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Background: The Kashmir Bee Virus (KBV) infects many species of Hymenoptera,
including bees, wasps, and other pollinators, potentially contributing to honeybee
population declines. KBV can cause death of bees from larvae to adult stage. An RNA virus,
KBV can infect through both vertical transmission (from queen to larvae and vice versa)
and horizontal transmission (via food contamination). Plants pollinated by bees may serve
as a source of horizontal transmission, through fecal contamination of pollen and flowers
by infected pollinators, both intra- and interspecifically. Pollinated plants constitute a
source of KBV intra- and inter-species horizontal transmission, particularly by the
contamination of pollen and flowers by feces of KBV-infected pollinators. Result: We test
for the presence of KBV sequences in the transcriptomes of Vasconcellea pubescens, a
commercially valuable plant species known as mountain papaya. We mapped
transcriptomes from fruit, leaves, and root tissues to the KBV reference genome with 91%
coverage, from which we produced a consensus sequence denominated Kashmir Bee Virus
Ch. Phylogenetic analysis revealed that KBV-Ch shares 97% nucleotide identity with the
reference genome, and groups with other KBV strains isolated from Spain, Chile and New
Zealand.
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22 Abstract

23

24 Background: The Kashmir Bee Virus (KBV) infects many species of Hymenoptera, including 
25 bees, wasps, and other pollinators, potentially contributing to honeybee population declines. 
26 KBV can cause death of bees from larvae to adult stage. An RNA virus, KBV can infect through 
27 both vertical transmission (from queen to larvae and vice versa) and horizontal transmission (via 
28 food contamination). Plants pollinated by bees may serve as a source of horizontal transmission, 
29 through fecal contamination of pollen and flowers by infected pollinators, both intra- and 
30 interspecifically. Pollinated plants constitute a source of KBV intra- and inter-species horizontal 
31 transmission, particularly by the contamination of pollen and flowers by feces of KBV-infected 
32 pollinators. 
33 Result: We test for the presence of KBV sequences in the transcriptomes of Vasconcellea 

34 pubescens, a commercially valuable plant species known as mountain papaya. We mapped 
35 transcriptomes from fruit, leaves, and root tissues to the KBV reference genome with 91% 
36 coverage, from which we produced a consensus sequence denominated Kashmir Bee Virus Ch. 
37 Phylogenetic analysis revealed that KBV-Ch shares 97% nucleotide identity with the reference 
38 genome, and groups with other KBV strains isolated from Spain, Chile and New Zealand. 
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39 Additionally, by using RT-PCR we detected KBV in in vitro cultivated plants, suggesting that V. 

40 pubescens may serve as a reservoir for KBV.
41 Conclusion: This study marks the first detection of KBV outside of floral tissues in plants. The 
42 presence of KBV in mountain papaya highlights implications for ensuring virus-free propagation 
43 materials through in vitro cultivation practices

44

45 Introduction
46

47 Kashmir Bee Virus (KBV) is a positive-sense, single-stranded RNA virus classified in the 
48 Dicistroviridae family within the Cripavirus genus (Mazzei et al., 2019). KBV primarily infects 
49 bee species such as Apis cerana, Apis mellifera, and bumblebees (Bombus spp) within the Apidae 

50 family. It has also been identified in wasps (Vespula germanica) from the Vespidae family (de 
51 Miranda et al., 2004). Notably, KBV can co-infect with closely related viruses, such as acute bee 
52 paralysis virus (ABPV) and Israel acute paralysis virus (IAPV), forming the AKI viral complex  
53 (de Miranda et al., 2004; Evans & Schwarz, 2011). KBV isolates have been reported globally, 
54 including Spain, New Zealand, South Korea, North America, Australia, and Chile (Berényi et al., 
55 2006; Nanetti et al., 2021; Riveros et al., 2018; Tentcheva et al., 2004). 
56 The KBV reference genome spans 9,524 base pairs and contains two open reading frames 
57 (ORFs) that encode nonstructural and structural proteins (de Miranda et al., 2004). The 5' ORF 
58 encodes the non-structural polyprotein, comprising three domains corresponding to a helicase, a 
59 3C protease domain, and 8 RNA polymerase domains that includes an RNA-dependent RNA 
60 polymerase. The 3' ORF encodes a structural polyprotein composed of two capsid protein 
61 domains belonging to the VP4 superfamily (de Miranda et al., 2004).
62 In honeybees, KBV primarily infects worker bees, but can spread throughout the colony under 
63 stressful conditions. Transmission occurs vertically from queen to offspring, and horizontally 
64 among bees through contaminated food, affecting individuals from the larval stage to adulthood 
65 (Meeus et al., 2014). Additionally, Varroa destructor, a common mite pest of bees, serves as a 
66 vector and activator of KBV and other viruses ((Brødsgaard et al., 2000). Specifically, KBV has 
67 been identified in V. destructor (Shen et al., 2005). Survival of pathogenic KBV particles in 
68 mites can explain why different mite species may serve as potential routes of KBV infection 
69 and/or transmission (Carreck et al., 2010; Tixier, 2018). Moreover, increased stress levels in 
70 mite-infected hives further enhance KBV transmission dynamics (de Miranda et al., 2010). 
71 Although primarily infecting bees within the Apidae family, KBV has been also found in other 
72 Hymenopterans. For example, KBV has been detected in the German wasp Vespula germanica 

73 and the Asian hornet V. velutina, both of which can predate on A. mellifera  (Brenton-Rule et al., 
74 2018; Felden et al., 2020; Mazzei et al., 2019). The transmission of KBV to V. germanica is 
75 thought to be horizontal by feeding on sick honeybees or by foraging infected corpses  (Eroglu, 
76 2023; Evison et al., 2012). The global distribution and prevalence of bee viruses, compounded by 
77 human activities like commercial pollination, might contribute to the spread of diseases to new 
78 host species (Beaurepaire et al., 2020; Martin et al., 2012).
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79 Plants serve as potential sources of entomopathogenic viruses that affect pollinators through 
80 contamination of pollen and flowers. Recently the pollen virome has been explored (Fetters et 
81 al., 2022), revealing a wide diversity of plant and insect pathogenic viruses. The shared use of 
82 flowers by different pollinator species can facilitate horizontal transmission routes (Durrer & 
83 Schmid-Hempel, 1994), often through feces deposition (Figueroa et al., 2019). Recent research 
84 has emphasized the role of flowers (Alger et al., 2019), nectar, and pollen in facilitating inter-
85 species viral transmission among pollinators, suggesting that plants may act as reservoirs for 
86 entomopathogenic viruses (Mcart et al., 2014). KBV has been detected in honeybee feces (Hung, 
87 2000), parasitic mites (Shen et al., 2005), and pollen (Singh et al., 2010). Similarly, the closely 
88 related ABPV and IAPV have been found in flowers. Transmission of viruses between managed 
89 bees, wild bees, and other pollinating insects is a common occurrence (Gisder & Genersch, 2017; 
90 Mcmahon et al., 2015). In addition, plants serve as vector of entomopathogenic viruses that 
91 affect insect herbivores, which has been shown with aphid-infecting RNA viruses (Jones, 2018). 
92 The mountain papaya (Vasconcellea pubescens), also known as Chamburo, Chilean papaya, or 
93 wild papaya (Salvatierra-González & Jana-Ayala, 2016). belongs to the Caricaceae family, 
94 which includes six genera and comprises a total of 21 species. V. pubescens is a perennial, 
95 herbaceous, and trioecious species capable of cross-pollination between male and female plants, 
96 occasionally exhibiting hermaphroditism (Chong-Pérez et al., 2018). The fruit is smaller in 
97 comparison to other papaya species, typically displaying a spherical to cylindrical shape with a 
98 green-yellow hue (Briones-Labarca et al., 2015). Additionally, the primary products derived 
99 from papaya include candies, preserves, juice, syrup, jams, and beers (Dotto & Abihudi, 2021). 

100 Well-described phytopathogenic viruses infecting Carica papaya include papaya ringspot virus, 
101 papaya leaf distortion mosaic virus, papaya lethal yellowing virus, and papaya mosaic virus, 
102 among others (Abreu et al., 2015; Adams et al., 2005; Chávez-Calvillo et al., 2016; Razean 
103 Haireen & Drew, 2014; Yang et al., 2012). However, the virome of V. pubescens remains largely 
104 unexplored. Documenting viruses affecting this species is crucial due to their potential impact. 
105 Additionally, although not directly affecting papaya, the presence of entomopathogenic viruses 
106 could impact pollinating insects, such as bees, which interact with papayas (Badillo-Montaño et 
107 al., 2019). Therefore, establishing a viral library of mountain papaya could benefit both the 
108 agroindustrial and apiculture sectors.
109 In this study, we conducted transcriptome analyses of leaf, root, and fruit tissues to establish a 
110 virome library of the mountain papaya collected from fields in Chile�s central region. This is the 
111 first report identifying the presence of KBV viral sequences in mountain papaya. The detection 
112 of KBV viral sequences in roots, leaves, and in vitro cultivated plants suggests that V. pubescens 
113 may act as a reservoir or vector for KBV infection.

114

115 Materials & Methods

116 Material collection 

117 Plant samples were collected from V. pubescens orchards in Lipimávida (coordinates: -34.8513, -
118 72.1410), Licantén (coordinates: -34.9853, -71.9847), Vichuquén (coordinates: -34.8833, -
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119 71.9934), Chanco (coordinates: -36.2690, -72.7159), Pelluhue (coordinates: -35.8136, -72.5740), 
120 Putú (coordinates: -35.2133, -72.2839), Iloca (coordinates: -34.9327, -72.1807), Duao 
121 (coordinates: -34.8969, -72.1796), Constitución (coordinates: -35.3304, -72.4092), and Curanipe 
122 (coordinates: -35.8438, -72.6392), located in the coastal areas of the Maule region, Chile (Figure 
123 1). In total, 100 orchards were sampled, with 15 plants selected from each orchard, and 3 
124 samples taken per tissue type (leaves, roots, and fruits). Plant material was randomly selected 
125 using a zigzag pattern, covering the entire area of the orchard. Each tissue sample, including 
126 leaves, roots, and fruits, was collected in triplicate.
127  
128 RNA extraction and sequencing 

129 RNA extraction from papaya fruit, leaves, and roots was performed using the Spectrum� Plant 
130 Total RNA Kit ( (Sigma®, San Luis, Misuri, USA). Quantification of concentration and purity 
131 was carried out using the NanoDrop 2000 equipment (Thermo Scientific�, Waltham, 
132 Massachusetts, USA) . Total RNAs were pooled in equal amounts (2 µg, RIN > 7-8) from 450 
133 samples to generate a mixed cDNA library of V. pubescens. Nine cDNA libraries were 
134 sequenced in paired-end mode with an Illumina HiSeq� 2000 sequencer. Transcriptomes from 
135 leaves, roots, and fruits were sequenced. These transcriptomes were processed using the TruSeq 
136 Stranded mRNA LT Kit (Illumina, San Diego, California, USA) at Genoma Mayor (Chile) and 
137 sequenced with Illumina technology. Sequencing data has been deposited in NCBI SRA under 
138 the PRJNA1142012 accession number.
139

140 Preliminary treatment of transcriptomes 

141 FastQC was employed to assess the quality of raw sequences obtained with Illumina (v0.12.0) 
142 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Trimmomatic was utilized to 
143 remove adapter sequences and low-quality reads (reads with ambiguous bases 'N' and reads with 
144 more than Q<20 bases) to obtain high-quality reads (v0.33) (Bolger et al., 2014; González et al., 
145 2020). The Trinity software was used for de novo assembly from the concatenated high-quality 
146 reads of these libraries (v2014-04- 13) (Grabherr et al., 2011), utilizing default parameters. 
147

148 Transcriptome annotation 

149 ORFinder (https://www.ncbi.nlm.nih.gov/orffinder/), blastn, and blastp 
150 (https://blast.ncbi.nlm.nih.gov/Blast.cgi) against nt/nr from NCBI were utilized to predict open 
151 reading frames (ORFs) from the assembled sequences (https://www.ncbi.nlm.nih.gov/orffinder/). 
152 ORFs were compared with reference genomes to identify the start (methionine) and stop codon. 
153 The following tools were employed for functional annotation: CDD 
154 (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi/) (Marchler-Bauer et al., 2015), PFAM 
155 (https://pfam.xfam.org/) (El-Gebali et al., 2019), SMART (http://smart.embl-heidelberg.de/) 
156 (Letunic & Bork, 2018), and PROSITE (https://prosite.expasy.org/) (Sigrist et al., 2013) for 
157 predicting conserved protein domains; PLACE (https://www.dna.affrc.go.jp/) (Higo et al., 1999) 
158 and Neural Network Promoter Prediction (https://www.fruitfly.org/seq_tools/promoter.html) 
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159 (Reese, 2001) for predicting promoters and regulatory regions; and ELM (http://elm.eu.org/) 
160 (Dinkel et al., 2012; Elkhaligy et al., 2021) for profile identification.
161

162 Viral identification

163 Viruses were first identified in the transcriptome by exploring the taxonomy of the blast 
164 annotated sequences. Four putative viral contigs were compared with sequences from the NCBI 
165 database, which showed a match with Kashmir Bee Virus (AY275710.1).
166

167 Reference mapping and consensus sequence generation

168 Mapping to the KBV reference genome (AY275710.1) was conducted for the nine transcriptome 
169 samples using BWA with default parameters. Subsequently, a consensus sequence for the 
170 putative KBV was obtained using the bam alignment of one sample fruit tissue replicate 3 with 
171 IVAR consensus tool (-n N -m 1 -t 0.5). The consensus sequence was named �Kashmir Bee 
172 Virus Chile isolate from Chile (KBV-Ch)� and it was submitted to NCBI with the accession 
173 PP103295. 
174

175 Phylogenetic analysis

176 A phylogenetic analysis was conducted to compare KBV-Ch sequence to other KBV Chilean 
177 isolates using a 320 bp region that comprises the 3� end of the intergenic region and the 5� end of 
178 the structural polyprotein. In addition, a BLASTN of this 320 bp region to the nt database was 
179 performed to identify other KBV sequences to include in the phylogenic analysis. A total of 30 
180 sequences were aligned using Muscle (default parameters), after which a phylogenetic tree was 
181 constructed using the Neighbor-Joining method in MEGA (Kimura 2 parameter method, 1000 
182 bootstraps). The Israel Acute Paralysis Virus was included as an outgroup. The sequences used 
183 were EU122368.1 (USA), EU122369.1 (USA), EU122370.1 (USA), EU122371.1 (USA), 
184 EU122372.1 (USA), EU122373.1 (USA), NC_004807.1 (USA), MT096516.1 (Spain), 
185 KC833152.1 (Chile), KC833158.1 (Chile), KC833142.1 (Chile), KC833149.1 (Chile), 
186 AY641447.2 (New Zealand), MW314660.1 (Spain), PP103295 (Chile), MN226368.1 (Nigeria), 
187 EU122374.1 (USA), MN226367.1 (USA), HM067845.1 (USA), KP965377.1 (South Korea), 
188 KP965379.1 (South Korea), KP965382.1 (South Korea), KP965383.1 (South Korea), 
189 KP965378.1 (South Korea), KP965376.1 (South Korea), KP965381.1 (South Korea), 
190 KP965380.1 (South Korea), KP965375.1 (South Korea), KP965374.1 (South Korea), 
191 KP965373.1 (South Korea), KF219804.1 (Israel).
192

193 Plant material and in vitro thermotherapy

194 Nodal explants were obtained from papaya plants in the Lipimavida area (coordinates: -34.8513, 
195 -72.1410), coastal Region of Maule, and established in vitro in culture tubes containing 10 mL of 
196 Murashige and Skoog (MS, 1962) medium at 100% concentration supplemented with 30 mg/L 
197 sucrose, 0.5 mg/L Benzylaminopurine (BAP), and 0.4 mg/L Indole-3-acetic acid (IAA), adjusted 
198 to a pH of 5.8. These were cultivated in a growth chamber at 24°C ± 1°C and a 16-hour 
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199 photoperiod provided by 24-Watt white fluorescent tubes, generating a light intensity of 60 
200 µmol/m²/s. A total of 60plants  were sanitized using thermotherapy carried out in a growth 
201 chamber (Faithfull, RGX-400EF) for a period of 4 weeks at a temperature of 38°C ± 0.5 and a 
202 16-hour light/8-hour dark photoperiod. After the heat treatment, shoot tips (5 mm) were excised 
203 and transferred to culture flasks containing 30 ml of MS medium supplemented with 30 mg/L 
204 sucrose and 0.4 mg/L Zeatin, adjusted to a pH of 5.8. A total of 20 plants survived, from which 7 
205 clones were generated, of these four were used for RNA extraction. 
206

207 RNA extraction and RT-PCR analysis

208 Four in vitro cultured explants of V. pubescens (T1-T4) were used for RT-PCR identification of 
209 KBV-Ch. 100 mg of each sample was processed with liquid nitrogen to extract RNA using the 
210 Spectrum TM Plant Total RNA Kit (Sigma®, San Luis, Misuri, USA) according to the 
211 manufacturer's instructions, then cDNA was synthesized using the Thermo Scientific TM Revert 
212 Aid First Stand cDNA Synthesis Kit (Sigma®, San Luis, Misuri, USA). Subsequently, a solution 
213 of 12 µL of 1X PCR Buffer (Winkler, Lampa, Santiago, Chile), 1.5 mM PCR Buffer (Winkler, 
214 Lampa, Santiago, Chile), 2.5mM MgCl2 (Thermo Scientific�, Waltham, Massachusetts, USA), 
215 0.2 mM dNTPs (Thermo Scientific�, Waltham, Massachusetts, USA), along with 300pM of 
216 each primer and 1.5u Taq DNA polymerase (Agilent, Santa Clara, California, USA) was 
217 prepared. The MultiGene� OptiMax thermocycler (Labnet�,  Edison, New Jersey, USA) was 
218 used and an initial denaturation program of 5 minutes at 95°C, followed by 35 cycles of 
219 denaturation for 30 seconds at 95°C, alignment for 30 seconds at 58°C and a final extension of 
220 30 seconds at 72°C, remaining at 4°C until verification by 2.3% m/v agarose gel electrophoresis 
221 in 1X TAE buffer (Winkler, Lampa, Santiago, Chile). GeneRulerTM Ready-to-use 50bp DNA 
222 Ladder molecular weight marker (Thermo Scientific�, Waltham, Massachusetts, USA)  and 
223 GeneRuler� Ready-to-use 100bp Plus DNA Ladder  (Thermo Scientific�, Waltham, 
224 Massachusetts, USA). The primers for amplify the KBV sequence were forward 5'- 
225 ATGATTGGGGGGCGGTGTAATA-3' and reverse 5'- TGCCTGTGTGAAAAGCTGTC-3' to 
226 obtain a 209bp amplicon that target a conserved region of the VP2 protein (8,023-8,231bp; KBV 
227 reference genome AY275710.1). In addition, primers for V. pubescens ribosomal 18s RNAr were 
228 used as positive control (Gambino & Gribaudo, 2007).

229

230 Results

231 Detection of Kashmir Bee Virus sequences in V. pubescens transcriptomes 

232 To explore the virome of the mountain papaya V. pubescens, de novo assemblies were conducted 
233 on root, leaf, and fruit transcriptomes from samples collected from multiple orchards in the 
234 Maule region (Chile). Blastp annotation to the nr database revealed contigs with match to 
235 Kashmir Bee Virus (KBV). Subsequently, we assessed the viral load across different tissues by 
236 mapping transcriptome reads to the KBV reference genome (Table 1). Notably, one replicate of 
237 fruit samples showed 820 mapped reads, covering 92% of the reference sequence with an 
238 average depth of 12X. In addition, KBV was also detected in root and leaf samples ranging from 
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239 two to six reads per sample (Table 1). From the reads aligned to the KBV reference genome, we 
240 constructed a consensus sequence named �KBV-Ch (Chile)�, with 199 single nucleotide 
241 polymorphisms (SNPs) (Supplementary Table 1).
242

243 Phylogenetic analysis 

244 KBV has been previously reported in honeybee samples in Chile (Riveros et al., 2018). 
245 Phylogenetic analysis which revealed that KBV-Ch is similar to a KBV isolate from Spain, and 
246 sharing a clade with isolates from New Zealand and some samples from Chile (Figure 2).
247

248 Detection of KBV in laboratory and field plants

249 Given the detection of KBV sequences in root and leaf tissues, suggesting potential vascular 
250 tissue incorporation of the virus, we investigated the presence of KBV in in vitro cultivated 
251 plants derived from V. pubescens explants collected from the field using RT-PCR. Examination 
252 of in vitro cultivated plants found a single, 209bp, amplicon in one sample (Figure 3).
253

254 Discussion

255

256 The Kashmir Bee Virus (KBV) was identified in the mountain papaya through transcriptome 
257 analysis of several tissues, and KBV sequences were found in greenhouse-grown plants. Through 
258 transcriptome analysis of leaf, root, and fruit tissues of the mountain papaya, V. pubescens, we 
259 successfully identified a near-complete genome sequence of the KBV, and detected KBV 
260 sequences in in vitro grown plants. The presence of KBV was notably higher in one replicate of 
261 fruit transcriptome, suggesting an occasional ocurrence of the virus in V. pubescens orchards. As 
262 a trioecious species capable of cross-pollination, V. pubescens produces male, female, and 
263 hermaphrodite plants (Carrasco et al., 2009). Pollination can occur via wind or insects, with self-
264 pollination observed in commercial varieties of Carica papaya (Carrasco et al., 2022). Infected 
265 pollen presents a potential source of KBV particles in fruits. There are viruses capable of 
266 infecting pollen, which can pass to the plant ovule and produce virus-infected fruit. Pollen can be 
267 infected by different vectors, such as abiotic factors (like wind) or biotic factors (like insects) 
268 (Bhat & Rao, 2020). In addition, Figueroa et al. (2019) studied the mechanisms involved in 
269 pathogen deposition, persistence and acquisition in flowers. Bees, known to spend extended 
270 periods feeding on flowers, deposit and acquire feces from other pollinators, promoting 
271 transmission rates. 
272 While reports on bee viruses in pollinated plants typically focus on flowers and pollen, other 
273 viruses from the Dicistroviridae family have been detected circulating in other plant tissues, 
274 among which most examples are from aphid viruses (Jones, 2018). For instance, the 
275 Rhopalosiphum padi virus (RhPV) spreads systemically in barley plants including roots, 
276 potentially infecting healthy individuals that consume RhPV-carrying plants (Ban et al., 2007). 
277 Similarly, Aphid lethal paralysis virus has been found in cucumber leaf transcriptomes, 
278 suggesting a comparable transmission route (Maina et al., 2017). In our study, we detected KBV 
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279 RNA in roots and leaves, albeit in lower quantities compared to fruits, suggesting that KBV 
280 could circulate from contaminated sexual organs to other plant tissues. Despite rigorous surface 
281 cleaning of plant material before RNA extraction, residual KBV RNA could stem from 
282 superficial contamination with feces, corpses, or other insect sources carrying KBV particles. 
283 Importantly, KBV RNA was also detected in in vitro grown plants, which underwent stringent 
284 disinfection procedures, and only novel tissue was used for RNA extraction. Virus in in vitro 
285 plant cultures can originate from the source vegetative plant (Li et al., 2013).  Such is the case of 
286 babaco plants (Vasconcellea x heilbornii), which are often propagated from cuttings without 
287 virus elimination protocols typically resulting in in vitro plants infected with viruses (Muñoz et 
288 al., 2023). Therefore, it is possible that KBV could systemically circulate through the plant as it 
289 was shown for other members of Dicistroviridae, utilizing pollinated plants as reservoirs and 
290 passive vectors. The phenomenon of horizontal transmission of entomopathogenic viruses by 
291 host plants as passive vectors remains understudied yet holds significant implications for pest 
292 control and conservation of wild pollinators (Jones, 2018). 
293 While the exact mechanism of KBV introduction into V. pubescens populations in Chile remains 
294 uncertain, previous studies conducted by Chilean researchers have identified partial KBV 
295 sequences Apis mellifera populations across several regions in Chile (Riveros et al., 2018). 
296 Phylogenetic analysis of the KBV sequence obtained in our study reveals close genetic proximity 
297 to these previously reported Chilean isolates, as well as isolates from Spain and New Zealand, 
298 suggesting reintroduction of genetically different KBV isolates across continents. Furthermore, 
299 the interaction between bees and papaya trees is noteworthy (Badillo-Montaño et al., 2019). This 
300 interaction implies two key aspects: firstly, bees in the studied locations may act as vectors for 
301 KBV transmission, potentially disseminating the virus during pollination of V. pubescens; and 
302 secondly, there is a critical need to monitor bee populations in the coastal areas of the Maule 
303 Region for KBV presence. Such surveillance could benefit beekeepers and lay the groundwork 
304 for forthcoming investigations.
305

306 Conclusions

307 This study marks a significant advancement by documenting, for the first time, the detection of 
308 the �Kashmir Bee Virus Chile� within the transcriptomes of Vasconcellea pubescens, 
309 representing a milestone for the agro-industrial and apiculture sectors in Chile�s Maule region. 
310 Transcriptome analysis revealed the presence of KBV-Ch in various V. pubescens tissues, with a 
311 notable abundance in fruit tissues, suggesting a potential role as a reservoir or vector of infection. 
312 These preliminary results highlight the presence of KBV-Ch in V. pubescens, serving as a 
313 fundamental step for the development and validation of future hypotheses. Additional replication 
314 and testing in more plants are necessary. Future studies should focus on elucidating transmission 
315 mechanisms and assessing the virus's impact on agriculture and beekeeping. These efforts are 
316 critical for developing strategies to control viral diseases affecting crops and pollinators.
317
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RNA-seq of mountain papaya reveals presence of KBV RNA
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1 Table 1: KBV detection and RNA sequencing in mountain papaya tissues. Summarizes 

2 the number of reads in Kashmir bee virus (KBV) genomes in different mountain papaya 

3 (V. pubescens) tissues. Samples of fruits, leaves and roots were analyzed in triplicate.

 NUMBER OF READS 

MAPPED TO KBV GENOME

TOTAL READS

ROOT R1 6 46,122,074

ROOT R2 2 47,440,504

ROOT R3 2 39,754,722

LEAF R1 1 55,401,252

LEAF R2 0 42,124,523

LEAF R3 0 72,734,557

FRUIT R1 0 51,194,927

FRUIT R2 0 45,857,234

FRUIT R3 820 43,542,557

4

5
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Figure 1
Map of the Maule Region depicting Vasconcellea pubescens cultivars.

Red stars, from top to bottom, represent the cities of Lipimávida, Duao, Iloca, Putú,
Constitución, Chanco, Pelluhue, and Curanipe. Green stars, from top to bottom, represent the
cities of Vichuquén and Licantén. The zoomed-in area indicates the samples obtained from
each locality, corresponding to roots, leaves, and fruits. Coordinates of the North Extreme:
17.5083° S, 69.6116° W and Coordinates of the South Extreme: 56.5000° S, 68.1333° W.
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Figure 2
Evolutionary relationships among the various KBV strains.

The phylogenetic tree of KBV Ch based on a 320 bp of the intergenic region and structural
polyprotein gene from twenty-nine distinct sequences of KBV. The isolates originate from
USA, North Korea, Chile, Spain, Nigeria, and New Zealand. The Israel Acute Paralysis Virus
(KF219804) was used as an outgroup. This Chilean isolate, PP103295 KBV Ch, are highlighted
in red. The dendrogram was constructed using the Neighbor-Joining method in MEGA and
1000 Bootstrap replicates.
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Figure 3
KBV sequences are detected in in vitro grown wild papaya.

RT-PCR amplification results of KBV Ch in V. pubescens explants. (Left) Housekeeping 18S
rRNA gene from V. pubescens (~844 bp) as a positive control in four independent samples
(T1-T4), negative control (c), and GeneRuler™ 100 bp Plus DNA Ladder. (Right) KBV Ch
sequence (~209 bp) in four independent samples (T1-T4), negative control (c), and
GeneRuler™ 50 bp DNA Ladder. Images were obtained using Accuris E3000 UV
Transilluminator.
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