 1818), Furgaleus macki (Whitley, 1943), Galeocerdo cuvier (Peron & Lesueur, 1822), Hemitriakis falcata (Compagno & Stevens, 1993), Heterodontus	To measure cruising speed in different shark species using BRUVs. To generate a predictive model of cruising speed as a function of body size, body shape, habitat, trophic level, temperature, and taxonomic order.	The study amassed a large dataset on species' cruising speeds and sizes, proving BRUV useful for speed measurements.	Only 100% visible individuals were analysed; model may overestimate cruise speeds.

	portusjacksoni (Meyer, 1793), Mustelus a ntarcticus (Gunther, 1870), Nebrius ferrugineus (Lesson, 1831), Negaprion acutidens (Rüppell, 1837), Parascyllium variolatum (Duméril, 1853), Sphyrna lewini (Griffith & Smith, 1834) and Triaendon obesus (Rüppell, 1837).			
Santana- Garcon et al. (2014a) ⁵	* Carcharhinus limbatus (Müller & Henle, 1839), C. plumbeus (Nard, 1827), Carcharhinus spp., Galeocerdo cuvier(Peron & Lesueur, 1822), Rhizoprionodon acutus (Rüppell, 1837), Sphyrna lewini (Griffith & Smith, 1834) and S. mokarran (Rüppell, 1837).	Compare catch composition, relative abundance and length distribution of fish sampled by pelagic BRUVs and conventional scientific longlines.	Pelagic BRUVs provided a non-lethal alternative for shark sampling, with estimates comparable to longline methods.	Individuals had to lie upright for measurement, differences in coverage area and bait amount between techniques.
Santana- Garcon et al. (2014b) ⁵	* Carcharhinus limbatus (Müller & Henle, 1839), C. plumbeus (Nard, 1827), Carcharhinus spp., and Galeocerdo cuvier (Peron & Lesueur, 1822).	To study protected species in the Houtman Abrolhos Islands. To evaluate pelagic BRUVs as a monitoring technique for land closure. Contribute to the debate on the use of these spatial areas for conservation and management of highly mobile fish species.	The robust, non-destructive method allowed standardized studies of fish assemblages, providing permanent species records and behavioral observations.	Measurements limited to individuals within 8m and over 45° orientation: species identification challenges.

Tickler et al. (2017) ⁵	Carcharhinus albimarginatus (Rüppell, 1837), C. amblyrhynchos (Bleeker, 1856), C. melanopterus (Quoy & Gaimard, 1824), Galeocerdo cuvier (Peron & Lesueur, 1822), Nebrius ferrugineus (Lesson, 1831), Sphyrna lewini (Griffith & Smith, 1834), S. mokarran (Rüppell, 1837) and Triaenodon obesus (Rüppell, 1837).	Use of BRUVs to model relationships between measurements of shark assemblages with a combination of environmental variables, measurements of abundance, biomass and diversity of reef fish.	Grey shark lengths differed significantly between locations and shark abundance is related with planktivore biomass.	Visibility and camera range issues caused measurement errors; some footage discarded.
Yon et al. (2020)⁵	* Carcharhinus melanopterus (Quoy & Gaimard, 1824), Chiloscyllium punctatum (Müller & Henle, 1838), Hemitriakis falcata (Compagno & Stevens, 1993), Nebrius ferrugineus (Lesson, 1831), Negaprion acutidens (Rüppell, 1837) and Triaenodon obesus (Rüppell, 1837).	To assess whether elasmobranch abundance, size, and assemblage vary between samplings inside and outside marine protected areas (MPAs). To identify habitat and substrate variables, and to assess the status of elasmobranch populations in the marine park of Cobourg in relation to similar habitats.	Abundance data suggested potential refuges for reefassociated shark and ray species.	BRUV footage was often obstructed or restricted, limiting sampling.
Vögler et al. (2022) ⁶	<i>Hexanchus griseus</i> (Bonnaterre, 1788)	First in situ documented record for H. griseus in Rapa Nui (the largest protected MPA in Latin America).	ROVs with HD cameras and laser pointers documented and estimated rare shark specimens' lengths at 320m depth.	Opportunistic sighting of a rare shark species provided; no disadvantages mentioned.

McLean et al. (2019) ⁶	Rhincodon typus (Smith, 1828), Mobula birostris (Walbaum, 1792), Taeniurops meyeni (Müller & Henle, 1841), Carcharhinus amblyrhynchos (Bleeker, 1856) and Triaenodon obesus (Rüppell, 1837)	To use a high-resolution stereo-video system mounted on an industrial ROV. To assess fish and marine growth habitats associated with an oil platform in Western Australia. To investigate stereo-ROVs' viability for robust scientific information collection. To assess fish growth changes from the surface to 130m depth.	The study allowed industry-specific tasks and scientific data collection, including accurate fish identification and habitat analysis using stereo-ROV transects.	Sampling protocol limitations included low camera light capabilities and stereo camera package disruptions.
Oleksyn et al. (2020) ⁷	Bathytoshia brevicaudata (Hutton, 1875)	To investigate the influence of body size, tide, and time of day on the movement of <i>Bathytoshia brevicaudata</i> . Drone technology was used to gain morphological measurements of the rays and to track the speed and sinuosity of their swim trajectories.	UAVs offered a low-cost, non-invasive method to collect high-resolution marine animal data, with long tracking capabilities across tidal stages. Accuracy of measurements between 1 and 5 cm.	UAVs had short battery life, weather dependency, and screen glare issues; rays needed to be close to the surface. Challenges with the on-board altitude system's accuracy.
Setyawan et al. (2022) ⁷	Mobula alfredi (Krefft, 1868)	To develop a novel method to measure the body size of surface feeding <i>M. alfredi</i> . To employ aerial photogrammetry techniques including na object of known length as a reference scale to measure three morphometric dimensions.	The study demonstrated an accurate, affordable method to measure surface-feeding <i>M. alfredi</i> , with minimal animal impact and strong linear correlation in dimensions. SD < 2.2 cm.	Useful only for surface-feeding manta rays; measurements couldn't be attributed to tracked individuals over time.

Whitehead et al. (2022) ⁷	Rhincodon typus (Smith, 1828)	To use a small UAV to obtain aerial images of whale sharks for photogrammetry analysis, with the aim of determining the effectiveness of this method for obtaining accurate morphometric measurements.	The first UAV study measuring whale sharks from aerial imagery, providing a viable method for obtaining biological information and tracking live individuals over time. Error 0.35%.	Water turbidity and cloud cover affected aerial visibility, method unsuitable for vertical feeding sharks.
--------------------------------------	-------------------------------	--	--	--

7

Table 3(on next page)

Equipment requirements and distinctive features of each non-invasive photogrammetry technique.

Equipment requirements and distinctive features (positive and negative) of each noninvasive photogrammetry technique. 1 Table 2 - Equipment requirements and distinctive features (positive and negative) of each non-invasive photogrammetry technique.

Technique	Equipment requirements	Distinctive positive features	Distinctive negative features
Photogrammetry using distance to the individual	Minimal equipment is needed for its application (e.g., camera, known reference length object) so the associated cost is low.	Very simple technique with minimal requirements ideal for species that approach the surface and when only.	Limited to individuals near the surface. Only partial visibility of an individual may restrict measurements and body bending affects measurement accuracy.
Bar photogrammetry	Few equipment is needed (e.g. camera, reference bar, mounting system) for its application, so the associated cost is reduced.	Simple technique with few requirements ideal for species that can be encouraged to approach and stay parallel to the bar	Requires individuals to be parallel and close to the bar. Increased error due to passage through various media.
Laser photogrammetry	Laser pointers or rangefinders to project laser lines onto the specimens are required. These lasers should be parallel and calibrated for accurate measurements. Software for processing images and calculate measurements is needed.	Low associated cost. Low impact on individuals. Various free measurement software available. Low error percentage if precautions are followed.	Need for parallel lasers and immobile equipment to minimize error. Strict requirements for image collection (perpendicular, 2D approach). Susceptibility to environmental conditions affecting laser visibility.
Stereo-DOV	Specific hardware and software are available with considerable cost; low cost options are also available; diver required.	Selective sampling due to diver manoeuvrability allows for targeting specific species populations.	Depth limitation due to diver's capabilities.
Stereo-BRUV	Specific hardware and software available with considerable cost; low cost options are also available; it usually requires BRUV deployment and collection from a boat.	Remote sampling capability, enabling sampling in very deep locations without the need for divers.	The presence of bait can be disruptive and bias the results.

Stereo-ROV	Specific hardware and software available with considerable cost; reduced cost options available with significant limitations; it requires higher manoeuvring skills and equipment maintenance costs.	Versatility for multiple studies including size structure, behaviour, and 3D modelling; works at great depths; advanced industry ROVs can be used in combined scientific campaigns and opportunistic images recorded could be of great scientific value.	Requires specific deployment and operation protocols that have limitations to sampling. Sound and lights used have a deterrent effect on fish.
Aerial photogrammetry (UAV)	Specific hardware and software available with considerable cost; low cost options are also available (short battery life); it usually requires a known length object as a scale or sophisticated altitude sensors.	Minimal impact on measured animals; suitable for simple, accurate, and affordable measurements with small, commercially available drones.	It only allows measurements close to the surface, with calm water conditions and good surface visibility.