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ABSTRACT
Background. The initial colonization of the infant gut is a complex process that defines
the foundation for a healthy microbiome development. Bifidobacterium longum is one
of the first colonizers of newborns’ gut, playing a crucial role in the healthy development
of both the host and its microbiome. However, B. longum exhibits significant genomic
diversity, with subspecies (e.g., Bifidobacterium longum subsp. infantis and subsp.
longum) displaying distinct ecological and metabolic strategies including differential
capabilities to break down human milk glycans (HMGs). To promote healthy infant
microbiome development, a good understanding of the factors governing infant
microbiome dynamics is required.
Methodology.We analyzed newly sequenced gutmicrobiome samples ofmother-infant
pairs from theAmsterdam InfantMicrobiome Study (AIMS) and four publicly available
datasets to identify important environmental and bifidobacterial features associated
with the colonization success and succession outcomes of B. longum subspecies.
Metagenome-assembled genomes (MAGs) were generated and assessed to identify
characteristics of B. longum subspecies in relation to early-life gut colonization. We
further implemented machine learning tools to identify significant features associated
with B. longum subspecies abundance.
Results. B. longum subsp. longum was the most abundant and prevalent gut Bifidobac-
terium at one month, being replaced by B. longum subsp. infantis at six months of age.
By utilizingmetagenome-assembled genomes (MAGs), we reveal significant differences
between and within B. longum subspecies in their potential to break down HMGs.
We further combined strain-tracking, meta-pangenomics and machine learning to
understand these abundance dynamics and found an interplay of priority effects, milk-
feeding type and HMG-utilization potential to govern them across the first six months
of life. We find higher abundances of B. longum subsp. longum in the maternal gut
microbiome, vertical transmission, breast milk and a broader range of HMG-utilizing
genes to promote its abundance at one month of age. Eventually, we find B. longum
subsp. longum to be replaced by B. longum subsp. infantis at six months of age due to a
combination of nutritional intake, HMG-utilization potential and a diminishment of
priority effects.
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Discussion. Our results establish a strain-level ecological framework explaining early-
life abundance dynamics of B. longum subspecies. We highlight the role of priority
effects, nutrition and significant variability inHMG-utilization potential in determining
the predictable colonization and succession trajectories of B. longum subspecies, with
potential implications for promoting infant health and well-being.

Subjects Food Science and Technology, Microbiology, Gastroenterology and Hepatology,
Pediatrics
Keywords Gut microbiome, Infant, Bifidobacterium longum, Metagenomics, Pangenomics,
Human milk oligosaccharides (HMO), Machine learning, N-glycans

INTRODUCTION
Bifidobacteria reside in the human gastrointestinal tract from infancy through adulthood,
persisting as common inhabitants throughout our entire lifespan. During the first six
months of life in healthy, full-term, and breastfed infants, this genus emerges as the
predominant bacterial group, playing a vital role in establishing the gut microbiome and
promoting healthy infant development (Sela et al., 2008; Nagpal et al., 2017). Common
practices, such as alternative milk-feeding strategies, cesarean section and antibiotics can
alter the ability of bifidobacteria to colonize the infant gut, leading to lower abundances and
prevalence (Dominguez-Bello et al., 2010; Lewis et al., 2015; Hill et al., 2017; Turroni, Berry
& Ventura, 2020). Given that bifidobacteria have been associated with important functions
such as pathogen exclusion (Brinkworth et al., 2009; Fukuda et al., 2012), maintaining
gut barrier integrity (Brinkworth et al., 2009), promoting immune system development
(Henrick et al., 2021), and carrying out essential metabolic activities (Sakanaka et al., 2019b;
Henrick et al., 2021), a thorough understanding of the patterns and factors determining
their colonization and persistence in the infant gut is needed.

The gastrointestinal tract of developing infants is an ever-changing environment,
making gut colonization a complex phenomenon. The colonization process is influenced
by host genotype, environmental and nutritional factors, as well as interactions within
the microbiome or potentially a combination thereof (Munyaka, Khafipour & Ghia, 2014;
Levy, Thaiss & Elinav, 2015; Debray et al., 2022). Another important factor is the order
and timing of species arrival during the colonization of the gastrointestinal tract, often
summarized under the term priority effects (Fukami, 2015). Previous studies have shown
that bifidobacterial metabolism and timing of colonization significantly affect competitive
interactions in in vitro and murine experiments as well as in vivo gut communities
(Sakanaka et al., 2019a; O’Brien et al., 2022; Ojima et al., 2022; Laursen & Roager, 2023).

Breast milk or infant formula is the sole diet for the vast majority of infants and
is simultaneously the main form of nutrition for the budding infant microbiome.
Compared to infant formula, breast milk contains higher concentrations and a more
diverse composition of multiple, indigestible human milk glycans (HMGs): human milk
oligosaccharides (HMOs) and N-glycans (Lönnerdal & Hernell, 2016; Hou et al., 2024). A
fewbifidobacterial species, including the infant-typeB. breve,B. bifidum, andB. longum, can
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use these as their main energy source. These species possess the key enzymes (i.e., specific
glycoside hydrolases, GH, and uptake proteins) to break down the glycosidic bonds
present in the structures of HMOs and N-glycans (Ward et al., 2007; Marcobal et al., 2010;
LoCascio et al., 2010). However, bifidobacteria display substantial phenotypic variation
in HMO/N-glycan utilization strategies, influencing their competitive interactions for
growth substrates. This was also evident in murine models which demonstrated HMO
supplementation to be a key determinant of bifidobacterial community assembly and
succession outcomes (Laursen & Roager, 2023).

Bifidobacterium longum is among the most proficient HMG-utilizers and one of the
most abundant species in the infant gut (Sela et al., 2008; Turroni et al., 2012). Five
B. longum subspecies have been identified: the human-colonizing B. longum subsp. longum
(BLlongum), B. longum subsp. infantis (BLinfantis) and B. longum subsp. iuvenis and
the pig-colonizing B. longum subsp. suis and B. longum subsp. suillum (Mattarelli et al.,
2008; Yanokura et al., 2015; Modesto et al., 2023). The genomes and metabolic potentials
of the two important human-colonizing BLlongum and BLinfantis reflect their ecological
niches (Underwood et al., 2015). Specifically, BLinfantis possesses a versatile metabolic
system specialized for HMO/N-glycan-utilization, whereas BLlongum displays greater
specialization in the degradation of plant-derived carbohydrates, a food source typical
of more mature diets (Ward et al., 2007; Marcobal et al., 2010; LoCascio et al., 2010; Kelly,
Munoz-Munoz & Van Sinderen, 2021). Recent studies have implied that the early-life
colonization and succession dynamics of BLlongum and BLinfantis are influenced by
priority effects and nutrition (Laursen & Roager, 2023; Ennis et al., 2024; Selma-Royo et al.,
2024). The observation that BLlongum and BLinfantis are the predominant bifidobacterial
species around one and four-six months of age, respectively, points towards a degree
of phenotypic plasticity and possible genomic adaptation within these subspecies (Frese
et al., 2017; Ennis et al., 2024). Hence, considering intra-specific genomic diversity, host
life-history traits, and environmental heterogeneity is crucial for understanding the process
of early gut colonization by B. longum.

Recent advances in machine learning (ML) and statistical methodology have led to
a better understanding of biological systems via complex biological datasets (Schmidt et
al., 2022; Medina et al., 2022). In combination with rich datasets that provide detailed
metadata, such tools can uncover key factors and quantify their importance in dynamic
systems like bifidobacterial populations in the infant gut.

Here we set out to determine the factors underlying the early-life gut colonization and
succession dynamics of Bifidobacterium longum by applying modern ML tools. Samples
from mothers and infants up to six months of age were collected in the prospective
Amsterdam Infant Microbiome Study (AIMS) and sequenced. Using strain-tracking and
metagenome-assembled genomes (MAGs), we dissected the pan-genomic and functional
characteristics of B. longum subspecies in relation to human milk glycan-utilization
(HMOs and N-glycans) and early-life gut colonization. Employing statistical modeling
and ML we identified important features associated with B. longum abundance dynamics,
accounting for priority effects, nutritional intake, HMG-utilization potential and microbial
interactions. By integrating our results, we propose a conceptual framework that sheds light
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on B. longum gut colonization and abundance dynamics during early-life development.
Understanding these dynamics will provide crucial insights for promoting infant health
and well-being.

MATERIAL AND METHODS
Amsterdam Infant Microbiome Study cohort.
Amsterdam Infant Microbiome Study (AIMS) is a multi-ethnic, prospective birth cohort
study with the general objective to establish an infrastructure that allows for (explorative)
research on the development of the microbiome in relation to healthy growth and
development. Pregnant women living and receiving prenatal care in Amsterdam city
districts are included in the cohort. Mothers are recruited mid-pregnancy and their
children are followed from birth until the age of three years. Biosamples from the children
are collected at 11 time points from birth until the age of three years and from their mothers
at three time points (during pregnancy, birth, and when the infant is 6 m). Also, biosamples
from the partner and sibling are collected during the mother’s pregnancy and when the
infant is six-months-old (mo). Stool, vaginal, tongue, tooth plaque and breast milk samples
are collected from the mother, while stool, tooth plaque, tongue swab samples are collected
from the infant, and partner/sibling. Hence the focus of AIMS is mainly on the gut and oral
microbiome. Inclusion and data collection started at the end of 2019.Methods for sampling
and questionnaires received approval by the Medical Ethical Examination Commission of
the Amsterdam University Medical Center (METC Amsterdam UMC, Reference number:
NL64399.018.17). All participants have provided written consent. Written consent for
infants was provided by parents after birth.

Study population and sample collection
A total of 72 non-invasive stool biosamples for metagenomics shotgun sequencing were
collected from 24 AIMS mother-infant pairs to be sequenced. Mother and infant samples
were self-collected at homeduring late pregnancy (34weeks of pregnancy) and at one and six
months after birth, respectively.Mother and six-month samples were obtained by swabbing
faeces collected in toilet paper during defecation. Similarly, stool samples from 1 m infants
were collected directly from their diapers. After collection, samples were deposited in
appropriate buffer-containing test tubes and stored in household freezers at −18/20 ◦C.
Typically within two weeks after collection, the samples were transported in a mobile
freezer (−4 ◦C) by trained personnel to the Amsterdam Public Health Service (GGD),
and stored at −80 ◦C until DNA extraction. Metadata associated with maternal and infant
samples were collected by means of validated questionnaires. This included information
about early-life nutritional intake of the infant (milk-feeding type and frequency, solid
food intake) and the mother (intake of vitamins/supplements), antibiotic and probiotic
intake and other medication for all participants, housing of the mother/infant (i.e., number
of adults and children in household, pets, smoking), health status of both mother/infant,
lifestyle factors of the mother (i.e., smoking, alcohol) and demographic factors (i.e., age of
all participants, ethnic background, education; Table S1).
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DNA extraction and sequencing
DNA was extracted using the ZY-D4306 ZymoBIOMICS-96 Magbead DNA Kit (with
the use of the KingFisherTM Flex Purification System for high throughput) following
BaseClear protocols. A total of 57 out of 72 samples (mother, n= 21; infant_1mnt, n= 14;
infant_6mnt, n= 22) yielded acceptable DNA-input concentrations for sequencing.
Metagenomics libraries were further sequenced on an Illumina NovaSeq platform and
yielded 2 × 150 bp paired-end reads.

Metagenomics reads pre-processing
Pre-processing of raw metagenomics reads was performed using BBDuk and BBMap
(Bushnell, 2014) (Fig. S1). Raw reads were trimmed to remove adapters, poor quality
bases (Q15) and further discard reads shorter than 45bp (minlength = 45). BBMap was
used to discard reads mapping the reference human genome to remove human DNA
from microbial reads (minID = 0.95). The remaining microbial reads were then merged
into longer, single reads using the read-pairing tool BBMerge (Bushnell, 2014) (min read
overlap= 16). The merged content of each sample subsequently underwent quality control
(FastQC; Babraham Bioinformatics—FastQC AQuality Control tool for High Throughput
Sequence Data) checks to determine, among others, per sequence quality score, per base
sequence quality score, QC content as well as overall basic statistics. The MultiQC (Ewels
et al., 2016) tool further pooled the quality control output of individual samples to provide
summaries of quality control per datasets. Quality-controlled reads were subsequently
assembled in scaffolded contigs using the SPAdes (Prjibelski et al., 2020) assembler in
metagenomic mode.

MAG reconstruction
We used a multi-sample binning approach as implemented in SemiBin to generate MAGs
(SemiBin 1.0, Pan et al., 2022). In short, for each mother-infant pair, we mapped the
short reads of all samples from this mother-infant pair to a set of assembled contigs
(500bp) from the same mother-infant pair via Bowtie2 (Langmead & Salzberg, 2012).
The multi-sample binning mode (SemiBin multi_easy_bin) was then used to bin samples
individually, leveraging information from samples belonging to the same mother-infant
pair. MAG quality was estimated using CheckM v.1.2.0 (Parks et al., 2015) and GUNC
v1.0.5 (Orakov et al., 2021), and all genomes were taxonomically classified using STAG
(https://github.com/zellerlab/stag). Obtained high-quality Bifidobacterium longum MAGs
were further passed through the anvi-estimate-genome-completeness program to estimate
the completeness and redundancy of domain-level single-copy core genes; draft genomes
were considered suitable for downstream analyses when displaying ≥90% completeness
and ≤5% redundancy (i.e., high-quality) or ≥85% & ≤5% redundancy (i.e,medium-high
quality).

Public metagenomic data acquisition
We made use of four publicly available datasets to conduct B. longum quantitative and
genomic analyses: (Chu et al., 2017; Ferretti et al., 2018; Shao et al., 2019; Yassour et al.,
2018). Similar to the AIMS dataset, these studies have longitudinal sampling design
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focused on healthy early-life gut microbiome colonization dynamics and development and
include samples from the mothers. For all datasets, mother-infant samples were selected
based on delivery mode (i.e., vaginal), pregnancy length (i.e., full-term), health status
(i.e., healthy), antibiotics use (i.e., no antibiotics) and infant age (∼one-month; Chu et al.,
2017: 40 days; Ferretti et al., 2018: 30d; Shao et al., 2019: 21d, Yassour et al., 2018: 30d, no
matching 6 months samples could be obtained). In addition, a minimal requirement for
inclusion was available metadata on milk-feeding. No public metagenomics dataset with
data collected at six months of age met our criteria for inclusion. Metagenomics raw reads
for the Chu et al. (2017), Ferretti et al. (2018), and Yassour et al. (2018) were downloaded
from public sources and underwent the same pre-processing, assembly and B. longumMAG
reconstruction protocol as AIMS samples. If the B. longum MAGs obtained from these
studies were determined to be of low-quality, we retrieved the corresponding high-quality
MAGs from the Early-Life Gut Genomes (ELGG) database (Zeng et al., 2022). For Shao
et al. (2019), B. longum MAGs were exclusively downloaded from the ELGG database.
MAGs contained in this database were reconstructed using three metagenomic binning
tools (MetaBAT v2.12.1, Kang et al., 2019), MaxBin v2.2.6, (Wu, Simmons & Singer, 2016)
and CONCOCT v1.0.0 (Alneberg et al., 2014) and quality-controlled with CheckM v1.0.12
and GUNC v1.0.5. Only MAGs with ≥90% completeness and ≤5% redundancy were
downloaded from the ELGG database. For all datasets, additional information on vertical
transmission events and nutritional intake was obtained via metadata made available by
Podlesny et al. (2022). Across datasets, the percentage of MAGs failing quality control was
27% for AIMS samples and on average 69% for the publicly available studies. In total, 125
metagenomics mother and infant stool samples and 34 B. longum MAGs were obtained
after quality-filtering. Processed metagenomics reads andMAGs were used for quantitative
profiling of Bifidobacterium spp. as well as meta-pangenome and CAZy-profile analyses,
respectively.

Bifidobacterial (sub)species-profiling
In order to assess the relative abundance of bacterial taxonomic groups per sample and
the alpha and beta diversity of the sequenced microbial communities, concatenated reads
were mapped onto reference genomes from the GTDB R220 database (Parks et al., 2020)
by using the computational tool sylph v.0.6.1 (Shaw & Yu, 2024). To validate the sylph
abundance estimates for the B. longum subspecies we profiled the AIMS samples using
MetaPhlAn v4.0.6 with the amended MetaPhlAn-B.infantis database (Fig. S5) (Ennis et al.,
2024; Blanco-Míguez et al., 2023).

Bifidobacterial strain-tracking
Single nucleotide variant (SNV) calling was used to determine overall and bifidobacterial
strain-tracking between mothers and 1 m infants (i.e., vertical transmission), mothers
and 6 m infants (i.e., persisted vertical transmission or horizontal transmission) and
within same infants (i.e., persistence). Reference-based strain tracking was performed by
running StrainPhlAn4 (Blanco-Míguez et al., 2023). StrainPhlAn4 employs MetaPhlAn 4
(Blanco-Míguez et al., 2023) to map quality-controlled merged reads to species-specific
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marker sequences. StrainPhlAn4 multiple sequence alignment for Bifidobacterium spp.
of interest was performed using the strainphlan module on reconstructed species-specific
consensus and reference markers.

B. longum meta-pangenome and phylogenomics tree
Pangenome analyses were carried out in Anvi’o v8 (Eren et al., 2021). MAGs and reference
genomes were converted into contig databases (anvi-gen-contig-database) and functionally
annotated from COG and KEGG databases (anvi-hmm, anvi-run-ncbi-cogs and anvi-
run-kegg-kofams). A genome storage was created from functionally annotated contig
databases (anvi-gen-genomes-storage); this storage contained essential information about
the genomes, which was then used as input for pangenome reconstruction. We made use
of the anvi-pangenome and anvi-interactive modules to first reconstruct the B. longum
pangenome and subsequently visualize the hierarchical clustering of MAGs based on gene
copy-number (Method: Ward; Distance: Euclidean; Fig. S2).

We further used the information retrieved fromourB. longum pangenome to reconstruct
a phylogenomics tree in anvi’o (https://merenlab.org/2017/06/07/phylogenomics/). Briefly,
nucleotide sequences for 172 single-copy core genes found to be present among all
B. longum MAGs were obtained and aligned using the anvi-get-sequences-for-gene-clusters
module. The phylogenomics tree was obtained by using the resulting concatenated
alignment of nucleotide sequences as input for the anvi-gen-phylogenomics-tree program
(Fig. S3). The genome of B. adolescentis ATCC 15703 was used as an outer group.

B. longum MAGs subspecies differentiation
Subspecies differentiation was achieved by reconstructing a phylogenomics tree (Fig.
S3) of reconstructed MAGs and B. longum subsp. longum (BLlongum) and B. longum
subsp. infantis (BLinfantis) reference genomes. MAGs clustering with a specific reference
genome (downloaded from the proGenomes3 database (Fullam et al., 2023) were
subsequently assigned to the respective subspecies. We further validated the subspecies-
differentiation of reconstructed B. longum MAGs by using the MetaPhlAn-B.infantis
database (Ennis et al., 2024), an amended MetaPhlAn database which includes B. longum
subspecies-specific marker genes. Briefly, gene (nucleotide) sequences derived from
B. longum MAGs were aligned to 247 subspecies-specific marker genes (119 BLinfantis
and 128 BLlongum) nucleotide sequences for the subspecies-specific marker genes
(https://github.com/yassourlab/MetaPhlAn-B.infantis) using BLASTn (v2.6.0+) (Altschul
et al., 1990) filtered at ≥90% alignment identity and ≥50% coverage (Ennis et al., 2024).
Hierarchical clustering of B. longumMAGs based on marker genes copy number (distance
metric = euclidean, clustering method =Ward.D2) was used to differentiate BLinfantis
from BLlongum MAGs (Fig. S4, Table S2). The complete list of B. longum subsp. longum
(BLlongum) and B. longum subsp. infantis (BLinfantis) MAGs used in this study are
provided in Table S3.

Functional and metabolic enrichment analyses
Weused reconstructed high- andmedium-qualityMAGs to investigate potential functional
differences between and within BLlongum and BLinfantis (Table S9–S11). Reference
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genomes were excluded from functional comparisons, resulting in enrichment scores
and adjusted p-values (q-value) of functions found in BLlongum and BLinfantis MAGs
were obtained by using the anvi-compute-functional-enrichment-across-genomes module.
Shortly, this method aggregates gene calls by their respective KEGG functional annotation
and fits a generalized linear model (GLM) to determine the uniqueness of the association
to each of the compared groups (anvi-compute-functional-enrichment-across-genomes).

Described functional annotations were used to further predict metabolic modules and
pathways (KEGG MODULE resource) for BLlongum and BLinfantis. For this purpose, we
used the anvi-estimate-metabolismmodule, which predicts both presence and completeness
of the detected metabolic modules (Watson et al., 2023). A completeness score of ≥75%
was applied to determine the presence of modules in any given MAG. The anvi-compute-
functional-enrichment module was then applied to select present modules and fit a GLM
with a logit linkage function to determine their enrichment in BLlongum and BLinfantis
subspecies (Table S10). The samemodule was then applied on a set of BLlongumhaplotypes
in order to describe BLlongum-specific metabolic modules. As previously described,
metabolic enrichments in vertically-transmitted and non-transmitted haplotypes could
not be tested with the available dataset. We therefore limited ourselves to investigate
and compare the presence of specific metabolic modules associated with high metabolic
independence (HMI) and found to be enriched in good colonizers of fecal microbiome
transplantation (FMT; Table S11) (Watson et al., 2023).

Profiling of HMG-utilization potential
Predicted proteomes of reconstructed B. longum MAGs were annotated using the CAZy
database using run_dbCAN4 (Zheng et al., 2023). Based on the literature, predicted
proteins sequences encoding for 13 HMO- (n= 8) and N-glycan-utilizing (n= 5) glycoside
hydrolases (GH)were further annotated using eggnog-mapper to identify potential variants
of GH-encoding genes whenever they were not annotated to the same orthologous group
at all levels (Arzamasov & Osterman, 2022). To further investigate these potential gene
variants, we used mmseq2 (v15.6f452) (Steinegger & Söding, 2017) to perform pairwise
protein sequence alignments for all available sequences from our MAGs for these GHs.
We then used hierarchical clustering (distance metric = percent dissimilarity, clustering
method =Ward.D2) to identify clusters representing GH variants. Sequence clusters were
considered to represent the same GH variant if their average alignment identity was≥60%.
Singleton sequences and GHs variants with less than 5% prevalence across MAGs were not
included in the characterization of HMG-utilization potential. Hence, final annotations
of GH-encoding genes reflect the integration of CAZy with eggnog annotations and
protein homology searches (Table S5 and Figs. S7–S14). Alongside HMG-utilizing GHs, 37
genes, collectively encoding for 11 HMO- and three N-glycan uptake proteins, were also
included in the characterization of glycan-utilization potential of B. longum strains (Table
S6). Predicted protein sequences of genes derived from B. longum MAGs were aligned to
glycan-transporters using BLASTp (v2.6.0+). BLASTp results were filtered using bitscore
(≥50), e-value (≤0.001) and percent identity (≥60%) and only the alignment with the
highest percent identity (‘‘best hit’’) was retained for further analysis. Statistical analyses on
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predicted HMG-utilization gene profiles were performed in R. We performed hierarchical
clustering (distance metric= euclidean, clustering method=Ward.D2) on scaled absolute
counts of HMG-utilizing genes to investigate similarities/dissimilarities between B. longum
MAG based on their cluster assignments (i.e., HMG-profiles).

Significant differences in the abundance of GH-and transporter-encoding genes across
clusters were tested by Kruskal-Wallis tests performed on log-transformed gene abundances
. Pairwise Wilcoxon Signed-Rank tests (pairwise.wilcox.test ) were used as non-parametric
post-hoc tests to determine specific group differences (Table S8). Genes were considered
to be specifically enriched/depleted in a profile if displaying significant differences among
groups and a log2 fold change of±2 (4-fold change in abundance) in the ‘Cluster of Interest
vs. Remaining Clusters’ comparison.

Modeling and selection of abundance-associated features
We investigated the relationship between a set of factors and B. longum and Bifidobacterium
spp. abundance during early-life gut development. We performed linear nested Least
Absolute Shrinkage and Selector Operator (LASSO) regressions to identify and describe
the nature of important associations of selected features representative of maternal
and temporal effects (i.e., maternal and one-month (sub-)species abundance, vertical
transmission and strain sharing events), early-life nutrition (i.e., milk-feeding type and
frequency), HMG-metabolic potential (i.e.,HMO/N-glycan-utilizing GH- and transporter-
encoding gene cluster assignments; see Methods: Profiling of HMG-utilization potential)
and bifidobacteria interactions (i.e., bifidobacteria diversity, presence and abundance of
individual Bifidobacterium spp.). A Bifidobacterium species was considered to be present
or co-occurring in a sample when its relative abundance was >0.01% (Wood & Salzberg,
2014).

We built subspecies-specific models for BLlongum and BLinfantis subspecies. For each
taxonomic group of interest, we tested our models for each age group (i.e., one-month and
six-months olds), and we used corresponding relative abundances as response variables.
For the one-month age group, we tested the BLlongum model only as the prevalence of
BLinfantis across datasets was extremely low (5%, five out of 93 samples). Feature selection
varied per model and age group (Table S13) and aimed at including as many features as
possible. First, we filtered the metadata as a considerable portion did not exhibit sufficient
variability (e.g., solid food intake, Table S1). For each subspecies and age-group, factor
variables were tested for collinearities using the cor function from the stats package in
RStudio, using a threshold of±0.70 (Table S12). Different combinations of covariates were
tested in order to select the best/reliable model; the output of the collinearity tests, a priori
knowledge, (non-)uniformity, quality of the available data and best cross-validated mean
squared error (‘cvm’) pseudo-objectively determined the choice for best model.

LASSO regressions were carried out using the cv.glmnet function in RStudio (glmnet
v4.1-8 (Friedman, Hastie & Tibshirani, 2010). Categorical predictor variables were dummy
coded and included in the input factor matrix as continuous predictor variables. In order
to account for missing information, missing values were imputed by setting the na.inpute
option to TRUE in the makeX R function. Coefficients (β) were selected at the minimum
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cross-validation error (lambda min). Features for which β was not shrunk to 0 were
considered as ‘important’, and associated with changes in the abundance of model genus,
species and subspecies. Cross-validation for one month was performed using ten times
nfolds= 10 and mean squared error (mse) for accuracy. Due to the small sample size, a ten
times Leave One Out Cross Validation (LOOCV, nfolds = sample size n) was performed
on six-months LASSO models, using the mean squared error (mse) for accuracy, too.
It is important to note that the output of LASSO models was not used for prediction of
bifidobacterial abundance, but rather for feature selection.

Quantification of priority effects
To test if factors are indicative of priority effects and quantify them, we made use of the
formula to calculate the strength of priority effects (P ′ij) developed by Vannette & Fukami
(2014) and refined by Debray et al. (2023):

P ′ij = ln
[
B(i)ji/B(i)ij

]
where B(i)ij and B(i)ji represent the average abundance reached by the (sub)species in
question when introduced first and after other species, respectively. As the exact arrival
order cannot be deducted from our samples, we define proxies for arrival order/early
arrival using three different criteria: (i) the (sub)species in question is the most abundant
Bifidobacterium in the mother (or the closest previous time point, above a threshold of
0.1%), (ii) a strain of (sub)species in question is shared betweenmother and infant and (iii)
either (i) or (ii) or both are true. We applied the formula using all three criteria, separately.
The interpretation of P ′ij is similar among formulas; negative coefficients indicate that
proxies for early arrival of BLlongum are associated with higher BLlongum abundance.

Data analysis and statistics
Data analyses and statistical procedures were performed using a combination of the RStudio
(v2022.02.0+443) and Anvi’o (v8; Eren et al., 2021). Pangenomic hierarchical clusterings
of MAGs and their visualization, as well as functional and metabolic enrichment analyses
using anvi-modules were performed in the Anvi’o 8 platform. All other statistical tests were
performed using RStudio. In addition, in all instances where multiple testing occurred,
false discovery rate (‘fdr’) correction was implemented to account for false positives.

Data availability
The raw-reads for each AIMS biosample were submitted to the European Nucleotide
Archive (ENA) at EMBL-EBI repository and the National Center for Biotechnology and
Information (NCBI, https://www.ncbi.nlm.nih.gov/bioproject/1050518), with BioProject
accession number PRJEB66728.

RESULTS
B. longum subspecies replacement between one and six months of
age
We sequenced 57 stool samples from 24 mothers and their full-term, vaginally-born,
antibiotic free infants enrolled in the AIMS study (Table S15, also see Methods) using
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Figure 1 B. longum subspecies replacement between one and six months of age. Relative abundance
profiles of abundant (>10% abundance in at least one infant) bifidobacteria displayed for (A) mothers,
(B) 1 m and (C) 6 m infants (mother-infant pair=P#). The columns ‘Other bifidobacteria’ and ‘Other
bacteria spp.’ include non-abundant Bifidobacterium spp. and non-bifidobacteria taxonomic groups, re-
spectively.

Full-size DOI: 10.7717/peerj.18602/fig-1

shotgun metagenomics (mean depth: 38.8M reads per sample; Fig. S1). In addition, we
used 125 publicly available infant metagenomics samples.

Consistent with results from other cohorts, taxonomic composition analyses using
sylph showed the Bifidobacterium genus to be the most abundant and prevalent taxonomic
group in the gut of AIMS infants at both one and six months of age (Frese et al., 2017;
Shao et al., 2019; Ennis et al., 2024; Shaw & Yu, 2024; Kujawska et al., 2020). Bifidobacteria
accounted for∼64% (standard deviation (SD):±9.32%) and∼77% (±7.25%) of the total
gut microbiome, respectively (Fig. S6). Among the 13 bifidobacterial species detected,
Bifidobacterium longum was the most abundant and prevalent species at both one and six
months of age (Fig. 1, Table S15).

Across AIMS infants, BLlongum was the most abundant and prevalent Bifidobacterium
(sub-)species at one month of age, making up 62.4% (±7.5%) of the total gut microbiome
when detected (prevalence =85%). Notably, at six months of age, BLinfantis replaced
BLlongum as the most abundant (79.6%±6.7%) and prevalent (71%) taxon, even though
BLinfantis was detected in only two infants at one month of age. At six months of age,
BLlongum prevalence increased to 67%, though its abundance decreased when present
(10.5% ±6.2%). Across the publicly available datasets, we detected a similar pattern,
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which we also confirmed using MetaPhlAn (Fig. S5) (Blanco-Míguez et al., 2023; Ennis
et al., 2024). BLlongum was detected to be the most abundant B. longum subspecies (see
Methods) in maternal (n= 48) samples and the majority of 1 m (93%, n= 57) fecal
samples, when present. In contrast, BLinfantis was found to be the most abundant B.
longum subspecies in ∼7% of 1 m infants. Alongside BLlongum and BLinfantis, other
Bifidobacterium species were also found to be present in the gut of 1 and 6 m AIMS
infants (Fig. 1 and S6). Despite their lower prevalence, B. breve (abundance: 44.4 ±21.4%,
prevalence: 31%) and B. bifidum (abundance: 16.6% ±7.2%, prevalence: 38%) were the
second and third most abundant species in the gut of 1 m AIMS infants, when present.
While displaying different abundance dynamics over time, at six months of age both species
were found to be highly prevalent across the AIMS cohort (prevalence: B. breve =71.4%;
B. bifidum =52%).

Mother-infant and infant-infant strain tracking revealed Bifidobacterium species-
dependent rates of vertical transmission events and strain persistence (Table S4). We
detected the presence of maternally transmitted BLlongum in ∼29% of 1 m AIMS
infants (Table S4, also see Methods). Conversely, other bifidobacterial species, namely
B. pseudocatenulatum, B. bifidum, and B. adolescentis, exhibited a higher proportion of
maternally shared strains, accounting for 80%, 60%, and 80% of their occurrences,
respectively. At one month of age, we did not detect shared BLinfantis and B. breve strains
between AIMS mothers and their infants. This is congruent with our observation of
BLlongum replacement by BLinfantis between the ages of one and six months and low
abundance and prevalence of BLinfantis in maternal fecal samples. On the other side, 20%
(three out of 15) of BLlongum occurrences in 6 m infants were the result of strain sharing
with mothers. Overall, our results highlight BLlongum as the most prevalent and abundant
B. longum subspecies in the gastrointestinal tract of 1 m infants and reveal its replacement
by BLinfantis at six months of age.

Targeted glycoside hydrolase and transporter profile analysis reveals
inter- and intra-subspecies variability in HMG-utilization potential
The success of B. longum subspecies in the developing human gut microbiome is largely
owed to their glycoside hydrolases (GH), which allows them to breakdown human-milk
oligosaccharides (HMOs) and N-glycans (Arzamasov & Osterman, 2022). To investigate
the metabolic potential of the most abundant bifidobacteria in our cohort, we used
metagenomic binning to recover 63 B. longum MAGs (AIMS: n = 28, public datasets: n
=35) and created a B. longum pangenome (Fig. S2). Phylogenomics analysis of B. longum
MAGs allowed us to differentiate between BLlongum and BLinfantis MAGs (Fig. S3),
which we then validated using the MetaPhlAn-B. infantis database (see Methods).

We then applied a targeted approach to profile glycoside hydrolase (GH)- and
transporter-encoding genes in B. longum MAGs that are involved in HMG (i.e., HMO
and N-glycan) utilization. We define MAG HMG-utilization profiles as the presence and
copy-number of these genes (Table S7).Hierarchical clustering assignments ofMAGs, based
onHMG-utilization profiles, were used to describe differences in HMG-utilization capacity
between and within subspecies and the observed BLlongum/BLinfantis replacement. We
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identified three major clusters, one of which represented BLinfantis (BLinfantis-HMG;
Fig. 2A), while BLlongum was subdivided into two different HMG-utilization clusters
(BLlongum-HMGsimple, BLlongum-HMGcomplex; Fig. 2A). Multiple gene enrichment
analyses were then performed to capture differences (and similarities) among identified
gene profiles (Fig. 2B, Table S8).

The differentiation of BLlongum MAGs into BLlongum-HMGsimple and -
HMGcomplex utilization profiles was largely driven by differences in oligomannose
N-glycan utilization. MAGs comprising the BLlongum-HMGsimple cluster were not
enriched with a specific set of CAZymes, but harbored GH-encoding genes shared with
other cluster types (i.e., GH2_v1-2, v7, GH42_4, GH112 and GH136: Figs. 2B–2C).
In contrast, the BLlongum-HMGcomplex cluster was enriched in four GH-encoding
genes. Among these, genes encoding for alpha-mannosidases (GH38_v1, GH125) and a
β-mannosidase (GH5_18) are also enriched in the BLinfantis-HMGcluster, while GH85_v1
(endo- β-N-acetylglucosaminidase) is specific to the BLlongum-HMGcomplex cluster. In
BLlongum, these enzymes are involved in the intracellular degradation of oligomannose N-
glycans (Arzamasov & Osterman, 2022). BLlongum haplotypes possessing genes encoding
for GHs involved in N-glycan utilization (BLlongum-HMGcomplex) also harbored genes
for N-glycan uptake (mnaABC), which are not found in other BLlongum haplotypes.
Genes involved in the uptake of LNB/GNB (gltABC) were widespread across BLlongum
MAGs, regardless of HMG-utilization cluster identity. Alongside the set of significantly
enriched genes shared with BLlongum-HMGcomplex MAGs, BLinfantis further encoded
for 14 subspecies-specific HMO- and N-glycan-utilizing GH-encoding genes and ten
glycan-uptake proteins (Figs. 2A–2B). Accordingly, BLinfantis has a wide and diverse
array of GH-encoding genes allowing for the cleavage of a larger diversity of glycosidic
linkages, facilitating the utilization of a greater amount and diversity of HMOs and N-
glycans (Garrido et al., 2011; Sakanaka et al., 2019b) (Fig. 2D). For example, the presence
of alpha-L-fucosidase (GH95) is indicative of fucosylated HMO utilization (Arzamasov &
Osterman, 2022) (Fig. 2A). Alongside their role in HMG degradation, other enriched GHs
are also involved in the metabolism of N-glycans. Together with the previously described
GH5_18, GH38_v1 and GH125 enzyme families, the alpha-L-fucosidase (GH29_v1-2, v4,
GH95), ß-hexosaminidase (GH20_v1 and v3-4) and sialidases (GH33_v1-2) potentially
play an important role in the intracellular degradation of complex N-glycans (Fig. 2D). The
diversity in the GH-repertoire of BLinfantis is complemented by an increased number and
diversity of HMG transporter-encoding genes. Enriched HMO transporters are potentially
involved in the uptake of LNB/GNB (gltFGH), fucosylated HMOs (FL1-2) (Sakanaka et
al., 2019b), LNnT and other type II HMO moieties (nahS, hmoABC, hmoA2B2C2, hmoA3-
6) (Kujawska et al., 2020). BLinfantis haplotypes were also enriched in genes encoding
for proteins involved in N-glycan internalization (mnaABC and afcT ) (Arzamasov &
Osterman, 2022; Cordeiro et al., 2023). Notably, only three BLinfantis haplotypes harbored
genes encoding for the LNT/LNB/GNB transporter GltABC (Blon_2177).

We further used the B. longum meta-pangenome to compare genomic content between
BLlongum gene profile groups and by doing so, analyze associations between HMG-
utilization and overall functional potential. Our functional enrichment analysis supported
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Figure 2 Targeted HMG-profile analysis reveals inter- and intra-subspecies variability in HMG-
utilization potential. (A) Heatmap of GH- (brown rows) and transporter (light orange rows)-encoding
gene copy numbers per B. longumMAG (BLinfantis= light blue, BLlongum= orange; sample origin:
mother= pink, 1-month infant= yellow, 6-month infant= blue). (continued on next page. . . )

Full-size DOI: 10.7717/peerj.18602/fig-2
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Figure 2 (. . .continued)
For ABC transporters, only the first gene in each operon is shown, where applicable. (B) Venn diagram
of GH-encoding genes among B. longum subspecies’ HMG-profiles (C) HMO/N-glycan degrading GHs
(CAZy annotations). Coloring indicates affiliation to subspecies/HMGprofiles (see B). (D) Potential hy-
drolytic activity of GH encoded by BLlongum and BLinfantis haplotypes. The HMO and N-glycan struc-
tures show possible linkages of HMO and oligomannose, hybrid and complex HMG building blocks, re-
spectively (Symbols Nomenclature for Glycans, SNFG). Most enzymes depicted in this figure are exo-
acting and release only terminal monosaccharide residues from non-reducing ends; in C and D, endo-
acting and intracellular GH-cleaving enzymes are marked with one (*) and two (**) asterisks, respectively.

our findings from our targeted GH and transporter-profile analysis, as alpha-mannosidase
(EC:3.2.1.24: GH38) and mannosyl-glycoprotein endo-beta-N-acetylglucosaminidase
(EC:3.2.1.96: GH18 and GH85) are found to be significantly associated to the BLlongum-
HMGcomplex gene-profile (Table S9).

Additionally, we tested for overall functional and metabolic differences between
BLlongum and BLinfantis (Tables S10 and S11) and found the specific genome content
of BLinfantis to reflect known differences in riboflavin, arabinose, sialic acid and urea
metabolism between B. longum subspecies (Table S10) (Sela et al., 2008). Investigating
associations between BLlongum genome content with strain sharing yielded no significant
outcomes.

Maternal effects, nutrition and HMG-utilization potential drive B. longum
subspecies abundance dynamics at one and six months of age
To identify important personal, bifidobacterial, maternal and environmental factors
associated with the abundance and dynamics of B. longum subspecies in the developing
infant gut within one modeling framework, we made use of nested cross-validated LASSO
regressions. At one month of age, the model was fitted on a combined dataset of infants
(n= 81) from the AIMS (n= 14) and publicly available cohorts (n= 67), whilst six-months
models were performed on AIMS infants exclusively (n= 22). The number of features used
varied per model and age group (model: 1mnt-BLlongum =9; 6mnt-BLlongum =9;
6mnt-BLinfantis =8; Table S13) and aimed at maximizing the number and diversity of
parameters used, while accounting for, among others, collinearity,
(non-)uniformity and quality of the available data.

In order to identify factors associated with BLlongum and BLinfantis abundance across
the first six months of life, we tested three LASSO models. We use two models to select
features associated with BLlongum abundance at one (n= 81) and six months (n= 22). As
BLinfantis prevalence was too low among 1 month infants (6mnt BLinfantis =five out of
93), only one model at six months (n= 22) was tested for this subspecies.

At one month of age, we find distinct sets of features associated with the abundance of
B. longum subspecies (Fig. 3 & Table S14). The selected features included factors indicative
of maternal effects (i.e., maternal BLlongum abundance and vertical transmission), and
interspecies interactions (i.e., presence/absence and abundance of other bifidobacteria), as
well as nutritional and genomic information. BLlongum abundance was generally positively
associatedwithmaternal effects (Fig. 3A). Interspecies interactionswere found to be positive
for B. adolescentis and B. bifidum and negative for total bifidobacterial species diversity,
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Figure 3 Maternal effects, nutrition and HMG-utilization potential drive B. longum subspecies abun-
dance dynamics at one and six months of age. Bargraphs show the LASSO regression cross-validated
shrunken β coefficients related to important features positively (black bars) or negatively (white bars) as-
sociated to the abundance of (A) BLlongum at one month of age and (B) BLlongum and (C) BLinfantis at
six months of age.

Full-size DOI: 10.7717/peerj.18602/fig-3

B. breve and B. pseudocatenulatum abundance. Breastfeeding and formula-feeding were
positively and negatively associatedwith the abundance of BLlongum, respectively. Notably,
HMG-utilization potential was also among the selected features; BLlongum-HMGsimple
MAGs were found to be less abundant relative to BLlongum-HMGcomplex haplotypes
(Figs. 3A).

BLlongum abundance at six months of age was found to be mostly associated with
interspecies interactions and maternal-offspring strain sharing. Co-occurrence with B.
adolescentis was associated with higher BLlongum abundance (Fig. 3B), while the presence
of B. bifidum and B. breve was negatively associated with BLlongum abundance. Notably,
haplotypes shared between mother and 6 m infants were also found to be more abundant
than non-shared BLlongum.

At six months of age, BLinfantis replaced BLlongum as the most prevalent and abundant
gut bacteria. Higher abundances of BLinfantis were positively associated with total
bifidobacterial diversity (defined as the total number of bifidobacterial species detected in
a sample) and its co-occurrence with B. breve (Fig. 3C). Moreover, our LASSO regression
indicates breastfeeding and daily milk-feeding frequency to be important features positively
associated with BLinfantis abundance at six months of age. Conversely, co-occurrence with
B. pseudocatenulatum and increasing abundances of B. bifidum and B. adolescentis were
found to be indicative of lower BLinfantis abundance at this age. Increased abundances of
BLlongum at onemonth were found to be negatively associated with BLinfantis abundances
at six months of age.

Identification of potential priority effects
The factors we found to influence BLlongum abundance throughout the first six months
of life could generally be summarized as maternal, nutritional, metabolic and competitive.
Maternal factors can be indicative of early colonization, which in turn can be associated
with priority effects (Sprockett, Fukami & Relman, 2018; Lou et al., 2021). To test if the
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identified maternal factors acted as proxies for priority effects, we used an established
framework to calculate the strength of priority effects (Methods, Vannette & Fukami, 2014;
Debray et al., 2023). Maternal strain sharing and the identification of BLlongum as themost
abundantBifidobacterium (sub-)specieswere both factors that contributed to priority effects
(Fig. S15), with the combination showing much stronger effects, indicating an additive
relationship (Fig. S15B). These two factors were also found to be significantly associated
with a higher BLlongum at one (mother/infant strain sharing: p= 0.02, BLlongum most
abundant: p= 0.04, combination: p= 0.005) and six months of age (Mat. strain sharing:
p= 0.02, combination: p= 0.02; Fig. S15A, Tables S17–18).We further comparedmaternal
BLlongum abundance of mothers that shared BLlongum strains with their 1-month-old
infants and those for which we did not detect strain sharing, but found no significant
difference (Wilcoxon signed-rank test: p = 0.08; Fig. S16, Table S16). The estimated
strength of priority effects was markedly higher at 6 months relative to one month of age,
though the prevalence of BLlongum was lower at that age (Fig. 1).

In summary, by analyzing AIMS and publicly available datasets we identify a common
infant gut colonization and succession trajectory for B. longum subspecies (BLlongum-
to-BLinfantis replacement) and less common trajectories (Fig. 4), driven by maternal
influence/priority effects, nutrition and HMG-utilization potential.

DISCUSSION
In this study, we investigated the factors governing colonization and succession patterns
of B. longum and its subspecies by combining precision metagenomics and pangenomics
analyses with detailed data describing nutrition as well as maternal and environmental
factors. Our analyses identified an interplay of maternal influence/priority effects, feeding
patterns, and bifidobacterial metabolic potential to regulate early life B. longum subspecies
abundance dynamics.

The role of strain transmissions from mother to child are well-documented (Zhu et al.,
2015; Ferretti et al., 2018; Valles-Colomer et al., 2023), yet we found B. longum subspecies
abundance in the maternal microbiome to be strongly associated with higher abundance
of this subspecies in the infant. Maternal factors identified in this study as proxies for
priority effects were significantly associated with BLlongum abundance at one and six
months of age (Fig. S15A, Table S18). Notably, BLlongum maternal abundance and
detected vertical transmissions did not significantly influence each other (Fig. S16, Table
S16). This may suggest the occurrence of additional vertical transmission events that
remained undetected due to biological effects related to population bottlenecks (e.g., strain
differentiation after transmission) (Chen & Garud, 2022) or technical issues related to
strain tracking. Nevertheless, higher maternal BLlongum abundances may facilitate infant
gut colonization. Both maternal factors were found to be indicative of priority effects
and we found them to have additive effects in influencing BLlongum abundance in the
infant (Fig. S15). We could not perform similar analyses for BLinfantis due to a lack of
available suitable samples. Such effects could potentially be investigated in studies with a
higher temporal resolution. In summary, the impact of the maternal microbiome on infant
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Figure 4 Conceptual framework for early-life gut colonization and succession dynamics of B. longum
subspecies. For each timepoint (mother, 1 m and 6 m infants) two scenarios are presented: high or low
Bifidobacterium longum abundance (purple/top and yellow/bottom area). Based on our findings, we high-
light the importance of maternal and vertical transmission’s impact (pink arrow), breastfeeding (light-
blue) and ‘complex’ HMG-metabolic potential (dark yellow) on BLlongum prevalence and abundance at
one month of age. We further postulate that breastfeeding (together with complex and versatile HMG-
metabolic potential of BLinfantis) also explain the subsequent takeover of BLinfantis (purple circle) over
BLlongum at six months of age. Created in BioRender.

Full-size DOI: 10.7717/peerj.18602/fig-4

microbiome development was evident and is in line with previous observations about the
importance of priority effects (Sprockett, Fukami & Relman, 2018; Ojima et al., 2022).

Additionally, we found feeding type and frequency to be key factors influencing the
dynamics of the infant gut microbiome. Curiously, breastfeeding was an important factor
determining BLlongumandBLinfantis abundance at one and sixmonths of age, respectively
(as was breastfeeding frequency). This could imply that the more intimate contact between
mother and child promotes BLlongum at onemonth of age. Across longer time scales breast
milk consumption seems to promote BLinfantis due to their better HMO and N-glycan
scavenging abilities.

The introduction of solid foods (weaning) is known to impact the infant gutmicrobiome
and often starts before six months of age (Koenig et al., 2011). This was also true for most
AIMS infants, as all but one started weaning by six months of age (Table S1). We had
expected BLlongum to thrive on a mixed diet of milk and solid foods, as it is generally
better adapted to adult diet and is able to break down complex plant polysaccharides
(Kujawska et al., 2020; Komeno et al., 2022). As this was not the case, we concluded that the
sporadic and limited intake of solid food in combination with milk feeding reported by the
participating parents may not provide sufficient substrate for BLlongum to outcompete
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BLinfantis. However, earlier studies suggest that BLlongum eventually emerges as the main
subspecies in the infant gut as solid foods gradually become a more significant source of
nourishment for the infant (Vatanen et al., 2022).

Our genomic analyses further highlighted the importance of breast milk as nutrition for
themicrobiome with specific adaptations influencing colonization success andmicrobiome
dynamics. We found all Bifidobacterium longum to encode for metabolic pathways
associated with metabolic independence that were previously found to be characteristic
for successful adult gastrointestinal tract colonizers (see Table S11 metabolic enrichment)
(Vatanen et al., 2022; Watson et al., 2023). BLinfantis genomes encode for a broad set of
enzymes involved in (complex) HMO and N-glycan uptake and degradation (Garrido et
al., 2011; Vatanen et al., 2019; Sakanaka et al., 2019b; Arzamasov & Osterman, 2022), while
BLlongum are generally thought to have a limited HMO/N-glycan degradation potential
(Sakanaka et al., 2019a; Kujawska et al., 2020; Arzamasov & Osterman, 2022; Komeno et
al., 2022). Yet, nearly half of BLlongum strains were predicted to potentially uptake
and degrade oligomannose-type N-glycans, and the absence of this expanded functional
potential was associated with lower BLlongum abundance in one-month infant stool
samples, a relationship that had not been reported before.

Thoughwe are unable to draw conclusions about the potential health benefits of different
BLlongumHMG-utilization types for infants, our findings indicate the existence of defined
succession trajectories involving the different B. longum subspecies which are influenced
by multiple factors (Fig. 4). Previous studies observed fine deviations in gut microbiome
progression during developmental stages to be associated with islet autoimmunity or
type 1 diabetes (Stewart et al., 2018; Vatanen et al., 2018). Future studies should therefore
investigate the fate of gut microbiome assembly and address potential health consequences
associated with different B. longum colonization trajectories.

Leveraging rich datasets in combination with metagenomics and ML allowed us link the
unveiled intra-subspecies genomic variation in B. longumHMG-utilization potential to the
observed early life subspecies replacement. In fact, ML via LASSO regressions revealed that
the combinations of all three factors (maternal/priority effects, nutrition and bifidobacterial
metabolic potential) governed the colonization and microbiome dynamics we observed
and allowed us to conceive a mechanistic model (Fig. 4). Though the importance of these
factors differed, not one individual factor would have been able to explain the observed
dynamics by itself. Nevertheless, we acknowledge the small sample size of the available
data does not allow for generalized predictive modeling, yet all associations we detected
are congruent with the biological and ecological knowledge.

CONCLUSIONS
In conclusion, our results highlight the predictable and reversible nature of B. longum
succession outcomes. Bifidobacteria are considered as the healthy-standard for infant
development, with their beneficial impact being the result of extensive bifidobacteria-gut
microbiome-host cross talk (Turroni et al., 2016). As substrate utilization and metabolite
production varies among species, subspecies and even same-species strains, distinct early
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life colonization and succession dynamics could potentially influence the benefits they
provide. Future long-term longitudinal studies following gut microbiome development
from birth to at least three years of age will reveal the potential health implications of
differential succession outcomes on infant development, with the potential of designing
targeted interventions during a decisive period in human development.
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